

C# For Artists

© 2008 Rick Miller — All Rights Reserved

19

2 Small Victories: Creating C# Projects

Learning Objectives

• List and describe the minimum development tools required to create C# programs
• State the purpose and use of operating system environment variables
• List and describe the steps required to create operating system environment variables
• State the purpose of the Path environment variable
• List and describe the steps required to add the .NET runtime folder path to the Path environment

variable
• List and describe the steps required to create C# programs using Microsoft's free command-line

tools
• List and describe the development tools found in the Microsoft Windows Software Development Kit

(SDK)
• Describe the functions and features generally found in an IDE
• List and describe the steps required to create C# programs using Microsoft Visual C# Express
• Demonstrate your ability to create C# projects using Microsoft’s free command-line tools
• Demonstrate your ability to create C# projects using Microsoft’s free Visual C# Express

Chapter 2

Small Victories
Creating C# Projects

Artifacts

N
ik

o
n
 F

3
H

P.
 K

o
d
ak

 T
ri

-X

Introduction Chapter 2: Small Victories: Creating C# Projects

20

© 2008 Rick Miller — All Rights Reserved

C# For Artists

Introduction

I call this chapter Small Victories because selecting development tools and properly configuring your develop-

ment environment easily accounts for seventy-five percent of the headaches you’ll get when starting down the road of

C# .NET software development. Creating, compiling, and running your first project represents the biggest hurdle

novice programmers face. The information in this chapter is designed to help you easily jump that hurdle and do a

victory dance.

Here you will learn several critical software development skills. First, I explain exactly what you need to write,

compile, and run C# programs. The good news is that you don’t need a fortune to start programming with C# and the

.NET Framework. Microsoft offers powerful and flexible software development tools absolutely free. Next, I will

explain the purpose and use of environment variables and show you how to configure the PATH environment variable

so you can compile and run C# programs from the command console. And, since you may not be familiar with the

command console, I will explain its purpose and use and show you how to use several important commands.

Later, once you understand how to use Microsoft’s C# .NET command-line tools, I’ll show you how to create

programs using Microsoft Visual C# Express. Visual C# Express is Microsoft’s free integrated development environ-

ment (IDE). An IDE increases programmer productivity by providing, under a common user interface, several impor-

tant software development tools including source code editing, compiling, debugging, and execution.

Creating Projects With Microsoft C#.NET Command-Line Tools

You need only two things to create professional, robust, C# .NET projects: the Microsoft .NET Framework, and

a suitable text editor. Both can be obtained free of charge, although you will most likely want to buy a good text edi-

tor.

The .NET Framework supplies you with the C# command-line compiler. The C# command-line compiler is a

program that is run in a console window and is used to transform programs written in C# into byte-code modules that

can be executed by the .NET Common Language Runtime (a.k.a. the .NET virtual machine).

The question most students ask when I teach them how to use these tools is, “Why?”. “Why, if Microsoft offers

Visual C# Express (or Visual Studio), do I need to know how to create programs using command-line tools?” That’s a

good question with several answers, and they go something like this: Visual C# Express is a powerful program. In

fact, it’s so powerful that you can spend a lot of time just learning what it does and how to use it. So, in order to let

students focus on learning the C# language, I recommend they learn how to use the command-line tools and postpone

their involvement with Visual C# Express until they get some programming experience.

My second answer to the question has a more practical side. Nowadays, most novice programming students have

little or no experience using the command console. They are familiar with the Microsoft Windows interface and

pointing and clicking with a mouse, but issuing DOS commands from the command line is something completely

alien to them.

I consider the ability to compile programs with the C# command-line tool, issuing DOS commands, and setting

and using operating system environment variables to be fundamental skills that all programmers need to have in their

tool belt. Also, mastering these fundamental skills will let you better understand what Visual C# Express is doing

“under the hood”. You may find it necessary one day to dive into the code generated “automagically” by Visual C#

Express to make a few adjustments. The only way you’ll be able to do that is to take complete control of your devel-

opment environment and understand how to use the command-line tools to compile and run C# programs.

Downloading And Installing The .NET Framework

The first thing you need to do is to download and install the .NET Framework. Microsoft offers the .NET Frame-

work Redistributable Package as a free download from their Microsoft Developer Network website (MSDN)

[www.msdn.com]. You can optionally order the .NET Framework on DVD for a nominal charge.

Chapter 2: Small Victories: Creating C# Projects Creating Projects With Microsoft C#.NET Command-Line Tools

C# For Artists

© 2008 Rick Miller — All Rights Reserved

21

You will find the .NET Framework 3.5 by going to MSDN and under the

Server Development

heading click on

.NET Framework

. On the

.NET Framework

page under the

Get the Framework

 heading click on the

.NET Frame-

work 3.5

link. This takes you to the Microsoft .NET Framework 3.5 download page.

At a minimum, you only need to download the .NET Framework 3.5. It provides the .NET runtime environment

and the C# command-line compiler. It also includes the .NET Framework 3.0 Service Pack 1, the .NET Framework

3.0 Redistributable Package, and the .NET Framework 2.0 Service Pack 1. You can optionally download and install

the Microsoft Windows Software Development Kit (SDK) for .NET Framework 3.5. The Microsoft Windows SDK

provides additional development tools. However, before you can install the SDK, you must download and install the

.NET Framework.

Installation of the .NET Framework is straightforward. The important thing to note during the installation pro-

cess is where on your hard drive the .NET Framework is installed. The path to the .NET Framework installation

directory will be [

c:\Windows\Microsoft.NET\Framework\

]. Figure 2-1 shows the .NET Framework

directory structure as it appears on my computer.

Notice in Figure 2-1 the five folders that begin with the letter ‘v’. These are the five versions of the .NET Frame-

work installed on my computer. For the purpose of this book we’ll only be interested in the most recent version (i.e.,

the highest numbered folder). Figure 2-2 shows a partial directory listing of the v3.5 folder. In there you’ll find the C#

compiler command-line tool.

Now that you’ve installed the .NET Framework you have everything you need to compile and run C# programs.

What you need now is a way to create C# source files. For that you’ll need a good text editor. This is the topic of the

next section.

Figure 2-1: Microsoft.NET Framework Installation Directory

Figure 2-2: Partial Directory Listing of the v3.5 Folder

The C# command-line

compiler tool.

Creating Projects With Microsoft C#.NET Command-Line Tools Chapter 2: Small Victories: Creating C# Projects

22

© 2008 Rick Miller — All Rights Reserved

C# For Artists

Downloading And Installing Notepad++

If you really wanted to rough-it you could use Notepad, the text editor that ships with Microsoft Windows. Note-

pad is perfectly suitable for small source files and lite editing jobs, but for bigger projects, I recommend getting your-

self a copy of Notepad++ from SourceForge.net [http://notepad-plus.sourceforge.net/].

Installation of Notepad++ is quick and straightforward. After you complete the installation a shortcut is automat-

ically installed on your desktop. Although Notepad++ is free to download, install, and use, I recommend that if you

like the product and use it often, and if you have the means, that you make a small donation via the website to support

its further development.

Armed now with the .NET Framework and a suitable text editor, you have everything you need to create C# pro-

grams. But before you get started you’ll need to properly configure your development environment.

Configuring Your Development Environment

A properly configured development environment is critical to the software creation process. In this section I will

show you how to create and use operating system environment variables, how to create a project folder, how to set

folder options so you can see filename suffixes, and how to set-up and configure shortcuts to the command console.

The skills you learn in this section will prove time and again to be absolutely invaluable.

Environment Variables

An environment variable is a named location in memory used by Microsoft Windows to store data about the

operating system environment. There are generally two types of environment variables:

system

 and

user

.

System environment variables store data that pertains to and affects the operating system environment for all

users. User environment variables store data that pertains to and affects the operating system environment for a par-

ticular user. Some system and user environment variables are automatically created and initialized by the operating

system when it is installed and when users are created.

Several important environment variables must be created or edited before you can use the command-line tools to

compile and run C# programs. These include: 1) a variable named DOT_NET_FRAMEWORK_HOME that contains

the path to the folder location of the most current .NET Framework, and 2) the PATH variable that includes a refer-

ence to the DOT_NET_FRAMEWORK_HOME variable so the operating system will know where to find .NET-

related executable files like the C# command-line compiler.

Creating Environment Variables

The first environment variable you will set will be the location of the home directory of the .NET Framework.

Navigate to that folder now so that you can copy the path to the .NET Framework directory; later, you can paste this

value into the environment variable value’s text field. (

Doing this prevents you from making mistakes when typing

long path names

) The path to this folder should be [

c:\Windows\Microsoft.NET\Framework\v3.5

].

(

Refer to Figure 2-2

) When you open the folder, select the path that shows in the Address box and copy it using

CTRL-C.

Next, we’ll create the user environment variable named DOT_NET_FRAMEWORK_HOME. See Figure 2-3 for

an illustration of the complete environment variable creation process.

Right click the My Computer icon located on your desktop. If this icon is not located on your desktop, click the

Start icon located in the lower left part of your screen along the toolbar. Find My Computer and right click it. Click

Properties to open the System Properties dialog window. In the System Properties dialog click the Advanced tab, then

click the Environment Variables button to open the Environment Variables dialog window. Underneath the User vari-

ables section, click the New button to create a new environment variable. This will open the New User Variable dia-

log window. Enter DOT_NET_FRAMEWORK_HOME into the Variable name textbox. Paste the path to the .NET

Framework home directory you copied earlier into the Variable value textbox. After entering both values, your New

User Variable dialog window will look similar to the completed example shown in Figure 2-3. Check your work for

accuracy, then click the OK button to close the New User Variable dialog window. Click the OK button for each of

the remaining open dialog windows to accept the changes. Congratulations! You just created an environment vari-

able.

Chapter 2: Small Victories: Creating C# Projects Creating Projects With Microsoft C#.NET Command-Line Tools

C# For Artists

© 2008 Rick Miller — All Rights Reserved

23

Creating or Editing the Path Environment Variable

Now that you have created the DOT_NET_FRAMEWORK_HOME environment variable, you can use it to cre-

ate or edit other environment variables. The next environment variable that you must either create or edit is the Path

variable. The operating system uses the Path environment variable to locate executable files. An instance of the Path

variable most likely already exists in the System Environment Variables section. I recommend leaving that version

alone and creating another Path environment variable in the User Environment Variables section. To create a new

User Path environment variable, follow the process illustrated in Figure 2-3. Enter “Path” into the Variable name text

Figure 2-3: Creating an Environment Variable

Right click MyComputer and

click Properties.

Click the Advanced tab,

then click the Environ-

ment Variables button.

Click the New button under the

User variables section.

Enter the environment variable name in the upper text

field and its value in the lower text field, then click

OK. Click the OK button to close each dialog box

and accept the changes.

1

2

3

4

5

6

Creating Projects With Microsoft C#.NET Command-Line Tools Chapter 2: Small Victories: Creating C# Projects

24

© 2008 Rick Miller — All Rights Reserved

C# For Artists

field. Enter the following into the Variable value text field: %DOT_NET_FRAMEWORK_HOME%. Click the OK

buttons to accept the changes. (

Note:

 To access an environment variable’s value, add a “%” to the beginning and end

of the variable name.)

If a Path environment variable already exists, you’ll need to select it and click the Edit button. Place your cursor

in the Variable value text field and move to the far end of the value that’s entered in the text field. If that value is not

terminated with a semicolon, you’ll need to add one before adding the following:

%DOT_NET_FRAMEWORK_HOME%;

Figure 2-4 shows the Path user environment variable being edited on my machine.

Testing The Newly Created Environment Variables

Check that you have set your environment variables correctly by running a couple of tests. The first test entails

opening a command console and using the DOT_NET_FRAMEWORK_HOME variable in a command. The second

test will be running the C# command-line compiler.

First, open the command console. Do this by clicking on Start->All Programs->Accessories->Command Prompt.

This will open a command console window like that shown in Figure 2-5. Next, enter the following command at the

command prompt:

cd %DOT_NET_FRAMEWORK_HOME%

 The

cd

 command stands for “Change Directory”. If you

have set the DOT_NET_FRAMEWORK_HOME environment variable correctly, entering this command should

open the .NET Framework v3.5 directory as Figure 2-6 illustrates.

Now test the Path environment variable. Execute the following command in a command console window:

csc

This should run the C# compiler which will produce a result similar to that shown in Figure 2-7. If your results look

like those shown in Figure 2-7, then all is set properly. Great job! If not, recheck your environment variable settings

and try again until you have things set just right.

Figure 2-4: Editing the Path User Environment Variable

Figure 2-5: Command Console Window

Command prompt

Figure 2-6: Testing the DOT_NET_FRAMEWORK_HOME Environment Variable

Chapter 2: Small Victories: Creating C# Projects Creating Projects With Microsoft C#.NET Command-Line Tools

C# For Artists

© 2008 Rick Miller — All Rights Reserved

25

Creating A Project Folder

The next thing you must do is create a folder in which to store your C# project files. Create a folder named

Projects on your C drive or some other acceptable location. This folder will serve as the root folder for any individual

projects you create later. You will store each project in its own folder under the Projects folder.

A good place to create the Projects folder is right on your desktop. To do this, right-click your desktop and select

New->Folder from the right-click menu as Figure 2-8 illustrates.

Name the new folder “Projects”. Note that when you create a folder on your desktop, you are actually creating it

in the [

C:\Documents and Settings\username\Desktop]

 folder, where “username” is the username of

the account you used to log on to the computer. On my machine, the full path to the Projects folder created on the

desktop is this: [

C:\Documents and Settings\rick\Desktop\Projects]

Setting Folder Options

Now that you have created your Projects folder, you’ll need to change its folder options so you can see file-type

extensions. Novice and experienced programmers sometimes have difficulty trying to compile a C# file because the

file they thought was saved with an extension of “.cs” was in fact saved with an extension of “.cs.txt”, where the

“.txt” extension was automatically added by a text editor, unbeknownst by the programmer. When this happens, the

C# compiler will fail to recognize the file as a C# source file. To help prevent such headaches, it’s a great idea to

change the folder options of all your folders to show file extensions.

To do this, open the Projects folder and in it create a new text file. The easiest way to create the text file is to sim-

ply right click in the open folder and select New->Text Document from the right-click menu. Save the text document

with the default name provided. Your Projects folder should now look like Figure 2-9. Notice that the name of the

document you just created simply shows as “New Text Document”. The “.txt” extension is hidden by default. So let’s

unhide the file extensions. Click the Tools->Folder Options... menu to bring up the Folder Options dialog window.

Click the View tab and scroll down until you see the check box that says, “Hide extensions for known file types”. This

box is checked by default. Uncheck the box as is shown in Figure 2-10.

Figure 2-7: Testing the Path Environment Variable by Running the C# Compiler

Figure 2-8: Creating a New Folder

Creating Projects With Microsoft C#.NET Command-Line Tools Chapter 2: Small Victories: Creating C# Projects

26

© 2008 Rick Miller — All Rights Reserved

C# For Artists

Click the Apply to All Folders button in the Folder views section, then click the Apply button and lastly the OK

button to dismiss the dialog. Your Projects folder should now look like Figure 2-11. Notice now you can see the “.txt”

file extension.

Creating A Shortcut To The Command Console And Setting Its Properties

Since you’ll be using the command console to compile C# programs you’ll find it convenient to place a com-

mand console shortcut on your desktop. To do this, click Start->All Programs->Accessories. Navigate to Command

Prompt and right click it. Select Create Shortcut. This will create a new item in the Accessories menu named “Com-

mand Prompt (2)”. Select the Command Prompt (2) icon and drag it to your desktop. Test the shortcut by double

clicking it to open the command console. By default, it should open to the directory [

C:\Documents and
Settings\username]

, where “username” is the account you used to log on to the computer. Figure 2-12 shows

how the command console window looks with its default settings on my machine.

Figure 2-9: Projects Folder Before Setting Folder Options

Figure 2-10: Folder Options Dialog Window

Uncheck this box to show

file extensions.

Chapter 2: Small Victories: Creating C# Projects Creating Projects With Microsoft C#.NET Command-Line Tools

C# For Artists

© 2008 Rick Miller — All Rights Reserved

27

Change The Name Of The Command Console Shortcut

The first bit of command console shortcut customization you’ll want to do is to change its name. Do this by

clicking twice on the shortcut icon’s name, pausing between clicks longer than a standard double-click. If you click

too fast, you’ll simply open the console window. If this happens simply close the window and try again. Rename the

shortcut to anything you want, but I recommend changing it to “Projects”, or “C# Projects”.

Change The Startup Folder Settings

Now that you’ve changed the command shortcut’s name, let’s make a more meaningful change. It would be nice

if the console window opened automatically in the Projects directory. To make this happen, right click the command

console shortcut icon located on your desktop and select Properties. This opens the properties dialog window for that

shortcut. For example, if you renamed your shortcut to “Projects”, the name of the properties dialog will be “Projects

Properties”. If you left the name of the shortcut with its default value, the name will be “Command Prompt (2) Prop-

erties” as Figure 2-13 illustrates.

Note:

 The Shortcut tab is selected by default.

To make the command console automatically start in the Projects directory, change the

Start in

 property by

replacing its default contents with the full path to the Projects folder. This will be

[C:\Documents and
Settings\username\Desktop\Projects\]

, where “username” is the account name you used to log on to

the computer. Figure 2-14 shows the command console

Start in

 property after I set it on my machine.

Click the OK button to accept the changes. Test the configuration by double clicking the command console short-

cut icon. It should open either in the Projects folder, or the folder you designated. If not, recheck your settings and try

again until everything works as expected.

Figure 2-11: Projects Folder After Setting Folder Options

Figure 2-12: Default Command Console Window

Creating Projects With Microsoft C#.NET Command-Line Tools Chapter 2: Small Victories: Creating C# Projects

28

© 2008 Rick Miller — All Rights Reserved

C# For Artists

Change The Layout Properties

The last adjustment left to make to the command console shortcut is to change its default screen buffer size. This

will allow you to increase the length and width of the screen to see more information without the lines wrapping.

Once again, right click the command console icon and click the Properties item to open the Properties dialog window.

Click the Layout tab and set the screen buffer size

Width

 property to 120, and change the

Height

 property to 3000, as

Figure 2-15 illustrates.

Figure 2-13: Command Console Properties Dialog

You’re going to change the

Start in property.

Start in property set to

the path of your Projects

folder. Notice the path is

enclosed in quotes.

Figure 2-14: Setting the Start in Property

Chapter 2: Small Victories: Creating C# Projects Creating Projects With Microsoft C#.NET Command-Line Tools

C# For Artists

© 2008 Rick Miller — All Rights Reserved

29

Click the OK button to accept the new changes. Now, double click the command console shortcut to open the

console window. Change its height and width by dragging the lower right-hand corner. You’ll find this to be a big help

when troubleshooting and debugging your programs.

Testing The Configuration

As a final test of the configuration, let’s create and run a short C# program. To do this, you’ll need to create the

C# source file with the text editor, compile the source file using the C# command-line compiler, and then run the pro-

gram.

Creating The Source File

Using either Notepad++ or another text editor create a new file named “HelloWorld.cs” and save it in your

Projects folder. Enter the code shown in Example 2.1 into your source file and save the file.

2.1 HelloWorld.cs

1 using System;
2
3 public class HelloWorld {
4
5 public static void Main(){
6
7 Console.WriteLine("Hello World!");
8 }
9 }

Compiling The Source File

To compile the HelloWorld.cs file, open the command console and change to the directory where you saved the

file. If you saved it in the Projects folder, then you’re already there. If you created a sub folder then change to that

directory by using the

cd

 command. For example, I saved the file in a folder named “Chapter2” located in the

Projects folder. To change to the Chapter2 directory from the Projects directory I entered

cd chapter2

, then

pressed the Return or Enter key. Figure 2-16 shows how the console looks on my machine when I use the

dir

 com-

mand to list the directory contents.

Figure 2-15: Setting Command Console Layout Properties

Change the Width and

Height properties to see

more information.

Creating Projects With Microsoft C#.NET Command-Line Tools Chapter 2: Small Victories: Creating C# Projects

30

© 2008 Rick Miller — All Rights Reserved

C# For Artists

To compile the HelloWorld.cs file, enter

csc

 followed by the name of the source file at the command prompt. If

you entered the source code correctly, you should see results similar to those shown in Figure 2-17.

If you execute another

dir

 command to display the directory contents, you’ll see a new file named “Hel-

loWorld.exe”. This is the executable program file.

Executing The Application

To run the executable file, simply enter its name at the command prompt. Figure 2-18 shows the results of run-

ning the Hello World program.

Fixing Compilation Errors

No matter how careful you try to be, you’re bound to make a mistake or two (or more) when writing programs.

Most of these mistakes will be simple typos like forgetting to terminate a statement with a semicolon. When you

compile a program that contains a compiler error, you will see something similar to the output shown in Figure 2-19.

When the compiler encounters a problem it will output one or more warning or error messages. Warnings are

usually non-fatal in that your program will still run if the compiler signals only a warning message. Error messages,

on the other hand, must be addressed before your program will compile completely.

The error message will contain the name of the source file, the line number and character position of the problem,

and the compiler error code. The C# compiler error codes can be found on the Microsoft C# language reference site,

but searching for them on Microsoft’s website does you little good. The best way to find detailed information about a

particular C# compiler error is to enter the following search query into Google: “C# compiler error CSNNNN”,

Figure 2-16: Directory Listing of the Chapter2 Directory Showing the HelloWorld.cs File

Figure 2-17: Compiling HelloWorld.cs Using the csc C# Compiler Command

Figure 2-18: Running the HelloWorld Program

Program output:

Chapter 2: Small Victories: Creating C# Projects Creating Projects With Microsoft C#.NET Command-Line Tools

C# For Artists

© 2008 Rick Miller — All Rights Reserved

31

where “NNNN” is the compiler error number. The first result from this query will usually lead straight to the

Microsoft C# compiler error page for that compiler error number. As you can see from Figure 2-20, the C# compiler’s

error message information is located in the Visual C# language reference area. The detailed information for compiler

error number CS1002 is shown in Figure 2-21.

Fix The First Compiler Error First

The best advice I can offer when dealing with compiler errors is to always

fix the first compiler error first

. The

reason for this is that some compiler errors trigger other errors. Fixing the first error generally eliminates many other

errors on the list.

Quick Review

All you need to create robust Microsoft C# applications is a good text editor and the free Microsoft C# com-

mand-line compiler that’s included with the .NET Framework Redistributable Package.

You must configure your development environment before using the C# command-line compiler. This includes

creating or editing one or more operating system environment variables. An environment variable is a named location

Figure 2-19: Compiler Output Showing Compiler Error on Line 6 at Position 39

Figure 2-20: C# Language Compiler Errors

Creating Projects With Microsoft Visual C# Express Chapter 2: Small Victories: Creating C# Projects

32

© 2008 Rick Miller — All Rights Reserved

C# For Artists

in memory used by Microsoft Windows to store data about the operating system environment. There are generally

two types of environment variables:

system

 and

user. System environment variables store data that pertains to and

affects the operating system environment for all users; user environment variables store data that pertains to and

affects the operating system environment for a particular user.

Environment variable values can be accessed by enclosing the variable name in ‘%’ characters.

The operating system uses the Path environment variable to help it find executable files. You must create or edit

the Path environment variable to include the full path to the C# compiler (csc.exe).

It’s helpful to create a project folder and a shortcut to the command console on your desktop. Set the command

console shortcut’s Start in property so it will automatically open in your designated project folder. Increase the com-

mand console shortcut’s screen buffer height and width properties to see more information in the console window.

It’s also a good idea to set your folder options to display file type extensions. This will prevent headaches associ-

ated with accidently saving source files with a “.txt” extension.

To create a C# program with the command-line compiler, you must create the source file, compile the source file

with the csc command-line compiler tool, and then execute the program by typing its name at the command prompt

and pressing the Return or Enter key.

You’re bound to get a few compiler errors when you start writing your own programs. Go to Microsoft’s website

to look up the error code. Remember to always fix the first compiler error first!

Creating Projects With Microsoft Visual C# Express

Microsoft Visual C# Express Edition is an IDE that combines text editing, debugging, project management, and

a host of other features. Visual C# Express is a trimmed-down, lightweight version of Microsoft’s flagship develop-

ment environment Visual Studio. With Visual C# Express, you can create C# console and Windows forms applica-

tions. Visual C# Express also comes bundled with Microsoft SQL Server Compact Edition. This allows you to create

applications that access and store data to a relational database.

The convenience and power of Microsoft’s Visual Studio products come at a price. Although conceptually they

are “easy” to learn, in reality, their multitude of features do present a significant learning curve to those who are abso-

lutely new to programming. The benefit Visual Studio brings to the programmer is its seamless integration of

Microsoft’s powerful arsenal of developer tools. Your productivity will exponentially increase when you do make the

move from command-line tools to the Visual Studio environment — that is, after you’ve figured out how to properly

use the tool.

Download and Install Visual C# Express

I’ll make the assumption in this section that you have a high-speed internet connection. If not, I recommend you

order the Visual C# Express DVD from Microsoft.

Figure 2-21: C# Compiler Error CS1002 “; expected”

Chapter 2: Small Victories: Creating C# Projects Creating Projects With Microsoft Visual C# Express

C# For Artists © 2008 Rick Miller — All Rights Reserved 33

The download and installation of Visual C# Express is straightforward. Open a web browser and go to MSDN

[www.msdn.com]. Under the Developer Tools and Languages heading click on Visual C#. This will take you to the

Visual C# Developer Center home page. Under the Get Visual Studio heading click the Free Download: Visual C#

2008 Express link. Click the Download Now! link and select Visual C# 2008 Express Edition.

When you start the install, you’ll eventually be presented with the installation screen shown in Figure 2-22.

Note that the installation also includes Microsoft SQL Server Compact 3.5 and its associated design tools. After

installation is complete you will need to restart your computer. Having done this, you should be able to start Visual

C# by selecting Start->All Programs->Microsoft Visual C# 2008 Express Edition. You will get a screen that looks

similar to Figure 2-23.

Quick Tour Of Visual C# Express

The best way to get a feel for how Visual C# Express works is to create the HelloWorld project. If you haven’t

already done so, launch Visual Studio Express.

Select Project Type

Start by selecting File->New Project from the main menu. This opens the New Project dialog window shown in

Figure 2-24. Click the OK button to create a project. Your Visual C# Express window will now look similar to Figure

2-25. Notice in Figure 2-25 that Visual C# Express automatically generated a lot of source code when it created the

new project. But, if you look closely, it added a few more lines of code than what I provided in Example 2.1, and also

left one out. Additionally, the name of the class is not HelloWorld. It’s “Program”! Also, it did not add the keyword

public to the beginning of the class declaration, and it used a different version of the Main() method. There is

also a critical piece of code missing, namely, the Console.WriteLine(“Hello World!”); statement that

goes in the Main() method. Let’s make a few changes to the automatically generated code and then run the project.

First, in the Solution Explorer -HelloWorld pane, find the Program.cs file and right-click it to rename it to “Hel-

loWord.cs”. When you do this all references to Program will be automatically updated to HelloWorld. Next, in front

of the words class and static add the keyword public. Finally, add the statement

Console.WriteLine(“Hello World!”); between the opening and closing brackets of the Main()

method.

Notice that as you type, Visual C# Express tries to lend a hand with its IntelliSense technology, as is shown in

Figure 2-26. Referring to Figure 2-26, IntelliSense is offering a list of the Console object’s available public methods

Figure 2-22: Visual C# Express Installation Window

Creating Projects With Microsoft Visual C# Express Chapter 2: Small Victories: Creating C# Projects

34 © 2008 Rick Miller — All Rights Reserved C# For Artists

and properties. IntelliSense can potentially save you a lot of time looking up .NET Framework class information, but

it won’t do all the work for you.

When you have finished making the changes to the automatically generated code, the project should look similar

to Figure 2-27.

Figure 2-23: Visual C# Express Initial Start-Up Screen

Figure 2-24: New Project Dialog Showing Console Application Selected

Name the project

HelloWorld.

Chapter 2: Small Victories: Creating C# Projects Creating Projects With Microsoft Visual C# Express

C# For Artists © 2008 Rick Miller — All Rights Reserved 35

Figure 2-25: HelloWorld Project View

Figure 2-26: IntelliSense Pop-Up Window Showing Available Console Object Methods and Properties

Creating Projects With Microsoft Visual C# Express Chapter 2: Small Victories: Creating C# Projects

36 © 2008 Rick Miller — All Rights Reserved C# For Artists

Saving The Project

Next, save the HelloWorld project by selecting File->Save All from the main menu to open the Save Project dia-

log. You can create a new folder in your Projects folder and save it there.

Build The Project

Before you can run the project you must build it. Building the project compiles the source files and generates an

executable file (i.e., a .exe file). Select Build->Build Solution from the main menu or press the F6 key as is shown in

Figure 2-19.

Locating The Project Executable File

To run the HelloWorld project, navigate to the folder in which Visual C# saved the executable file. You could run

the project directly from Visual C# Express. But, because HelloWorld simply prints a short message to the screen and

then immediately exits, you’ll have to be quick to catch the program’s output. This type of short console application

is best run from the command line.

Find the HelloWorld.exe file by opening a command console window, changing to the directory in which you

saved the project, and then executing the tree /f command at the command prompt. This will give you a directory

and file listing similar to that shown in Figure 2-30.

Notice that Visual C# Express automatically creates many subdirectories and files in the project’s directory.

Some of this data is used to maintain project state information, like the number and types of files it contains, along

with debugging information.

Figure 2-27: Updated HelloWorld Visual C# Project

Figure 2-28: Saving the HelloWorld Project

Chapter 2: Small Victories: Creating C# Projects Creating Projects With Microsoft Visual C# Express

C# For Artists © 2008 Rick Miller — All Rights Reserved 37

Figure 2-29: Building HelloWorld Project

Figure 2-30: Results of Running the tree /f Command from the Command Prompt

These are the original files created in the

command-line tools section.

Use the executable file located in the

..\bin\Release directory.

Summary Chapter 2: Small Victories: Creating C# Projects

38 © 2008 Rick Miller — All Rights Reserved C# For Artists

As you can see from figures 2-28 and 2-30, I have saved my version of the Visual C# Express HelloWorld project

in a directory named “VisualStudio” located in the Chapter2 directory of the Projects directory.

Note to Students: One good reason you need to know where to find the executable file is so you can turn in exe-

cutables from programming assignments to your instructor!

Execute The Project

Execute the HelloWorld program generated by Visual C# Express by opening the command console and navigat-

ing to the ..bin\Release directory using the cd command. Enter “HelloWorld” at the command prompt and

press Return or Enter. If you want to avoid typing long path names at the command prompt, open the Projects folder

and navigate to the ..\Chapter2\VisualStudio\HelloWorld\HelloWorld\bin\Release folder

using Windows Explorer. When you get there, copy the path from the Address bar and paste it into the console win-

dow after the cd command by right-clicking the console window and clicking paste. (In this case, using the keyboard

shortcut ctrl-v key combination will only paste in the characters “^V”, which is not going to help you much.)

Note: Programs, such as a console application that displays a text menu or a Windows Forms GUI application,

that do not exit immediately can be executed successfully from the Visual C# environment.

Where To Go For More Information About Visual C# Express

For more information about Visual C# Express visit the MSDN website or refer to the documentation that came

with the application.

Quick Review

Visual C# Express Edition is a lightweight version of Microsoft’s flagship IDE Visual Studio. Visual C# Express

comes bundled with SQL Server Compact Edition, which allows you to create relational database applications.

Visual C# Express will automatically generate a lot of source code for your project. However, it will not generate

all the code your application needs. It’s imperative you know how to modify the code that Visual C# generates in

order to take control of your projects.

When you save your Visual C# Express project, it generates many different files and subdirectories. You can find

the project’s executable file in the ..\bin\Release directory.

Summary

All you need to create robust Microsoft C# applications is a good text editor and the free Microsoft C# com-

mand-line compiler that’s included with the .NET Framework Redistributable Package.

Before using the C# command-line compiler you must configure your development environment. This includes

creating or editing one or more operating system environment variables. An environment variable is a named location

in memory used by Microsoft Windows to store data about the operating system environment. There are generally

two types of environment variables: system and user. System environment variables store data that pertains to and

affects the operating system environment for all users; user environment variables store data that pertains to and

affects the operating system environment for a particular user.

Environment variable values can be accessed by enclosing the variable name in ‘%’ characters.

The Path environment variable is used by the operating system to help it locate executable files. You must create

or edit the Path environment variable to include the full path to the C# compiler. (csc.exe)

It’s helpful to create a project folder and a shortcut to the command console on your desktop. Set the command

console shortcut’s Start in property so it will automatically open in your designated project folder. Increase the com-

mand console shortcut’s screen buffer height and width properties to see more information in the console window.

It’s also a good idea to set your folder options to display file type extensions. This will prevent headaches associ-

ated with accidently saving source files with a “.txt” extension.

Chapter 2: Small Victories: Creating C# Projects Skill-Building Exercises

C# For Artists © 2008 Rick Miller — All Rights Reserved 39

To create a C# program with the command-line compiler you must create the source file, compile the source file

with the csc command-line compiler tool, and then execute the program by typing its name at the command prompt

and pressing the Return or Enter key.

You’re bound to get a few compiler errors when you start writing your own programs. Go to Microsoft’s website

to look up the error code and always remember to fix the first compiler error first!

Visual C# Express Edition is a lightweight version of Microsoft’s flagship integrated development environment

(IDE) Visual Studio. Visual C# Express comes bundled with SQL Server Compact Edition which allows you to create

relational database applications.

Visual C# Express automatically generates a lot of source code for your project. However, it will not generate all

the code your application needs. It’s imperative you know how to modify the code that Visual C# generates in order

to take control of your projects.

When you save your Visual C# Express project it generates many different files and sub directories. You can find

the project’s executable file in the ..\bin\Release directory.

Skill-Building Exercises

1. Creating and Using Environment Variables: Create an environment variable named “PROJECTS_HOME”. For

its value use the path to your projects folder.

2. Setting Up Your Development Environment: Set up your development environment following the steps outlined

in this chapter. Test your development environment by compiling and running the program given in Example 2.1.

3. Web Research: Visit the MSDN website and familiarize yourself with the information it contains. Locate the C#

compiler errors page and bookmark the page in your web browser.

4. .NET Software Development Kit (SDK): Download and install the .NET SDK. List and provide a brief descrip-

tion of the purpose of each component.

Suggested Projects

1. Alternative .NET Development Environments - If you are interested in doing C#.NET development on alterna-

tive computing platforms, the Mono development environment may help. Visit the Mono Project website

[www.mono-project.com] to learn more.

Self-Test Questions

1. What two things, at minimum, do you need to do C#.NET development?

2. What is an operating system environment variable?

3. What is the difference between a user vs. a system environment variable?

4. How do you create an environment variable in Microsoft Windows XP?

5. What characters must you use before and after an environment variable to get its value?

References Chapter 2: Small Victories: Creating C# Projects

40 © 2008 Rick Miller — All Rights Reserved C# For Artists

6. What is the purpose of the Path environment variable?

7. What should you do if you get more than one compiler error?

8. What’s the advantage of using an IDE like Visual C# Express?

9. What are the general steps required to create, compile, and execute a C# program?

10. What’s the recommended way to run a C# program that runs briefly and exits immediately after executing?

References

Microsoft Developer’s Network website, [www.msdn.com]

Mono Project website, [http://www.mono-project.com/Main_Page]

Notes

