C++ FoRr ARTISTS

The Arrt, Philosophy, and Science of Object-Oriented ProGraMminG

Weapon
contars
|> +Tran_Weapon{). void Vesssl Coriangg
fsPlant Plart ©
N_Al

+Fre_Weapon() vod

A A

Ciws

ftsModel. char*
tsBulets nt
count ol

Nuke_Plant

{'} -tsMode! char
+Ciwst theMooed char', theBullets int) -count ik
+=Cws() T3S boo status: ool
+Tran_Wespon{) voud
+Fre_Weapon() void

it thehiodel char®)

+EhutDowm_Plant() vod
+Get Plant_Status() bool

é/

Five_Inch Torpedo

ftshodel char*
tsBulets: it

+Fre_Weapon() vod

+EhutDown_Plart() void
+Get_Plart Status{) bool

Submarine | Surface_Ship
i | ; ;
ftsName: char ftsName: char
Loyrt f .
+S) nel the?* - “=annn_Amay vectors Weapon'sS, theName: char*
ryibet "ﬂhentance ~

2 Clasgeg

411

V.

Ope
Perator OVerloadip, -

poly :
YMOrphism poi Nterg

C++ For Antists

SSiong 488rega; ion

State
AlCnea ‘
CD Edirion Enclosed! Nentg

Rlck Miller

P A Pulp Faee Passs Book Unleash The Crearive Genius IN You!

C++ For Arrists

C++ FoRr ARrTisTs
The Art, Philosophy, and Science of Objecr-Oriented ProGramming

RicK Miller

Pulp Free Press

Falls Church, Virginia

Pulp Free Press, Falls Church, Virginia 22042

www.pulpfreepress.com

info@pulpfreepress.com

©2003 Richard Warren Miller & Pulp Free Press— All Rights Reserved

No part of this book may be reproduced in any form without prior written permission from the publisher.

First edition published 2003
16 14 12 10 08 06 04 1098765432

Pulp Free Press offers discounts on this book when ordered in bulk quantities. For more information regarding
sales contact sales@pulpfreepress.com.

The eBook/PDF edition of this book may be licensed for bulk distribution. For whole or partial content licensing
information contact licensing @pulpfreepress.com.

Publisher Cataloging-in-Publication Data: Prepared by Pulp Free Press

Miller, Rick, 1961 -
C++ For Artists: The Art, Philosophy, and Science of Object-Oriented
Programming/Rick Miller.
p. cm.
Includes bibliographical references and index.
ISBN: 1-932504-02-8 (pbk)
1. C++ (Computer program language) I. Title.
2. Object-Oriented Programming (Computer Science)
QA76.73.C153M555 2003
005.13'3--dc21 2003093826
CIP

The source code provided in this book is intended for instructional purposes only. Although every possible measure
was made by the author to ensure the programming examples contain source code of only the highest caliber, no
warranty is offered, expressed, or implied regarding the quality of the code.

All product names mentioned in this book are trademark names of their respective owners.

C++ For Artists was meticulously crafted on a Macintosh PowerMac G4 using Adobe FrameMaker, Adobe Illustra-
tor, Macromedia Freehand, Adobe Photoshop, Adobe Acrobat, Embarcadero Technologies Describe, ObjectPlant,
Microsoft Word, Maple, and VirtualPC. Photos were taken with a Nikon F3HP, a Nikon FM, a Nikon CoolPix 800,
and a Contax T3. C++ source code examples were prepared using Metrowerks CodeWarrior for Macintosh, Apple
OSX developer tools, and Tenon Intersystems CodeBuilder. Java code examples prepared using Sun’s Java 2 Stan-
dard Edition (J2SE) command line tool suite. Assembly language examples prepared using Microsoft Macro
Assembler (MASM).

ISBN 1-932504-00-1 First eBook/PDF Edition
ISBN 1-932504-01-X First CD ROM Edition
ISBN 1-932504-02-8 First Paperback Edition

To Coralie and Kyle for their erernal patience

Detailed Contents

Preface
Welcome — And Thank You! xLvii
Targer Audience xlvii
Approach xlvii
ARRANGEMENT xlviii
Parr I: The C++ Srudent Survival Guide xlviii
Chaprer I: Av Approach To The Arr Of Prog iNG xlviii
Chaprer 2: Swall Vicrories: Creating Projects With IDEs xlviii
Chaprer 3: Project WalkrhrouGh: An Exrended Example xlviii
Chaprer 4: Compurers, ProGrams, and AlGorithms xlviii
Parr ll: C++ Language Fundamenials xlix
Chaprer 5: Simple ProGrams. xlix
Chapier 6: Conrrolling The Flow Of Program Execurion xlix
Chaprer 7: Pointers And References xlix
Chaprer 8: Arrays xlix
Chaprer 9: Funcrions xlix
Chaprer 10: Toward Problem Absiraction: Creating New Dara Types. xlix
Chaprer 1I: Dissecting Classes [
Chapier 12: Compositional Design [
Chaprer 13: Extending Class Funcrionality Through INHeritance. [
Parr lll: Implementing Polymorphic Behavior)
Chaprer 14: Ad Hoc Polymorphism: Operator Overloading [
Chaprer 15: Smatic Polymorphism: Templares [
Chaprer 16: Dynamic Polymorphism: Objecr-Oriented ProGravming li
Parr IV: Intermediare Conceprs li
Chaprer 17: Well Behaved Objecrs: The Orthiodox Canonical Class Form. li
Chaprer 18: Mixed Language Prog iNG li
Chaprer 19: Three Design Principles. li
Chaprer 20: Using A UML ModEeling Tool li
How To Read C++ For Arrtists Lii
Pedagogy Liii
Chaprer Layour liii
Learning Objecrives liii
Inroducrion. liii
Conient liii
Quick Reviews liii
Summary liii
Skill Building Exercises liii
Suqgested Projecrs. liii
Self Test Questions. liii
References liii
Nores liii
CD-ROM liv
SupporTSiTe™ Website liv
Problem Reporrting liv
Acknowledgements lv

Part I: The C++ Student Survival Guide

1 AN Approach To The Art Of ProgrammiNG

INTroducTion 4

C++ For Artists ©2003 Rick Miller — All Rights Reserved

vii

Detailed Contents

The Difficulties You Will Encounter Learning C++ 4
Reguired Skills 4
The Planers Will Come Into AliGument. 4
How This Chaprer Will Help You 5
Project MANAGEMENT 7
Three Sofware Development Roles 5
Analyst 5
Archirecr. 5
ProGravmer 6
A Project Approach SmrareGy 6
You Have Been Handed A Project — Now Whar? 6
SmareGy Areas of Concern 6
Think Abstractly. 7
The StrateGy In A Nurshell 7
Applicability To The Real World 7
The Art of ProGgrAMMING 8
Don'r Smarr Ar The Compurer 8
Inspiration Strikes Ar The Weirdest Time 8
Oun Your Own Compurer 8
You Either Have Tive and No Money, or Money avd No Time 8
The Family Compurer Is Nor Going To Cur It! 9
Ser The Mood 9
Locarion, Locarion, Location 9
Concepr Of The Flow 9
The Smges of Flow 9
Be Exireme 10
The Prog ing Cycle 10
The Programming Cycle Summarized. n
A Helpful Trick: Stubbing n
Fix The First Compiler Error First n
Managing Project Complexity 11
Splir Even Simple Projects Into Mulriple Source Code Files 2
Separating a Class’s INterface from irs Implementation 2
Benelits of Separating INterface from Ivplementation 2
Helpful Preprocessor Direcrives. 73
The Final Word on Preprocessor Directive Behavior 4
Projecr File Formar 1Z1
Header File 4
Inpl ion File 5
Main File 1A
COMMENTING 16
CStyle Commens. 16
C++style Comments 7
Weire SelFCommenting Code: Give Ideniifiers Meaninglful Names 7
Adopr A Convention And Srick Witk Ir. 19
Resricr The Number of Global Variable: 19
Minimize Coupling, Maximize Cokiesion. 19
Textbooks, Reference Books, and Quick Reference Guides 19
Summary 20
Skill Building Exercises 20
Suggested Projects 21
Self Test Questions 22
References 22
NoTes 23
. . . L] L] . ’
2 Swall Vicrories: Creating Projects With IDE’s
INtroducTion 26
The Program Creation Process 26
InTegraTed Development ENviRONMENTS 27
Merowerks CodeWarrior 28
Microsolfr Visual C++ 32
Intermission 25
Tenon Intersystems MachTen CodeBuilder™ 36

viii ©2003 Rick Miller — All Rights Reserved C++ For Artists

Detailed Contents

Amention Linux Users %6

Organizing Project Files 37

Crearing Source Files 37

Creating makelile 37
Summary 39
Skill Building Exercises 39
Suggested Projects 40
Self Test Questions 40
References 40
Nortes 41

% Project Walkthrough: An Extended Example

INTRoducTion 44
The Project Approach Strategy 44
The Development Cycle 47
The Project Specification 46
Analyzing The Project Specificarion 47
Reuirements. 47
Problem Domain 48
LanGuage Features. 50
Design (Firsr Ireration) 51
Ivplementation (First Ireration) 53
Testing (First Ireration) 55
Integrarion (First Ireration) 55
Design (Second herarion) 56
Funcrion Srubbing 56
Orher Considerations 56
Ivplementation (Second Ireration) 57
Testing (Second heration) 59
Integration (Second Ireration) 60
Design (Third Freration) 60
Ivplementation (Third Ireration) 60
Testing (Third reration) 62
Integration (Third Ireration) 64
Design (Fourtli Ireration) 64
Ivplementation (Fourth heration) 66
Testing (Fourrh Teration) 68
InteGrATION (Fourtl heration) 68
Design (Fifrh lreration) 68
Ivplementation (Fifth heration) 70
Testing (Fifrli Ireration) 70
Integrarion (Fiftli Ireration) 71
Wrapping Up The Project 72
Complere Robor Rat Source Code Listing 72
Summary 76
Skill Building Exercises 76
Suggested Projects 76
Self Test QuesTions 76
References 77
Nortes 77

4 Compurters, ProGravs, & Algorithmvs

INnTroducTion 80
Whar Is A Computer? 80
Compurer vs. Computer System 80

C++ For Artists ©2003 Rick Miller — All Rights Reserved ix

Detailed Contents

Compurer System. 80
Processor 82
Three Aspecrs of Compurer Architecture 83
Fearure Ser. 83
Fearure Ser Ivplementarion 83
Feature Ser Accessibility 83
Whar Is A Program? 83
Two Views of A ProGram 84
The Human Perspecive 84
The Compurer Perspecrive. 84
Concepr of Observable Behavior 84
The C++ Program Transformation Process 8%
Phase 1 85
Phase 2 85
Phase 3 85
Phase 4 86
Phase 5 86
Phase 6 86
Phase 7 86
Phase 8 87
Phase 9 87
The Processing Cycle 87
Ferch 88
Decode 88
Execure 88
Srore 88
Why A ProGram Crashies 88
Memory ORgGANizATiON 88
Memory Basics 88
Memory Hierarchy 89
Bits, Byies, Words 89
Aligvment and Addressability 920
Algorithms 21
Good vs. Bad Algorithms 92
Don'r Reinvent The Wheel! 94
Summary 21
Skill Building Exercises 924
Suggested Projects 921
Self Test Questions 9%
References 9%
Notes 9%
Parr Il: C++ Language Fundamentals
2 Simple Programs
INtroducTion 100
A Minimal C++ Program 100
Disassembly is A Grear Learning Tool 101
Another C++ ProGrAM 102
Parrs of the ProGram 103
Comments 103
Preprocessor Direcrive 103
Libraries 103
Using Direcrive 103
main() funcrion. 103
Consiants 103
Variables 103

©2003 Rick Miller — All Rights Reserved

C++ For Artists

Detailed Contents

Snarements ANd Expressions 103
Keywords 104
Fundamental Types 104

Derermining Your Dara Type Ranges 105
Derermining Dam Type Size with 1he sizeof Operator 106
Liverals 106
INTEGER LiteRAls 107

Decimal 107

Ocml 107

Hexadecimal 107

A Word of Caurion 107
Characrer Lirerals 108

Single Characrer Lirerals 108

Muliiple Characrer Lirerals 108

Escape Seguences 109

Floaring Poinr Lirerals no

Sming Literals m

Boolean Literals m
Expressions 111
OperaToRrs 113

Operator Precedence 114

Use Parenttieses 7

Muliiplicarive Operarors 116

Mulriplication Operaror. 16

Division Operaror 16

Modulus Operator 1174

Additive Operarors 17
Addirion Operator 1174
Submaction Operator ns

Shifr Operators ns
Lefr Shifr Operator ns
Righr Shifr Operaror ng

Relarional Operators 120

Less Than Operaror 120

Grearer Thav Operator 120

Less Than or Eoual To Operator 21

Greater Than or Egual To Operator 121

Eguality Operarors 121
Eoual To Operaror 21
Nor Eual To Operaror 121

Binwise AND Operaror - & 21

Binwise Exclusive OR Operator - 122

Binwise Inclusive OR Operator - | 122

Logical AND Operaror - && 123

Logical OR Operaror - | | 123

Conditional Operaror - ? : 123

AssiGNmenT OpERATORS 124
lvalue vs. rvalue 24
Compound AssiGnment Operators. 125

Comma OpERATOR -, 125

Increment and Decrement Operators (++, -) 125

Identifiers 126

Idenifier Naming Conventions 126

Hungarian Norarion 126
CoNsTanTS 128
Variables 128

Declaring 128

Scope 128

Local Scope 129

Funcrion Scope. 30

File Scope 70
Mulrifile Variable Usage 171

Sharing File Scope Variables Across Mulriple Files 1

Limiting File Scope Variable Visibility to One File 71

The main() Funcrion 132

C++ For Artists ©2003 Rick Miller — All Rights Reserved Xi

Detailed Contents

The Purpose of the main() Funcrion 32
Two Forms of main() 132
Exiting main() 133
Calling Funcrions Upon Exiting main() 133
Simple Inpur and Outpur 133
CiN 134
Trapping Bad Inpur 34
cour 135
Learning More Abour cour and cin 75
Summary 135
Skill Building Exercises 136
Suqggested Projects 137
Self Test Questions 178
References 138
Nortes 139
6 Conmolling The Flow of Program Execurion
INTrRoducTion 142
Statements, Null Statements, and Compound Statements 142
STATEMENTS 142
Null Srarements 142
Compound Statements 143
Selection STATEMENTS 14%
if Srarement 143
if Sarements and Compound Starements 144
ifelse Statement 145
Nesting ifelse Starements 146
switch Statement 147
Break and the Defaulr Case 150
ITerATION STATEMENTS 1%0
while Starement 50
Conmrolling while Srarements wirh Seninel Valves 151
NestinG while Starements 152
Doing Something Forever 152
Exiting While Loops with the break Starement 152
do Siarement 55
Nesting do Starements 55
for Starement 1723
Nesting for STATEMENT n7
break 7
Doing Something Forever with a for Statement 157
CONTINUE 58
Avoiding break and continue 58
Writing Elegant Code 178
Labeled Statements 179
GOTO STATEMENT 59
Advice on Using Goro 9
Control Statement Usage Guide 160
Summary 160
Skill Building Exercises 161
Suggested Projects 162
Self Test Questions 167
References 164
NoTtes 164

Xii ©2003 Rick Miller — All Rights Reserved

C++ For Artists

7 Pointers aNd References

Detailed Contents

InTroducrion 166
Bur First, A Short STORY 166
Whar is an objecr? 167
Whar is A memory AddRess? 168
How do you derermine an object’s memory address? 169
Whar is A pointer? 7
How do you declare A pointer? 172
How do you access the object a pointer points 10? 173
How do you dynamically creare and delete objecrs? 174

The new Operator 75
A Near Trick: Calling Objecr Consiructors 177
Whar's the difference berween A pointer and A reference? 177
How do you declare and use references? 78
Summary 178
Skill Building Exercises 179
Suggested Projects 179
Self Test Questions 180
References 180
Nortes 181
8 Arrays
INTroducTion 184
Whar Is An Array? 184
Locaring Array Elements 185
Declaring & Defining Statically Allocated Arrays 18%
Single-Dimensional Arrays 185
Accessing Array Elements 186
Subscripr Method 186
Pointer Arithmeric Method 187
Beware the Uninitialized Array! 187
Combining Array Definition with Array Declaration 187
Arrays of Poiniers 188
Mulri-Dimensional Arrays 189
Arrays of Two Dimensions 189
Arrays of Three or More Dimensions 191
Auvromaric Initialization of Mulii-Dimensional Arrays 193
Declaring and Defining Dynamic Arrays 196
Dynamically Allocared Single Dimensional Arrays 196
Dynamically Allocared Mulii-Dimensional Arrays 197
STRiNGS 200
Summary 200
Skill Building Exercises 201
Suggested Projects 202
Self Test Questions 203
References 203
Nortes 204
9 Funcrions
INTroducTion 206
Whar is A Funcrion? 206
Interface vs. Ivplementation 207
Pur Funcrion Interface Declarations in Header Files. 207
#ilndef... #define.... #endif 207

C++ For Artists ©2003 Rick Miller — All Rights Reserved

Xiii

Detailed Contents

207

Pur Function Definitions in Implementation Files
Characreristics of A Well-Wriren Funcrion

208

Declaring and Defining Funcrions

208

Naming Funcrions

208

Funcrion Declaration

209

Funcrion Definition

209

Funcrion Calling

209

A Complere Example

210

Quick Review

211

Local Funcrion Variable Scoping

212

Declaring Local Variables

212

Hiding Global Variables with Local Variables
Using Scoping Blocks in Funcrions

212

212

Smric Funcrion Variables

217

Scope of Funcrion Paraverers

214

Quick Review

215

Passing ArGuments To FuncTions

21%

Funcrion Calling

215

Responsibilities of the Calling Funcrion

216

Responsibilities of the Called Funcrion

2l6

216

Passing ArGuments by Value
Anorher Example

218

PassinG ArGuments by Reference

219

Coninving The Story...

220

PassinG Pointers.

220

PassinG References

221

Passing Arrays 1o Funcrions

222

Passing Multi-Dimensional Arrays To Funcrions

223

Anorttier Example
Using Funcrion Rerurn Values

224
225

Rerurning Objecrs

226

The rerurn Keyword: Manira on Proper Usage

226

Another Example.

227

Rerurning Pointers

227

How Nor To Return a Pointer From A Funcrion: Avoiding the Dangling Reference.

Rerurning References

229

229

Quick Review

230

Funcrion Overloading

231

232

Calling Funcrions Recursively
Anorher Exaviple

273

Funcrion Pointers
Declaring Funcrion Poiniers

234
235

Assigning The Address of a Function o A Funcrion PoinTer
Calling the Funcrion via the Funcrion Pointer

235

236

Arrays of Funcrion PoinTers

Implementing Callback Funcrions with Funcrion Pointers

236
277

CreaTing A Funcrion Library
Sieps 10 Crearing A Library

239
239

239

Creare Ewpty Projecr.

240

Add Implementarion File
Ser Library TargGer Serrings.

240

Name Library and Ser Project Type

241

Build the Projecr.

241

Use the Library.

241

Summary

242

Skill Building Exercises

242

243

Suggested Projects
EISCS MKI Language Ser

244

245

Sample ProGram
Basic Operarion of the EISCS MKI

245

Memory

245

Instruction Decoding

245

246

Additional EISCS Specifications

Xiv

©2003 Rick Miller — All Rights Reserved

C++ For Artists

Detailed Contents

Self Test Questions 247
References 247
Notes 248
10 Toward Problem Abstracrion: Creating New Dara Types
Introducrion 270
Toward Dara Abstracrion: Typedef 250
Crearing Type Synonyms 250
Creating Enumerated Data Types With enum 272
Enums and Swirch Starements 252
Changing an Enum’s Defaulr Stare Values 252
Enum Stare Name Conflicrs 253
The Uility of name spaces 253
Quick Summary 254
Structures: C-Style 274
Accessing Smructural Elements 255
Accessing Smuctural Dara Members Via the Dor “.” Operator 255
Accessing Sructural Elements Via the Shorthand Member Access “>” Operator 256
Quick Summary 258
Structures: C++-Style 259
Person Smructure Redesign 259
Public Interface Functions and the Public Access Specifier 259
Privare Data Members and the Private Access Specifier 260
The Deep Secrer: The this Pointer 262
Quick Summary 262
Classes: A Gentle INTroducTion 263
Quick Summary 265
The Differences Berween Structures & Classes 26%
Quick Summary 265
Object-Oriented Thinking 266
Objecr Speak: A New Vocabulary 266
Summary 267
Skill Building Exercises 268
Suqggested Projects 269
Self Test Questions 270
References 270
Nortes 271
11 Dissecring Classes
InTroducTion 274
The Class Construct 274
Parrs Of A Class Declaration 274
A Minimum Class Declararion 275
Place Class Declarations In Separate Header Files 276
The UML Class Diagram 276
The Conceprs of State and Behavior 276
Objecr Smrie 276
Objecr Behavior 276
Class Member Funcrions 276
Class Member Funcrion Access 1o Class Arribures 278
Obnining Access 10 Class Arributes From A Member Funcrion 278
Obmining Access 10 Instance Arributes from A Member Funcrion. 278
Special Member Funcrions 278
CONSIRUCIOR. 278
TestClass Example 279
Copy Consirucror 281

C++ For Artists ©2003 Rick Miller — All Rights Reserved

XV

Detailed Contents

TestClass Example Extended 281
Copy AssiGnvent Operator 282
TestClass Exawple Exiended 283
Destructor 283
TestClass Example Extended 285
Belvior of Defaulr Special Funcrions 286
Quick Summary 287
Accessor avnd Muraror Funcrions 287
Accessor Funcrions 288
Mumaror Funcrions 288
Quick Summary 288
Using Access Specifiers To Control Horizontal Member Access 288
The Concepr of Horizontal Access 289
Daa Encapsularion 289
Access Specifiers 289
The Public Access Specifier. 289
The Prorecred Access Specifier 289
The Privare Access Specifier 289
Overloading Class Member Funcrions 290
Funcrion SiGNaTUReS 290
Why would you want 10 overload member funcrions? 290
SeparaTing A Class’s Interface From Irs Implementation 293
Manage Physical Complexiry 293
Allow the Creation of Code Libraries 293
A Complere Example: Class Person 297
Summary 296
Skill Building Exercises 297
Suggested Projects 298
Self Test Questions 298
References 299
NoTes 299
12 Compositional Design
InTroducrion 302
Managing Physical Complexity 302
AGGREGATION 302
Simple vs. Composite AGGregation 302
The Relationship Benween AGgregation avd Object Liferime 302
AqGregation Example Code 303
Composite AGGregation Example 303
Another Composite AGGregation Example. 204
Simple AgGregation Example 305
Extending the Class Diagram 307
Seouence Diagrams 308
Quick Summary 308
The Aircrafr Engine Simulation: An Extended Aggregation Example 309
The Purpose of the Engine Class 309
An Engine and its Parrs 309
The Engine Class 20
The Entire Aircrafr Engine Simulation Project 314
Aircrafrutils.h 14
fuelpump.h 314
oilpump.h 315
TEMPERATURESENSOR. H 3
OXYGENSENSOR.H 315
COMPRESSOR.H 316
enGine.h 316
fuelpump.cpp 317
oilpump.cpp 37

XVi ©2003 Rick Miller — All Rights Reserved

C++ For Artists

Detailed Contents

TEMPERATURESENSOR.CPP 718
OXYGENSENSOR.CPP 718
COMPRESSOR.CPP 319
ENGINE.CPP 320
mAiN.cpp 21
Summary 322
Skill Building Exercises 322
Suqggested Projects 323
Self Test Questions 323
References 324
NoTes 324
17 Extending Class Funcrionality Through INHERITANCE
InTroducTion 328
Purpose And Use OF Inheritance 328
Expressing Inheritance With A UML Class Diagram 328
Implementing BaseClass and DerivedClassOne 329
Quick Review 331
Access Specifiers And Vertical Access 332
Public Inbieritance 333
Prorected Inbieritance 333
Private INberiTance 333
Quick Review 334
Calling Base Class ConsTRUCTORS 335
Quick Review 337
Funcrion Name Hiding: This Is Not Funcrion Overriding! 337
Funcrion Hiding vs. Funcrion Overloading 337
Quick Review 40
Whar Then Is Funcrion Overriding? 340
Creating Virtual Funcrions: The Virtual Keyword 340
Purpose of Virtual Funcrions 340
Declaring and Using Virtual Funcrions 340
Virtual Desiructors 41
Quick Review 342
Pure Virtual Funcrions 342
Declaring Pure Virtual Funcrions 342
Abstract Classes 343
Fleer Simulation Source Code 346
ciws.h 46
five_inch.hi 347
Torpedo.h 347
GasTurbine. h 347
nuke_plant.h 348
steam_plant.h 48
submarine.h 348
surface_ship.h 349
ciws.cpp 49
five_inch.cpp 349
Gasturbine_plant.cpp 350
nuke_plant.cpp 250
steam_plant.cpp 351
submarine.cpp 351
surface_ship.cpp 352
ToRpEdO.CPP 352
vessel.cpp 353

C++ For Artists ©2003 Rick Miller — All Rights Reserved

Xvii

Detailed Contents

Mulriple INheriTanCE 373
Virtual Base Classes: Virtual INheriTance 357
Gerring Inheritance Right: Some Points To Consider 360
Two Different Uses of INberitance 361
Reasoning Abour Objecr-Oriented Application DesiGn. 361
Incremental Code Evolution 361
Proiecr Yourself Iv Your Design 362
Summary 362
Skill Building Exercises 362
Suqggested Projects 364
Self Test Questions 366
References 366
Nortes 367

Parr lll: Implementing Polymorphic Behavior

14 Ad Hoc Polymorphism: Operator Overloading

InTroducTion 372
Ad Hoc Polymorphism: Funcrion Overloading 372
The Goal Of Operator Overloading 372
Overloadable Operators 372
Overloading OperaTors 373
Overloading 10STream Insertion and Extraction Operators: <<, >> 374
Overloading The AssiGNMENT OperaTOR: = 378

Shallow Copy vs. Deep Copy 379
Overloading Relational Operators: <, >, <=, >= 380
Overloading Equality Operators: ==, |= 381
Overloading Arithmeric Operators: +, -, *, /, % 387

A Few Words Abour Error Checking 384
Overloading The Subscript Operator: [] 384
Overloading Compound Assignment OperatoRrs: +=, =, *=, erc. 386
Overloading INcrement & Decrement OperaToRs: ++, - 387
Overloading Various Other Operators: (), +, -, <<, ->, erc. 389

The Funcrion Operator: operator()() 392

The Member Operator: operator->() 392

The Comma Operator: operator, () - AK.A. the SEQUENCING OpERATOR 392
Virtual Overloaded Operators 392
Summary 394
Skill Building Exercises 394
Suggested Projects 39%
Self Test Questions 39%
References 396
NoTes 396

12 Static Polymorphism: Templares

InTroducrion 398
Definition of Templare 398
Funcrion Templares 398
Class Templares 398

Xviii ©2003 Rick Miller — All Rights Reserved C++ For Artists

Detailed Contents

Smructure Templares 398
How Templates Work: An Analogy 398
Declaring And Using Funcrion Templates 399

Separating Declaration From Ivplemeniation: Some Background 399

When In Doubr Refer To Your Compiler Documentarion. 400

Bxample 15.1Continved 400

Using Multiple Placeholders 400

Quick Review 402
Declaring And Using Class Templares 403

A More Complex Class Templare Example 404

Quick Review 405
Overview OF The Standard Template Library (STL) 407

Conniners avd Conminer Adaprers 406

Irerarors. 407
Algorithms 408

Quick Review 408
Using Standard Template Library Components 408

Using vector 408

Using list 4n

Quick Review 4n
Summary 412
Skill Building Exercises 412
Suggested Projects 413
Self Test Questions 413
References 414
NoTes 414
16 Dynamic Polymorphism: Object-Oriented Programming
INTroducTion 416
Abstraction: Amplify The Essential—Eliminate The Irrelevant 416
Object-Oriented ProGgramming Defined 417
Dynamic Polymorphism Defined 417
Language Features That Support Object-Oriented Programming 417
AN Example: Class Interface 419

Quick Review 420
Extended Example: Engine Components Revisited 422

A Basis for Comparison 422

Polymorphic Engine Component Code 424

icompoNent.h 424
COMPONENT.h 424
COMPONENT.CPp 425
pump.h 425
pump.cpp 426
sensor.h 426
SENSOR.CPP 427
warerpump.h 427
WATERPUMP. CPP 428
oilpump.h 428
oilpump.cpp 428
fuelpump.h 428
fuelpump.cpp 429
airflowsensor.h 429
airflowsensor.cpp 429
OXYGENSENSOR. 429
OXYGENSENSOR.CPP 430
TEMPERATURESENSOR. H 430
TEMPERATURESENSOR.CPP 430
EnGine.H 431
ENGINE.CPP 431
smallengine.h 432
smallengine.cpp 432
engineurils.h 433
MAiN.cpp 433

C++ For Artists ©2003 Rick Miller — All Rights Reserved

Xix

Detailed Contents

Discussion of the Polymorphic Engine Component Code 434
IComponent and Derived Classes 434
Whar is Meant by a Pure Virrual vs. a Viriual Member Function Declaration. 434
Engine and SmallEngine 434
Running the Polymorphic Engine Component ProGram 434
A Short Story 437
Taming the Complexity of the C++ Language 435
Summary 436
Skill Building Exercises 436
Suqgested Projects 439
Self Test Questions 440
References 411
Nortes 441

Part IV: Intermediate Conceprs

17 Well-Behaved Objecrs: The Orthodox Canonical Class

INTrRoducTion 446
Whar Is A Well-Behaved Object? 446
Objecr Usage Conrexis 446
Objecr Crearion. 446
Objecr Copying 447
Objecr AssiGnment 447
Objecr Destruction 447
Orther Conrexts By Design 447
The Orthiodox Canonical Class Form (OCCF) 448
Four Reguired Funcrions 448
Defaulr Consirucior 449
Desmrucror 449
Copy Consmucior 449
Copy AssiGnment OperaTOR 449
Inplementing Foo Class OCCF Funcrions 449
Consider Furure Desired Behavior 449
Exiending Foo To Participare In Other Coniexts: Overloading More Operators 451
Quick Review 452
Summary 4%7%
Skill Building Exercises 4%%
Suggested Projects 454
Self Test QuesTions 477
References 477
Nortes 477

18 Mixed Language ProGrAMMING

InTroducrion 478

C+ And C 478
How C++ Allows Overloaded Funcrions: Name Mangling 458
extern Keyword 458

Building a C Library: The spuare() Funcrion 458

Deciphiering C Standard Library Files 464
Quick Review 464

C++ And Assembly 46%
Sowme Things To Think Abour Before Using Assembly 465
Know Thy Implementation Dependencies 465

XX ©2003 Rick Miller — All Rights Reserved C++ For Artists

Detailed Contents

INline Assembly Language in A C++ Funcrion 465
Linking An Objecr File Created From Assembly Language 467
Process Steps 467
Using Inline Assembly in the Macintosh Environment 469
Quick Review 470
C++ and Java: The Java Narive Interface (JNI) 470
Steps To Creare A INI C++ ProGram 470
Win32 INI Example 471
Srep I: Creare Java Source File 471
Step 2: Compile Java Source File 472
Step 3: Create Header File 472
Step 4: Creare C++ Source File 474
Step 5: Compile C++ Sounrce File 1o Creare Dynamic Link Library 474
Step 6: Run Java Program 474
Macintosh OSX NI Example 475
Step I: Creare Java Source File 476
Srep 2: Compile Java Source File 476
Step 3: Creare Header File 476
Step 4: Creare C++ Source File 476
Step 5: Compile C++ Source File 10 Create Dynamic Link Library 476
Siep 6: Run Java Program 477
When To Use NI 477
Quick Review 477
Summary 478
Skill Building Exercises 478
Suggested Projects 478
Self Test Questions 479
References 479
Nortes 480

19 Three Design Principles

IntroducTion 482
The Preferred Characreristics of an Object-Oriented Architecture 482
Easy 1o Understand — (How does this thing work?) 482
Easy 10 Reason Abour — (Whar are the effects of change?) 482
Easy 1o Exend — (Where do 1 add funcrionality?) 482
The Liskov Substitution Principle & Design by Contract 483
Reasoning Abour the Behavior of Supertypes and Subrypes 483
Relationship Benween the LSP and DbC 483
The Common Goal of the LSP and DbC. 483
C++ Supporr for the LSP and DbC. 483
Designing with the LSP/DbC in Mind 483
The Power and Danger of C++ 484
Class Declarations Viewed as Behavior Specifications 484
Preconditions, Postcondirions, and Class Invariants 484
Class Invani: 484
Precondirion 484
Postcondirion 484
An Example 485
Using INcrementer as A Base Class 486
Changing the Preconditions of Derived Class Funcrions 488
Adopring the Save Preconditions 489
Weakening Preconditions 489
Smengrhening Precondirions 491
Quick Review 493
Changing he Postcondirions of Derived Class Funcrions 493
Special Cases of Preconditions and Posrconditions 494
Funcrion ArGument Types 494
Funcrion Rerurn Types 496
Funcrion Access RiGhrs 496
Quick Review 497
Three Rules of the Substitution Principle 497
Signarure Rule 497
Methods Rule 497

C++ For Artists ©2003 Rick Miller — All Rights Reserved XXi

Detailed Contents

Properries Rule 497
The Open-Closed Principle 497
Achieving The Open-Closed Principle 498
AN OCP Bxample 498
Additional OCP Convenrions. 498
Relarionship Benween the OCP and the LSP/DbC 498
Quick Review 498
The Dependency Inversion Principle 700
Characreristics of Bad Software Architecture 500
Characreristics of Good Sofware Archirecture 501
Selecring The Righr Abstracrions Takes Experience 501
Quick Review 501
Summary 201
Terms and Definitions 202
Skill Building Exercises 202
Suqggested Projects 207
Self Test Questions 207
References 207
NoTes 204
20 Using A UML Modeling Tool
InTroducrion 706
The Purpose OF A UML Modeling Tool 7206
InTroducing Embarcadero Technologies’ Describe 07
Primary Features 207
The Project Specification: Robor Rar 208
Creating Use Case Diagrams 209
Adding Documentation 1o Diagram Elements s
ProGrammier Perspecrive Use Cases J12
Pausing 1o Consider Design Issues 213
Creating Class Diagrams 71%
Creating an Overall Package Architecrure Diagram 515
Moving Beyond the Package Diagram 516
Adding Operations and Amribures 10 Classes 174
Iverating Through The Design Process 219
Creating Seouence Diagrams 222
Proper Use of Sequence Diagrams 522
Adding Objecrs 10 Seguence Diagrams 522
AddinG Messages 10 Seuence Diagrams 523
Generating Source Code 725
Reverse ENGiNEERING 227
Merging Systems 528
Linking Diagram Objects 1o Diagrams 729
Generating Web Project Reports 230
Summary 271
RoboTtRAT Source Code 732
absmaciposition.h 532
absmracmarker.fi 532
absmracrconmrolledobject.h 532
position.h 533
mARKer.H 533
remorecontrolledobject.h 534
absmacrconmrolledrodent. b 534
robomar.h 534
rodentworld.h 535

XXii ©2003 Rick Miller — All Rights Reserved

C++ For Artists

Detailed Contents

userinTERfACE. H 535
coniroller.h 536
position.cpp 236
MARKER.Cpp 538
remorecontrolledobjecr.cpp 538
robomar.cpp 539
rodentworld.cpp 40
USERINTERIACE.CPD 542
conmroller.cpp 543
MAIN.cpp 244
Skill Building Exercises 744
Suqggested Projects 745
Self Test Questions 545
References 246
NoTes 246

Appendices

Appendix A: Project Approach Smrategy Chieckolff List

Project Approach Strategy Checkoff List 749

Appendix B: ASCII Table

ASCII Table 271

Appendix C: Answers To Self Test Questions

Chaprer 1 777
Chaprer 2 776
Chapter 7 777
Chapter 4 778
Chaprer 7 760
Chapter 6 761
Chapter 7 767
Chaprer 8 764
Chapter 9 76%
Chapter 10 767
Chapter 11 768
Chaprer 12 769
Chaprer 17 769
Chapter 14 771
Chaprer 17 771
Chapter 16 772
Chapter 17 774
Chapter 18 77%
Chapter 19 776
Chapter 20 778

C++ For Artists ©2003 Rick Miller — All Rights Reserved Xxiii

Detailed Contents

XXiV ©2003 Rick Miller — All Rights Reserved C++ For Artists

Tables

TADIE T-1: HEAQER FIlE CONTENTS ..ottt sttt ae st s s s s s st as s s s s sasasassesstesesasasasastesesesasasasseses 14
Table 1-2: WHAT NOT TO PUT IN A HEAQER FLE ...ttt se s e st s s s anaenes 12
Table 13: Good vs. Bad Variable Names

Table 14: GOOd vs. BAA CONSTANT NAMING .ecvuveererunrinreniesissssenssesssssssssssssssssssssssssssssessssssssssessssssses 18
TADIE 1-7: FUNCTION NAMING ..cucvverteirectierieisiesesiesess et sassesessesesassesassesssaesesassesessesssessesassesessssessssesassesesassesassessssssessssessssesesans

Table 3-1: Project Approach Strategy
Table 3-2: Development Cyclecevveveeenee.
Table 3-3: Projecr Specificarion
Table 3-4: Robor Rar Nouns and Verbs
Table 3-%: Language Feature Study Checkoff List FOR RODOT RAT PROJECTucvuiueeriiiceriesisieieisis e ssssssssssens
Table 3-6: FiRST HERATION FEATURE SETcuvuierinreeinrisiseniessisseessssaessssssssssssssssssssessssssssssssssssssenes
Table 3-7: Second heration Feature Ser
Table 3-8: THIRA HERATION FEATURE SETvuvurveiereeeicinieisieieseesesssessssssssssssassssssssessssssssssssssssssnes

Table 3-9: Fourth Ieration DesiGN CONSIERATION ANA DESIGN DECISIONSe.vuverererinerceniesisisssessssssssssssssssesssssssssssssessssns
Table 3-10: Design Considerations ANA DECISIONS: Fifth HERATIONvuevuiueierieiiinisieiciessieiesie e essessssssessssssssssssssssens
Table -11: Things To Double-Check Before Handing In Project
Table 4-1: Trigraph Replacement
Table 4-2: ESCAPE SEQUENCESucvververereerererrerneesnensenanee

Table 4-3: COdEWARRIOR STRUCTURE AlIGNMENTuvurvereereernresenssessesssssssessssssses
Table %-1: Fundamental Types and Their Value Ranges
Table 5-2: Simple ESCADE SEQUENCESevevevervnrererinrennenns

TADIE -3: EXPRESSION FORMSouvvereciererieisictesictesec et sassesesassesas e ses et sassesessesesassesasaesesassesasbesassssesassesassesesastesassesessesenans
Table 5-4: C++ OperaTORS, PRECEAENCE, AN ASSOCIATIVITY ...euvuverurerinerssensenssesssnsssssssssssssssssssssssssssssssssssssssessssssssssssssssses
Table 5-7: Mulriplicative Operators
Table %-6: Addirive Operators
Table 5-7: Shifr OpeRATORSc.oveeverrrrrennnen

TADIE 5-8: REIATIONAL OPERATORSouverereierireniisinsisinsssessssssssssssssssssessesssssssessesasssssessssssses
TADIE 5-9: EQUALITY OPERATORScerveiereierinsisensesisssesssssssssssssssssessesssssssessesssssssessssssses
Table 5-10: ASSIGNMENT OPERATORScvevvververunrenressssnenes
Table %-11: Possible Hungarian Notation Prefixes
Table 6-1: Control Starement UsaGe GUIdEvevvnenne.
TADIE 7-1: POINTERS VS. REMERENCESevureereierinreesieinsiseessssssesessesssssssessssssssssessssssssssssssssses
Table 9-1: CHARACTERISTICS OF WEILWRITIEN FUNCTIONS ..e.vuvuiueienierinsisenieisiesesssesssesssssssssesssssssssssssssssssssssssssssesssssssssssssssssses
Table 10-1: Differences Berween Structures and Classes
Table 10-2: Objecr-Oriented Terminology
Table 14-1: Overloadable Operators

TADIE 19-1: STL CONTAINERS ...eovevereereresisresessassssessssssssssssssssssssssssssssssssssssssesssssssssssssssssssssesssssssssesssssssessssssssssesssssssssssssssssses
TADIE 17-2: STL CONTAINER AQAPTERSocveveererierenieeissssenssesssssssssssssssssessssssssssessssssssssessesseses
Table 19-3: STL Algorithw Funcrion Templates
Table 16-1: Language Features THat Support ObjJECT-ORIENTED PROGRAMMING ...u.vuveererinrvnceniesieirensssesssssssssesssesssssssssssssssssens
Table 16-2: LanGuage Features vs. INheritance Behavior
Table 17-1: Object UsAGE CONTEXTSuvuemeuneneeeeeueneanes
Table 19-1: Terws and Definitions Related 10 the LSP
Table 20-1: Robor Rar Project Design Considerations
Table 20-2: Robor Rar Application PACKAGE NAMES ANA THEIR PURPOSEcuvuverueerieiciniesisissessssssesssssssssessssssssssssssssssns
TADlE 20-3: RODOT RAT PROJECT CIASSES ...evvvrevrireininieeitireicineiseesseesetse et sssessebsstse et sastsse bbb sasssesssesse bt sassssees
Table Appendix Al: Project Approach STRATEGY CHECKOIF LiSTveveieiieeecieireeccieeeeeieee
TABIE APPENAIX BTz ASCHI TADIEoeieeieieeicieieisicie sttt ssssss s s s ssssssss s sssssssssss s sssssssssensssassenssssssnsns

C++ For Artists ©2003 Rick Miller — All Rights Reserved

XXV

Tables

XXVi ©2003 Rick Miller — All Rights Reserved C++ For Artists

FiGURES

Figure 2-1: The Program Creation Process

Figure 2-2: Creating A New Project in CodeWarRrior

Figure 2-3: Selecring Stationery ANd Nawing Project
Figure 2-4: Serting A Project’s Location

Figure 2-: Select Projecr Type
Figure 2-6: FirstClass Project Window

Figure 2-7: Sources Group Open Revealing HelloWorld.cp

Figure 2-8: Creating New Texr File

Figure 2-9: Ediring firstclass.h

Figure 2-10: Adding Files to Project
Figure 2-11: firstclass.cpp and main.cpp Added, HelloWorld.cp Removed

Figure 2-12: FirstClass Project Ourpur
Figure 2-13: Creating New Visual C++ Projecr

Figure 2-14: Naming the Projecr

Figure 2-15: Selecting Console Application Type

Figure 2-16: New Projecr Information Window

Figure 2-17: Workspace Environvent with ClassView Selecred

Figure 2-18: Edited Projectl.cpp File

Figure 2-19: Adding New C++ Header File 10 Projecr 1
Figure 2-20: File Nave Entered

Figure 2-21: Edirting firstclass.h

Figure 2-22: Creating A New C++ Source File

Figure 2-23: Linking...Message and Resulrs of Building Projecr 1

Figure 2-24: Running Projectl.exe

Figure 2-2%: Creating firstclass.h with Emacs

Figure 2-26: Creating makefile with Emacs
Figure 2-27: Running the make Urility

Figure 2-28: Results of Executing make Urility and firstprog
Figure -1: Tighr Spiral Development Cycle Deployment

Figure 3-2: Robor Rar Viewed As Arriburtes

Figure 3-3: Robor Rar Floor Skerch

Figure 3-4: Complere Robor Rar Arribures

Figure 3-%: Funcrional Decomposition of Robor Rar ProGram
FiGure 3-6: Overview of Project Creation PRocess

FiGure 3-7: robomrar.h
Figure 3-8: roborrar.cpp

Figure 3-9: main.cpp

Figure 3-10: Robor Rar Menu

Figure 3-11: Robotrar.h

FiGure 3-12: main.cpp
Figure 3-13: Test Resulrs

Figure 314: Defaulr Case Test
Figure 317: robotrar.cpp with Floor Array Declaration

Figure 3-16: roborrar.h with ROWS & COLS Constants Declared

Fiqure 317: The printFloor() Funcrion

Figure 318: Robor Rar printFloor() Funcrion Test

Fiqure 319: serTestPammern() Funcrion

Figure 3-20: serTestParrern() Funcrion Being Used for Testing in the printFloor() Funcrion.

Figure 3-21: Robort Rar printFloor() Test with Test Pamern

C++ For Artists ©2003 Rick Miller — All Rights Reserved

26
28
28
29
29
30
30

.30

Hl
H
71
71
72

.32

%3
73
%3
4
4

.4

3%
77
%6
%6
37

w74

78
79
45
49
49

.20

72
7%
24
24
77

.27

27
29
29
29
61

61

62
62
63
63
64

XX Vil

Figures

FiGure 3-22: State Transition Diagram for rats_direction Variable. 6%
Figure 3-2%: Stare Transition Diagram for pen_position 66
Figure 3-24: Direcrion and PenPosition Enum Types Added 1o roborrar.h 66
Figure 3-2%: Declaration of pen_position & Rrats_position 66
Figure 3-26: setPenUp() & serPenDown() Funcrions 67
Figure 3-27: TurnRiGhT() Funcrion 67
Fiqure 3-28: TurnLefi() Funcrion 67
Fiqure 3-29: TurnLefr() Funcrion with cour Statements 68
Figure 3-30: TurNLEfr() Test 68
Figure 3-31: move() Funcrion, Top Half 71
Fiqure 3-32: move() Funcrion Test 71
Figure 4-1: Typical Power Mac G4 System 80
Fiqure 4-2: System Unit 81
Figure 4-3: Main Logic Board Block Diagram 81
Figure 4-4: PowerPC G4 Processor 82
Figure 4-7: Mortorola PowerPC 7400 Block Diagram 82
Figure 4-6: C++ Translarion Phases 87
Figure 4-7: Processing Cycle 88
Figure 4-8: Memory Hierarchy 89
Figure 4-9: Simplified Memory Subsystem Diagram 89
Figure 4-10: Simplified Main Memory Diagram 90
Figure 4-11: CodeWarrior Code Generation Serrings Window 91
Figure 4-12: Dumb Sorr Resulrs 1 9%
Figure 4-13: Dumb Sorr Resulis 2 93
Figure 4-14: Dumb Sorr Resulrs 3 93
Figure 4-17: Algorithmic Growth Rares 93
Figure 1. Selecting Std C++ Console Serrings 101
Figure 5-2. PPC S1d C++ Console Semings Dialog 101
Figure 2-3. Minimal_Program Project Window 102
Figure 9-4. Selecting Disassemble from the Project Menu 102
Figure 9-7: Results of Running Example 5.3 106
Figure 9-6: INteGer Value of Character Literal ‘Help’ 109
Figure 5-7: Parts of a Floating Poinr Literal 110
Figure -8: Lefr Shifring shifr_val n9
Figure 2-9: Righr Shifring shifr_val 120
Figure 710: AND Truth Table 122
Figure 2-11: Exclusive OR Truth Table 122
Figure 9-12: Inclusive OR Truth Table 122
Figure %13: Conditional Operator Map 123
Figure 514: Assignment Operator Operands 124
Figure 2-17: Creating Local Scope Blocks with Braces 129
Figure 6-1: if Starement Diagram 143
Figure 6-2: ifelse Statement Diagram 147
Figure 6-3: swirch Statement Diagram 148
Figure 6-4: while Statement Diagram 10
Figure 6-%: do Statement Diagram 159
FiGure 6-6: for Starement Diagram 126
Figure 6-7: goto Statement Diagram 129
Figure 7-1: Memory 168
Figure 7-2: Another Way To Represent Memory 169
Figure 7-3: Hexadecimal Addressing 169
Figure 7-4: Running Example 7.2 with CodeWarrior 170
Figure 7-7: Running Example 7.2 Alone 171
Fiqure 7-6: Pointer 7
Figure 7-7: Contents of inT_ptr 172
Figure 7-8: Running Exawple 7.5 174
Figure 7-9: Application Stack and Heap Relationship 175
Figure 8-1: Array of Four Integer Objecrs 184
Figure 8-2: Resulrs of Running Exawple 8.7 187

XXViii ©2003 Rick Miller — All Rights Reserved C++ For Artists

Figure 8-3: Results of Running Example 8.6

Figure 8-4: Resulrs of Running Exawple 8.7

Figure 8-%: Resulrs of Running Example 8.8
Figure 8-6: Array of INteger Pointers and Dynamically Creared Integer Obijecrs in Heap Memory
Figure 8-7: Single-Dimensional Array Representation and Declaration

Figure 8-8: Two-Dimensional Array and Declaration

Figure 8-9: Two-Dimension ARray MEMORY REPRESENTATION

Figure 8-10: Visual Representation of A Three Dimensional Array

Figure 8-11: Visual Representation of A Four-Dimensional Array

Figure 8-12: three_d_int_array INitialized 10 Zeros
Figure 8-13: All Rows of First Sheer Inirialized

Figure 817: Relarionship of Declaration Braces 10 Array Elements for three_d_inT_array
Figure 8-14: First Row of Each Sheer Inirialized

Figure 816: Resulrs of Inirialization Shown IN Exawple 8.14

Figure 8-17: Dynamic Array of Three INteger PoiNTERs

Figure 8-18: Resulrs of Running Exawple 8.17 Using Row Value 6

Figure 8-19: Resulrs of Running Example 8.19 Using rows = 10 & cols = 6
Figure 9-1: TestFunctionOne Project Screen Shor

Figure 9-2: Resulrs of Calling testFuncrionONe()
Figure 9-3: Resulrs of Calling testFuncrionTwol() Five Times with Static Variable

Fiqure 9-4: Resulrs of Calling TestFuncrionThree() with an ArGument Value of §

Figure 9-%: Funcrion Acrivation Record Seuence

Figure 9-6: Parrial Disassembly of main.cpp

Figure 9-7: Partial Disassembly of testFuncrionThree.cpp
Figure 9-8: Results of Running TestFuncrionFour ProGram

Figure 9:9: Resulrs of Running addressCopyTest Program
Figure 9-10: Results of Running TestFuncrionFive ProGram

Figure 9.11 Resulrs of Running testFuncrionSix ProGram

Figure 9-12: Resulrs of Running Example 9.28

Figure 913: Resulrs of Calling Overloaded Funcrion funcrionA()

Figure 914: Results of Running the Sivple Recurse ProGram
Figure 91%: Resulrs of Running the QuickSort Program

Figure 9-16: Results of Calling DumbSorr() Using compareAscending() and compareDescending() CallBack Funcrions

Figure 9-17: Creating an Empry Project in CodeWarrior

Figure 918: duwpsorr.cpp Added 1o the Empry Project

Figure 9-19: Sering Library Targer Sertings

Figure 9-20: Selecting Project Type and Library Name

Figure 9-21: Using the dumbsorr Library

Figure 10-1: Example 10.9 Ourpur

Figure 10-2: C++ Language Serrings: Ser Enums Always int
Figure 10-3: Formar of Smructure Funcrion Definition

Figure TH: UML Representation for the Class ClassName

Figure 11-2: UML Class Diagram of A Simple Navy Fleer Simulation Application

Figure T13: Results of Running Example 11.4

Figure 11-4: Resulrs of Running Example 11.7

Figure 11-%: Resulis of Running Example 11.10

Figure T1-6: Results of Running Example 10.10 Again
Figure 117: Resulrs of Running Example 1117

Figure 11-8: Horizontal Access

Figure 11.9: Resulrs of Running Example 11.18

Figure THO: Person Class Diagram

Figure 12-1: Resulrs of Running Example 12.%

Figure 12-2: Resulrs of Running Example 12.7 Again

Figure 12-3: UML Diagram Illustrating Simple AGGregation
Figure 12-4: UML Sequence Diagram lllustrating Message Passing Berween Obijecrs

Figure 12-6: FuelPump Class
Figure 12-%: Engine Composite AGgregation Class Diagram

Figure 12-7: Engine Class Diagram

Figure 12-8: Resulrs of Running Example 12-16

C++ For Artists ©2003 Rick Miller — All Rights Reserved

Figures

188
188
188
188
189
190
191
192
192
193
194
194
192
192
196
198
199
21
21
214
217
217
216
217
219
220
221
222
2257
232
233
235
279
240
240
240
241
241
275
276
262
276
277
281
282
284
286
287
289
293
294
304
307
308
708

209

310
Al
313

XXiX

Figures

Figure 131: UML Class Diagrav Showing Generalization 329
Figure 13-2: Results of Running Example 13.7 332
Figure 13-3: Effects of Using Dilferent Inheritance Specifiers 332
Figure 13-4: Public, Protected, & Privare INHeRiTANCE 334
Figure 13-%: Public Inheritance from A Horizontal Access Perspecrive 734
Figure 13-6: Person/Student Class Diagram 339
Figure 13-7: Resulrs of Running Example 13.9 337
Figure 13-8: Foo and DerivedFoo Class Diagram 338
Figure 13-9: Results of Running Example 13.14 339
Figure 1310: Results of Running Exawple 13.14 Afier Modifying foo.cpp 341
Figure 13-11: Resulrs of Running Exawple 13.14 Afier Removing The virrual Keyword from Foo Class Destructor Declaration 342
Figure 13-12: Fleer Simulation Class Diagram 344
Figure 13-13: Results of Running Example 13.20 349
Figure 13-14: Payroll Application Class Diagram 374
Figure 13-17: Results of Running Example 13.28 396
Figure 13-16: Class Diagram Showing Common Base Class INHeriTance 398
Figure 13-17: Non-Virmual Inheritance Will Resulr in Mulriple Instances of Base Classes 378
Figure 1318: Resulrs of Running Example 13.33. 360
Figure 13-19: Results of Running 13.33 Showing Effects of Virtual InHeritance 361
Figure 13-20: Virtual INHeritance Results in One Instance of A 361
Figure 14-1: 1/O Stream Class Hierarchy 379
Figure 14-2: Resulis of Running Example 14.3 376
Figure 14-3: Resulrs of Running Example 14.7 378
Figure 14-4a: Before Shallow Copy of Complex Objects 379
Figure 14-4b: Afier Shallow Copy of Complex Objects 379
Figure 14-7: Results of Running Example 14.9 381
Figure 14-6: Resulis of Running Example 14.12 383
Figure 14-7: Results of Running Example 14.17 384
Figure 14-8: Resulrs of Running Example 14.18 786
Figure 14-9: Resulrs of Running Example 14.21 387
Figure 14-10: Results of Running Example 14.24 389
Figure 14-11: Results of Running Example 14.27 392
Figure 14-12: Results of Running Example 14.32 393
Figure 15-1: Placeholder Use In Mail Merge 399
Figure 17-2: Resulrs of Running Exawple 17.2 400
Figure 153: Error Resuling from Calling Sum() with Two Different Type Arquments 400
Figure 15-4: Results of Running Example 15.4 401
Figure 19-%: Results of Running Example 1.5 402
Figure 15-6: Resulrs of Running Example 15.9 404
Figure 15-7: Results of Running Exawple 15.11 405
Figure 12-8: Resulrs of Running Exawple 17.13 409
Figure 19-9: Resulrs of Running Exawple 19.14 410
Figure 1710: Resulrs of Running Exawple 12.17 410
Figure 15-11: Results of Running Example 17.16 Z|
Figure 16-1: Base Class Declares Behavior Shared By All Derived Class Objects 416
Figure 16-2: Class Diagram Showing Three-Level Inheritance Hierarchy 419
Figure 16-3: Resulrs of Running Exavple 16.4 421
Figure 16-4: Original Aircraft Engine Components Model 422
Figure 16-7: UML Class Diagram Showing Polymorphic Engine Components 423
Figure 16-6: Results of Running Polymorphic Engine ProGram 435
Figure 17-1: Resulrs of Running Example 17.3 451
Figure 17-2: Results of Running Example 17.9 452
Figure 18-1: Creating A New Empry Project Navied Seuare_Lib in CodeWarrior 459
Figure 18-2: Empry Project Window 460
Figure 18-3: Select Add Files... from The Project Menu 460
Figure 18-4: Select souare.c 10 Add it 10 The Project 460
Figure 18%: Project Window Afier Adding sQuare.c 461
Figure 18-6: Select Seuare_Lib Serrings...lrom the Edit Menu 461
Figure 18-7: Semmings Window with Targer Semings Selecred 461

XXX ©2003 Rick Miller — All Rights Reserved C++ For Artists

Figure 18-8: Serting Project Type and Library File Name

Figure 18-9: Ensure the Activare C++ Compiler Check Box is Not Checked

Figure 1810: Selecr Make from the Project Menu 10 Create The souare.lib File
Figure 18-11: C++ Project Window with suare.lib Library File Added.

Figure 18-12: Link Error Resulting from First Amrempr 1o Build the C++ Projecr thar Uses A C Funcrion

Figure 1813: Results of Running the C++ Project Using the C square() Funcrion

Figure 18-14: Win32 Project Using Inline Assembly Language

Figure 18-17: Resulrs of Running The Inline Assembly Project

Figure 1816: Adding Assembly Objecr File to C++ Projecr

Figure 1817: Assembling double.asm with MASM ver. 6.14
Figure 1818: Win32 Projecr Using dv.obj

Figure 1819: Results of Running Macintosh Version of doubleVal()
Figure 18-20: Steps 10 Create a Java Native Interface (JNI) ProGram

Figure 18-21: Compiling SayHi.java

Figure 18-22: Compiling SayHi.java Resulrs in SayHi.class

Figure 18-23: Using javah 10 Create he SayHih Header File

Figure 18-24: Resulrs of Crearing SayHi.h Using javah Command Line Tool
Figure 18-27: Blank CodeWarrior Project

Figure 18-26: sayhi.cpp Added 10 Blank Project
Figure 18-27: Blank Project Window Showing Added Library Files

Figure 18-28: Targer Sertings Widow

Figure 18-29: Direcrory Listing Showing SayHi.dll

Figure 18-30: Results of Running the SayHi Java Application

Figure 18-31: Compiling sayhi.cpp Using G+ 10 Generate AN OSX Dynamic Link Library
Figure 18-32: Directory Listing Showing libSayHi.jnilib File

Figure 18-33: Resulrs of Running SayHi Java Program in an OSX Terminal Window
Figure 19-1: Resulrs of Running Example 19.3

Figure 19-2: Results of Running Example 19.4

Figure 19-3: Resulrs of Running Example 19.7

Figure 19-4: Resulrs of Running Bxample 19.13

Figure 19-7: Inheriance Hierarchy Showing Weaker and Stronger Types
Figure 19-6: Results of Running Example 19.14

Figure 19-7: Results of Running Example 19.14 with Modified C Class Funcrion
Figure 19-8: Resulrs of Running Example 19.14 Using Private C::f() Overriding Funcrion

Figure 19-9: Fleer Simulation Model Class Diagram

Figure 1910: Procedure-Oriented Sofrware Module Hierarchy

Figure 20-1: Describe User Modes

Figure 20-2: Robor Rar Projecr Specification

Figure 20-3: Creating the New RobotRar System

Figure 20-4: Adding A New Diagrav
Fiqure 20-7: Creating Use Case Diagram

Figure 20-6: User Perspecrive Use Cases

Figure 20-7: Adding Documentation via The Properties Editor Window

Figure 20-8: Linking 10 External Documentation via he Properries Editor Window

Figure 20-9: Complered Robor Rar User’s Perspecrive Use Case Diagram

Figure 20-10: Programmer Perspective Use Cases

Figure 20-11: Parrial Application Architecture Use Case Diagram
Figure 20-12: Overall Robor Rar Application Package Architecture

Figure 20-13: Class Diagram Showing Remote Conmrolled Object Package Classes
Figure 20-14: Properiies Editor for AbstractPosition Class

Figure 20-1%: Properiies Editor Window for the AbstractPosition Operation

Figure 20-16: Properries Editor Window for The setRow() Funcrion

Figure 20-17: Adding Operation Paramerers Using the Properries Editor Window

Figure 20-18: Complered and Annorated Overall Class Diagram
Figure 20-19: Start of Seguence Diagram for Robor Rar Application Launch

Figure 20-20: Editing Conroller() Message Properries
Figure 20-21: Cowmplered Robor Rar Application Launch Seuence

Figure 20-22: Create New RobotRar Seguence Diagram

Figure 20-23: First Step 10 Generating Code: Select Class Diagravs

C++ For Artists ©2003 Rick Miller — All Rights Reserved

Figures

462
462
463
463
464
464
466
466
467
468
469
470
47
472
472
473
473
474
474
477
477
477
476
477
477
477
486
487
489
493
494
497
497
496
499
200
207
208
209
209
710
210
21
2
712
2%
2%
716
7
n7
218
718
219
222
223
224
224
225
226

XXX1

Figures

Figure 20-24: Generate Code Menu hem 226
Figure 20-2%: Code Generation Dialog %27
Figure 20-26: Reverse Engineering Dialog %27
Figure 20-27: Step 2 in The Reverse Engineering Process: Naming the New System and Serring Various System PROpERTIEs %28
Figure 20-28: REProgRress Window 228
Figure 20-29: Merge System Dialog 529
Figure 20-30: Associating Diagram Object with System Diagrams %29
Figure 20-31: Navigating 1o Linked Diagram 230
Figure 20-52: Web Viewer Wizard 230
Figure 20-33: Selecting System for Web Report Generation 731

Figure 20-34: Main Screen - RobotRar Project Web View 231

XXXii ©2003 Rick Miller — All Rights Reserved C++ For Artists

Code Examp

S

1.1 test.h

1.2 firstclass.h

1.3 firstclass.cpp
1.4 main.cpp

1.7 Csiyle comments

1.6 Cstyle comments

1.7 C++style comment

1.8 C++ comment clumer

2.1 firstclass.h

2.2 firstclass.cpp
2.3 mAIN.cpp

2.4 wakefile

3.1 Robor Rar Pseudocode

3.2 Pseudocode For Processing User Menu Choices

3.3 robotrAT.CPp

%.3 robotrat.cpp continued

3.4 move() funcrion pseudocode
3. NORTH move pseudocode pen in the UP position

.6 NORTH move pseudocode pen in DOWN position
3.7 Complere Robor Rar Source Code Listing

4.1 Dumb Sorr Test ProGram

5.1 Disassembled Minimal main() Funcrion

%.2 Another C++ ProGrAM

9.3 Using Numeric_limits Templare Class 1o Calculate Type Ranges
%.4 Using the sizeof Operator

2.7 Source Code Showing Local, Funcrion, and File Scoping
filel.cpp

file2.cpp

2.6 file scope linkage

filel.cpp

file2.cpp
5.7 siatic linkage

5-8 Registering Funcrions with arexir()
5.9 Using cin Object 1o Read Integer Values frow Keyboard

%.10 Testing for Valid Inpur

6.1 if sTATEMENT

6.2 ASSIGNMENT

6.3 equality

6.4 declaration in condition

6.5 coMpouNd STATEMENTS ...
6.6 ifelse

6.7 | operaTOR

6.8 compound statements with ifelse

6.9 nesting ifelse

6.10 use of selection staTEmENTs

6.11 switch statement

6.12 while statement

6.1 while statement

6.14 use of seninel value

C++ For Artists

©2003 Rick Miller — All Rights Reserved

.100

102
107
106
130
131

131

171

132
132
132
137

134

134
144
144
144
144

147
145

147
146
146
147

.148

171
171
171

XXXl

Code Examples

6.1 nested while statements 152
6.16 looping forever 152
6.17 looping forever 152
6.18 nested while loop 153
6.19 swirch inside of while loop 193
6.21 while loop behaving like for loop 196
6.22 for STATEMENT 126
6.2% for loop scope 126
6.24 implementing summation 127
6.2% NesTiNG fOR STATEMENTS .. 57
6.26 break statrement 157
6.27 looping forever 198
6.28 CONTINUE STATEMENT 128
6.29 Iabeled starement 159
6.30 goroless code 129
7.1 inteGer objects .168
7.2 Using & operaTOR 170
7.3 Using * OpERATOR 172
7.4 dereferencing pOINTERS 17%
7.9 derelerencing pointers 173
7.6 dynawic memory Allocation 176
7.7 calling object consTRUCTOR 77
7.8 calling object construcTOR 177
7.9 using A Reference 178
8.1 declaring & usingG INTEGER ARRAY 186
8.2 usiNG INTEGER ARRAY 186
8.3 manipulating Array with for statement 186
8.4 poiNTEeR ARITHMETIC 187
8.% garbage our 187
8.6 good ourpur 188
8.7 uninitialized pointers 188
8.8 good outpur 188
8.9 pointer NULL inirialization 189
8.10 using delete OpERATOR ON POINTER ARRAY ElEMENTS 189
8.11 using 3-dimensional Array 193
8.12 inimializing 3-dimensional array 194
8.13 brace usage 194
8.14 brace usage 19%
8.17 dynamic Array allocation 197
8.16 dynawic array Allocation 197
8.17 dynamic mulri-dimensional Array allocation 198
8.19 dynawically allocaring 2-divensional array 199
9.1 testfuncrionone.h 210
9.2 testfuncrionone.cpp 210
9.3 main.cpp 21
9.4 local funcrion variables .212
9.% masking global variables 212
9.6 block scope 213
9.7 scope of variables in looping statements 213
9.8 static funcrion variables 214
9.9 masking funcTioN pARAWETERS 214
9.10 funcrion call with argument . 214
9.11 testfuncrionfour.h 218
9.12 testfuncrionfour.cpp 218
9.1 main.cpp 218
9.14 passing addresses by copy 219
9.1% testfuncrionfive.cpp 220
9.16 maiN.cpp .221
9.17 main.cpp 221

XXX1V ©2003 Rick Miller — All Rights Reserved

C++ For Artists

Code Examples

9.18 testfuncrionsix.cpp 22?2
9.19 main.cpp 22?2
9.20 printINTARRAY() 222
9.21 pRINTINTARRAY.CPP223
9.22 main.cpp 225
9.2% print_2d_in1_array.h 22%
9.24 prRINT_2d_iNT_ARRAY.CPP 224
9.2% main.cpp 224
9.26 soRT_iNT_ARRAY.H 224
9.27 SORT_iNT_ARRAY.CPP -.... .22%
9.28 main.cpp 225
9.29 RETURNINT.CPP 226
9.30 main.cpp 226
9.31 square.h 227
9.32 sQuARe.cpp 227
9.34 genewintaddress.h227
9.3% main.cpp 228
9.3 gemewintaddress.cpp 228
9.36 main.cpp 229
9.37 gerlargestinteger.h 230
9.38 GeTlARGESTINTEGER.CPP 230
9.39 main.cpp .230
9.40 funcriona.h 231

9.41 funcriona.cpp 231

9.42 wmain.cpp 232
9.4% countinpur.h 232
9.44 countinpur.cpp 233
9.4% main.cpp .23%3
9.46 guicksort.h 234
9.47 quicksorr.cpp 234
9.48 main.cpp 237
9.49 arithfuncrions.h 236
9.50 arithfuncrions.cpp 236
9.21 main.cpp . 237
9.92 dumbsorr.h 237
9.9% dumbsorr.cpp 238
9.24 main.cpp 238
10.1 mydefs.h 251

10.2 calcularepay.h 251

10.3 calculatepay.cpp .291

10.4 main.cpp 291

10.7 swirch statement 252
10.6 Namespaces 253
10.7 switch statement 254
10.8 personstruct.h 254
10.9 Accessing STRuCT Elements .29%
10.10 ACCESSING STRUCT ElEMENTS ViA POINTERS 256
10.11 personfuncrions.h 257
10.12 personfuncrions.cpp 257
10.12 Conrinued 258
10.13 main.cpp 279
10.14 personstruct.h .260
10.17 personsTrRuUCT.CPp 261

10.16 main.cpp Testing PERSON sTRUCT 263
10.17 personclass.h 263
10.18 personclass.cpp 264
10.19 main.cpp Testing Person class 267
11.1 parts of a typical class declaration .27%
11.2 testclass.h 279

C++ For Artists ©2003 Rick Miller — All Rights Reserved XXXV

Code Examples

11.3 testclass.cpp 280
1.4 main.cpp 280
11.% testclass.h 281
11.6 Testclass.cpp .282
1.7 main.cpp 282
11.8 Testclass.h 283
11.9 testclass.cpp 284
11.10 main.cpp 284
1111 testclass.h 287
1112 tesrclass.cpp .28%
1113 simpleclass.h 286
11.14 simpleclass.cpp 286
1112 main.cpp 287
1116 foo.h 291
11.18 main.cpp 29
1117 foo.cpp .292
1119 person.h 294
11.21 person.cpp 297
11.21 person.cpp continued 296
11.20 main.cpp 297
121ah 303
12.2 a.cpp .30%
12.3 b.h 303
12.4 b.cpp 304
12.5 main.cpp 304
12.6 b.h 307
12.7 b.cpp 307
12.8 Ak .306
12.9 a.cpp 306
12.10 b.h 306
1211 b.cpp 307
12.12 main.cpp 307
12.13 Aircrafturils.h 309
12.14 fuelpump.h 3N
12.15 engine.h 312
12.16 main.cpp 313
AiRCRAfUTilS.h 314
fuelpump.h 714
oilpuwp.h 315
TEMPERATURESENSOR.H v
OXYGENSENSOR.H 3%
COMPRESSOR.H 316
ENGINe.h 316
fuelpump.cpp 37
oilpuwp.cpp 317
TEMPERATURESENSOR.CPP718
OXYGENSENSOR.CPP 318
COMPRESSOR.CPP 319
ENGINE.CPP 320
MAIN.CPp 321
13.1 baseclass.h 329
13.2 derivedclassoneh330
13.3 baseclass.cpp 330
13.4 derivedclassone.cpp 331
12.2 main.cpp 333
13.6 person.h 336
13.7 student.h 336
13.8 student.cpp .3%6
12.9 main.cpp 337
XXXVi ©2003 Rick Miller — All Rights Reserved C++ For Artists

Code Examples

13.10 foo.h 338
13.11 derivedfoo.h 338
13.12 foo.cpp 338
13.13 derivedfoo.cpp .339
12.14 main.cpp 339
13.17 foo.h 741
13.16 foo.h bz
13.17 vessel.h 343
13.18 plant.h 345
13.19 weapon.h .34%
13.20 wain.cpp 46
ciws.h 346
five_inch.h 347
1orpedo.h 347
gasturbine_plant.h 347
nuke_plant.h .348
steam_plant.h 348
submarine.h 348
surface_ship.h 349
ciws.cpp 349
five_inch.cpp 349
GasTUrbine_plant.cpp .350
nuke_plant.cpp 390
steam_plant.cpp 391
submarine.cpp 391
surface_ship.cpp 392
Torpedo.cpp 392
vessel.cpp .39%
13.21 payable.h 394
13.22 employee.h 399
13.2% employee.cpp 399
13.24 hourlyemployee.h 399
13.2% salariedemployee.h 396
13.26 hourlyemployee.cpp3%6
13.27 salariedemployee.cpp 397
15.28 mnin.cpp 397
13.29 ah 329
13.30 b.k 399
13.31 ch 399
13.32 dh .99
12.3% main.cpp 329
13.34 b.h %60
13.35 c.h 360
14.1 modified person.h 377
14.2 overloaded stReam OpERATOR implemenTATION 376
14.% main.cpp 377
14.4 foo.h 378
14.2 main.cpp 378
14.6 overloaded AssiGNmENT OpERATOR iMplementation 380
14.8 overloaded relational operator implementation 380
14.9 main.cpp 380
14.7 person.h .381
14.10 exended Person class 382
14.11 euality operator implementation 382
14.12 main.cpp 382
14.13 foo.h 383
14.14 foo.cpp 383
14.17 main.cpp .384
14.16 dynamicarray.h 385
C++ For Artists ©2003 Rick Miller — All Rights Reserved XXXVii

Code Examples

14.17 dynamicarray.cpp 387
14.18 main.cpp 386
14.19 foo.h 386
14.20 foo.cpp .387
14.21 main.cpp 387
14.22 foo.h 388
14.23 foo.cpp 388
14.24 main.cpp 389
14.25 foo.h 390
14.27 wmain.cpp .390
14.26 foo.cpp 391
14.28 foo.h 392
14.29 bar.h 393
14.30 foo.cpp 39%
14.31 bar.cpp 393
14.32 main.cpp .394
12.1 sumremplare.h 399
12.2 main.cpp 400
1.3 sumremplare.h 401
12.4 main.cpp 401
12.7 main.cpp 401
15.6 sumremplare.h .402
12.7 main.cpp 402
1.8 foodef.h 403
12.9 main.cpp 403
17.10 dynamicarraydef.h 404
12.11 main.cpp 40%
12.12 main.cpp .407
12.13 main.cpp 409
12.14 main.cpp 409
12.12 main.cpp 410
12.16 main.cpp 41
16.1 interface.h 419
16.2 derived_class_oneh420
16.3 derived_class_two.h 420
16.4 main.cpp 421
icomponent.h 424
COMPONENT.H 424
COMPONENT.CPp 425
pump.h . 425
pumMp.cpp 426
SENSOR.H 426
SENSOR.CPp 427
WATERPUMP.h 427
WATERPUMP.CPP 428
oilpump.h .428
oilpuwp.cpp 428
fuelpump.h 428
fuelpump.cpp 429
Airflowsensor.h 429
AiRflowsensor.cpp 429
OXYGENSENSOR.H .429
OXYGENSENSOR.CPP 430
TEMPERATURESENSOR.H 430
TEMPERATURESENSOR.CPP 470
eNGiNe.h 431
ENGINE.CPP 431
smallengine.h . 432
smallengine.cpp 432

XXXViii

©2003 Rick Miller — All Rights Reserved

C++ For Artists

Code Examples

engineurils.h 433

MAIN.CPp 433

17.1 foo.h 448
17.2 foo.cpp .449
17.3 main.cpp 450
17.4 th 470
175 f.cpp 450
17.6 dumbsorr.h (remplate version) 45]

17.7 foo.h (modified) 452
17.8 foo.cpp (modified) 452
17.9 main.cpp 453
18.1 souare.h 459
18.2 sQuaRre.c 499
18.3 main.cpp 463
18.4 modified square.h 464
18.% double.h . 465
18.6 double.cpp 466
18.7 double.asm 468
18.8 main.cpp 468
18.9 double.h 469
18.10 double.cpp PowerPC Version 470
18.11 SayHi.java 472
18.12 SayHi.h 473
18.13 sayhi.cpp 474
19.1 incrementer.h 485
19.3 main.cpp 485
19.2 iNCREMENTER.CPP 486
19.4 main.cpp .487
19.7 derived.h 488
19.6 derived.cpp 488
19.7 main.cpp 489
19.8 derived.h (weakened precondirtion) 490
19.10 main.cpp 490
19.9 derived.cpp (weakened precondirion) 491

19.11 derived.h (strengThened precondition) 492
19.12 derived.cpp (srengthened precondirion) 492
19.17 main.cpp 493
19.14 main.cpp 497
19.17 c.h 496
absmractposition.h .932
abstracTmarker.H 932
absmracrconmrolledobject.h 732
position.h 933

MARKER.H 933

remotecontrolledobject.h 734
absmractcontrolledrodent.h . .9%4
roborrar.h 734
rodentworld.h 2%

USERINTERIACE.H 939

controller.h 736
position.cpp 236
MARKER.Cpp .938
remoteconTrolledobjecr.cpp 938
roboTRAT.CPp 939
rodentworld.cpp 740
USERINTERFACE.CPP 242
controller.cpp %4%
MAIN.CpPp 744
C++ For Artists ©2003 Rick Miller — All Rights Reserved

XXXIX

Code Examples

x1 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Learning ODbijecTives

Idenrify and overcome The difficulries encountered by students when learning How 10 proGram
List and explain the sofrware development roles played by students

List and explain the phases of the Tight spiral sofrware development methodology

Employ the concepr of the Flow 10 1ap cReative eNerGy

List and explain The primary Areas of the Project Approach Strategy

State the purpose of A header file

Srate the purpose of an implementarion file

Explain the imporiance of separating interface flRom implementation

Employ mulrifile proGgramming Technigues 10 TaMe project complexity

Explain the use of #ifndef, #define, and #endif preprocessor directives

Apply preprocessor direcrives 10 implement mulrifile proGramming projects

Srate the imporiance of adopting CoNsiSTENT VARIAbLE AN CONSTANT NAMING CONVENTIONS

List and describe the two 1ypes of C++ comments

List and describe the steps of the proGram creation process 10 include creating source code files, preprocessing, compiling, and
linking

List the inpur and outpur 10 each staGe of THe proGram CREATION pROCESS

List and describe the primary funcrions of an Integrated Development Environment (IDE)
Describe the concepr of A project

List and describe the steps reuired 10 create projects using Macintosh, Windows, and Unix development enviRoNmENTs
Demonstrate your ability 1o create projecrs in the IDE of your choice

Srare the purpose of the UNIX make uriliry

Srate the purpose of A UNIX makefile

Demonstrate your Ability 1o create and use UNIX makefiles

Urilize Merrowerks CodeWarrior 10 create projects oN Macintosh™ and PC plarforms
Urilize Tenon Intersystems” CodeBuilder™ 10 create projects on the Macintosh™ plarform
List and describe the similarities berween different UNIX development envirRonments

Apply the project approach strateqy 10 Help you systemarically implement A proGram Thar sarisfies The Reuirements of A Given project
specification

herarively apply The development cycle 1o Help you implement your proGravMming pROjECTS
List and describe the phases of the Project Approach Strategy

List and describe the steps of the sofrware development cycle

List and describe the different development roles performed during the development cycle
Translate A project specification into A sofrware desigy Thar can be implemented in C++
Implement A sofrware design in C++ using A funcrional decomposition approach

List and describe the steps involved with funcrional decomposition

Describe how the development cycle can be employed in A Tight spiral fashion

Srate the imporiance of compiling And Testing early during The development process

Define the concepr of A computer

Explain why the compurer is A Remarkable device

Explain how A compurer differs from othier machines

Explain how A computer stores and ReTrieves proGrams for execution

Srate the difference berween A computer And A cOMpUTER sysTeEm

State the purpose of A microprocessor ANd THe Role it plays iN A cOMpUTER sysTEm

Define the concepr of A program fRom The human perspective and THe coMpuTER peERspECTiVE
Describe How proGRAWS ARE REPRESENTED iN A COMPUTER'S MEMORY

C++ For Artists ©2003 Rick Miller — All Rights Reserved xli

Learning Objectives

List and describe The nine stages of the C++ proGram TRansfORMATION pROCESS

List and describe the four steps of the processing cycle

Srate the purpose and objective of A computer’s MEMORy system

Define the concepr of an algorithm

List the characreristics of A good algorithm

Describe whar constitutes A minimum well-formed C++ program

List the keywords reserved for use by the C++ language

State tHe purpose of variables, CONSTANTS, EXpREsSIONS, AN STATEMENTS

Demonstrate your ability 1o declare, define, and use variables

Demonstrate your ability 1o declare, define, and use constants

List and describe the purpose of the C++ fundamental dara Types

Derermine dara 1ype sizes with the sizeof operaTor

Urilize variables and constants in simple C++ proGrams

List the native C++ operators and state THeirR precedence

Write C++ programs using simple and compound statements

Describe variable scoping And state how the block smructure of C++ can affect variable visibility
Urilize simple inpur and outpur technigues using The cin and cour obijecrs

Describe The reguired parts of A minimal C++ proGram

Urilize an IDE’s disassembly tool 10 cain deeper understanding of C++ proGrAM STRUCTURE

List and describe The parts of a Typical C++ program 1o include source files, main() funcrion, library files, and preprocessor di-

RECTIVES

Control the flow of program execution with C++ conrol flow statements
Srare The purpose And use of The if sTaTement

Explain the purpose of A null statement

Urilize blocks 1o create local variable scopes in control statements
State the purpose And use of Nested if staTEmENTs

Srate the purpose And use of The for statement

State the purpose And use of Nested for statements

Srate the purpose and use of The keywords break and continue

State the purpose and use of The while statement

State the purpose and use of the do statement

State the purpose And use of The switch statement

Explain the importance of using break 10 exir case statements properly
Explain the importance of A defaulr case

Demonstrate your ability write effecrive, selFcommenting expressions urilizing sound identifier Naming Technioues

Srate the purpose ANd use of pointers and References in C++

Srare the definition of an objecr

Explain How 10 derermine AN object’s address using The & operator

Explain how 10 declare pointers using The pointer declarator *

Explain how 10 dereference A poinTER Using THE * OpERATOR

Describe the concepr of dynamic memory allocation

Explain How 10 dynawmically create objects using THe NEw OPERATOR

Explain How 10 destroy objects using The delere operator

Explain how 10 declare references using The reference declarator &

Explain why references must be defined ar the point of declaration

Describe the benefits of using References vs. poinTers

Urilize pointers And references 10 create powerful C++ proGrams

Describe the concepr of AN ARRAy

Srate he purpose and use of single- and mulri-dimensional ARrays

Describe how 10 declare And initialize single- and mulri-dimensional Arrays

Explain how the compiler uses The Array’s declared 1ype 10 calculate offser addresses iNto AN ARRAY
Explain how 10 Access ARRAy ElEMENTS USING ARRAY SUDSCRIpT NOTATION ANd POINTER NOTATION

List And describe the similarities berween AN ARrRay NavE aNd A pOINTER

Explain how 10 use pointers 1o dynamically allocate memory for an Array with the new|] operator

xlii ©2003 Rick Miller — All Rights Reserved

C++ For Artists

Learning Objectives

Explain how 10 Release dynamically allocated array memory with the delere]] operator
Explain how 10 idiomarically process AN ARRAy using A for loop

Explain how 10 process multi-dimensional arrays using Nested for loops

Explain How strings Are implemented in C++

Urilize single- and mulri-dimensional arrays in your CH++ PROGRAMMING PROJECTS

Srate the purpose And use of funcrions in C++

Explain how 10 declare and define funcrions

State thHe purpose ANd use of fUNCTION RETURN TypEs

Srate the purpose ANd use of fuNCTION pARAWETERS

Describe the concepr of funcrion calling

Explain the use of local funcrion variables and Their scoping Rrules

Describe how 10 pass ARGumENTSs 10 A function by value and by Rreference

Describe how 10 maximize funcrion cohiesion and minimize coupling

Describe the concepr of funcrion siGNATURES

Describe how 10 overload funcrions

Explain the concepr of recursion

Explain the concepr and use of funcrion poinTers

Explain how 10 create funcrion libraries

Urilize funcrions in your C++ PROGRAMMING PROJECTS

Describe how funcrions are used 10 modularize C++ program funcrionality
Demonstrate your ability To minimize funcrion coupling and maximize funcrion cohiesion in C++ pROGRAMMING PROJECTS
Create New daTA Types To iMprOve problem abstraction

Use the 1ypedef keyword 10 create Type synonyms for existing data types berer suited 10 1he problem domain
Explain how 1ype synonyms can be used 1o improve proGram mainTainability and readability
Create ANd use eNumeraTEd dATA TypES iN YOUR PROGRAMMING PROJECTS

Describe the defaulr enum state values and explain how they can be changed

Explain how 10 Resolve enum state nave conflicrs

CReATE ANd USE STRUCTURES iIN YOUR PROGRAMMING PROJECTS

Explain how 10 use The dot operaTOR T0 AccEss sTRUCTURE AN class elements

Create ANd use simple classes iN yOUR pROGRAMMING PROJECTS

Srare the difference berween structures and classes

Describe when you would wanT 10 USE STRUCTURES vs. Classes iN A PROGRAMMING PROJECT
List the key differences berween structures and classes

Srate the purpose And use of The this poinTter

List and define the following terms: class, base class, derived class, superclass, subclass, abstract base class, virtual funcrion, obijecr,
messAGe passing, OOAQ&D, inheritance, data encapsulation, interface, & implementation
Srate the purpose ANd use of The class construct in C++

List and describe the parts of A class declaration

State The imporiance of The TerminaTing semicolon of a class declaration

Explain how 10 use Access specifiers 10 control Horizonal member Access

Srate the funcrion aNd purRpose of CONSTRUCTORS

Srate he purpose and use of overloaded consTrRUCTORS

Explain how 10 overload constructoRrs

Explain how 10 use The inirializer list 10 iniTialize class anribures

Srate the purpose and use of destrRucTORS

Explain how 10 overload class member funcrions

Explain the importance of separating THe class interface from its implementation

Explain how 10 call class member funcrions from within class member funcrions

Urilize complex class constructs in your CH++ pROGRAMMING PROJECTS

Urilize inimializer lists 10 inirialize class armribures

List and define The following TERMS: cONsTRUCTOR, destrucToR, defaulr construCTOR, overloaded construcTOR, ANd overloaded func-
TIONS

Explain how 10 design complex classes using user-defined abstract data Types

Describe the concepr of AGgGregation

C++ For Artists ©2003 Rick Miller — All Rights Reserved xliii

Learning Objectives

Srate the relationship berween aggregation and obijecr liferime

Explain the difference berween conains by value and contains by reference

Describe the concepr of simple aGGregation

Describe the concepr of composiTe AGGREGATION,

Explain How 10 implement messaGe passing berween objects

Explain how 10 urilize pointers And references in The design of complex classes

Explain How 10 express AgGregation in UML notation

Srate the purpose ANd use of A UML sequence diagram

Demonstrate Your ability 1o use simple and composite AGGREGATION T0 iMplement C++ PROGRAMMING PROJECTS
Srare the purpose ANd use of inkeritance in C++ class design

Explain how 10 Apply The three access specifiers, public, protected, And private

Explain how 10 hide base class funcrions with derived class funcrions

Explain how 10 call A base class constructor from A derived class initializer list

Explain the use of the virtual key word as it relates 10 destructors and class member funcrions
Explain how 10 override virtual base class funcrions

Explain how 10 implement pure virtual funcrions

Explain how 10 declare And use abstract base classes

Explain How 10 subsritute derived class objects where base class objecrs are specified

Explain how 10 implement mulriple inheritance

Srate he purpose and use of A virtual base class

Explain how 10 safely use inheriTanCE iN your application design

Explain How 10 extend the UML class diagram 10 illustrate class inheritance hierarchies
DemonstrATe YOUR Ability 10 express inheritance with A UML class diagram

Demonstrate your ability 1o urilize inHeritance in he design of complex C++ proGramming projects
Define the 1erm Ad Hoc Polymorphism

Explain how 10 achieve ad hoc polymorphic behavior through operator overloading

Identify which C++ operators can be overloaded

DemonsTrate your ability To overload The following arithmeric operators: +, -, *, /

Demonstrate your ability 1o overload The following relational operators: <, >, <=, >=
Demonstrate you ability 1o overload the following euality operators: ==, |=

Demonstrate your ability 10 overload The following unary operators: prefix ++, postfix ++, prefix -, posifix -
DemonsTrate your ability To overload the subscript operator:]

Demonstrate your ability 10 overload iostReam operaToRs

Explain when and how 1o use [Riend funcrions 1o implement operator overloading

Explain when overloaded operator funcrions should be class members

Explain why And when operator overloading is Right for your design

Explain how 10 achieve static polymorphic behavior through the use of Templares

Explain how 10 WRiTe Generic code using Templares

Describe the concepr of A Template class

Explain how 10 declare and implement funcrion Templares

Explain how 10 declare and implement class Templares

Explain how 10 declare And implement class member funcrion Templares

Demonstrate your ability 1o declare and implement single paramerer Template classes

Demonstrate your ability 1o declare and implement mulriple paramerer Templare classes

Explain How 10 use components of the C++ Standard Templarte Library in your C++ pROGRAMMING PROJECTS
Srate the purpose ANd use of STL iterators, Algorithms, and conTainers

Demonstrate your Ability 1o urilize class and funcrion Templates 10 create Generic code in support of your C++ pROGRAMMING
PROJECTS

Srate the definition of dynamvic polymorphism

Explain How 10 Achieve dynamic polymorphic behavior through the use of base class pointers and derived class objects
Srate the importance of abstract base classes in objecr-oriented design

Describe the role virtual funcrions play in implementing dynamic polymorphic behavior

Srate the purpose and use of virtual destructors

Describe the concepr of pure virtual funcrions

xliv ©2003 Rick Miller — All Rights Reserved C++ For Artists

Learning Objectives

State the purpose ANd use of abstract base classes

Srate the importance of A consistent derived class interface and The role it plays in achieving robust polymorphic behavior
Explain why polymorphic behavior is A critical component of good objecr-oriented design

Demonstrate your ability 1o urilize dynamic polymorphism in your C++ proGrAMMING pROJECTS

List and define The following terms: base class, abstract base class, virual funcrion, pure virtual funcrion, virtual desiructor, iNHer-
itance Hierarchy, base class pointer, derived class object, and dynamic polymorphic behavior

Srare the imporiant role well-behaved objects play in Good objecroriented design

List and describe the funcrions reguired 1o Ger user defined objects 1o behave like native Types

List And describe the four minimum funcrions reguired 1o implement The orthodox canonical class form
Demonstrate your ability 1o urilize the orthodox canonical class form iN your C++ prOGRAMMING PROJECTS
Demonstrate your ability 1o extend the orthodox canonical class form 10 suir The needs of A parricular class
Explain why compilersupplied constructors and destructors may NoT provide Appropriate object behavior for complex class Types
List and define The following terms: orthodox canonical class form, defaulr consTRUCTOR, dESTRUCTOR, COpY ASSIGNMENT OPERATOR,
COPY CONSTRUCTOR

Explain How 10 create and integrate assembly language object modules

Explain How 10 inteGrate legacy C code

State the purpose and use of The extern keyword

Explain why the extern keyword is Necessary To link 10 legacy C code modules

Describe the concepr of Nname mangling

Explain How 10 call C and C++ rourtines from Java applications

List the steps Required 10 create, compile, and link 1o an Assembly lanGuage module

List the steps required 10 create A Java INI project and call A C++ native method from A Java proGram

Srate the purpose ANd use of The javal command line Tool

Demonstrate your ability 1o urilize assembly language routines iN your CH++ pROGRAMMING PROJECTS

Demonstrate your ability 1o call native C++ funcrions from Java proGrams

DemonstrATE YOUR Ability 10 use inline Assembly in A Macintosh eNviRONMENT

DemonstraTe YOur Ability 10 use inline Assembly in A PC enviRONMENT

List the preferred characreristics of an object-oriented application architecture

State the definition of the Liskov Substitution Principle (LSP)

State The definition of Berrand Meyer’s Design by Contract (DbC)

Recognize the close relationship berween the Liskov Substitution Principle and Design by Contract

Specify preconditions and postconditions for class and instance funcrions

Specify class invarianTs

State 1he definition of the Open-Closed Principle (OCP)

State the definition of he Dependency Inversion Principle (DIP)

Apply The Liskov Substitution Principle in the design and implementation of a class inheritance hierarchy

Apply Design by Contracr in The design and implementation of A class inheritance hierarchy

Apply the Open-Closed Principle in the design and implementation of a class inheritance hierarchy

Apply the Dependency Inversion Principle in the design and implementation of a class inheritance hierarchy

Srate the purpose of A UML modeling tool

List key UML modeling fearures supporred by Embarcadero Technologies” Describe

Urilize use-case, seuence, and class diagrams 10 analyze and desigy A solution 1o A GivEN pROGRAMMING pRrObIlEm
Urilize Describe" 10 develop a solution 10 A Given programming problem up 1o The point of C++ code Generation
Selecr the appropriate UML diagram based on the corresponding problem analysis or design phase

Employ the UML constructs of aggregation and Generalization 1o create complex class relationships

Urilize Describe" 10 Reverse enGineer existing C++ source code

Urilize Describe™ 10 Generate A webbased project reporr

C++ For Artists ©2003 Rick Miller — All Rights Reserved xlv

Learning Objectives

xlvi ©2003 Rick Miller — All Rights Reserved C++ For Artists

Preface

Welcome — And Thank You!

Thank you for choosing C++ For Artists: The Art, Philosophy, and Science of Object-Oriented Programming.
You have selected an excellent book to augment your C++ and object-oriented programming learning experience.

If you purchased this book because it is required for a course you may feel like you had no say in the matter. Pay-
ing for expensive college books feels a lot like having your arm twisted behind your back at the checkout counter. If it
will make you feel better I will let you in on a secret. You bought a keeper.

If you are standing in the computer section of your favorite book store reading these lines and trying hard to
decide if you should buy this book or pay the rent I say to you this: If you knew the stuff inside this book you could
easily own your own place. The landlord can wait.

Targer Audience

C++ For Artists targets the student who demands more from a C++ programming textbook. What do I mean by
student? A student is anyone who holds this book in their hands and by reading it expects to gain C++ and object-ori-
ented programming knowledge. You may be a student enrolled in a high school, college, or university — or a practic-
ing programmer seeking ways to expand your understanding of C++ and object-oriented programming. However you
come to hold this book in your hands — you are my target audience.

Approach

C++ For Artists examines the topic of C++ and object-oriented programming from three unique perspectives.

First, programming is an art. It takes lots of skill (gained through study and training) and practice (gained from
writing code) to succeed as a programmer. Talent separates the good programmers from the really great programmers.
Just like some people have a knack for painting, some people have a knack for programming.

Second, object-oriented programmers can significantly benefit from a guiding philosophy. One that shows them
how to tap their creativity, conquer challenges, and tame conceptual and physical complexity associated with large
software systems.

Lastly, most programming students are not formally exposed to real-life, practical programming techniques and
almost no object-oriented foundational theory during their tenure in the classroom.

These three perspectives: 1) programmer as artist, 2) creative approach philosophy, and 3) object-oriented pro-
gramming theory, converge in C++ For Artists resulting in a truly unique programming text book.

C++ For Artists ©2003 Rick Miller — All Rights Reserved xlvii

Preface Arrangement

ARRANGEMENT

The book is arranged into four parts: Part I: The C++ Student Survival Guide, Part 11: Language Fundamentals,
Part I11: Implementing Polymorphic Behavior, and Part IV: Intermediate Concepts. Each part and its accompanying
chapters are described in greater detail below.

Part I;: The C++ Student Survival Guide

Part I: The C++ Student Survival Guide consists of four chapters designed to help you get a jump on your pro-
gramming projects. The survival guide is meant to be referenced throughout your learning experience. The key fea-
tures and discussion points of part I include:

¢A discussion of the “flow”,

*A project approach strategy to be used to maintain a sense of progress when working on program-
ming projects,

*A complete treatment on how to create C++ projects with two popular integrated development
environments (IDEs) on Macintosh, Windows, and UNIX platforms,

*A step-by-step project walkthrough that applies the project approach strategy and development
cycle to produce a complete working project.

Chaprer 1: An Approach To The Art OF ProGgramming

Chapter 1 begins with a discussion of the challenges you will face as you study C++ and object-oriented pro-
gramming. It presents a project approach strategy specifically designed to help you maintain a sense of forward
momentum when tackling your first programming projects. The chapter also presents a development methodology, a
philosophical discussion of the concept of the “flow”, and practical advice on how to manage a programming
project’s physical and conceptual complexity. I will show you how to use three important preprocessor directives:
#ifndef, #define, and #endif to create separate header files. You may or may not be familiar with all the terms used in
the chapter, especially those related to preprocessor directives and identifier naming, however, you are encouraged to
return to the chapter as required. It serves to offer you a glimpse of things to come.

Chaprer 2: Small Vicrories: Creating Projects With IDEs

Chapter 2 shows you step-by-step how to create C++ projects using two popular integrated development environ-
ments: Metrowerks CodeWarrior on the Macintosh, and Microsoft Visual C++ for the Windows platform. The focus
of the chapter is the concept of the project and the steps required to create projects regardless of the IDE employed. If
you prefer to use UNIX development tools this chapter also shows you how to use the make utility and how to create
a makefile that can be used to compile, link, and manage multi-file projects.

Chaprer ¥: Project Walkthrough: An Extended Example

Chapter 3 takes you step-by-step through a complete programming project from specification to final implemen-
tation. Along the way you are shown how to apply the project approach strategy and the development cycle to arrive
at an acceptable project solution. The #ifndef, #define, and #endif preprocessor directives are used to create safe
header files that separate function interface declarations from function implementation code. If you are a novice stu-
dent I do not expect you to fully comprehend all the material or programming techniques presented in this chapter,
rather, the material serves as an excellent reference to which you will return periodically as you use bits and pieces of
this knowledge in your programming projects.

Chaprer 4: Computers, Programs, and AlgGorithms

Chapter 4 presents background information on computer hardware organization, memory systems, and algo-
rithms. The emphasis is on understanding exactly what a program is from a computer and human perspective. I dis-
cuss the four phases of the program execution cycle, how program instructions are differentiated from ordinary data,
and how memory is organized on common computer systems. I also talk about what makes a good and bad algorithm.

xlviii ©2003 Rick Miller — All Rights Reserved C++ For Artists

Arrangement Preface

Parr II: C++ Language Fundamentals

Part II presents a treatment of the core C++ programming language features and comprises chapters 5 through

13. This is a critical part of the book because it prepares you for further study of intermediate and advanced C++ and
object-oriented concepts. The key features and discussion points of part II include:

*The unique ordering of the material. For instance, pointers are covered early so you will under-

stand their use in other language constructs,

*Pointers are presented as a dialog between a superhero named C++ Man and a confused student

named Perplexed One,

*Emphasis on multi-file projects,

L ots of targeted code examples to reinforce key lecture points,

eSuccessive chapters build upon knowledge gained from the previous chapter,

eIn-depth coverage of tricky concepts normally glossed over or avoided in ordinary C++ texts.

Chaprer 7: Simple ProGrams

Chapter 5 shows you how to write simple C++ programs using fundamental data types and simple expressions. I
give examples of how to use all the C++ operators, how to create local and multi-file variables and constants, and
show you how you can limit a variable’s scope to one file. You will learn how to write two versions of the main()
function and how to call functions upon program exit.

Chaprer 6: Controlling The Flow OF Program Execution

Chapter 6 moves beyond simple programs and shows you how to control the flow of program execution by using
if, if-else, switch, for, while, and do-while statements. Many source code examples and diagrams are used to illustrate
how control flow statements are written. The chapter includes a discussion of statements, null statements, and com-
pound statements. I also show you how to write nested if, for, and while statements, and how to write loops that will
repeat until explicitly exited.

Chaprer 7: Pointers Avd References

Chapter 7 uses a short story to simplify the complex topic of pointers and references. Perplexed One is a student
who falls asleep in class and is awakened by the arrival of C++ Man. C++ Man then helps Perplexed One by answer-
ing questions and giving examples of how to declare and use pointers.

Chaprer 8: Arrays

Chapter 8 builds upon chapter 7 and shows the relationship between pointers and arrays. The chapter continues
by showing you how to build single and multi-dimensional static and dynamic arrays. Lots of code examples and dia-
grams help you visualize how arrays are declared, initialized, and used in programs.

Chaprer 9: Funcrions

Chapter 9 builds upon chapter 8 and shows you how to write complex functions that can pass arguments by value
and by reference. The emphasis is on writing highly cohesive functions that are minimally coupled to other program
elements. Header files are used to separate function declaration (interface) from definition (implementation). To sup-
port the creation of header files I review and discuss the three important preprocessor directives: #ifndef, #define, and
#endif. Other topics covered include: function variable scoping, static function variables, passing arrays to functions,
passing multi-dimensional arrays to functions, returning pointers from functions, how to avoid dangling references,
function overloading, recursion, function pointers, and call back functions.

Chaprer 10: Toward Problem Abstracrion: Creating New Dara Types

Chapter 10 shows you how to create type synonyms and new data types using type definitions, enumerated types,
structures, and classes. The emphasis is on problem abstraction and how it is used to map a real world problem to a
set of supporting data structures that can be used in a program. Structures are compared to classes and the notion of
object-oriented programming is introduced. The class declaration is discussed as it relates to the structure declaration

C++ For Artists ©2003 Rick Miller — All Rights Reserved xlix

Preface Arrangement

and how the notions of procedural and object-oriented programming differ from each other.

Chaprer 11: Dissecting Classes

Chapter 11 continues the discussion of classes and how they work. It introduces the UML class diagram and uses
UML class diagrams to illustrate static class relationships. The special member functions are thoroughly discussed.
These include the constructor, destructor, copy constructor, and copy assignment operator. A brief introduction to the
orthodox canonical class form is given in preparation for a deeper treatment of the subject in chapter 17. Other topics
include data encapsulation, member functions and attributes, access specifiers, member function overloading, and
how to separate class interface from implementation.

Chaprer 12: Compositional Design

Chapter 12 builds upon chapter 11 and shows you how to build complex class types using simple and complex
aggregation. The UML class diagram is extended to model simple and composite aggregate class relationships. The
UML sequence diagram is also introduced to illustrate interobject message passing. Other topics discussed include:
managing physical complexity, the use of pointers and references to build simple and complex aggregate classes, and
how to properly use constructors and destructors in aggregate classes. The chapter concludes with a complex aggrega-
tion example.

Chaprer 13: Extending Class Funcrionality Through Inheritance

Chapter 13 introduces the topic of inheritance and shows you how to extend class behavior through subclassing
and subtyping. UML is used to illustrate simple and complex inheritance hierarchies. The compositional design tech-
niques discussed in chapter 12 are combined with inheritance design concepts to provide you with a powerful arsenal
of object-oriented design tools. The access specifiers public, protected, and private are discussed in the context of
inheritance. Other topics covered include: virtual functions, function hiding, function overloading, pure virtual func-
tions, abstract classes, abstract base classes, multiple inheritance, and virtual inheritance. The chapter includes a com-
plex navy fleet simulation example that illustrates the use of inheritance and compositional design.

Parr lHI: Implementing Polymorphic Behavior

Part III gives special coverage to the three types of polymorphic behavior: ad hoc (operator overloading), static
(templates), and dynamic (base class pointers to derived class objects). Success as a C++ programmer demands a
thorough understanding of these concepts. Key features and discussion points of part III include:

eIn-depth treatment of ad-hoc, static, and dynamic polymorphism and how each type of polymor-
phic behavior is achieved using the C++ language,

*An example of how to overload almost every operator in the C++ language,

*How to overload the iostream operators to tailor them to your class needs,

*How to think about and apply the notion of polymorphic behavior in your application designs,
*How to write generic code using templates,

*How to use multiple place holders in template classes and functions,

*How to use the special template definition syntax to explicitly specify template parameter types,
*How to design with dynamic polymorphic behavior in mind.

Chaprer 14: Ad Hoc Polymorphism: Operator Overloading

Chapter 14 is devoted to operator overloading. It builds upon the concepts of function overloading and shows you
how to overload nearly every operator in the C++ language complete with examples of their use. A complete table of
overloadable operators is included along with a discussion of how to overload the iostream operators to tailor them to
your class needs.

Chaprer 15: Static Polymorphism: Templates

Chapter 15 shows you how to write generic code using templates. It shows you how to replace overloaded func-
tions with template functions and how to use template functions in your programs. The chapter also shows you how to

1 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Arrangement Preface

use the special template definition syntax to explicitly specify template parameter types. A brief overview of the C++
standard template library (STL) is offered along with a discussion of STL containers, iterators, and algorithms.

Chaprer 16: Dynamic Polymorphism: Object-Oriented ProGrAMMING

Chapter 16 reinforces and builds upon concepts introduced in chapter 13. The focus is on the C++ language con-
structs required to write truly object-oriented programs. Topics discussed in depth include: employing pure virtual
functions to create abstract base classes, how to use abstract base classes to specify the interface to derived classes,
and what behavior to expect when using dynamic polymorphic programming techniques. The engine component
aggregate class created in chapter 12 is revisited and redesigned to employ dynamic polymorphic behavior.

Parr IV: INtermediate Conceprs

Part IV consists of four chapters and builds upon the concepts and material presented in the preceding three parts.
Key features and discussion points of part IV include:

*How to write well-behaved, context-minded classes using the orthodox canonical class form,
*How to use legacy C code libraries in your C++ applications,

*How to use the Java Native Interface (JNI) to write C++ functions that can be called from Java
applications,

*How to use assembly language in C++ programs,

*Coverage of three important object-oriented design concepts to include the Liskov substitution
principle and Meyer design by contract programming, the open-closed principle, and the depen-
dency inversion principle,

*How to use a UML design tool to assist in the design and implementation of complex applications,
*How to use a UML tool to reverse engineer existing C++ code.

Chaprer 17: Well-Behaved Objects: The Orthodox Canonical Class Form

Chapter 17 presents an in-depth discussion of the orthodox canonical class form (OCCF) to write well-behaved,
context-minded classes. Keeping the OCCF in mind when you design and write classes forces you to consider how
those classes will be used in an application. The class’s possible uses or usage contexts will guide you in your choice
of which operators to overload to insure your class objects exhibit predictable and acceptable behavior.

Chaprer 18: Mixed Language ProGramming

Chapter 18 shows you how to use C++ with C, assembly, and Java. Topics covered include: using the extern key-
word to prevent C++ name mangling, the Java Native Interface (JNI) and how to write C++ functions that can be
called from Java programs, how to use inline assembly code in C++ programs using the asm keyword, and how to
link to object modules created in assembly language.

Chaprer 19: Three Design Principles

Chapter 19 presents and discusses three important object-oriented design principles: the Liskov substitution prin-
ciple, the open-closed principle, and the dependency inversion principle. Bertrand Meyer’s design by contract pro-
gramming is discussed in relation to the Liskov substitution principle.

Chaprer 20: Usivg A UML Modeling Tool

Chapter 20 discusses the importance of using a UML design tool to assist in the application design process. The
featured UML tool is Embarcadero Technologies’s Describe™ . The chapter focuses on only a few of Describe’s
many features: UML use-case, class, and sequence diagram creation, how to link diagram objects to other diagrams,
how to generate code from class diagrams, how to reverse engineer existing C++ code, and how to generate compre-
hensive web-based project reports.

C++ For Artists ©2003 Rick Miller — All Rights Reserved li

Preface

How To Read C++ For Artists

How To Read C++ For Arrists

The flow chart below is intended to give you an idea of how to read C++ For Artists. If you are a complete novice
or first-time reader of C++ For Artists I recommend starting with part I. There you will find much to help you under-
take significant programming projects. Read part II repeatedly to ensure you have a firm grasp of C++ fundamental
language features before attempting parts III and I'V.

Start

First time reading
C++ For Artists?

yes

no

Part I: C++ Student Survival Guide

Chapter 1: An Approach to the Art of Programming

Chapter 2: Small Victories: Creating Projects with IDEs

Chapter 3: Project Walkthrough: An Extended Example

Chapter 4: Computers, Programs, and Algorithms

ne Completed

Part 1?

yesY

yes

Completed

v

Part II: C++ Language Fundamentals

Chapter 5: Simple Programs

Chapter 6: Controlling the Flow of Program Execution

Chapter 7: Pointers and References

Chapter 8: Arrays

Chapter 9: Functions

Chapter 10: Toward Problem Abstraction:
Creating New Data Types

Chapter 11: Dissecting Classes

Chapter 12: Compositional Design

Chapter 13: Extending Class Functionality
Through Inheritance

Part I1I?

>«

> Do you understand
the basics?

no Started

confused? *

Part 1117

Part III: Implementing Polymorphic Behavior

Chapter 14: Ad Hoc Polymorphism: Operator Overloading

Chapter 15: Static Polymorphism: Templates

Chapter 16: Dynamic Polymorphism:
Object-Oriented Programming

Finished 7%

Part 1117

lii ©2003 Rick Miller — All Rights Reserved

\ 4
A

confused?

Part 1V: Intermediate Concepts

Chapter 17: Well-Behaved Objects: The Orthodox
Canonical Class Form

Chapter 18: Mixed Language Programming

Chapter 19: Three Design Principles

Chapter 20: Using A UML Modeling Tool

C++ For Artists

Pedagogy Preface

Pedagogy

Chaprer Layour

Each chapter takes the following structure:

eLearning .Objectives «Skill Building Exercises
eIntroduction *Suggested Projects
*Content oSelf Test Questions
*Quick Reviews eReferences

eSummary *Notes

Learning Objecrives

Each chapter begins with a set of learning objectives. The learning objectives represent the knowledge gained by
reading the chapter material and completing the skill building exercises, suggested projects, and self test questions.

IntrROdUcTiON

The introduction motivates you to read the chapter content.

CONTENT

The chapter content represents the core material. Core material is presented in sections and sub-sections.

Quick Reviews

The main points of each level 1 section are summarized in a quick review section.

Summary

The summary section summarizes the chapter material

Skill Building Exercises

Skill building exercises are small programming or other activities intended to strengthen your C++ programming
capabilities in a particular area. They could be considered focused micro-projects.

Suggested Projects

Suggested projects require the application of a combination of all knowledge and skills learned up to and includ-
ing the current chapter to complete. Suggested projects offer varying degrees of difficulty.

Self Test Questions

Self-test questions test your comprehension on material presented in the current chapter. Self-test questions are
directly related to the chapter learning objectives. Answers to all self-test questions appear in appendix C.

References

All references used in preparing chapter material are listed in the references section.

Nores

Note taking space.

C++ For Artists ©2003 Rick Miller — All Rights Reserved liii

Preface CD-ROM

CD-ROM

The CD-ROM contains the following goodies:
*PDF edition of C++ For Artists,
*Adobe Acrobat™ Reader version 6 for Windows and Macintosh
*Demo version of Embarcadero Technologies Describe™ UML modeling tool,
*Full working copy of ObjectPlant™ UML modeling tool for the Macintosh™ ,
*Open source C++ compiler tools,
*All source code example files used throughout the text organized by chapter,
*Metrowerks CodeWarrior projects,
eLinks to commercial C++ development tool vendors.

SupportSiTe™ Website

The C++ For Artists SupportSite™ is located at [http://pulpfreepress.com/SupportSites/C++ForArtists/]. The
support site includes source code, links to C++ compiler and UML tool vendors, and corrections and updates to the
text.

Problem Reporring

Although every possible effort was made to produce a work of superior quality some mistakes will no doubt go
undetected. All typos, misspellings, inconsistencies, or other problems found in C++ For Artists are mine and mine
alone. To report a problem or issue with the text please contact me directly at rick@pulpfreepress.com or report the
problem via the C++ For Artists SupportSite™ . I will happily acknowledge your assistance in the improvement of
this book both online and in subsequent editions.

liv ©2003 Rick Miller — All Rights Reserved C++ For Artists

http://www.pulpfreepress.com/SupportSites/C++ForArtists/
mailto:rick@pulpfreepress.com
mailto:rick@pulpfreepress.com
mailto:rick@pulpfreepress.com

Acknowledgements Preface

AcknowledgemenTs

C++ For Artists was made possible by the hard work and support of many talented people and companies. Some
friends contributed unknowingly in unexpected ways.

I would first like to thank Harish Ruchandani and Tracy Millman, my former colleagues at Booz | Allen | Hamil-
ton, for patiently listening to my ideas about writing this book and for providing critical comment on early versions of
several chapters.

Many thanks to my good friend Jose Pi for many great mornings spent surfing California waves, and to Michael
Leahy, a merchant mariner of the highest caliber, for letting me drive his Ferrari with no strings attached.

I would like to thank Anke Braun, Thayne Conrad, and Petra Rector of Prentice-Hall for entertaining my pro-
posal and trying to fit C++ For Artists into the Prentice-Hall product line. Thanks also go to Jim Leisy of Franklin,
Beedle & Associates, Inc., for seeing the merit in this work.

Special thanks go to the reviewers employed by Prentice-Hall who provided invaluable critical comment on
chapters 1 through 13. They include: John Godel, James Huddleston, Dr. Samuel Kohn,and Ms. Anne B. Horton. C++
For Artists is significantly improved by their attention to detail.

Independent reviewers of different portions of the text include Ken Stern and Brendan Richards of SAIC. It is
truly a pleasure working with such talented people.

I want to thank Apple™ Computer Inc., for providing product images of the PowerMac™ , Motorola, Inc. for
providing images of the PowerPC 7400 and related architecture diagrams, Embarcadero Technologies, Inc., for grant-
ing me a full-use license of Describe™ , and Michael Archtadeous for working in the trenches to produce Object-
Plant™ .

Lastly, without the fathomless patience of Coralie Miller, an amazing woman, this book would simply not exist.

Rick Miller
Falls Church, Virginia
7 July 2003

C++ For Artists ©2003 Rick Miller — All Rights Reserved Iv

Preface Acknowledgements

Ivi ©2003 Rick Miller — All Rights Reserved C++ For Artists

Part I: The C++ Student Survival Guide

C++ For Artists ©2003 Rick Miller — All Rights Reserved

©2003 Rick Miller — All Rights Reserved C++ For Artists

Chaprer 1

Snow Reflecrions

AN Approach To The
ART OF PROGRAMMING

Learning Objecrives

* Idenify and overcome the difficulties encountered by students when learnving how 10 proGram
o List and explain the sofrware development roles played by students

o List and explain the phases of the tight spiral sofiware development merhiodology

* Employ 1he concepr of the Flow 10 1ap CREATIVE ENERGY

* List and explain the primary areas of the Project Approach Smategy

* Snare the purpose of a headkr file

o State the purpose of an implemeniarion file

* Explain the impormance of separating interface from implementation

* Employ mulii-file proGramming 1echnipues o 1ame project complexity

o Explain the use of #ifndef, #define, avd #endif preprocessor directives

* Apply preprocessor directives 10 implement mulii-file proGramming projecrs

* St the importance of Adopring consistent variable and cONSTANT NaMING cONVENTIONS

e List and describe the wo 1ypes of C++ comments

C++ For Artists ©2003 Rick Miller — All Rights Reserved

Introduction Chapter 1: An Approach To The Art Of Programming

INTROducTiON

Programming is an art; there’s no doubt about it. Good programmers are artists in every sense of the word. They
are a creative bunch, although some would believe themselves otherwise out of modesty. Like any art you can learn
the secrets of the craft. That is what this chapter is all about.

Perhaps the most prevalent personality trait I have noticed in good programmers is a knack for problem solving.
Problem solving requires creativity, and lots of it. When you program a computer you are solving a problem with a
machine. You transfer your knowledge of a particular problem into code, transform the code into a form understand-
able by a machine, and run the result on a machine. Doing this requires lots of creativity, especially when you find
yourself stumped by a particular problem.

The material presented here is wrought from experience. Believe it or not, the hardest part about learning to pro-
gram a computer, in any programming language, is not the learning of the language itself, rather, it is learning how to
approach the art of problem solving with a computer. To this end the material in this chapter is aimed squarely at the
beginner. However, I must issue a word of warning. If you are truly a novice, then some of what you read in this chap-
ter will make less sense to you than to someone already familiar with C or C++. Do not worry, it is that way by
design. If you feel like skipping parts of this chapter now, then go right ahead. The material will be here when you
need it. In fact, you will grow to appreciate this chapter more as you gain experience as a programmer.

The Difficulries You Will Encounter Learning C++

During your studies of the C++ programming language you will face many challenges and frustrations. However,
the biggest problem you will encounter is not the learning of the language itself, but the many other skills and tools
you must learn before writing programs of any significance or gaining any measure of proficiency in solving prob-
lems with C++. If you are a seasoned student or practicing computer professional returning to the classroom to
upgrade your skills, you have the advantage of experience. You can concentrate on learning the syntax and nuances of
C++ and very quickly apply its powers to problems at hand. If you are an absolute beginner, however, you have much
to learn.

Reouired Skills

In addition to the syntax and semantics of the C++ language you will need to master the following skills and
tools:
*A development environment, which could be as simple as a text editor and compiler combination
or a commercial product that integrates editing, compiling, and project management capabilities
into one suite of tools,
*A computing platform of choice,
*Problem solving skills,
*How to approach a programming project,
*How to manage project complexity,
*How to put yourself in the mood to program,
*How to stimulate your creative abilities,
*Object-oriented analysis and design,
*Object-oriented programming principles.

The Planers Will Come Into Alignment

I use a metaphor to describe what it takes before you can get even the simplest program to execute properly. It is
as if the planets must come into alignment. You must learn a little of each skill and tool listed above, with the excep-
tion of object-oriented programming principles and object-oriented analysis and design, to write, compile, and run
your first C++ program. But, when the planets do come into alignment, and you see your first program compile and
execute, and you begin to make sense of all the class notes, documentation, and text books you have studied up to that
point, you will spring up from your chair and do a victory dance. It is a great feeling!

4 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 1: An Approach To The Art Of Programming Project Management

How This Chaprer Will Help You

This chapter will give you the information you need to bring the planets into alignment sooner rather than later. It
presents an abbreviated software development methodology that formalizes the three primary roles you play as a pro-
gramming student. It will discuss some philosophical topics related to tapping into your creative energies. It will offer
several strategies to help you manage project complexity, something you will not need for very small projects but
should get into the habit of doing as soon as possible.

I recommend you read this chapter at least once in its entirety and refer back as necessary as you progress
through the text and attempt increasingly difficult programming assignments.

Project MANAGEMENT

Three Sofrware Development Roles

You will find yourself assuming the duties and responsibilities of three software development roles: Analyst,
Architect, and Programmer.

Analyst

When you are handed a class programming project you may or may not understand what the instructor is actually
asking you to program. Hey, it happens! Whatever the case may be, you, as the student, must read the assignment and
design and implement a solution.

You can think of a project assignment as a requirements specification. They will come in several flavors. Some
instructors go into painful detail about how they want the student to execute the project. Others prefer to generally
describe the type of program they want thus leaving the details, and the creativity, up to you. There is no one correct
method of writing a project assignment; each has its benefits and limitations.

A detailed assignment takes a lot of the guesswork out of what outcome the instructor expects. On the other
hand, having every design decision made for you may prevent you from solving the problem in a unique, creative
way.

A general project assignment delegates a lot of decision making to the student while also adding the responsibil-
ity of determining what project features will satisfy the assignment.

Both types of assignments model the real world to some extent. Sometimes requirements are well defined and
there is little doubt what shape the final product will take and how it must perform. However, more often than not
requirements are ill or vaguely defined. As an analyst you must clarify what is being asked of you. In an academic set-
ting, do this by talking to the instructor and have them clarify the assignment. A clear understanding of the assign-
ment will yield valuable insight into possible approaches to a solution.

Architect

Once you understand the assignment you must design a solution. If your project is extremely small you could
perhaps skip this step with no problem. However, if your project contains several objects that interact with each other,
then your design, and the foundation it sets, could make the difference between success and failure. A well-designed
project reflects a subliminal quality that poorly designed projects do not.

Two objectives of good design are the ability to accommodate change and tame complexity. Change in this con-
text means the ability to incrementally add features to your project as it grows without breaking the code you have
already written. Several important object-oriented principles have been formulated to help tame complexity and will
be discussed later in the book. For starters though, begin by imposing a good organization upon your source code
files. You can use the source code file formats presented below to help in this endeavor.

C++ For Artists ©2003 Rick Miller — All Rights Reserved 5

Project Management Chapter 1: An Approach To The Art Of Programming

ProGgrammer

As programmer you will execute your design. The important thing to note here is that if you do a poor job as an
architect your life as a programmer will be miserable. That doesn’t mean the design has to be perfect. I will show you
how to incrementally develop and make improvements to your design as you code.

Now that you know what roles you will play as a student let us discuss how you might approach a project.

A Project Approach Strateqy

Most students have difficulty implementing their first significant programming assignment, not because they lack
brains or talent, but because they lack experience. If you are a novice and feel overwhelmed by your first program-
ming project rest assured you are not alone. The good news is that with practice, and some small victories, you will
quickly gain proficiency at formulating approach strategies to your programming projects.

Even experienced programmers may not immediately know how to solve a problem or write a particular piece of
code when tasked to do so. What they do know, however, is how to formulate a strategy to solve the problem.

You Have Been Handed A Project — Now Whar?

Until you gain experience and confidence in your programming abilities the biggest problem you will face when
given a large programming assignment is where to begin. What you need to help you in this situation is a project
approach strategy. The strategy is presented below and discussed in detail. I have also summarized the strategy in a
checklist located in appendix A. Feel free to reproduce the checklist and use as required.

The project approach strategy is a collection of areas of concern to take into consideration when you begin a pro-
gramming project. It is not a hard, fast list of steps you must take. It is intended to put you in control, to point you in
the right direction, and give you food for thought. It is flexible. You will not have to consider every area of concern for
every project. After you have used it a few times to get you started you may not ever use it explicitly again. As your
programming experience grows feel free to tailor the project approach strategy to suit your needs.

Strategy Areas of Concern

The project approach strategy is formulated around areas of concern. These include requirements, problem
domain, language features, and design. When you use the strategy to help you solve a programming problem your
efforts become focused and organized rather than ad hoc and confused. You will feel like you are making real
progress rather than drowning in a sea of confusion.

ReQuirements

A requirement is an assertion that specifies a particular aspect of expected behavior. A project’s requirements are
contained in a project specification or programming assignment. Ensure you completely understand the project spec-
ification. Seek clarification if you do not know, or if you are not sure, what problem the project specification is asking
you to solve. In my academic career I have seen projects so badly written that I thought I had a comprehension prob-
lem. I’d read the thing over and over again until struck by a sudden flash of inspiration. But more often than not I
would reinforce what I believed an instructor required by discussing the project with them.

Problem Domain

The problem domain is the specific problem you are tasked to solve. I would say that it is that body of knowledge
necessary to implement a software solution apart and distinct from the knowledge of programming itself. For
instance, “Write a program to simulate elevator usage in a skyscraper.” You may understand what is being asked of
you (requirements understanding) but not know anything about elevators, skyscrapers, or simulations (problem
domain). You need to become enough of an expert in the problem domain you are solving so that you understand the
issues involved.

6 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 1: An Approach To The Art Of Programming Project Management

Programming Language Features

The source of greatest frustration to novice students at this stage of the project is knowing what to design but not
knowing enough of the language features to begin the design. This is when panic sets in and students begin to buy
extra books in hopes of discovering the Holy Grail of project wisdom.

To save yourself from panic make a list of the language features you need to understand and study each one,
marking them off as you go. This provides focus and a sense of progress. As you read about each feature, keep notes
on their usage so you can refer to them when you sit down to formulate your program design.

Design
When you are ready to design a solution you will usually be forced to think along two completely different lines
of thought: procedural vs. object-oriented.

Procedural Design

A procedural design approach is one in which you identify and implement program data structures separate from
the functions that manipulate those data structures. When taking a procedural approach to a solution you will break
the problem into small, easily solvable pieces, implement the solution to each of the pieces, and combine the solved
pieces into a complete problem solution. The solvable pieces I refer to here are functions. This methodology is also
known as functional decomposition.

Objecr-Oriented Design

Object-oriented design refers to designing with objects and their interfaces. Whereas a procedural design treats
data structures separately from the functions that manipulate them, object-oriented design uses encapsulation to hide
an object’s implementation data structures behind a public interface. Data structures and the functions that manipulate
them combine to form classes from which objects can then be created.

A problem solved with an object-oriented approach is decomposed into a set of objects and their behavior.
Design tools such as the Unified Modeling Language (UML) can be used to help with this task. Once the objects in a
system are identified, a set of interface functions is then identified for each object. Classes are declared and defined to
implement the interface functions. Once all the program classes have been designed and written, they are combined
and used together to form the final program. Note that when using the object-oriented approach you are still breaking
a problem into solvable pieces, only now the solvable pieces are objects that represent the interrelated parts of a sys-
tem.

Once you get the hang of object-oriented design you will never return to functional decomposition again. How-
ever, after having identified the objects in your program and the interfaces they should have, you will have to imple-
ment your design. This means writing class member functions one line of code at a time.

Think Abstractly

One mistake students often make is to think too literally. It is very important to remember that the act of solving
a real world problem with a computer requires abstraction.

The Srategy In A Nurshell

Identify the problem, understand the problem, make a list of language features you need to study and check them
off as you go. Once you formulate a solution to the problem, break the problem into manageable pieces, solve each
piece of the problem, and then combine the solved pieces to form a total solution.

Applicability To The Real World

The programming problem solution strategy presented above is not intended to replace a formal course on soft-
ware engineering, but it will help you when you enter the real world as a commercial programmer. In that world you
will soon discover that all companies and projects are not created equal. Different companies have different design
philosophies. Some companies have no software design philosophy. If you find yourself working for such a company
you will probably be the software engineering expert!

C++ For Artists ©2003 Rick Miller — All Rights Reserved 7

The Art of Programming Chapter 1: An Approach To The Art Of Programming

The Art of ProGrRAMMING

Programming is an art. Ask any programmer and they will agree — it takes a lot of creativity to solve problems
with a computer. Creative people have an advantage in that they are not afraid to explore new avenues of design. Their
open-mindedness and readiness to accept new ideas give them the ability to see problems differently from people who
tend toward the cut and dry. This section offers a few suggestions on how you can stimulate your creativity.

Don't Start At The Computer

Unless you have a good idea about what source code to write, sitting down at the computer first thing, without
thinking through some design issues, is the worst mistake you can make. If you have ever suffered from writer’s block
when writing a paper for class then you can begin to understand what you will experience if you begin your project at
the computer.

I recommend you forget the computer and go some place quiet and relaxing, with pen and paper, and draft a
design document. It does not have to be big. Entire system designs can be sketched on the back of a napkin. The
important thing is to have given some prior thought as to the design and structure of your program before you start
coding.

The location you choose to relax in is important. It should be someplace where you feel really comfortable. If
you like quiet spaces then seek quiet spaces; if you like to watch people walk by and think of the world, then an out-
door cafe may be the place for you. Inside, outside, at the beach, on the ski slope, wherever you prefer.

What you seek is the ability to let your mind grind away on the solution. Let your mind do the work. Writing
code at the computer is a mechanical process. Formulating the solution is where real creativity is required, and is the
part of the process that requires the most brainpower. Typing code is more like a drill on attention to detail.

Inspiration Strikes At The Weirdest Time

If you let your mind work on the problem it will offer its solution to you at the weirdest times. I solve most of my
programming problems in my sleep. As a student I kept computers in the bedroom and would get up at all hours of the
night to work on ideas that had popped into my head in a dream.

Try to have something to write on close at hand at all times. A pad of paper and pen next to the toilet comes in
handy! You can also use a small tape recorder, or digital memo recorder, or your personal digital assistant. Whatever
means suit your style. Just be prepared. There’s nothing worse than the sinking feeling of having had the solution
come to you in the middle of the night, or in the shower, or on the drive home from work or school, and say “T will
remember that and write it down later,” only to forget it and have no clue what you were thinking when you do finally
get something with which to record your ideas.

OwnN Your Own Compurter

Do not rely on the computer lab! I repeat. Do not rely on the computer lab! They are the worst places for inspira-
tion and cranking out code. Most schools use PC’s running Windows or some flavor of Unix and/or Macintosh com-
puters.

You Either Have Time and No Money, or Money and No Time

The one good reason for not having your own personal computer to program your projects on is severe economic
circumstance. Full-time students sometimes fall into this category. What they usually have gobs of is time. So much
time that they spend their entire days at school and complain about not having a social life. But they can stay in the
computer labs all day long and even be there when it is relatively quiet.

On the other hand, you may work full-time and be a part-time student. If this describes you then you don’t have
time to screw around driving to school to use the computer labs. You will gladly pay for any book or software package
that makes your life easier and saves you time.

8 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 1: An Approach To The Art Of Programming The Art of Programming

The Family Computer Is Nor Going To Cur Ir!

If you are a family person working full-time and attending school part-time then time is a precious commodity. If
you have a family computer that everyone shares, adults as well as children, then get another computer and put it off
limits to everyone but yourself and password protect it. This will ensure your loving family does not accidentally
wipe out your project the night before it is due through some unfortunate accident. It happens, don’t kid yourself.
Ensure your peace of mind by having your own computer in your own little space with a sign on it that reads “Touch
This Computer And Die!”

Ser The Mood

When you have a good idea on how to proceed with entering source code you will want to set the proper pro-
gramming mood.

Locartion, Locarion, Location

Locate your computer work area someplace that’s free from distraction. If you are single this may be easier than
if you are married with children. If you live in a dorm or frat house good luck! Perhaps the computer lab is an alterna-
tive after all.

Have your own room if possible, or at least your own corner of a larger room that is recognized as a quiet zone.
Noise canceling headphones might help if you find yourself in this situation.

Set rules. Let your friends and family know that when you are programming not to bother you. I know it sounds
rude but when you get into the flow, which is discussed below, that is, if you ever get into the flow, you will be really
upset when someone interrupts your train of thought to ask you about school lunch tomorrow or the location of the
car keys. Establish the ground rules up front that say when it is a good time to disturb you when you are program-
ming. The rule is - never!

Concepr Of The Flow

Artists can really become absorbed in their work, not eating and ignoring personal hygiene for days, even weeks,
at a time. Those who have experienced such periods of intense concentration and work describe it as a transcendental
state where they have complete clarity of the finished product and tune out the world around them, living inside a
cocoon of thought and energy.

Programmers can get into the flow. I have achieved the flow. You can achieve the flow and when you do you will
crave the feeling of the flow again. It is a good feeling, one of complete and utter understanding of what you are doing
and where you are going with your source code. You can do amazing amounts of programming while in the flow.

The Stages of Flow

Like sleep, there are stages to the flow.

Gening Sitvared

The first stage. You sit down at the computer and adjust your keyboard and stuff around you. Take a few deep
breaths to help you relax. By now you should have a good idea of how to proceed with your coding. If not you
shouldn’t be sitting at the computer.

Restlessness

Second stage. You may find it difficult to clear your mind from the everyday thoughts that block your creativity
and energy. Maybe you had a bad day at work, or a great day. Perhaps your spouse or significant other is being a com-
plete jerk! Perhaps they’re treating you very good and you are wondering why?

Close your eyes and breathe deep and regular. Clear your mind and think of nothing. It is hard to do but you can
do it with practice. When you can clear your mind and free yourself from distracting thoughts you will find yourself
ready to begin coding.

C++ For Artists ©2003 Rick Miller — All Rights Reserved 9

The Art of Programming Chapter 1: An Approach To The Art Of Programming

Sernling In

Now, your mind is clear. Non-productive thoughts are tucked neatly away. You begin to program. Line by line
your program takes shape. You settle in and the clarity of your purpose takes hold and propels you forward.

Calm and Complere Focus

You don’t notice it at first, but at some point between this and the previous stage you have slipped into a deeply
relaxed state and are utterly focused on the task at hand. It is like reading a book and becoming completely absorbed.
Someone can call your name but you will not notice, and not respond until they either shout at you or do something to
break your concentration.

You know you were in the flow, if only to a small degree, when being interrupted brings you out of this focused
state and you feel agitated and have to settle in once again. If you avoid doing things like getting up from your chair
for fear of breaking your concentration or losing your thought process then you are in the flow!

Be Extreme

Kent Beck, in his book “Extreme Programming Explained”, describes the joy of doing really good programming.
The following programming cycle is synthesized from his extreme programming philosophy.

The ProGgramming Cycle

Pl

Plan a little. Your project design should serve as a guide in your programming efforts. Your design should also be
flexible and accommodate change, which means that as you program, you may make changes to the design.

Essentially, you will want to design to the point where you have enough of the design to allow you to begin cod-
ing. The act of coding will soon reinforce your design decisions or detect fatal flaws that you must correct if you hope
to have a polished, finished project.

Code

Code a little. Write code in small, cohesive modules. A class or function at a time is good granularity.

Test

Test a lot. Test each class, module or function separately or in whatever grouping makes sense. You will find
yourself writing little programs on the side called test cases to test the code you have written. It is a good practice to
get into. A test case is nothing more than a small little program you write and execute in order to test the functionality
of some component or feature you have finished coding before integrating that component or feature into your project.
The objective of testing is to break your code and correct its flaws before it has a chance to break your project in ways
that are hard to detect.

IntegrATE

Integrate often. Once you have a tested module of code, be it either a function or complete set of related classes,
integrate these tested components into your project regularly. The objective of regular integration is to see if the newly
integrated components break any previously integrated components. If they do then remove them from the project and
fix the problem. If a newly integrated component does break something you may have discovered a design flaw or a
previously unnoticed dependency between components. If this is the case then the next step in the programming cycle
should be performed.

Facror

Factor the design when possible. If you discover design flaws or ways to improve the design of your project you
should factor the design to accommodate further development. An example of design factoring might be the migration
of common elements from derived classes into the base class to take better advantage of code reuse.

10 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 1: An Approach To The Art Of Programming Managing Project Complexity

Repear

Apply the programming cycle in a tight spiral fashion. You will quickly reach a point in your project where it all
starts to come together, and very quickly so.

The Programming Cycle Summarized

Plan a little, code a little, test a lot, integrate often, factor the design when possible. Don’t Wait Until You Think
You Are Finished Coding The Entire Project To Compile! Trying to write the entire program before compiling a
single line of code is the most frequent mistake new programmers tend to make. The best advice I can offer is don’t
do it! Use the programming cycle outlined above. Nothing will depress you more than seeing a million compiler
errors scroll up the screen.

A Helpful Trick: Stubbing

Stubbing is a programmer’s trick you can use to speed development and avoid having to write a ton of code just
to get something useful to compile. Stubbing is best illustrated by example.

Say that your project requires you to display a text-based menu of program features on the screen. The user
would then choose one of the menu items and press enter, thereby invoking that menu choice. What you would really
like to do is write and test the menu display and choice functions without worrying about actually performing the
indicated action. You can do exactly that with stubbing.

A stubbed function is a function that exists to display a simple message to the screen saying in effect “Yep, the
program works great up to this point. If it were actually implemented you’d be using this feature right now!”

Stubbing is a great way to incrementally develop your project. Stubbing will change your life!

Fix The First Compiler Error First

OK. You compile some source code and it results in a slew of compiler errors. What should you do? I recommend
you stay calm, take a deep breath, and fix the first compiler error first. Not the easiest compiler error, but the first com-
piler error. The reason is because the first error detected by the compiler, if fatal, will generate other compiler errors.
Fix the first one first and you will generally find a lot of the other errors will also be resolved. If you pick an error
from the middle of the pack and fix it, you may introduce more errors into your source code! Fix the first error first!

Managing Project Complexity

Large projects differ from small projects in many ways. Large projects have more of everything: more variables,
more user-defined types, more functions, more lines of code, and more complexity. There are two types of complex-
ity: conceptual complexity and physical complexity.

Try to imagine a lot of something, like the number of dump truck loads required to move Mount Everest to North
Carolina. Imagining large numbers poses a certain amount of conceptual complexity. Large software projects are very
conceptually complex and many such projects end in failure because the conceptual complexity became impossible to
manage. Object-oriented analysis and design (OOAD) techniques were developed to help tame conceptual complex-
ity.

Conceptual complexity is accompanied by physical complexity. Large software development projects usually
have many people working on many parts of the code at the same time. To ensure success, software developers adopt
development standards. Development standards are rules developers must follow to ensure other developers can
understand their work. Development standards may address issues like file naming, file location, configuration man-
agement, commenting requirements, and many, many other smart things to do to tame physical complexity.

Later in the book you will be taught how to tame conceptual complexity. This section presents you with a few
smart things to do to help you manage the physical complexity of your projects. No project is too small to benefit
from the techniques presented below. It is a good idea to develop good project management habits early in your pro-
gramming career.

C++ For Artists ©2003 Rick Miller — All Rights Reserved 11

Managing Project Complexity Chapter 1: An Approach To The Art Of Programming

A word of warning: You could ignore the advice given here and manage to get small, simple projects to run, but
if you try and structure large projects like small, simple projects, cramming all your code into one long file, you will
doom yourself to failure. Formulate good programming habits now. Bad programming habits are hard to break and
will end up breaking you in the long run.

Split Even Simple Projects Into Mulriple Source Code Files

One of the first programming skills you must learn to help manage physical complexity is how to create multiple
file projects. Your simplest programming project will have three files: a header file, an implementation file, and a
main file. Larger projects will have more. As a rule of thumb you will have one header file and one implementation
file for each class or abstract data type you declare. There will be only one main file which contains the main() func-
tion.

I will discuss these files and what goes into each one in more detail below, but first, I want to tell you why you
want to learn the skill of developing multi-file projects. The following discussion about class interfaces may be some-
what advanced for novice readers. Fear not! Classes are discussed in great detail later in the book.

Separating a Class’s Interface from its Implementation

When you design a system using object-oriented techniques you model the system’s functionality by identifying
objects within the system and how they interact with each other. Each object will have a certain behavior associated
with it, along with an interface that allows other objects to access that behavior.

An object will belong to a class of objects. A class of objects is modeled in C++ using the struct or class con-
struct. When you declare a new user-defined type representing an object in the system you are modeling you will cre-
ate a new class. In this class you will declare a set of public methods. It is this set of public methods that become the
interface to objects of that class. Because the class declaration contains the prototypes for the public class interface
functions, and therefore considered as the interface to class objects, you will put class declarations in header files. I
will talk more about header files below.

After you have declared the interface to a class of objects you need to define class behavior. You define class
behavior by implementing the class member functions you declared in the class declaration. All class member func-
tions declared for a class will be defined in a separate implementation file. I will talk more about implementation files
below too.

If all this talk of classes, objects, and interfaces makes little or no sense to you now, just hang in there. It is all
covered in much greater detail later in the book.

Benefits of Separating Interface from Implementation

You reap many benefits by declaring a class in one file and defining its behavior in another. I will talk about a few
of those benefits now.

Makes Large Projecrt File Management Easier

The larger the project, the more source code files it will contain. Putting each class declaration into its own
header file and its implementation in a separate implementation file allows you to adopt a simple file naming conven-
tion. Namely, name the file the same name as the class it contains suffixed by either an “h”, meaning header, or “cpp”,
meaning C++ implementation file. Giving your files the same names as the classes they contain makes finding them
among tens, hundreds, or even thousands of files a heck of a lot easier.

Increases Pormability

Portability refers to the ability of source code to be ported to another computer system. Although seamless port-
ability is difficult to achieve without serious prior planning, you can make it easier to achieve by keeping platform or
operating system dependent code separate. Putting class declarations and implementations in separate files helps you
do just that.

12 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 1: An Approach To The Art Of Programming Managing Project Complexity

Allows You 10 Create Class Libraries

Putting class declarations and implementations in different files will let you create class libraries. With a class
library you can share the interface to your class or classes along with the compiled implementation code. You keep
the C++ source code to the implementation and thereby protect your rights to your hard work.

Helpful Preprocessor Direcrives

Before compiling your source code, a C++ compiler will preprocess your code. It does this by invoking a pro-
gram called the preprocessor. The preprocessor performs macro substitution, conditional compilation and filename
inclusion. You tell the preprocessor what to do by putting preprocessor directives in your source code.

While there are many different preprocessor directives available for your use, you need only learn four of them to
help you create and manage multiple file projects and thus help you manage the physical complexity of your projects.
These are #ifndef, #define, #endif, and #include. As your C++ expertise grows you will find many other uses for these
directives, as well as uses for other preprocessor directives not covered in this section.

#ifndel, #define, #endif

You can use this combination of preprocessor directives together to help you perform conditional compilation of
your header files or source code. The purpose of using these three directives in your header file is to prevent the
header file and its contents from being included multiple times in a project. The reason multiple header file inclusion
is not a good thing is because a header file will contain function and/or data type declarations. A function or data type
declaration should be made only once in a program. Multiple declarations make compilers unhappy!

The best way to illustrate their usage is by example. The C++ source code shown in example 1.1 represents a
small header file called test.h that declares one function prototype named test().

#ifndef TEST H 1.1 testh
#define TEST H

void test ();

#endif

The #ifndef directive stands for “if not defined”. It is followed by an identifier, in this case TEST_H. The #define
directive means exactly that, “define”. It is followed by the same identifier. The #endif directive stands for “end if”. It
signals the end of the #ifndef preprocessor directive. The body of the header file appears between the #ifndef and
#endif directives. This includes the #define directive and the function prototype test().

Remember that the purpose of the preprocessor directives is to communicate with the C++ preprocessor. What
will happen in this case is the preprocessor will encounter the #ifndef directive and its accompanying identifier. If the
identifier TEST_H has not been previously defined then the #define directive will be executed next, defining
TEST_H, followed by the declaration of test().

On the other hand, if TEST_H has been previously defined, then everything between the #ifndef and #endif will
be ignored by the preprocessor.

#include

Use the #include directive to perform file inclusion. There are essentially two ways to use the #include directive:
#include <filename> and #include “filename” . Substitute the name of the header file you wish to include for the word
filename.

The first usage, #include <filename>, will instruct the preprocessor to search in a number of directory locations
as defined in your development environment. Most development environments let you customize this search
sequence. If found, the entire #include line is replaced with the contents of filename.

C++ For Artists ©2003 Rick Miller — All Rights Reserved 13

Managing Project Complexity Chapter 1: An Approach To The Art Of Programming

The second usage, #include “filename”, acts much like the first with the usual difference of checking first for file-
name in a user default directory. If filename is not found in the user’s default directory then the preprocessor searches
a list of predefined search locations.

The Final Word on Preprocessor Directive Behavior

The behavior of many C++ language features is implementation dependent, meaning the exact behavior is left up
to the compiler writer. The search paths of the #include directives will be different for each development environ-
ment. To learn where your compiler is searching for header files and more importantly, how to make if find your
header files when you create them, consult your compiler documentation.

Projecr File Formar

Your projects will be comprised of many header and implementation files and one main file. This section shows
you the general format of each file and what goes into each one. I will use the declaration of a simple class as an
example.

Headker File

Example 1.2 represents the contents of a file named firstclass.h

#ifndef FIRSTCLASS H 1.2 firstclass.h
#define FIRSTCLASS H

class FirstClass{
public:
FirstClass();
virtual ~FirstClass();

private:

static int object count;
}i
fendif

Several conventions used here are worth noting. First, the name of the header file, firstclass.h, reflects the name
of the class declaration it contains in lowercase letters with the suffix “h”. Second, the identifier FIRSTCLASS_H is
capitalized. The name of the identifier is the name of the file with the “.” replaced with the underscore character
Doing these two simple little things makes your programming life easier by making it easy to locate your class header
files and taking the guesswork out of generating identifier names for the #ifndef and #define statements.

Header files can contain other stuff besides class declarations. The following table will prove invaluable in help-

ing you remember what you should and shouldn’t put in header files.

[T3EL)

Header Files Can Contain... Examples

Comments | // C++-style comments
/* C-style comments */

Include Directives | # include <helloworld.h>
#include “helloworld.h”

Macro Definitions | #define ARRAY_SIZE 100

Table 1-1: Header File Contents

14 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 1: An Approach To The Art Of Programming

Managing Project Complexity

Header Files Can Contain...

Examples

Conditional Compilation Directives

#ifndef FIRSTCLASS_H

Name Declarations

class FirstClass;

Enumerations

enum PenState {up, down};

Constant Definitions

const int ARRAY_SIZE = 100;

Data Declarations

extern int count;

Inline Function Definitions

inline static int getObjectCount(){ return object_count; }

Function Declarations

extern float getPay();

Template Declarations

template<class T> class MyClass;

Template Definitions

template<class T> class MyClass{ };

Type Definitions

class MyClass{ };

Named Namespaces

namespace MyNameSpace{ }

Table 1-1: Header File Contents

It is just as helpful to know what you should not put in a header file. The following table offers some advice.

Header Should Not Contain... Examples

Ordinary Function Definitions | float getPay() {return itsPay; }

Data Definition | double d;

Aggregate Definitions | int my_array[] ={ 3,2, 1};

Unnamed Namespaces | namespace { }

Exported Template Definitions | export template<class T> setVal(T t) { }

Table 1-2: What Not To Put In A Header File

Implementation File

Now that FirstClass is declared in firstclass.h definitions must be given for each of the member functions. In this
case there are two functions to define, the constructor, FirstClass() and the destructor ~FirstClass(). C++ implementa-
tion files are suffixed with “cpp”. Name the implementation file the same name as the header file and add the “cpp”
suffix to the filename. Thus, the implementation file for FirstClass is named firstclass.cpp. The code for firstclass.cpp

is given in example 1.3.

Main File

The main file is a C++ implementation file but instead of defining class member functions it contains the main()
function. It has the same suffix, “cpp”, as any other implementation file. I recommend naming this file main.cpp. This

makes finding your main file an easy task.

C++ For Artists

©2003 Rick Miller — All Rights Reserved

15

Managing Project Complexity Chapter 1: An Approach To The Art Of Programming

#include “firstclass.h”

1.3 firstclass.cpp
#include <iostreams>

/**********************************

Initialize classwide static variables first
R b b b b b b b b b I b b b b b b b b b b b 2 b b b b b b i

*/

int object count = 0;

/**********************************

Define member functions
khkkhkkhkhkhkhkkhkkhkhkhkhkkhkkhkhkhrhkkhkhkhkhkhkkhkkhkhAhrhkkhkkhkhhkhkh,x*
*/
FirstClass::FirstClass () {
object count ++;
cout<<”There is/are: “ <<object count
<< FirstClass object (s) !”<<endl;

FirstClass::~FirstClass () {

if ((——object count) == 0)
cout<<*“Destroyed last FirstClass object!”<<endl;
else

cout<<”There are: “<<object_count
<< FirstClass objects left!”<<endl;

#include “firstclass.h” 1.4 main.cpp

int main () {
FirstClass f1, f2, £3;
}

That’s it! Main files, and the main() function, should be kept short.

CommenTing

A well commented program will be easier to understand by not only yourself but by others who read your code
as well. There are two ways to comment source code. The first way involves adding additional, explicit comment lines
to your source code by way of comment delimiters of which there are two styles: C and C++. The second way to com-
ment your code is to write self-commenting code. This may sound complicated but it is easy to do. Besides making
your code easier to read, writing self-commenting code reduces the need to rely on the first way of commenting. It
also increases code reliability because you will find problems with your code easier if your code is easy to read and
understand.

C-Style Comments

Add C-style comments to your code by enclosing text between two sets of delimiters: “/*” and “*/”. For exam-
ple:

/* R R i A b e dh b A b S SR S B b S S S S S A S R S b e i].5C_s[y[ecgmmen[s

This is a C style comment
R I I b S b b b 2 I b S S b S S b b S S b b dh Sh b S Sb b dh Sh i 4

*/

16 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 1: An Approach To The Art Of Programming Managing Project Complexity

Everything between the /* and the */ is ignored by the compiler. Different programmers have different comment-
ing styles. A word of advice: Programmers are often passionate about how they do business. Rise above the pettiness
of arguing commenting issues with fellow programmers. Doing so is a complete waste of mental energy.

However, when using C-style comments keep a few things in mind. They are best used to insert blocks of com-
ments. They can be used to insert one line of comments but C++-style comments are better suited for this purpose as
you will see below.

I recommend aligning the /* and */ along the left margin as is shown in the example. You will be less likely to for-
get the */ and save yourself a lot of wondering why half your program doesn’t compile!

Lastly, I also recommend you avoid the urge to make a cute little box out of whatever character you choose to use

as a border. For example...
1.6 C-style comments

...only now, if you want to add a line to your comment you have to fiddle around with adding hyphens at the
beginning and end of each line.

C++-style Comments

// This is a C++ style comment 1.7 C++-style comment

As you can see, a C++-style comment begins with two slash characters. They can appear anywhere in your pro-
gram and tell the compiler to ignore everything that appears to the right up to the end of the line. Another example...

1.8 C++ comment clutter
class TestClass{

public: // public section
TestClass (); // constructor
virtual ~TestClass(); //destructor
}; //end of TestClass

...shows how to use C++-style comments to really clutter up your code, which leads into a good piece of advice:
use them sparingly!

To avoid the need to add comments to your source code in the first place I recommend strongly that you read the
next section and take notes.

Whrire Self-Commenting Code: Give Identifiers Meaningful Names

Self-commenting source code puts the joy back into programming. Self-commenting source code is easier to
write, easier to read, easier to maintain, and, if you do happen to make a mistake, your mistake will be easier to find if
your source code is self-commenting. How do you self-comment source code?

Essentially, you select names for identifiers that make sense in the context of your program. An identifier is a
string of characters used to represent storage locations for variables, constants, functions, types, and other objects
within your program.

How you form identifier names is as important as what you name them. Here’s some guidance for naming vari-
ables, constants, and functions.

C++ For Artists ©2003 Rick Miller — All Rights Reserved 17

Managing Project Complexity Chapter 1: An Approach To The Art Of Programming

Variables

Use lower case letters when declaring variables. Separate each word of a multi-word identifier with an under-
score character. Writing variables in lower case will make it easy to spot them in your program. Naming them some-
thing that makes sense will remind you of their purpose. The following table gives a few examples, both good and
bad, of variable names.

Variable Declaration Comment

int a; | Bad! What the @#%" does “a” stand for?

int mother in law count; | Good! Although you are counting mother-in-laws, at least you know what
you are counting.

Student *s[100] ; | Bad! How will someone else know that s is an array of pointers to students
if they don’t see the declaration?

Student *student pointers[100] ; | Good! Now they’ll know what’s supposed to be in each array element.

Table 1-3: Good vs. Bad Variable Names

Consiants

Use upper case letters when defining constants. Separate each word of a multi-word constant with the underscore
character. The following table offers a few examples, both good and bad, of constant names.

Constant Declaration Comment

const int a = 3; | Bad! What does a stand for? Is a a variable or a constant?

const int MAX ARRAY SIZE = 100; | Good!

#define object count 25 | Bad! The word count sounds like it might change in the future. Because it
is lower case it looks like a variable.

#define MAX OBJECT COUNT 25 | Good! Now it is clear this is a constant and this is the maximum number
of objects allowed.

Table 1-4: Good vs. Bad Constant Naming

Funcrions

Start function names with lower case letters. Join multi-word function names together and capitalize the first let-
ter of each additional word. Functions do things. Verbs denote action. Choose function names that indicate the action
the function performs. The following table gives a few examples of function names.

Function Declaration Comment

void printScreen(); | Good!

int getObjectCount (); | Good!

void print(); | Bad! Print what?

void setPenPositionUp(); | Good! No mistaking what this function is supposed to do!

Table 1-5: Function Naming

18 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 1: An Approach To The Art Of Programming Textbooks, Reference Books, and Quick Reference Guides

Adopr A Convention And Stick With Ir

The identifier naming recommendations presented here represent a convention. If you choose to adopt the styles
suggested here, fine. If you don’t, that’s fine too. Whatever naming convention you choose to adopt I recommend you
stick with it and be consistent. Don’t start naming variables one way and then change the way you name them in the
middle of your program. Nothing will confuse you faster than naming inconsistency.

Restrict The Number of Global Variables

Global variables tend to pollute the global name space and lead to the production of tightly coupled code. Tightly
coupled code is bad juju, as you will learn below.

Minimize Coupling, Maximize Cohesion

Repeat aloud several times; minimize coupling, maximize cohesion, minimize coupling, maximize cohesion.
Good. Practice a few times on your own while I explain why you want to follow this mantra.

Coupling

Coupling refers to the degree to which each module in your source code is affected in any way by making a
change to another module. Coupling can be loose, tight, or anywhere in between. You want to keep coupling as loose
as possible. How does coupling occur?

One way to couple modules and not even realize you are doing it is through the reckless use of global variables.
Modules can also be coupled to other modules, as is the case when one function depends on the services of another
function.

It takes considerable knowledge and skill to eliminate all coupling from a group of code modules. For now, be
aware that if your code is too tightly coupled, you will break it over there when you make a change here.

Coliesion

Cohesion refers to the degree to which the code in each module contributes to the purpose and function of that
module. The rule of thumb is to maximize cohesion. All code belonging to a function should exist to implement that
function. Don’t do anything surprising or mysterious in a function because it happens to be a convenient place to do it
at the time.

Textbooks, Reference Books, and Quick Reference Guides

To be a successful C++ programmer you will need at least three books: A textbook, a language reference book,
and a quick reference guide.

What you are reading is a textbook. I put a lot of thought and work into it and as a result I feel it will serve your
needs as a textbook very well. However, it is not a language reference book or a quick reference guide to the C++ lan-
guage. No textbook on the C++ language can be everything to everybody. The C++ standard is over 700 pages long.
This book would be huge, and a huge waste of your time, if I tried to include in it everything contained in the stan-
dard. Also, when you are in the heat of programming and you just want to quickly see how to declare a class or write
a for loop this book will not be the best place to turn.

If you are reading this book you have in your hands a great textbook. In the reference section below I have listed
several reference books and quick reference guides I think you will find them very helpful. If it is listed in the refer-
ence section I have personally used it and wholeheartedly recommend it.

C++ For Artists ©2003 Rick Miller — All Rights Reserved 19

Summary Chapter 1: An Approach To The Art Of Programming

SummaRry

The source of a student’s difficulty with learning a programming language lies not with the language itself, but
with the many other skills that must be mastered almost simultaneously along the way. Students will find it helpful to
know the development roles they play and to have a project approach strategy.

The three development roles played by a student are those of analyst, architect, and programmer. As analyst stu-
dents should strive to understand the project’s requirements and what must be done to satisfy those requirements. As
architect students are responsible for the design of their project. As programmer, students will implement their
project’s design in the C++ language.

The project approach strategy helps novice and experienced students systematically formulate solutions to pro-
gramming projects. The project approach strategy deals with the following areas of concern: requirements, problem
domain, language features, and design. By approaching projects in a systematic way, students put themselves in con-
trol and can maintain a sense of forward momentum during the execution of their projects. The project approach strat-
egy can be tailored to suit individual needs.

Programming is an art. Formulating solutions to complex projects requires lots of creativity. There are certain
steps students can take to stimulate their creative energy. Sketch the project design before sitting at the computer.
Reserve quiet space in which to work and, if possible, have a computer dedicated to school and programming
projects.

There are five steps to the programming cycle: plan, code, test, integrate, and factor. Use stubbing to test sections
of source code without having to code the entire function.

There are two types of complexity: conceptual and physical. Object-oriented programming and design techniques
help manage conceptual complexity. Physical complexity is managed with smart project file management techniques
and by splitting projects into multiple files.

Use the #ifndef, #define, and #endif preprocessor directives to create header files. Use the #include preprocessor
directive to include header files in implementation files.

Self-commenting source code is easy to read and debug. Adopt smart variable, constant, and function naming
conventions and stick with them.

Minimize coupling, maximize cohesion!

This is a great textbook! Now, go get a good reference book and quick reference guide.

Skill Building Exercises

1. Variable Naming Conventions: Using the suggested naming conventions for variables derive a variable name for
each of the concepts listed below:
Number of oranges
Required waivers
Day of week
Month

People in line
Next person
Average age

Student grades

Final grade

20 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 1: An Approach To The Art Of Programming Suggested Projects

Key word

2. Constant Naming Conventions: Using the suggested naming convention for constants derive a constant name for
each of the concepts listed below:

Maximum student count
Minimum employee pay
Voltage level
Required pressure
Maximum array size
Minimum course load
Carriage return
Line feed
Minimum lines

Home directory

3. Function Naming Conventions: Using the suggested naming convention for functions derive a function name for
each of the concepts listed below:

Sort employees by pay
List student grades
Clear screen
Run monthly report
Engage clutch
Check coolant temperature
Find file
Display course listings
Display menu

Start simulation

Suggested Projects

1. Feng Shui: If you haven’t already done so, stake your claim to your own quiet, private space where you will work
on your programming projects. If you are planning on using the school’s programming lab stop by and familiarize
yourself with the surroundings.

C++ For Artists ©2003 Rick Miller — All Rights Reserved 21

Self Test Questions Chapter 1: An Approach To The Art Of Programming

2. Procure and Install IDE: If you are doing your programming on your own computer make sure you have pro-
cured and loaded an integrated development environment that will meet your programming requirements. If in
doubt check with your instructor.

3. Project Approach Strategy Checklist: Familiarize yourself with the Project Approach Strategy Checklist in
Appendix A.

4. Obtain Reference Books: Seek your instructor’s or a friend’s recommendation of any C++ reference books they
think will be helpful to you during this course. There are also many good computer book review sites available on
the Internet. Also, there are many excellent C++ reference books listed in the reference section of each chapter.

5. Web Search: Conduct a web search for C++ and object-oriented programming sites. Bookmark any site you feel
might be helpful to you during this class.

Self Test Questions

1. List at least seven skills you must master in your studies of the C++ programming language.
2. What three development roles will you play as a student?

3. What is the purpose of the project approach strategy?

4. List and describe the four areas of concern addressed in the project approach strategy.

5. List and describe the five steps of the programming cycle.

6. What are the two types of complexity?

7. List several benefits to splitting even small projects into multiple files.

8. Discuss the concept of interface vs. implementation. How to you separate the interface of a class from its imple-
mentation?

9. What preprocessor directives can be used to allow multiple inclusion of header files?
10. List at least three things that can be contained in header files.

11. List three things that shouldn’t be contained in header files.

12. Why do you think it would be helpful to write self-commenting source code?

13. What can you do in your source code to maximize cohesion?

14. What can you do in your source code to minimize coupling?

References

International Standard. ISO/IEC 14882, Programming Languages — C++, First edition 1998-09-01. (This is the
reference book to the C++ language. You can download it from the American National Standards Institute for a small cost and it is

22 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 1: An Approach To The Art Of Programming Notes

worth every penny. If you are new to the language it is an extremely daunting document. I also recommend you have a fast Internet
connection and an even faster printer!)

Beck, Kent. Extreme Programming Explained: Embrace Change, Addison-Wesley, Reading, Massachusetts,
2000.ISBN 201-61641-6

Lucas, Paul J. The C++ Programmer’s Handbook, Prentice Hall, Englewood Cliffs, New Jersey, 1992. ISBN 0-
13-118233-1 (Great quick reference guide. I put this book in my backpack, take it to class, and show my students on the first day
of every C++ class I teach. Age has done nothing to impair the usefulness of this work.)

Ellis, Margaret A., Stroustrup, Bjarne. The Annotated C++ Reference Manual, (a.k.a. The ARM), Addison-Wes-
ley, Reading, Massachusetts, 1990. ISBN 0-201-51459-1 (This a great reference book. There is a second edition out now so
look for it in the bookstores.)

Notes

C++ For Artists ©2003 Rick Miller — All Rights Reserved 23

Notes Chapter 1: An Approach To The Art Of Programming

24 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Rolling Hills

Small Vicrories:
Creating Projects With IDEs

Learning ODbjecrives:
e List and describe the steps of 1he proGram creation process 1o include creating source codk files, preprocessing,
compiling, and linking
e List the inpur and outpur 1o each siage of The proGram CREATION pROCESS
o List and describe the primary funcrions of an InteGrared Development Environment (IDE)
* Describe the concepr of a project
e List and describe 1he steps reouired 10 create projects using Macintosh, Windows, and Unix development envirRonments
* Demonsirate your ability 1o create projecrs in the IDE of your choice
o State the purpose of the UNIX make urility
e Snare the purpose of A UNIX makefile
* Demonsirate your ability 1o creare avd use UNIX makefiles
* Urilize Memrowerks CodeWarrior 10 creare projects on Macintosh™ avd PC plarforms
e Urilize Tenon Intersystems” CodeBuilder™ 1o create projects on the Macintosh™ plarform

e List and describe the similarities between different UNIX development environments

C++ For Artists ©2003 Rick Miller — All Rights Reserved

Introduction Chapter 2: Small Victories

INTROducTiON

Before you can begin to create even simple programs you have to understand the program creation process and
how to execute the process on your computer using a set of software development tools.

The kind of computer you use matters less than your choice of development tools. However, your choice of hard-
ware platform dictates your choice of software development tools. For example, a mainframe programmer might be
limited to the development tools that came with the machine but a programmer using an IBM PC" or related com-
puter can choose from a staggering array of development tool packages.

In this chapter I will teach you the steps of the program creation process and show you how these steps are com-
bined in an integrated development environment (IDE). I will then show you how to use two popular IDE packages
and a set of UNIX tools to write your programs.

The Program Creation Process

Computers execute binary instructions. These binary instructions are known as machine instructions or machine
code. It is difficult to program in machine code and early computer pioneers soon developed an easier way to write
programs. The program creation process consists of the following steps:

*Step 1 - Write the program in a computer language humans can read and understand (like C++),
*Step 2 - Save the programs in text files. Programs can be a few lines long and reside in one file or
can consist of many millions of lines of code and span thousands of files,

*Step 3 - Run the source code files through a program called a compiler to generate object code for
the target computer,

*Step 4 - Run the object files through a program called a linker to produce an executable image.

These steps are illustrated in figure 2-1 below.

Included Library
Files Files

C++

Source File

Object
Module

CH++ Object

Module

Executable

Link
Image

Source File Preproc

L,

ANV

Object
Module

C++ ?
Source File Included
Files
Assembly Object
Code » Asseml »| Module
File

Figure 2-1: The Program Creation Process

26 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 2: Small Victories Integrated Development Environments

Two other items of note are shown in figure 2-1. First, C++ adds a preprocessing step to the program creation
process. The C++ preprocessor acts upon special instructions that can be contained in the C++ source code. These
special preprocessor instructions are called preprocessor directives. You have already been introduced to several
important and often used preprocessor directives in chapter 1. These were #include, #ifndef, #define, and #endif.

The second item of interest in figure 2-1 is the assembly code file and assembler step shown at the bottom. Pro-
gram routines can be created in other languages and compiled into object modules and then later linked with object
modules created with C++. This is often referred to as mixed-language programming. (see chapter 18) If you develop
routines in other languages you will have to learn some special rules called calling conventions. Calling conventions
establish responsibilities of the calling routine and the called routine. Preprocessor directives and mixed-language
programming will be discussed in greater detail later in the book.

INTegrATEd Development ENVIRONMENTS

To create even the smallest C++ project you will need some kind of development environment. A minimal devel-
opment environment contains a text editor, compiler, and linker. Some nice-to-have components include a debugger
to help you troubleshoot your source code, and a project management program to help you manage large projects. If
you go the minimalist route using only a text editor, compiler, and linker you will run into difficulty when it comes
time to do any serious programming. You may not need the services of the debugger but the project management soft-
ware comes in really handy. An integrated development environment (IDE) contains everything you need to develop,
troubleshoot, and manage software projects. In this section I will show you how to use two popular IDEs, Metrowerks
CodeWarrior® and Microsoft Visual C++® to create, compile, and execute a sample project named FirstClass. Before
getting started let us look at the three source code files that comprise the FirstClass project presented in chapter 1.
They are firstclass.h, firstclass.cpp, and main.cpp and are given in examples 2.1 through 2.3.

) 2.1 firstclass.h
#ifndef FIRSTCLASS H

#define FIRSTCLASS H
class FirstClass{

public:
FirstClass () ;
virtual ~FirstClass();

private:
static int object count;
}i
#endif

#include "firstclass.h" 2.2 firstclass.cpp
#include <iostream.h>

int FirstClass::object count = 0;
FirstClass::FirstClass () {

cout<<"There are "<<++object count<<" FirstClass objects!"<<endl;

FirstClass::~FirstClass () {
if (-—object count)
cout<<"There are "<<object count<<" FirstClass objects!"<<endl;
else cout<<"There are no FirstClass objects!"<<endl;

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 27

Integrated Development Environments Chapter 2: Small Victories

#include "firstclass.h" 2.3 main.cpp

int main () {
FirstClass f1, f2, £3, f4;

return 0;

Memrowerks CodeWarrior
Metrowerks CodeWarrior™ is an integrated development environment available in both Macintosh” and Win-
™ ™

dows versions. The screenshots below are taken from CodeWarrior™ version 5 for the Macintosh .

The central concept in any IDE is that of the project. Start your programming projects by creating a new project
in the IDE. Figure 2-2 shows CodeWarrior’s New window with the Project tab selected.

MNew

Project File Object
y@AP Stationery Project name:
y@ Empty Project I |
y@dava Applet Wizard Location:-
H=l Java Application Wizard [wild wild Rick:Desktop Folder:C++ Bool| [Set__]
i Java Bean Wizard
y@ Java Stationery [] Add to project:
FHB) Mac0s Cro+ + Stationery [7

?@ Mac05 PowerPlant Stationery
y@ FMulti-Target Stationery

a0l

[Cancel] [[0K]l

Figure 2-2: Creating a New Project in CodeWarrior

Select the project stationary you wish to use. In figure 2-3 MacOS C/C++ Stationery is selected. Type the name
of the project in the Project name box.

New
Project File Object
g@ﬁp Stationery Project name:
B Empty Project |FirstClass |
#@Java Applet wizard Location:
U Jsva Application wizard |'wild wild Rick:Desktap FolderC++ BooH| [Set... |
Jawva Bean wWizard
#@ Jawa Stationery [] Add to project:
B Macs C/C+ + Stationery (7
y@ MacOS5 PowerPlant Stationery
#@I Multi-Target Stationery
[|
[~
(cancer] [_ox_||

Figure 2-3: Selecting Stationery and Naming Project

28 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 2: Small Victories Integrated Development Environments

Before clicking OK check to ensure you have set the proper location for your project. I recommend creating a
new folder called CodeWarrior Projects and creating individual folders for each of your projects within that folder.
Setting up your programming environment is a matter of personal taste. Figure 2-4 shows the window that pops up
when you press the Set... button located to the right of the Location text box. (shown in figure 2-3)

(S chaptert =) om0l
Date Modified |=
E:] firstclass.cpp Today
Ej firstclass.h Today
E:] main.cpp Today
Name: IFirstCIass I New [fi I
Format: [il
‘ [Create Folder
2 [Cancel] H Save]l
é

Figure 2-4: Setting a Project’s Location

Figure 2-4 also shows the project named FirstClass being saved to a folder called Chapterl. If you wish to save
your project to a location other than the CodeWarrior default location make the necessary changes and click Save.
Otherwise, click Cancel to return to the previous window. After you have named your project, and set its location,
click OK (see figure 2-3). You will now be presented with a window similar to figure 2-5 where you will select the
type of project you want to create.

Mew Project

Select project stationery:

H Project Stationery

5td C Console Multi-Target
Std C Console PPC
5td C Console PPC (DLL)
Std C+ + Console 65K
Std C+ + Console CFMESKE (DLLY
Std C+ + Conzole Multi-Target
S5td C+ + Conzole PPC
Std C+ + Console PPC (DLLY
[+ ~SI10UX-WASTE

am

ox_J

[Cancel] [[

Figure 2-5: Select Project Type

There are a lot of choices but since we are creating a C++ project and are interested only in simple stream I/0 to a
console, select the Std C++ Console PPC. PPC stands for PowerPC. As you can see you can create projects for 68K
Macs as well. CodeWarrior for Windows has lots of different project types for Windows programmers too. Once the
project type is highlighted click OK. This will create the project and present you with the CodeWarrior project win-
dow that looks like figure 2-6.

Folders called Groups are created automatically by CodeWarrior. The first group contains an automatically gen-
erated C++ source file called HelloWorld.cp. See figure 2-7. You can compile the project now and see the output gen-
erated by HelloWorld.cp just to make sure everything is working correctly.

Now it is time to create the three source files, firstclass.h, firstclass.cpp, and main.cpp. Select New Text File from
the File menu as shown in figure 2-8 and enter the source code for firstclass.h as shown in figure 2-9.

When you have finished with each file, save it to the project’s folder. When you have finished with all three you
then need to add firstclass.cpp and main.cpp to the Sources Group in the FirstClass project window.

It is important to note here that in CodeWarrior you only add implementation files to the Sources Group, that is,
files with the .cpp or .cp extension. Do not add header files. Simply save them to the project folder and the compiler

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 29

Integrated Development Environments

Chapter 2: Small Victories

T JdE=EEIE

FirstClass——"——————— =]

| File | Code | Data [4f =
[» & @ Sources o o -
[» « @ ANSI Libraries o o
[» « @ Mac Libraries o o

D

F files o o

Figure 2-6: FirstClass Project Window

O irstllass"—core————=HH8

|'ﬁ PPC Std C++ Console

w1

[File | Code | Data [9f |-

= & [, Sources o 0« =
3 B Helloworld.cp o 0« =
[» w [ANSI Libraries o o =
[+ % [j Mac Libraries]] =[<]
|+
7 files 0 0 %

Figure 2-7: Sources Group Open Revealing HelloWorld.cp

318 Edit Search Project Debug Window Help
New Text File

New... 13N
Open... *0
Open Recent »
Find and Open File... ED
Close EW
Save S
Save As...

Save A Copy As...

Revert...

Import Components...
Close Catalog

Import Project...

Export Project...

Page Setup...

Print... ®P
Quit ¥0Q

Figure 2-8: Creating New Text File

will search for the header files there. If you organize your projects differently, as would be the case for complex
projects, you will have to explicitly set project search paths.

To add files to the FirstClass project select the Sources group in the project window and then select Add Files...

from the Project menu. If you have saved your files in the correct folder you will see them listed in a window similar
to figure 2-10. Select the firstclass.cpp and main.cpp files and click Open. Next, remove HelloWorld.cp from the
Sources group. When you have finished adding the files to the project your FirstClass project window will look like
figure 2-11. Now you are ready to compile and run the project.

30

©2003 Rick Miller — All Rights Reserved

C++ For Artists

Chapter 2: Small Victories

Integrated Development Environments

I I I I IPath Wild Wi tolassh &
#ifndef FIRSTCLASS_H [w]
#define FIRSTCLASS H =
class FirstClass{
public:

FirstClas=s{);

wirtual “FirstClass({};

priwvate:
static int object_count;

iH]
F s
#andi f -
Line: 15 [i [«]~

Figure 2-9: Editing firstclass.h

Add Files to “FirstClass™

| Ej FirstClass

=]

Date HModified e

[Wri: == Dat
HB firstclasscpp
BB firstelass.n
HE Helloworidep

BB maincep

Today
Today
Today

Today

34217598

[€] [Nl

Cancel

Open "

=z |

Figure 2-10: Adding Files to Project

Select Run from the Project menu. CodeWarrior will then compile and link each file in the project automatically.

=

SNl =]

[rrc o cre o =13I=]
| File | Code | Data |%F =
= « [j, Sources S1K (14 =
L B firstclass.cpp 52456 TO=1 =
e B main.cpp 120 7= =
[@, ANSI Libraries 170K FTK = -
[[HL Mac Libraries 14K K =i -
& files ZESK 48K o

Figure 2-11: firstclass.cpp and main.cpp Added, HelloWorld.cp Removed

When finished, it will launch the resulting executable file. The results of running the FirstClass project are shown in

figure 2-12.

C++ For Artists

FirstClass.out.out =—— H
There are 1 FirstClass objects!
There are 2 FirstClass objects!
There are 3 FirstClass objects!
There are 4 FirstClass objects!
There are 3 FirstClass objects!
There are 2 FirstClass objects! -
There are 1 FirstClass objects!
There are no FirstGlass objects! -
&

Figure 2-12: FirstClass Project Output

©2003 Rick Miller — All Rights Reserved

31

Integrated Development Environments Chapter 2: Small Victories

Microsofr Visual C++

Of all integrated development environments Microsoft Visual C++ is the most difficult for students to learn. I
think the primary reason for this is due in part to its power and sheer number of features. However, if you are planning
to do any serious Windows programming I recommend mastering this tool.

All IDEs are similar in that they are project oriented. Visual C++ uses the workspace metaphor. Begin your
project by creating a new workspace and selecting the project type. Figure 2-13 shows the Win32 Console Applica-

2] W/in32 Static Librany
| = Cluster Resource Type Wizard
@~ Custom Appwizard

[Eae=]

i [cancel |

Figure 2-13: Creating New Visual C++ Project

tion project type highlighted. Enter a name for your project in the Project name text box as shown in figure 2-14. The
Create new workspace radio button is automatically selected. I have named this project Projectl.

] Win32 Static Library

Database Project
% D tudio Add-in Wizard C:Program Files'Micrasaft Yisua)| 4]

Extended Stored Proc \wizard
AP E stension Wizard
akefile

FC Activel< Controbfizard

FC Appiwizard [d]

FC Appiizard [exe]
= ew D atabaze wWizard
35 Utility Project
|™=7"/in32 Application

I
| Win32 Dynamic-Link Library [vwin32
e e ———

Figure 2-14: Naming the Project

Once you have named your project click OK. Next, choose what kind of Console Application you wish to create.
(see figure 2-15) Click the “A simple application” radio button and then click Finish.

After setting the Console Application type the New Project Information window will appear looking similar to
figure 2-16. If you agree with the information it contains click OK.

Now you are presented with the Workspace environment. Refer to figure 2-17.

Visual C++ automatically creates a file with the same name as the project name you entered into the Project name
text box. It puts the main() function in this file. Edit this file so that it looks like example 2.3 but leave in the line con-
taining #include “StdAfx.h”. Figure 2-18 shows the edited file.

Visual C++ differs from CodeWarrior in that header files are contained in the workspace in a group called Header
Files. Let us add the firstclass.h file. Select New... from the File menu. A window similar to figure 2-19 will appear.

Enter the filename firstclass.h in the File name text box as shown in figure 2-20 and click OK. Visual C++ will
now open an empty text file ready for editing. Enter the code from firstclass.h given in example 2.1. Figure 2-21
shows the completed firstclass.h file. Visual C++ will automatically put new header files in the Header Files group.

Now create the file firstclass.cpp. Select New... from the File menu and highlight C++ Source File. Refer to figure
2-22.

32 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 2: Small Victories Integrated Development Environments

Win32 Console Application - Step 1 of 1

Figure 2-15: Selecting Console Application Type

New Project Information

3
—

7/ Projectl.cpp : Defines the entry point for the console application
s

#include “stdaf=z h"

int mainf{int argc. char* argwl])

return 0;

Figure 2-17: Workspace Environment with ClassView Selected

C++ For Artists ©2003 Rick Miller — All Rights Reserved 33

Integrated Development Environments Chapter 2: Small Victories

Projectl cpp : Defines the entry point for the console application
e
(& Project] classes
=/ Gilabals #include “stdaf= h"
g . #include “"firstclass h"

int main(int arge. char* argv[])

FirstClass f1.£2.£3.£4/]
return

T

. \Frogram FilesMicrosoft Yisua)| |

D) Resource Script
|3 Riesouice Template
SOL Script File
Text File

:
[Pofect _[H]

- 4Program FileshMicrosalt Visua o |

Figure 2-20: File Name Entered

Enter the name in the File name text box and click OK. It will automatically be saved in the Source Files group.
Enter the code for firstclass.cpp from example 2.2 and save.

One thing left to do. Open the StdAfx.h file and add the line #include “firstclass.h” underneath the comment ““//
TODO: reference additional headers your program requires here”. Figure 2-23 shows the StdAfx.h file being edited.

34 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 2: Small Victories Integrated Development Environments

#ifndsf FIRSTCLASS H
#defins _FIRSTCLASS H
58 Workspace Project1". 1 project
E-E2 Project] files
B~ Soues Filss class FirstClass {
-3 Header Files bli
PR
Stdéfeh FirstClass{):
(2] Resowce Files virtual ~FirstClass():

Feadhe.tat

private:

static int object_count:

1l
#endif

[5#]#ctive Server Page 5 e

8 e Pl
|5 Bitmap File

[C/Ces Header File

5}
b Cursor File

[8] HTML Page

| _Jlcon Fils :
=]

|55l Resource Script

2 Resource Template

SOL Scipt File

Teut File

Figure 2-22: Creating a New C++ Source File

When you have finished editing the StdAfx.h file save the changes. You are now ready to execute the project.

Select Execute from the Build menu and click OK to dismiss the dialog that pops up asking you if you would like
to create Projectl.exe. Referring again to figure 2-23, as Visual C++ performs each stage of the compilation and build
process on the project it will write a series of messages to the Build window (refer to the series of tabbed windows
along the bottom of the workspace). In figure 2-23 you see the last of the messages, Linking..., and the report that
Project1.exe was built with 0 errors and 0 warnings. Figure 2-24 shows the results of running Project1 .exe.

INTERMiSSION

So far I have shown you how to create simple, multi-file projects with two popular IDEs. As you use your IDE of
choice to create projects of increasing complexity you will dive deeper into its features. A word of advice: Read the
documentation that comes with your IDE. The information in this chapter is helpful but it is not a compete treatment
of all the cool things your IDE can do.

A large part of the power of an IDE comes from its ability to track changes to dependent project files. For exam-
ple, if a change is made to firstclass.h, every file that depends on the contents of firstclass.h will have to be recom-
piled. This chore is handled automatically for you by CodeWarrior™ and Visual C++. If you choose not to use an IDE

C++ For Artists ©2003 Rick Miller — All Rights Reserved 35

Integrated Development Environments Chapter 2: Small Victories

.. Project] - Microsoft ¥isual C++ - [C:%.._\Project] 4StdAfx_h]

DesEdl e[mER |72
FirstClass [1 chass members) [Ell o FirstClass R HJ £z] <4
|IEY File Edit Wiew Insen Project Build Took Window Hel 15|
RS 7 =tdaf=.h : include file for staondard system include files, =
e - s/ or project specific include files that are used frequently. but =
kspace Project]” 1 projscl s sre changed infreguently
roject files s
Source Files
ot - #if |defined(AFE_STDAFE_H__272D6103_F9E1l_11D4_EDD9_84401ECF4003__INCLUDED_)
e T i #define AFX STDAFX H >72DE103_F9B1_11D4 BDDS_£440TBCF4003_ INCTUDED
rojectl.cpp
Stadéfcpp #if _MSC_VER > 1000

#pragma ono:

Header Fil =
ri el Hlearieth s ¥endif -~ _MSC_VER > 1000

[S] firstelass.h

(Sl stdatun]

----- (£ Resource Files ## TODO: reference additional headers your progran requires here
[E] Readhe.tt

#include “firstclass.h'|

<L {AFH INSERT _LOCATION}}
<+ Hicrosoft Wisual C++ will insert sdditional declarations immedistely before the previous line.

s \definsd{AFY_STDAFX_H__ 272D6103_F9B1_11D4_EDDS_84401BCF4003__INCLUDED_)

jDi—— (&

B8 ClassMiew I F\IEV\EWI — | _.'L
F[Tinking =
KT}

Frojectl . exe — 0 errori=s). 0 warningis) J
;l_‘

Find in Filsz 1 %, FindinFilec 2 5, Facuitz 5, S0LDsbagging 7 | [|

[LniE. Col24 [REC [COL [O0vR [READ

B start| | untitied - Faint | |5 \Frogiam Files\hiciosait.. [em Proisctl - Microsoft v [N eBEH & RED andam

Figure 2-23: Linking...Message and Results of Building Project 1

Figure 2-24: Running Project] .exe

you will have to learn how to use a utility like make to handle project management tasks. Let us take a look at a UNIX
development environment and see the make utility in action.

Tenon Intersystems MachTen CodeBuilder™

CodeBuilder™ is a UNIX programming environment that runs on Macintosh computers. It comes with C,
C++, Ada, Objective-C, Fortran, and Java compilers. CodeBuilder can be used to develop code for Macintosh™ Pow-
erPC machines as well as Silicon Graphics, SUN, NeXT, or HP workstations.

CodeBuilder is not an integrated development environment, meaning that although it comes with all kinds of
powerful development tools they are not tightly integrated like CodeWarrior or Visual C++. You will have to choose
an editor with which to create your source files, learn how to call the compiler from the command line, and learn to

use the make utility to help you manage multi-file projects.

Arrention Linux Users

If you have a PC running Linux the information in this section will help you too. Having said that, let’s get
started.

36 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 2: Small Victories Integrated Development Environments

Organizing Projecr Files

You can still apply the concept of a project to your UNIX development. In its simplest form a project is one or
more related files located in one or more directories along with a makefile that defines the dependencies between the
related files. Makefiles and the make utility will be covered below. Get into the habit of creating different directories
for each project and work on that project from that directory.

CRreating Source Files

Select your UNIX text editor of choice to create your source files. CodeBuilder™ ships with Emacs, a powerful
text editor ported to many different versions of UNIX. Figure 2-25 shows Emacs running in an X-Windows session
being used to create firstclass.h.

" & File Fait Window Fonts sosam B @ &8

emacs @ CodeBuilder
Buffers Files Tools Edit Search C Help

Hifndef FIRSTCLASS_H
#define FIRSTCLASS_H

class FirstClassi

public:
FirstClass(};
wirtual ~FirstClass();

private:
static int object_count;

35
Hendif

Figure 2-25: Creating firstclass.h with Emacs

Save firstclass.h in your designated project directory and create firstclass.cpp and main.cpp in similar fashion.

Creating makefile

The next file you need to create is a file called makefile. The makefile contains commands that tell the make util-
ity how to build your project. Like an IDE, the make utility will detect when project files have been modified and
recompile all project files that depend on those files. Figure 2-26 shows Emacs being used to create the makefile.

o

" & File Edit Window Fonis 9:30 am B

f Buffers Files Tools Edit Search Hakefile Help

firstprog @ firstclass.o main.o
g++ firstclass.o main.o —o fFirstprog

firstclass.o : firstclass.cpp firstclass.h
g++ —c firstclass.cpp

main.o : main.cpp firstclass.h
g++ —c main.cprll

Figure 2-26: Creating makefile with Emacs

C++ For Artists ©2003 Rick Miller — All Rights Reserved 37

Integrated Development Environments

Let us take a closer look at the contents of makefile.

firstclass.o main.o
gt+t firstclass.o main.o -o firstprog

firstprog

firstclass.o firstclass.cpp firstclass.h

gt+t —c firstclass.cpp
main.o main.cpp firstclass.h
g+t —c main.cpp

[SSEENEEO NG, BTN OURE SR

Chapter 2: Small Victories

2 4 makefile

firstprog depends on firstclass.o &
main.o

firstclass.o depends on firstclass.cpp &
firstclass.h

main.o depends on main.cpp & first-
class.h

The first line of makefile says that the program named firstprog depends on two object files named firstclass.o
and main.o. The second line is a GNU C++ compiler command that will link the two files firstclass.o and main.o to

produce an executable named firstprog.

Line 4 of makefile says that firstclass.o depends on firstclass.cpp and firstclass.h. Should either of these two files
change, the make utility will have to recompile firstclass.cpp to produce a new version of firstclass.o. This will cause
firstclass.o to change which will cause the linking process to be invoked again to create the new version of firstprog.
On line 5 the C++ compiler command is called with the -c flag. This will result in compilation only and no linking,

since linking is done on line 2.

Line 7 says that main.o depends on main.cpp and firstclass.h. Should either of these two files change main.o will
change which will cause the same chain reaction as described in the paragraph above. Notice how a change to first-

class.h will cause both firstclass.o and main.o to change.

To run the make utility simply type make at the command line. Refer to figure 2-27. Notice too in figure 2-27

Code Builder

brextElodebuilderd 1s
ick hello
step-base—0,2,10 zample_code
briext@Codebuilder? cd Rick
briextiCodeBuilder 1=
firstclass,cpp
Lout firstclass.h
briext@CodeEuilderd makell

test.cpp

main,cpp
makefile

test,.cpp
test,.cpp™

Figure 2-27: Running the make Utility

that the project files are located in a directory named Rick. A listing of that directory reveals the three project files
firstclass.h, firstclass.cpp, main.cpp, and makefile, along with a few files left over from a g++ test run.

Figure 2-28 shows the results of running the make utility as well as running the resulting executable.

38 ©2003 Rick Miller — All Rights Reserved

C++ For Artists

Chapter 2: Small Victories Summary

Code Builder

Rick hello
gztep—baze—0,2,10 =ample_code

chhextBCodeBuilderd od Rick

chrextidCodeBui lderd 1=

#test, cpp# firstclass,cpp main,cpp test,cpp
a,out firstclazs,h makefile test,cpp”
chhexti@CodeBuildery make

g++ -o firstclass.cpp

g++ -C main,cpp

g++ firstclazs,o main,o —o firstprog

chhextlCodeBuilderd 1=

#test, cpp# firstclass,h main,cpp test,cpp

Each g++ compiler command
is echoed to the console...

a,out firstclass,o main,o test,cpp”
firstclass,cpp firstprog makefile
cbhext@CodeBuilderd firstprog New files...

There are 1 FirstClaszs objects,
There are 2 FirstClaszs objects,
There are 3 FirstClazs objects, Execute firstprog...
There are 4 FirstClazs objects,
There are 3 FirstClass objects,
There are 2 FirstClass objects,
There are 1 FirstClazs objects,
There are no FirstClass objects,
chrext@CodeBuildery |
|

Figure 2-28: Results of Executing make Utility and firstprog

Summary

This chapter introduced you to the program creation process and gave you an overview of how to create multifile
projects in three different C++ development environments. It also explained the advantages and features of integrated
development environments.

If your particular IDE was not explicitly covered here you will find that they all work basically the same way. You
begin by creating a project and selecting a project type and then create or add your source files to the project.

Skill Building Exercises

1. Create Multi-File Project: Using your integrated development environment of choice create a multifile project
using the three files firstclass.h, firstclass.cpp, and main.cpp listed in this chapter. Compile and run the project.

2. Debugging: Use the debugging facility to step through the execution of the project you created above. Learn how
to set execution breakpoints and step into functions to trace execution.

3. IDE Directory Structure: Draw the directory structure of your integrated development environment. Locate the
folders or directories where the library and header files are located.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 39

Suggested Projects Chapter 2: Small Victories

Suggested Projects

1. Read IDE Documentation: Locate and read the documentation included with your integrated development envi-
ronment.

2. Obtain DOS Reference: If you are new to programming and are programming on a PC running Microsoft Win-
dows, find a good book on DOS and learn a few important commands.

3: Obtain UNIX Reference: If you are using Mac OSX or another UNIX-based operating system find a good book
on the UNIX operating system.

Self Test Questions

1. Describe the program creation process.

2. What is the purpose of the C++ preprocessor?

3. What is the purpose of the compiler?

4. What is the purpose of the linker?

5. What is the primary benefit of using an integrated development environment?
6. List at least three features of an integrated development environment.

7. What is the purpose of the UNIX make utility?

References

Metrowerks CodeWarrior Reference Documentation for Windows 95/98/NT and Apple Macintosh.
Tenon Intersystems Reference Documentation for MachTEN Unix.
Tenon Intersystems Reference Documentation for CodeBuilder™ .

Microsoft Visual C++ Reference Documentation

40 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 2: Small Victories Notes

Nortes

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 41

Notes Chapter 2: Small Victories

42 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chaprer 7

Seaside Rendezvous

Project Walkthrough:
AN Extended Example

Learning ODbijecrives
* Apply 1he project approach sirateqy 10 help you systemarically implement A proGram thar satisfies the Re@uirements of A Given
PROJECT specification
* Ireratively apply the developmen cycle o help you implement your proGramming projecrs
e List and describe the phases of the Project Approach Smraregy
e List and describe the steps of the sofrware development cycle
e List and describe the different development roles performed during the development cycle
e Translate A project specification into A software design thar can be implemented in C++
* Inplement a sofrware design in C++ using A funcrional decomposition approach
e List and describe the steps involved with funcrional decomposition
* Describe how the development cycle can be employed in a TiGht spiral fashion

* Siare the impormance of compiling and Testing early during The development process

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 43

Introduction Chapter 3: Project Walkthrough

INTROducTiON

This chapter will walk through the creation of a programming project using the project approach strategy and
development cycle discussed in chapter 1. The ideas presented here should not be considered dogmatic. I fully expect
that as you gain confidence and experience as a developer you will formulate your own style of problem solving. I
also expect that readers new to C++ may not understand all the language features utilized in this chapter. Don’t worry.
What I want you to gain from reading this material is an understanding of how to tackle a project, analyze it, design a
solution, and implement the design. You can, and should, revisit different sections of this chapter as you progress
through the text and build upon your C++ programming skills.

The approach I take in this chapter is procedural, meaning I am going to show you how to functionally decom-
pose a problem and craft its solution from the viewpoint of functions rather than objects. I take this approach because
even though you are learning C++ with the desire to become a competent object-oriented programmer, to do so
requires you to understand fully procedural programming concepts. A sound understanding of procedural concepts
will significantly help you when it comes time to design class functions.

The Project Approach Strategy

The project approach strategy areas discussed in chapter 1 are summarized in table 3-1 below. Keep these strat-
egy areas in mind as you formulate your solution to a programming project. The purpose of having a project approach
strategy is to kick start the creative process and perpetuate your creative momentum. I remind you once again that you
can tailor this approach strategy to suit your individual taste. Modify it in any way you see fit.

Strategy Area Explanation

Requirements | Determine and clarify exactly what purpose and features the finished project must have. Clarify
your understanding of the requirements with your instructor if the project specification is not
clear.

The result of pursuing this strategy area should be a clear definition of what problem must be
solved.

Problem Domain | Study the problem until you have a firm understanding of how to solve it. Optionally, express
your understanding of the solution by writing a pseudocode algorithm that describes, step-by-
step, how the problem can be solved.

The result of this strategy area should be a high-level solution statement that can be translated
into a detailed application design.

Language Features | Make a list of all the language features you must understand and use to draft a competent design
and later implement your design. As you study each language feature check it off your list. Do-
ing so will give you a sense of progress.

The result of this strategy area should be a complete understanding of all C++ language fea-
tures required to effect a good design and solve the problem.

Design (Plan) | Sketch out a rough application design. The design should address issues such as data structures,
Input/Output, and how you plan to execute the problem solution you derived in the Problem Do-
main strategy area.

The result of this strategy area will be a clear understanding of what source code should be
written.

Table 3-1: Project Approach Strategy

44 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 3: Project Walkthrough

The Development Cycle

The Development Cycle

When you move into the design phase of your project you will start to employ the development cycle. It is good
to have a broad, macro-level design idea to get you started, but don’t make the mistake of trying to design everything

up front. Design until you can begin coding and test some of your design ideas. The development cycle is summarized

in the following table.
Development .
P Explanation
Cycle Step

Plan | Do enough design to get you started with the implementation. Do not attempt to design everything

up front. The idea here is to keep your design flexible and open to change.
Code | Implement what you have designed.

Test | Thoroughly test each section or module of source code. The idea here is to try and break it before
it has a chance to break your application. Even in small projects you will find yourself writing little
test case programs on the side to test something you have just finished programming.

Integrate | Add the tested piece of the application to the rest of the project.

Refactor | This step applies more to object-oriented programming than to procedural programming. It means
to take a comprehensive look at your overall application architecture and migrate general function-
ality up into base, or even abstract, classes so the functionality can be utilized by more concrete
derived classes.

Table 3-2: Development Cycle

The development cycle will be employed in a tight spiral fashion as depicted in figure 3-1. By tight spiral I mean

you will begin with the plan step, followed by the code step, followed by the test step, followed by the integrate step,
optionally followed by the factor step. Once you have finished a little piece of the project in this fashion, you go back
to the Plan step and repeat the process. Each complete plan, code, test, integrate, and factor sequence is referred to as

an iteration. As you iterate through the cycle you will begin to notice the time it takes to complete the cycle from the

beginning of the plan step to the completion of the integrate step decreases. The development cycle spirals tighter and

tighter as development progresses until you converge on the final solution.

C++ For Artists

Figure 3-1: Tight Spiral Development Cycle Deployment

©2003 Rick Miller — All Rights Reserved

45

The Project Specification Chapter 3: Project Walkthrough

The Project Specification

Keeping both the project approach strategy and development cycle in mind, let us look now at a typical project
specification.

IST 156
Project 1
Robot Rat
Objectives:
Demonstrate your ability to utilize the following language features:
Arrays
Program flow control structures
Variables
Constants
Functions

Simple iostream input and output

Enumerated types

Preprocessing directives

Demonstrate your ability to create multi-file projects.

Task:

You are in command of a robot rat! You will control the rat’s movements
around a 20 x 20 grid floor. The robot rat is equipped with a pen. The pen has
two possible positions, up or down. When in the up position, the robot rat can
move about the floor without leaving a mark. If the pen is down then as the robot
rat moves through each grid it leaves a mark. Moving the robot rat about the
floor with the pen up or down at various locations will result in a pattern.
Write a C++ console program to control your robot rat.

Hints:

The robot rat can move in four directions: north, east, south, and west.
Implement the floor as a two dimensional array of one of the following types:
bool, int, or char. (Note: Depending on the type you choose for the array is a
design decision which will affect how you implement various other features of
your program.)

At minimum, provide a text-based command menu with the following or similar
command choices:

Pen Up

Pen Down
Turn Right
Turn Left
Move Forward
Print Floor
Exit

~ o U W N

Table 3-3: Project Specification

46 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 3: Project Walkthrough The Project Specification

IST 156
Project 1
Robot Rat

When the menu choice 6 is selected to print the floor, it might look something
like this, assuming you chose “*’ to represent a marked area of the floor and ‘0"
to represent and unmarked area. You may use another pattern if desired.

#HA%000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000

In this example the robot rat has moved from the upper left hand corner of the
floor five spaces to the east with the pen down.

Table 3-3: Project Specification

Analyzing The Project Specification

Let us now step through the project approach strategy and analyze the robot rat project using each strategy area
as a guide starting with the project’s requirements.

Reouirements

The robot rat project seems to be written clearly enough. It begins with a set of formally stated project objectives
and then states the task you are to execute, namely, produce a program that lets you control the robot rat. But just
what is a robot rat? That’s a fair question and is one that gets asked often when I assign this project. To understand the
answer requires you to think abstractly, and abstract thinking gives novice programmers the most trouble.

If T answered the question by saying, “Well, obviously, the robot rat does not really exist!”, I would be insulting
you. Why? Because if you are in fact wondering just what is the robot rat, then you are having difficulty abstracting
the concept of the robot rat. I would be doing you a better service by saying, “The robot rat exists, but only as a col-
lection of attributes that provide a limited description of the robot rat.” I would also add that by writing a program to
control the movement of the robot rat around the floor you are actually modeling the concept of a robot rat. And since
a model of something usually leaves out some level of detail, or contains some simplifying assumptions, I will also
tell you that the robot rat does not have legs, fur, or a cute little nose. I will talk more about the characteristics of a
robot rat when I discuss the design strategy area below.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 47

The Project Specification Chapter 3: Project Walkthrough

Another valid requirements question might focus on exactly what is meant by a multifile project. Since I person-
ally feel it is extremely important for students to learn from the beginning how to create multifile projects I answer
this question by clarifying the need for this project to be split between three files. You can name them anything you
desire but I usually suggest the following file names: robot.h, robot.cpp, and main.cpp. The header file, robot.h, will
contain all the function prototypes and any constant and enumerated type declarations you require to implement your
project. The robot.cpp file will contain function definitions for functions declared in the robot.h file and any file scope
variables deemed necessary. Finally, the main.cpp file will contain only the main() function which I recommend be
kept as brief as possible.

What about error checking? Good question. In the real world, making sure an application behaves well under
extreme user conditions and recovers gracefully in the event of some catastrophe consumes the majority of the pro-
gramming effort. One area in particular that requires measures to ensure everything goes well is array processing. As
the robot rat is moved around the floor care must be taken to prevent the program from letting it go beyond the bounds
of the floor array.

Something else to consider is how to process a user’s command. Since the project only calls for simple iostream
input and output I recommend treating everything as a char on the input. Otherwise, I want you to concentrate on
learning how to use fundamental language features as listed in the objectives section, so I promise not to try to break
your program. For the purposes of this project it is safe to assume the user is perfect yet noting for the record that this
is absolutely not the case in the real world!

Summarizing the requirements thus far:

*You are to write a program that models the movement of a robot rat around a floor,

*The robot rat is an abstraction represented by a collection of attributes, (I will discuss these
attributes in the problem domain and design strategy areas)

*The floor is represented in the program as a two dimensional array of either bool, int, or char,
*Use just enough error checking, focusing on staying within the array boundaries,

*Assume the user is perfect,

*Read user command input as char,

*Split the project into three files.

Problem Domain

In this strategy area your objective is to learn as much as possible about what a robot rat is and how it works in
order to gain insight into how to proceed with the project. A good technique to use to help jump-start your creativity
is to go through the project specification and look for relevant nouns and verbs or verb phrases. A first pass at this
activity will yield two lists. The list of nouns will suggest possible attributes or data structures and the list of verbs
will suggest possible actions or functions required to implement the project.

Nouns & Verbs

A first pass at reviewing the project specification yields the following table of nouns and verbs.

Nouns Verbs
robot rat move
floor set pen up
pen set pen down

pen position (up, down)

mark

mark turn right
program turn left
pattern print floor
direction (north, south, | exit

east, west)

menu

Table 3-4: Robot Rat Nouns and Verbs

©2003 Rick Miller — All Rights Reserved

C++ For Artists

Chapter 3: Project Walkthrough The Project Specification

This is a good starting list, and now that you have it, what should you do with it? Good question. As mentioned
above, each noun is a possible candidate for either a variable, a constant, or some other data structure. Some nouns
will not be used. Others will have a direct relationship to some data structure you might use to implement the pro-
gram. Still, other nouns will look like they could be very useful but do not easily convert or map to a data structure.
This seems to be the problem in this case.

The list of verbs come mostly from the suggested menu. Verbs will normally map directly to functions you will
need to create as you write your program. The functions, which are derived from the verbs, will use the data structures
which are derived from the noun list. Note here that this use, or manipulation, of data structures by functions exempli-
fies the procedural programming paradigm.

With the list of nouns gleaned from this project specification it appears as though you will have to do a little more
analysis of the robot rat problem to see if you can come up with any more attribute candidates. I recommend taking a
closer look at the noun robot rat. Just what is a robot rat from the attribute perspective? Since pictures are always
helpful I suggest drawing a few. Here’s one for your consideration.

| think therefore | am!

\ N
|_Fosi Fiom

1‘
u 3
(J‘ on Jaum
af
\(:ﬂ“ st
zb\’

\-W

Figure 3-2: Robot Rat Viewed As Attributes

It looks like this picture suggests that a robot rat, as defined with the current list of nouns, consists of a pen which
has two possible positions and the rat’s direction. As described in the project specification and illustrated in figure 3-
2, the pen can be either up or down. Regarding the robot rat’s direction, it can face one of four ways: north, south,
east, or west. Can more attributes be derived? Perhaps another picture will yield more information. I recommend
drawing a picture of the floor and run through a few robot rat movement scenarios.

Columns =

@-Jeollgﬂib"' v

a ?‘L"
L \ \r\uw

lin /
2)]
oy Co\

a3 v ¥ou,

"

&3

m

Figure 3-3: Robot Rat Floor Sketch

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 49

The Project Specification Chapter 3: Project Walkthrough

Figure 3-3 offers a lot of information about the workings of a robot rat. The floor is represented by a collection of
cells arranged by rows and columns. As the robot rat is moved about the floor its current position on the floor can be
determined by keeping track of its current row and column. These two nouns are good candidates to add to the list of
relevant nouns and to the set of attributes that can be used to describe a robot rat. Before the robot rat can be moved its
current position on the floor must be determined and upon completion of each move its current position must be
updated.

We now have a better understanding of what attributes are required to represent a robot rat as illustrated in figure
3-4.

I move on a Cartesian plane!

Figure 3-4: Complete Robot Rat Attributes

This seems to be a sufficient analysis of the problem at this point. You can return to this strategy area at any time
should further analysis be required. It is now time to take a look at what language features must be understood to
implement the procedure oriented solution.

Language Features

Let us pause a moment to review your progress. You have received a project specification. You clarified the
requirements and studied the problem to be solved. You have now arrived at the most critical, and difficult, stage in
the project approach strategy. You are at a point where you are to proceed with the design of the program but if you
are new to C++, you haven’t yet mastered, or perhaps even learned about, some of the language features required to
start the design process.

Without the aid of the project approach strategy most students come to a complete halt right about here. They get
overwhelmed because they do not yet know how to speak C++ effectively. It is a lot like being in a foreign country
and knowing what you want to say but not having the language skills necessary to say what you are thinking.

The language features strategy area serves an important function in the overall project approach strategy: to sus-
tain your sense of progress momentum. Take this time to list the language features you need to learn and check them

off as you learn them.

In this case, the project specification gives you a good start. Refer to the project objectives first and then to any
language features identified in the requirements and problem domain strategy areas. Generate a study checkoff list
and check each language feature off the list as you complete your study of each feature. The following checkoff list
could be used to study the language features for the robot rat project.

50 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 3: Project Walkthrough

The Project Specification

Checkoff

Language Feature

Arrays, Multi-dimensional arrays: declaring, defining, initializing, processing

Program flow control structures: while, do/while, for, if/else, switch/case

Variables: declaring, defining, scoping, (limiting scope to file)

Constants: declaring, defining

Functions: declaring, defining, return types, argument passing,

Simple I/O streams: cout, cin

Enumerated types: declaring, defining, using

preprocessor directives: #ifndef, #define, #endif

Native language types: char, int, bool

Table 3-5: Language Feature Study Checkoff List For Robot Rat Project

When you have completed your study of the required language features you are ready to enter the design strategy

area.

DesigN (First Iteration)

The Design strategy area marks your entry into the development cycle. The objective here, in the first iteration, is
to map out a macro-level design architecture with which to begin building your application. Design to the point where
you can start coding. Since you will be applying the development cycle iteratively, as depicted in figure 3-1, you will
revisit this strategy area upon entry into each iteration of the development cycle.

A good place to start is to state or describe the flow of the program and the actions you want it to perform using
natural language statements referred to as pseudocode. Example 3.1 shows what the pseudocode might look like that
describes how the robot rat program should run.

display menu 3.1 Robot Rat Pseudocode

get user’s menu choice
process user’s menu choice

if

if

if

if

if

if

if

user selects pen up

change the rats pen position to up
user selects pen down

change the rats pen position to down
user selects turn right

change rats direction right

user selects turn left

change rats direction left

user selects move forward

move rat

user selects print floor

print floor pattern

user selects exit

exit the program

Example 3-1 leaves out a lot of detail but that’s O.K., the details will be added as the design progresses. If you
compare example 3-1 with the robot rat project specification you will see most of its content derives from the menu
description. Three statements have been added to indicate the need to display the menu, get the user’s menu choice,

C++ For Artists

©2003 Rick Miller — All Rights Reserved 51

The Project Specification Chapter 3: Project Walkthrough

and process the menu choice. Stating the solution to a programming problem in terms of the highest-level functional
module with the intention of refining the program by identifying and defining sub modules later in the design is a
classic example of top-down functional decomposition. Figure 3-5 illustrates functional decomposition.

Main Menu
P Exit

v
v v v v v v

Pen Down Pen Up Turn Right Turn Left Move Print Floor
Sub Sub Sub Sub Sub Sub
Module Module Module Module Module Module

Figure 3-5: Functional Decomposition of Robot Rat Program

Notice how the arrows in figure 3-5 point downward from high-level program modules to lower-level modules.
This tells you that the functionality of Main Menu depends on the functionality of modules Pen Down, Pen Up, Turn
Right, Turn Left, Move, and Exit. These submodules, in turn, may depend on further submodules for their functional-
ity. This is the dependency relation associated with the procedural programming paradigm.

At this point you are probably comfortable with “what” the robot rat program must do. It is now time to consider
“how” you will get the program to do what it is designed to do. For example, how will you physically organize your
program files? In what files will you locate various parts of your program? You don’t need to come up with all the
answers up front, rather, you only need to lay out a foundation to get you going.

Table 3-6 lists some design considerations and the resulting decisions. This first attempt at design should take
you to the point of being able to compile your project and test a particular feature. In any project it is a good idea to
start by implementing the user interface (UI), which, in this case, is a text-based menu as described in the project
specification and described in the pseudocode listing.

Design Consideration Design Decision

Multifile project Create a project in the Integrated Development Environment with the follow-
ing files: robot.h, robot.cpp, & main.cpp.

display menu Write a function called displayMenu() to display the menu on the screen

Table 3-6: First Iteration Feature Set

This is a good place to stop the first iteration of the design and move to the implementation phase of the develop-
ment cycle.

52 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 3: Project Walkthrough The Project Specification

Implementation (First heration)

In the first iteration of the implementation phase you will execute the two design considerations listed in Table 3-
. ™
6. Figure 3-6 gives an overview of the process using Metrowerks CodeWarrior

= nNewWrrrnjell —r———

Select project stationery:

'TEAP Halionery Project pame: IE Project Stationery
8 Empty Project Robothat | Std [Consale Multi-Target
@Jaua_ﬁpp!et\l\j\zam Laeation: | Std C Console PPC ; ,

Std C Congole PPC (DLL
@“V“DP“CWW‘ZW Will Wild Rick Desktop Folder £++ Bool] [Set... | Std C++ Console 68K
D Java Bieen Wizard - | StdC++ Console CFMESK (DLLY
B Java Stationery []4dd to project: | Std C++ Conzole Multi-Target
= 603 C/T++ Staiiunery l B StdC++ Console PPC
i | S1d G+ + Console FPG (DLLY
[M MacO3 Power Plant Stationery Il ~sious-wasTE

' - Targe stationery

=l
)
=
]
]
-
=]
L3
-

.......
(Create project... vt : wlulo)
: CHR R
[e e padified | =
= e Today
ain.cpp ataaa— [
I+ B robotfst Cat Today
--IE - Path: |%ild %il...ain.cpp <) [Lrototrat.cpp| Today
#ipclude {iostreom? “ robotrat.h Today
#include "robotrat.h"
using namespace std;
int main{} =]
v
di splaytenus 3}
return B — JEEE——S———
)] | Cancel || Add ||
0 robotrath B 7|
i Fath: |Wild wil.otrath 3 Add main.cpp & robotrat.cpp
files to project...
#ifrdef ROBOT_RAT_H g
= robotrat.cpp mEa|—
‘!;!VI i} il M. il I I Path: |Wiid Wil tratepp <>
#include "robotrat.h" g
#include <iostream.n’ =1 |
F
void displagtenuf 3 =
coutc 1. 1P RobotRat
cout((" 2. [
e 2. —
cout " 4. Turn Left"<<endl,
cout " 5. Mowe" {{endl;
couteL” Be PRInT Floset<endl)
Line: 2 |1 [«Ir]= '3' File I Code | Data |i |i
el ‘Sources 1] 0«3
Create files... w [maincpp 0 0 e
¢ [robotratepp] 0De@
[» w [j ANSILibraries 0 [|
b # [Mac Libraries 0 o =
-
8 files 1} 0 £z

Robot Rat project with main.cpp and robotrat.cpp added to
the sources group.

Figure 3-6: Overview of Project Creation Process

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 53

The Project Specification Chapter 3: Project Walkthrough

First, create the RobotRat project and select the desired project type. Since the project requires only simple ios-
tream input and output the project will be a standard C++ console application.

Once the project is created the three files, robotrat.h, robotrat.cpp, and main.cpp must be created and added to the
project. Creating the project and giving it a three-file structure lays a solid foundation for continued, smooth develop-
ment. Splitting the program into three files may seem at first to make things unnecessarily complicated, however, it is
much easier to deal with this small, increased level of organizational complexity at the start of a project than to try
and split a project into multiple files later in the development cycle.

What goes in each file at this early stage? Since you are concerned with implementing the menu you need only
concentrate on declaring the displayMenu() function, defining the displayMenu() function, and then using or calling

the displayMenu() function somewhere in the program. Put the function declaration in the robotrat.h file. The code
will look like figure 3-7.

=————— robhotrath=—"——0H
I I| I I I Path: |Wild Wil otrath O
#jfrdef ROBOT_RAT_H Q} Preprocessor Directives
#d=fime ROBOT_RAT_H [—|
void dizplagtenul i Function Declaration
| = |
Fandi f |
-
. - 4 Ty Trrrrail T . T -
Line: 4 100 i IRILA =

Figure 3-7: robotrat.h

Notice the preprocessor directives. Don’t forget to use them in your header files to prevent multiple inclusion.

With the robotrat.h file complete you can now create the robotrat.cpp file. The purpose of this file is to define or

implement the displayMenu() function declared in the robotrat.h file. The code for robotrat.cpp will look like figure
3-8.

[0 ==———robotratcpp=—"—=HH
| ‘h',” u,l | ““,Il ,I| o’ ,I Path: |%Wild Wil tratepp » Use preprocessor directive #include
* e Lade "robotrat ot g! to include robotrat.h and iostream.h
#include <iostream.hl
woid displagManud 3
coyt{" 1. Pen Up"<{<endl; .
cout{L" Z. Pen Down"<<snd [Add meaning to the
coutd ! 3. Turn Riaght®<{endi; displayMenu() function
cou 4! 4. Turn Left"<dendl;
cou o 5. Mowve"<{<endl;
cou kLt G. Print Floor"<<endlj;
cou ot Te Exit"<<endl; ||
F
' =
Line: 2 IT | [4]»]~

Figure 3-8: robotrat.cpp

As shown in figure 3-8, the displayMenu() function simply writes some menu choices to the console. That’s all it
does. Hence its name...displayMenu(). This is an example of a highly cohesive function. Cohesion and coupling is
covered in detail later in the book, but for now, keep in mind that it is good design practice to keep the functionality of
program modules focused to what it is they are supposed to do. In this case, displayMenu(), as its name implies, will
display the menu on the screen. When the time comes to get the user’s menu choice and process the user’s menu
choice you will need to create functions for those purposes.

Now that the displayMenu() function has been both declared and defined it is time to use it someplace. That place
is the main() function. The main() function is located in the main.cpp file as shown in figure 3-9.

54 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 3: Project Walkthrough The Project Specification

[mainan 0—"7=—0H

Mo ey e = i 1 —————
[P][]|M-]| &]| &'] Path: [wild wil.ainepp >

#include <iostream> DI
|1

Since you use the displayMenu() function in
#include "robotrat.h" M play () fi

this file you must also include robotrat.h
U= ing namespace sitd;
int maing }

disp LagHerd ¥; Cal.l disPlayMenu() in the body of the
return B; main() function.

NED

Line: 2 [| [4]»

Figure 3-9: main.cpp

Every C++ program needs a main() function. The main() function represents the start of the first instruction of
the robot rat program in memory. It is now time to test robot rat.

Testing (First Ireration)

If, and there’s always an if in programming, everything goes well the work completed on robot rat so far should
compile and display the menu. Even though this sounds like small beans, getting the program to this point has taken
considerable thought and effort.

The objective of testing the displayMenu() function is to see if the menu choices do get written to the screen as
expected. Perhaps the most important reason for programming and testing little pieces of the program at a time is that
it allows you to catch errors early in the development cycle. These same errors, if left to be discovered later, will be a
whole lot harder to correct.

Compiling and running the robot rat project gives the result shown in figure 3-10.

RobotRat.out.out =—ae—=H

. Pen Up

. Pen Down

. Turn Right
. Turn Left

. Mowe

« Print Floor
. Exit

= e LD B

NEKIO

Figure 3-10: Robot Rat Menu

Integration (FirsT lreration)

Everything looks as if it runs fine. The menu displays on the screen and the program exits. That’s all it does and
that is all it is supposed to do. There is not much to integrate at this point since you started the project off on a good
footing by splitting it into separate files. The displayMenu() function is located in the main(). It is O. K. to leave it
there for now, and it may stay there for one or two more iterations of the development cycle, or at least until it makes
sense to move it into another function as the program grows.

At this point you have come to the end of the first iteration of the development cycle. It is now time to return to
the design phase and start the second iteration.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 55

The Project Specification Chapter 3: Project Walkthrough

Design (Second heration)

You have completed the first iteration. You have made great progress on robot rat. The project is nicely organized
into three files, the project compiles flawlessly, and the displayMenu() function writes the menu to the screen as
expected. To proceed, you must now select one, or more, program features to implement that sustain your develop-
ment effort momentum

Since you have just completed the implementation and testing of the menu feature of robot rat it makes since to
proceed with adding the capability to accept and process user menu choices. Table 3-7 lists the features to design and
implement.

Design Consideration Design Decision
Accept user input for menu selection Read user input from console using iostreams. Store user’s
input in a variable for later processing. Read the input as a
char.
Process user input; determine which menu choice selected Compare input value against a set of constant values repre-

senting menu choices. Use switch/case statement to imple-
ment the comparison. Use function stubbing for testing
purposes to defer detailed functional development.

processMenuChoice() will be the name of the function used
to process the user’s menu choice.

Stub the following functions:
setPenUp(), setPenDown(), turnRight(), turnLeft(), move(),
printFloor()

Implement the following functions:
doDefault(), programEXxit()

Table 3-7: Second Iteration Feature Set

This iteration of the development cycle is a critical one. Here you are attempting to implement an extremely crit-
ical piece of the robot rat program without knowing much, or anything at all, about how the subfunctions will ulti-
mately be implemented. Specifically, you are going to implement the menu processing capability of the program that
will let a user enter a menu choice for further processing, but you haven’t yet written the code to set the pen up or
down, or to turn the robot rat left or right. Luckily, there’s an old programmer’s trick you can use to help in just this
situation. It is called function stubbing.

Funcrion Stubbing

Function stubbing is the technique of writing functions with little or no substance and is an invaluable program
testing tool. If a stubbed function contains any code at all it is usually just a simple message written to the screen indi-
cating to the programmer that the function was called. This lets the programmer know that everything in the program
worked fine up to the point of the function call.

Orther Considerations

When you tested robot rat at the end of the first iteration the program exited immediately after calling the dis-
playMenu() function. This was normal behavior for the program at that time. But now that you are going to imple-
ment the menu processing feature you will need to keep the program running until the user selects exit from the robot
rat menu. It is a good time to use pseudocode again to generally describe the behavior of the program to help guide
you in your design. Example 3.2 gives the pseudocode for how processing should occur.

56 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 3: Project Walkthrough

repeat
display menu

process user menu choice
execute user menu choice

until user selects exit

The Project Specification

3.2 Pseudocode For Processing

User Menu Choices

Armed with a small set of features to implement and an idea of how to implement them you are now ready to
move into the second iteration of the implementation phase.

Implementation (Second Ireration)

The best place to start is in the robotrat.h header file. Edit the file and add the declarations for all the new func-
tions you will need for this iteration. Figure 3-11 shows the robotrat.h file containing the new function declarations.

e —
2 [N [N [N

robotrath =————"FHH
ild %'ild Ri...:robotrat h

#endi f

Path: | W &
#i fndef ROBOT_RAT_H al
#define ROBOT_FAT_H =

void displagteru{)}

void processMenuChoicel)}
woid setPenUpl l;

void setPenDown()}

woid turnRights;

void turnleft(d;
woid movel)
void printFloor();
woid programEsite};
void doDefaultd;

Line: 14

T KD

S KD

Figure 3-11: robotrat.h

Add function declarations for all
functions needed in second itera-
tion.

Next, edit the robotrat.cpp file and implement all the new functions you have just declared in the robotrat.h file.
Start by implementing the stubbed functions first. Example 3.3 gives you the source code for robotrat.cpp with the
functions implemented.

#include "robotrat.h"
#include <iostream.h>

#include <stdlib.h>

void displayMenu () {

cout<<"
cout<<"
cout<<"
cout<<"
cout<<"
cout<<"
cout<<"

void setPenUp () {

~ oUW N

//need stdlib.h for exit () function

Pen Up"<<endl;

Pen Down"<<endl;
Turn Right"<<endl;
Turn Left"<<endl;
Move"<<endl;

Print Floor"<<endl;
Exit"<<endl;

cout<<"The pen is up!"<<endl;

C++ For Artists

©2003 Rick Miller — All Rights Reserved

3.3 robotrat.cpp

57

The Project Specification

void

void

void

void

void

void

void

setPenDown () {

cout<<"The pen is down!"<<endl;

turnRight () {
cout<<"Robot

turnLeft () {
cout<<"Robot

move () {
cout<<"Robot

printFloor () {
cout<<"Floor

programExit () {
exit (0);

doDefault () {

cout<<"Please Enter A Valid Menu Choice:

Rat turned right!"<<endl;

Rat turned left!"<<endl;

Rat moved!"<<endl;

printed!"<<endl;

"<<endl;

void processMenuChoice () {

char input =

'O','

cout<<"Please Enter Menu Choice: ";

cin>>input;

switch (input) {

case 'l': setPenUp();
break;

case '2': setPenDown () ;
break;

case '3': turnRight ();
break;

case '4': turnLeft();
break;

case '5': move();
break;

case '6': printFloor();
break;

case '7': programExit ();

default doDefault () ;

} //end switch case
}//end processMenuChocie ()

Chapter 3: Project Walkthrough

3.3 robotrat.cpp continued

Figure 3-12 shows the contents of the main.cpp file. The main() function needs to be changed slightly to imple-
ment the program operation described in the pseudocode of example 3.2.

58

©2003 Rick Miller — All Rights Reserved

C++ For Artists

Chapter 3: Project Walkthrough

One way to loop forever...

0 =—— main.cpp

BB

—

ey 1L A= 11 1 _——
|-ﬂ-’vlluv”"“v”|ﬂv” ol TI Fath: I'W'IM Wild...ainepp O

#include {iostream’
#include "robotrat.h"

using namespace std;
int maingy
foriss M

displqgﬂenu{};

return 83

}

processMenuChoiced 33

]

Line: &

[T

e

[4]»

Figure 3-12: main.cpp

Once all the additions are complete it is time to move on to testing.

Testing (Second heration)

Figure 3-13 shows the results of running robot rat and selecting menu

choices 1 through 7. Each menu choice results in the execution of the cor-
responding function stub as evidenced by the message printed to the
screen. The only thing left to be tested is the default case. In other words,
what happens when a user enters a choice that’s not on the menu? The
default case in the switch statement along with the doDefault() function
will handle bad user menu choices. Figure 3-14 shows the results of that

test.

Choice:

Chaoice:

=101 o) b= =1l B) R -

e L= S e

. Turh Right
. Turt Laft

Move
Print Floor

. Exit
Flease Enter fenu Choicel &

Please Enter A Yalid Heru

. Fen Up

FPer Down

« Turn Right
. Turn Left

Hove

« Frint Floor

Exit

Flease Enter Menu Choice:
Flease Enter A Yalid e

=1

=
]

& U
an Down

o

. Turn Right
. Turn Left

Move

. Print Floor
7. Exit
Flease Enter Menu Choice: 7

A

1l [m

S n

Figure 3-14: Default Case Test

C++ For Artists

8 not on menu!

A not on menu!

7 works fine...

©2003 Rick Miller — All Rights Reserved

The Project Specification

=—— HoboiRat.out.out

i}

=J L D b —

. Pen Up

Par Down
Turn Rignt
Turn Left

. Howe

Frint FLloor
Exit

Fleqse Enter Menu Choice: 1

The pen iz up!
1.

CL
2 =1 ol e GO D

=1 e L R — O

Fen Up
Per Downk

« Turn Right
. Turn Laft

Mowe

. Print Floor

Exit

. Pern Up

Fen Down
Trimem O i b e
Turn Right
Turtl Left
Mo

Frint Floor
Coi b

[

Flease Enter Menu Choice: 3
Robot Rat turned right!

=1 O DO b —

Per Up

Fen Down
Turn FRight
Turh Laft

. Mowe
. Print Floor

Exit

Plagse Enter Merw Choice: 4

Robot Rat turned laft!

1.

=1 N fe 3 kD

1.
2.
3.
4.
S.
G,
7.

Fern Up

Fen DOown

. Turn Right

Ty o
Turn Left
Mawe

. Print Floor

Exit

N P T ¥ P T .=
2 CcrLer rerid wnoice . o

moved!

Pern Up

Fen Down
Turn Right
Turn Left
Mawe

Frint Floar
Exit

Please Enter Menu Choicel 6

Floor printad!
1.

Fen Up
Fen Down

Turn Right

Turn Left
Mowe
Frint Floar

. Exit

Silel]

Figure 3

-13: Test Results

59

The Project Specification Chapter 3: Project Walkthrough

INTEGRATION (Second Ireration)

Again, there’s nothing to explicitly integrate. Actually, the act of integration has been taking place simulta-
neously with implementation. The program is well structured, making the addition of functionality easier than if the
structure, or framework, of the program had been poorly designed.

Since robot rat tests are satisfactory it is time to return to the design phase and start the third iteration of the
development cycle.

Design (Third heration)

With the menu processing functionality in place it is time to start adding meat to the program by implementing
some of the data structures the robot rat will need to operate. The floor seems like a good place to focus development
effort. Table 3-8 lists the features to be implemented during this iteration.

Design Consideration Design Decision
The floor. The floor will be a two dimensional array of bool-
What data type to use? ean. The floor array will have all elements initial-
How should each element be initialized? ized to false at the start of the program.
‘What scope should the floor array have? The floor array will have static file scope in ro-

botrat.cpp so that it is visible to all functions need-
ing access to it.

Ensure variable names declared for use in robot rat | Put all variable declarations in a namespace called
don’t conflict with variables names declared in the | robotrat.
std namespace.

Print the floor pattern Implement the printFloor() function to print the
floor pattern when the user selects the Print Floor
menu choice.

When the robot rat moves through a floor position | If the robot rat’s movement takes it through an ar-
with the pen down, how will the mark be recorded | ray element and the pen is down, the boolean value
and preserved for future moves and floor printings? | of the array element will be changed to true.

Table 3-8: Third Iteration Feature Set

The floor is a critical data structure in the robot rat program. Design decisions regarding the floor will impact
future development. How do you know if the design decision you make regarding the floor is good or bad? Good
question. Just like real life, you will not know if you have made a good or bad design decision until you progress a lit-
tle further with development. If you have to violate your program design architecture to fit something in then the
design is less than optimal. Good design feels good, works good, and is easy to change without breaking things unex-
pectedly.

Implementation (Third Ireration)
Proceed with the first three design decisions as described in table 3-8. The fourth design consideration can be
evaluated after these are completed.

The first thing to do is to declare the floor array. Since it is going to have file scope you can declare it at the top of
the file right above the displayMenu() function. Figure 3-15 shows the robotrat.cpp file with the necessary code
added.

60 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 3: Project Walkthrough

The Project Specification

1=}

rahntrat r
ARLALRLD AL

DD

o _| Path: | wild wild Ric...robotrat.cpp

#includs "robotrat.h"
#include <iostream.hl

#include <stdlib.hx

Comments used to introduce variable
declaration section makes code easier
to read and understand.

5] © | @

File Scope Yariable Declarations

namespace robotraty
static bool floor [ROWS][COLS] = {};

Namespace robotrat used to prevent
identifier name conflicts

-

H
floor array declared and initialized in
K ! same statement.
waid displagtenud M
couts” 1. Fen Up"<<endl;
caut Ll 2. Pen Down" <{andl}
ook Ll 2. Turn Right"{damdly
cout L 4. Turn Left"{{andl}
cout " J. Mowe"<<endl;
cont<” B. Frint Floor <<endl; Constants ROWS and COLS
cout{" 7. Exit"<<endl; | declared in robotrat.h file. Used to
y |~ | avoid “magic numbers” in pro-
= grams.
Cre:13 [| (4[]~
Figure 3-15: robotrat.cpp with Floor Array Declaration
0 robotrath me .Figure 3-1 5.shows how C-style comments can be used .to Provide
— section headers in source code. The floor array is declared inside of
| '}_H {}?HH«?H D_H ﬁ’j Path: |Wild WildRi..robotrath ¢y|| the robotrat namespace. Two constants are used in the array declara-
—_— ﬂ tion: ROWS and COLS. The names ROWS and COLS are good
#ifndef ROBOT_RATH : :
#define AOROT FAT A =|| choices .for these two constants since they lend another deg.ree of
abstraction to the robotrat solution. Both these constants will be used
gg:i: ::E EgEg : gg,l again in the printFloor(), and move() functions. Figure 3-16 shows the
' ROWS and COLS constants being declared in the robotrat.h file.
vaid disploufenid)y With the floor array work completed you can turn your attention
void processHenuChoice(); . . .
void satPenlip b; to the business of printing the floor array to the screen. The print-
VO!g ietPEV)DﬁU;?(}); Floor() function is currently a stubbed function, which is a good thing
wold TURRR Rty)
void turrLert)i since all you n?ed cl.o is add the code that will give printFloor() its
vaid movel)} intended functionality.
:g:g E:ég:;gz';i(}’} There are two things to consider when implementing printFloor().
void doDefaul ()} | || First, how to access the floor array when its declaration appears in the
verdi I*]] robotrat namespace, and second, how to represent a marked or
: "Il unmarked floor square when the floor array is printed to the screen.
he:s [T KDR The first consideration is resolved with the use of the scope reso-

Figure 3-16: robotrat.h with ROWS & COLS
Constants Declared

C++ For Artists

©2003 Rick Miller — All Rights Reserved

lution operator. The second consideration serves as an example of
how an earlier design decision can affect later design decisions. Fig-
ure 3-17 shows the source code for the printFloor() function.

61

The Project Specification

[0 =————robotratcpp

=)=

- - - -

U A L o' Path:|wndwndRick...:rubutrat.epp oS

P T)
WO PTTITILE LOOry, 2

=

for{int i=B; |<ROME; /j+e3{
forint j=8; j<COLS; j++f
if{robotrut::floow[i][j]}
cout<<" [=]"y

O

|

else cout{"[1"}
}
cout{<endl} —
} -
|
Line: 1Z] [a]»] =

Figure 3-17: The printFloor() Function

Chapter 3: Project Walkthrough

Constants ROWS and COLS
used in the for statements

Scope resolution operator
used to access floor inside
the robotrat namespace.

The printFloor() function is implemented using two for loops. The outer loop processes the ROWS of the floor
array and the inner loop processes the COLS of the floor array. The meat of the function is the if statement that tests
each element of the array. If the test is true, that is, if the boolean value located in that particular array element has
been set to true by the robot rat, then it will be rendered on the screen as marked. In this case, a marked element is
rendered as the string of characters “[-]”. If an array element is not marked it will evaluate to false. An unmarked ele-
ment is rendered on the screen as the string of characters “[]”.

With the work completed on the printFloor() function it is time to move to the testing phase.

Testing (Third heration)

Figure 3-18 shows the results of the robot rat program being run and the Print Floor menu choice being selected.

62

RobotRat.out.out

B

. Pen Up

. Pen Down

. Turn Right
. Turn Left
. Mowe

= 0D kY —

e i i e e e T
P PP 1
g S S g
P Y
P . 1

T B) B e e e o e e e —

«» Fen Down

- Turn Fight
« Turn Left

. Mawe

« Frint Flooe
. Exit

Please Enter Meru Choice:?

NEID

Figure 3-18: Robot Rat printFloor() Function Test

©2003 Rick Miller — All Rights Reserved

C++ For Artists

Chapter 3: Project Walkthrough The Project Specification

It appears everything works fine, at least when the array elements are false. It would be a good idea to write some
code that sets a few of the array elements to true just to make sure everything is working properly. Figure 3-19 shows
a temporary function called setTestPattern() being declared and defined within robotrat.cpp.

L =——"————mrobotnatcpp=————==t15
|.lyvl|{,}7||l*‘lﬁv||v|| :i"v| Fath: |‘w‘i|d Wild Ri. botrat.opp <»
=il
) =]
/ =
Temporary Test Functions ; [
woid setTestFatternd i; - setTestPattern() declaration
woid setTestPatternd 3i
robotratiifloor[@][8] = true;
robotratiifloor[B][1] = true; .
robotratizfloor[B][2] = true; Various floor array elements set to
robotratiifloor|B] 4] = trug; true in the setTestPattern() function
robotratizfloor[1103] = true;
robotratiifloor[2][2] = true;
robotrat: i floor[2]1[2] = trueg
robotratiifloor[4][2] = true;
. robotrat: i floor[S1[3] = true:
x
& i/ sl
-
Line: 21 T [4[r]~

Figure 3-19: setTestPattern() Function

The setTestPattern() function can then be used in the printFloor() function to set the test pattern before printing.
Figure 3-20 shows the setTestPattern() function being called by printFloor().

[0 ==———= robotrat.cpp =—=HH
| N = | 1l — ar——
e g LI = Do 1 opath: wild Wil.ratepp <
[P i, . J e | [Ll
O
waid printF loor(3 —
e setTestPattern() called before printing the
setTestPatierni };
Sfloor pattern.
for{int i=@; i<ROUS; j++3{
fordint j=@; j<COLS; j++ 3
ifirabotratsifloor[il1[j]3
coutodt =10 —
e n =3
elze coutdd"[Iv: =
) —
coutddendl;
H
b sl
-
Line: 92 [T |]~

Figure 3-20: setTestPattern() Function Being Used for Test-
ing in the printFloor() Function.

Figure 3-21 shows the results of the next program test. The pattern prints as expected. With testing complete the
temporary code can be completely removed from the robot rat project or commented out. If you are certain you will
not be needing the test code in the future, removal is best as it leaves your source code less cluttered.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 63

The Project Specification Chapter 3: Project Walkthrough

=————— RobotRatoutout =—0———~FH

. Pen Up

. Pen Down

. Turt Right
Turt Left
Howe

. Print Floor
. Ewit

Flease Enter Menw Choice! 6

ce
[=10-10=-10=-10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 1

= d T e RO -

L1010 101010 1010 10 10 10 10 10 10 10 10 10 10 10 111
1. Pan Up
2. Pen Down
2. Turtr Right
4. Turn Left
S Mowve

6. Print Floor
7. Exit

Flease Enter Menu Choice:

S]

Figure 3-21: Robot Rat printFloor() Test with Test Pattern

Integration (Third Ireration)

Integration, once again, took place in concert with implementation, the result being nothing to explicitly integrate
into the robot rat program. This marks the completion of the third iteration of the development cycle.

Design (Fourth hreration)

How next to grow the design? You have a floor, and you can print the floor and any patterns it may contain. It now
appears the next step is to design the move function. But, before you can move the robot rat you must know what
direction it is facing. Also, before the floor can be marked the robot rat’s pen position must be determined. Setting the
robot rat’s direction and pen position are two features that must be implemented before the move function can be
implemented. Table 3-9 lists the design considerations and design decisions for the fourth iteration.

Design Considerations Design Decisions

Setting and keeping track of the robot rat’s direction Use an enumerated type called Direction with four possible
values, NORTH, SOUTH, EAST, and WEST.

Declare a variable of type Direction called rats_direction to
store the robot rat’s current direction.

The rats_direction variable will be set to a new value using
either the turnRight() or turnLeft() functions. Its new value
will depend on its current value.

rats_direction will have an initial value of EAST.

Table 3-9: Fourth Iteration Design Consideration and Design Decisions

64 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 3: Project Walkthrough The Project Specification

Design Considerations Design Decisions

Setting and keeping track of the robot rat’s pen position. Use an enumerated type called PenPosition with two possi-
ble values, UP, and DOWN.

Declare a variable of type PenPosition called pen_position
to store the robot rat’s current pen position.

The pen_position variable will be set to a new value using
the setPenUp() or setPenDown() functions. Its new value
will be set regardless of its current value.

pen_position will have an initial value of UP.

Table 3-9: Fourth Iteration Design Consideration and Design Decisions

Each of these design considerations deal with issues relating to two important robot rat attributes, namely, direc-
tion and pen position. As described in table 3-9, the variable rats_direction will only be allowed to have four possible
values, NORTH, SOUTH, EAST, or WEST, and will be initialized to EAST. Said another way, the rats_direction vari-
able can have four possible states and its initial state will be EAST. A state transition diagram can be used to visualize
each state and show how the rats_direction variable will transition from state to state. Figure 3-22 shows the state
transition diagram for rats_direction.

turnRight()

turnRight() turnRight() turnRight()

turnLeft()

turnLeft() turnLeft()

turnLeft()

Figure 3-22: State Transition Diagram for rats_direction Variable.

When the robot rat program starts, rats_direction will be initialized to EAST. Each of four possible states are
indicated by the large circles. To change rats_position state something must happen. Either the turnRight() or turn-
Left() function must be called. To change the rats_direction to SOUTH, from the EAST state, the turnRight() function
is called. Note the direction of the arrows pointing from one state to the next. To go back to the EAST state from the
SOUTH state the turnLeft() function must be called.

The state transition diagram for pen_position is shown in figure 3-23. It is similar to rats_direction state transition
diagram with the exception being a transition can occur that results in no change of state. When the robot rat program
starts the pen_position variable is initialized to the UP state. It can be changed to the DOWN state by a call to the set-
PenDown() function. If, however, it is in the UP state and the setPenUp() function is called, its value is reset to UP, in
which case no change of state occurs.

This is enough designing for now. It is time to implement these two state transition diagrams.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 65

The Project Specification Chapter 3: Project Walkthrough

setPenUp() setPenDown()

setPenDown()

setPenUp()

Figure 3-23: State Transition Diagram for pen_position

Implementation (Fourth Ireration)

Begin by declaring the enumerated types Direction and Pen-

-_ . 1 R . . [} oy |
Position in the robotrat.h file. Figure 3-24 shows the robotrat.h = ——— -
file after the addition. E Path: | Wild Wild Ri.. robotrath (3
Next, edit the robotrat.cpp file and declare and initialize the
. #jfndef ROEOT_RAT_H g
variables pen_position and rats_position in the robotrat #dafine ROBOT RAT_H =
namespace. Figure 3-25 shows the source code for robotrat.cpp .
after the modification. Eﬁ:iﬁ ::E EEEE - 32’
erum Direction {NORTH, SOUTH, EAST, MESTH
O=——————robotratcpp=————EB arum Farfocition (U, DOMNY:
E Fath: |‘w’ild Wild Rick (De.. tRat robotrat.cpp 0 void displugﬁenu{ },
H
#imclude "robotrat.ht] woid processfenuChaicel 3
#include {iostreom.hl [— woid setPenlpd)
#include <stdlib.h> E waid setPenDown{};
vaid turnRight);
void turnleft);
File Scope Variaoble Declarations W"!d move(};
i/ woid printFloord);
e T R 1 coLs] = €35 veid progranta i t;
stotic PenPosition pen_position = P} woid dolefoul i)y ||
static Direction rats_direction = ERAST; Fs
-l #apndif 1
3 -~ v
=] Line: 8 [] 4[]~
Line: & [[«] =

Figure 3-24: Direction and PenPosition Enum Types

Figure 3-25: Declaration of pen_position & rats_position
Added to robotrat.h

Once the variables are declared and initialized the functions setPenUp(), setPenDown(), turnRight(), and turn-
Left() can be edited to implement their intended functionality. The first two functions, setPenUp() and setPenDown(),
are the easiest. Simply replace the stub message statement with an assignment. Figure 3-26 shows both of these func-
tions after modification.

Each of the functions turnRight() and turnLeft() can be implemented with a switch statement. Test the value of
pen_position and compare it to the valid states as defined in the enumerated type Direction and set the new value
according to the rats_direction state transition diagram. Figure 3-27 shows the turnRight() function and figure 3-28
shows the turnLeft() function.

Once all function modifications are complete you can move to the testing phase.

66 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 3: Project Walkthrough

C++ For Artists

[0 ==———robotrat.cpp

)=

|-|3’TI|HTI|N~TI|TI| EPTI Path: | Wild Wild R.. botrat.epp 3

wvoid setPenlpd 3

robotratlipen_position = UP;

woid setPenDownd 34

robotratlipen_position = DOWM;
H

]

Line: 77 T | KIC

4]

Figure 3-26: setPenUp() & setPenDown() Functions

[0 ==————robotrat.opp"———m—m—m—m—m———s B
-')J_I {}_I K_I _I :i"'I Path: |'w'i|d wild Rick (D..at wobotrat.epp <3
woid turnRighto 3 =]

—
switchirobotratiirats_direction i
case MORTH: robotrat:irots_direction = EAST;
brealk;
case EHST! robotrat!irats_direction = SOUTH} —1
break: =
case SO0UTH: robotratiirats_direction = HESTS
break;
case WEST: robotratiirat=_direction = MORTH,
break;
defaul t: robotratlirats_direction = ERST;
b -
; =
Line: 77 | | [«]r]=
Figure 3-27: turnRight() Function

[0 =———robotratcpp =

(b0 [(@]| | path: [wilg ikt Rickn st rebetratepe
woid turnlef il 3 al

—
=witchi{robotrat:irats_direction{
case MORTH: robotratiirats_direction = HWEST;
braak;
case EAST: robotratiirats_direction = HORTH;
break; —
case SOUTHD pobotratiirats_direction = EASTS =
break;
case HEST! robotratlirats_direction = SOUTH:
break.;
default: robotratiirats_direction = ERAST;
¥ a
3 -
-
Line: 77 [| [4]v]~

Figure 3-28: turnLeft() Function

©2003 Rick Miller — All Rights Reserved

The Project Specification

67

The Project Specification

Testing (Fourth heration)

Chapter 3: Project Walkthrough

Well...you could test the changes you just made but unless you add a few lines of code for testing purposes you
will not see any results of changing the robot rat’s pen position or its direction. Using the turnLeft() function as an
example, you can add statements to each case to print a message when robot rat’s direction has changed. Figure 3-29

shows the additions to the turnLeft() function.
[0 =———————robotratcpp=—"—-HIH

”E ”E?!mmwwmwmmwﬂjuwmmmw L

{{j[=]

switehi{robotrat? trats_direction)

cose MORTHD robotratiiro
il

[L] =P
CoWTILTGT

t=

ing
braalk:}

case EAST: robotrat!irots_direction = HORTH;
coutd{{"Facing Morth"{{endl}
break;

case S0UTHD robotratiirat
cout<{"Facing East"{<endl;
break;

case HEST: pobotratiirots_direction = SO0UTH;
cout<<{"Facing South"<<endlj
braak
braak;

detault: robotratiirats_direction = EAST;
cout<{"Facing East"{{endl}

=_direction = ERST;

| |

4
Line: 97 I | [4]»

s]

Figure 3-29: turnLeft() Function with cout Statements

Figure 3-30 shows the results of testing the turnLeft() function. You
may want to add similar test statements to turnRight(), setPenUp(), and set-
PenDown() and test everything for proper operation. Again, when you have
completed all testing for this iteration you can remove the test statements
from your source code.

InteGraTioN (Fourth heration)

No integration is necessary for this iteration. Time to move on to the
fifth iteration of the development cycle.

Design (Fifth heration)

The robot rat project is nearly complete save for the move() function.
Looking back at the initial analysis of robot rat attributes you will discover
two that have yet to me implemented. They are current row and current col-
umn. These should complete the attribute set required to define the state of
the robot rat at any time during the execution of the program. Using all
attributes together you can determine the robot rat’s position by row and col-
umn, what direction it is facing, and its pen position. Yet there’s still some
work to do to determine how to implement the move() function.

How should a move be executed? How should the robot rat respond
when instructed to move past the boundaries of the floor? These are great
questions that deal with the robot rat’s behavior. The move() function is
where robot rat’s behavior will be defined.

Table 3-10 list the design considerations and decisions for this iteration
of the development cycle.

68 ©2003 Rick Miller — All Rights Reserved

Send brief text messages to the
standard output

I
m

RobotRat.out.out

. Pen Up

Pan Doun
Turh Right
« Turn Left
Hove

« Print Floor
Exit

Plese Enter Metu Choice! 4
Facing Morth

= LN e G by —

. Pen Up

- Pen Down

. Turn Right
. Turn Left
Mowe

- Print Floar
. Exit

enuy Choice: 4

=N N1 A

Flese Enter
Farima Llast
Facing Hest
Fen Up

Pen Down

- Turn Right
Turn Left
Tove

« Frint Floor
« Exit

Flese Enter Menu Choicei 4
Facing South

=1 B L R —

- Fen Up

« Pan Down

« Turn Right
Turn Laft

Prjnd Flase
. Exit
el Choice! 4

=Y. BT, I AR

Flese Enter

Facing East

« Pen Up

« Pen Down

= Turn Right

- Turn Left

HMowe

- Print Floor
7. Exit

Plese Emter Menu Chaice! |

Moo R —

S

Figure 3-30: turnLeft() Test

C++ For Artists

Chapter 3: Project Walkthrough The Project Specification

Design Considerations Design Decisions

How should the move() function be structured | Use nested switch statements to determine the state of the pen_position and
to determine the robot rat’s direction and pen | rats_direction.
position.

How will a command to move past floor | Move up to the floor boundary and then stop to wait for another move com-
boundaries be handled? mand.

How will floor array cells be marked during a | If the pen is down, set the floor array element at the indicated position to
move? true. If the pen is up don’t worry about marking the floor.

What does it mean to move north, south, east, | North: row position decreases, col stays the same. (row--, col)
or west in terms of rows and columns? South: row position increases, col stays the same. (row++, col)
East: row position stays the same, col increases. (row, col++)
West: row position stays the same, col decreases. (row, col--)

Table 3-10: Design Considerations and Decisions: Fifth Iteration

The move function is fairly complex. In it you must check the state of the robot rat to determine what direction it
is facing and its pen position. You must determine how many spaces the user wants to move and ensure the move
doesn’t go outside the array boundaries. A good idea at this point would be to develop a pseudocode listing of the
move function. Example 3.4 provides the pseudocode for the framework of the move() function.

Get spaces to move from user 3.4 move() function pseudocode
determine position of pen
if pen position is up
determine direction robot rat is facing
if rats_direction is NORTH
execute movement north (adjust current row, no mark)
else if rats direction is SOUTH
execute movement south (adjust current row, no mark)
else if rats direction is EAST
execute movement east (adjust current col, no mark)
else if rats direction is WEST
execute movement west (adjust current col, no mark)
if pen position is down
determine direction robot rat is facing
if rats direction is NORTH
execute movement north (adjust current row, mark cells)
else if rats direction is SOUTH
execute movement south (adjust current row, mark cells)
else if rats direction is EAST
execute movement east (adjust current col, mark cells)
else if rats direction is WEST
execute movement west (adjust current col, mark cells)

According to the pseudocode, the move() function will first get the number of spaces to move from the user. It
will then perform a move according to the position of the robot rat’s pen. If the pen is up marking the floor is not
required. The move then becomes a matter of setting the value of current_row or current_col to the new position.
Error checking must be employed to make sure the move stays within the floor array boundaries.

If the robot rat’s pen position is down the floor must be marked, meaning each floor array cell affected by the
move must be set to true.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 69

The Project Specification Chapter 3: Project Walkthrough

The most complex part of the move() function will no doubt be the error checking code required to make sure the
moves stay within the floor boundaries. Again, pseudocode will be help you in your design. Example 3.5 gives the
pseudocode for the movement in the NORTH direction with the pen in the UP position.

3.5 NORTH move pseudocode
pen in the UP position

if current row minus spaces to move is greater than zero
set current row to current row minus spaces

else
set current row to zero

Movement in the NORTH direction is with the pen DOWN will be more involved because each floor array ele-
ment along the path of movement must be set to true. Example 3-6 gives the pseudocode for movement in the
NORTH direction with the pen in the DOWN position.

3.6 NORTH move pseudocode
pen in DOWN position

calculate number of spaces left to move north from current row
if spaces left to move is less than or equal to zero

set spaces to current row
while there are spaces left to move

set floor[current row] [current col] to true

decrement current row by one

decrement spaces by one

After completing your analysis of the move() function you are ready to move on to the implementation phase.

Implementation (Fifth Ireration)

Since the move() function is already stubbed all you need do is remove the stubbing message and replace it with
the source code that will give the move() function its required functionality.

First order of business is to get the number of spaces from the user. When the user selects menu item 5, the
move() function will be called. That would be a good place to ask for the number of spaces the user wants the robot
rat to move. The user’s entry will need to be stored for further processing but will not be needed outside of the move()
function. A local variable named spaces will do the trick. Once the user enters the spaces the move() function can do
its job. Figure 3-31 shows the code for the top half of the move() function. This part of the source code includes the
declaration of the spaces variable, the request for the user to enter the number of spaces to move and the assignment
of that value to the spaces variable using the cin object, and the switch statements that determine the position of the
pen and the robot rat’s direction.

The complete source code for the rest of the move() function is listed at the end of the chapter.

Testing (Fifth Ireration)

When you have completed implementing the move() function you need to test it thoroughly. Move with the pen
up and down in all directions. You must be absolutely sure that movement in any direction stays within the floor array
boundaries. Figure 3-32 shows the robot rat program after a few movements have been executed.

70 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 3: Project Walkthrough

The Project Specification

O robotrat.cpp =]
T’?T |3_IE Path: iw’ild Wild Rick Desktop Folder :(C++... :Chapter3 RobotRat robotrat.cpp Q
_ =]
woid moved Ji =
int spaces = B Declare local variable spaces
cout<{"How many spaces?: "j
ciny rspaces; Prompt user
switch{robotratiipen_position}{ Read Valuefrom keyboard
case UP: switch{robotrat:irats_direction{
c@se MORTH: if{robotratiicurrentron - spaces) |
robotrat! icuerent ron == spaces; Determine pen position
alze robotratlicurrent_ron = @)
case S0UTH: if{{robotratiicurrentron + spacesy < ROWS}
robotratlicurrent_ron += spaces; —]
;:\:;k;obotr\at: teurrentrow = (ROMS-1 3 Determine direction
case EAST: if(({robotrat:icurrent_col + spaces) { COLS)
elze robotrat:icurrent col = ooLs—t
break;
case UEST: if{robotrat!lcurrent_col - spaces)
robotrat!icurrent_col -= spacas)
else robotratiicurrent_col = &
break,
default? }
1
break; |2
Lre:134 [[~
Figure 3-31: move() Function, Top Half
RobotRat.out.out B
[=10=-1[-1[-1[-2[-2[-1[-1[-1[-1[-Q[-1[-1[-1[-1[-1[-1[-1[-1[-]
C 101010 10 10 10 10 10 10)0 10 °1C 10)0 10 10 10 10 1[-]
[10 10 10 10)0 10 10)0 10 1C 10 30 IC IC 10 10 10 10 1[-1]
L1010 1010310 10 1010 10 10 10 10 10 10 10 10 10 10 1[-1
[I0T0I0 10 T0 00 20 T0 00 10 00 30 10 00 10 10 1010 10
i I0 10 10 ¥0 ¥0 30 %0 %0 §0 OO 90 30 00 00 90 30 30 00 1i-1
C 1010 10 10 10 10 10-10=-00-20-20-00-00)0 1C 10 10 10 1[-]
[10 10 10 10 10 10 10 10 }C 10 Q0 1C-1C0 IC 10 IC Q0 10 1[-1
C 1010 10 10 10 10 10 10 10)0 10 1C=01C)0 1C 10 10 10 1[-]
[10 10 10 10 10 10 10 10 1C 10 Q0 1C-1C0 IC 10 IC Q0 10 1[-1
O O O O O O N A A A A A A A IO O A A YA
[10 10 10 10)10 10 10 10 10 10)0 1C=10 IC 10 IC Q0 10 1[-1
10101010 10 10 10 10 10 10 10 1.-1C)0 1C 10 10 10 10-]
L1010 10 10 10 10 10 10 10 10 10 10-10-10-1[=-1[-1[-1[-1[-1 [=]
C10 10 10 10 10)30 10)0 10 10 10 1C 10 1C 10 10 10 10 10 1 |=
OO0 00 I J0 100 00 HO30 10 M0 30 MO0 1000 I0 1 g
O O N
C10 3010 10 30 10 10 10 00 10 10 10 10 00)0 10 10 10 10 1 1 —
[10 10 10 10)10 10 10 10 }C 1C)C 1C 10 IC 10 10 Q0 10 10 1 [*]
LI 1010 1 10 111 1 i i 11 1 1 1 i 11 .

Figure 3-32: move() Function Test

Integration (Fifth heration)

Integration has again taken place along with implementation.

C++ For Artists

©2003 Rick Miller — All Rights Reserved

Wrapping Up The Project

Chapter 3: Project Walkthrough

Wrapping Up The Project

The implementation and testing of the move() function marks the beginning of the end of the robot rat project.
You must now give the complete program a thorough test of all functionality. Test until you are absolutely sure every-
thing runs according to specification and that it offers no rude surprises to a user. Table 3-11 lists a few things you will
want to double-check before handing in your project.

Double-Check...

To ensure...

Source code formatting

..it is neat, logically aligned, and indented.

Comments

...they are not overdone. Remember, if you used good names for functions, vari-
ables, and constants, your code will be largely self-commenting.

File Comment Header

..t is at the top of every source file and lists your name and the name of the
project. Check with your instructor for additional information required to be
placed in the file comment header.

When printing source code on paper

...that it fits on the page. If long lines wrap to the next line adjust the font, print in
the landscape mode, or split the line into smaller pieces in the source file.

Table 3-11: Things To Double-Check Before Handing In Project

Complete Robor Rar Source Code Lising

[K ok K ok ok K ok ok ok ok K ok ok ok ok ok K ok ok ok ok K ok ok K ok ok K ok ok K ok K ok ok K ok ok K ok kK ok

File:

robotrat.h

Student Name:
Project:

Class:

...and any additional header info

3.7 Complete Robot Rat
Source Code Listing

Kk Kk kkkkkkhkhhkhkkkhkkhkkhkkkhkkhkkhkkhkkkhkkhkkkkkkkkk*x /

#ifndef ROBOT_RAT H
#define ROBOT RAT H

const int ROWS
const int COLS

20;
20;

enum Direction {NORTH, SOUTH, EAST, WEST};
enum PenPosition {UP, DOWN};

void displayMenu() ;

void processMenuChoice () ;
void setPenUp();

void setPenDown();

void turnRight ();

void turnLeft ();

void move () ;

void printFloor();

void programExit ();

void doDefault ();

#endif

72

©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 3: Project Walkthrough

[Kk K ok ok K ok ok ok ok K ok ok ok ok ok K ok ko ok K ok ok K ok ok K ok ok K ok K ok ok K ok ok K ok kK ok

File: robotrat.cpp
Student Name:

Project:

Class:

...and any additional header info

ok ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok ok K ok ok K ok ok K ok ok K ok K ok ok ok ok ok Kk kR k Kk /

#include "robotrat.h"
#include <iostream.h>
#include <stdlib.h>

/o ok ok sk ok ok ok ok ok K ok K ok ok ok ok ok ok ok Kk

File Scope Variable Declarations
**/
namespace robotrat {
static bool floor[ROWS] [COLS] = {};
static PenPosition pen_position = UP;
static Direction rats_direction = EAST;
static int current_row = 0;
static int current_col = 0;

}

[KKK kK ok kK ok ok ok K ok ok K ok K ok K ok kK kK ok ok ok ok ok ok Kk Kk kR Kk ok ok Kk ok

Function Definitions
***/

void displayMenu () {
cout<<"1l. Pen Up"<<endl;
cout<<"2. Pen Down"<<endl;
cout<<"3. Turn Right"<<endl;
cout<<"4. Turn Left"<<endl;
cout<<"5. Move"<<endl;
cout<<"6. Print Floor"<<endl;
cout<<"7. Exit"<<endl;

void setPenUp () {

robotrat::pen_position = UP;

void setPenDown () {
robotrat::pen_position = DOWN;

void turnRight () {
switch (robotrat::rats_direction) {

case NORTH: robotrat::rats_direction = EAST;
break;

case EAST: robotrat::rats_direction = SOUTH;
break;

case SOUTH: robotrat::rats_direction = WEST;
break;

case WEST: robotrat::rats_direction = NORTH;
break;

default: robotrat::rats_direction = EAST;

void turnLeft () {
switch (robotrat::rats_direction) {

case NORTH: robotrat::rats_direction = WEST;
break;

case EAST: robotrat::rats_direction = NORTH;
break;

case SOUTH: robotrat::rats_direction = EAST;
break;

case WEST: robotrat::rats_direction = SOUTH;
break;

default: robotrat::rats_direction = EAST;

C++ For Artists ©2003 Rick Miller — All Rights Reserved

Complete Robot Rat Source Code Listing

73

Complete Robot Rat Source Code Listing Chapter 3: Project Walkthrough

void move () {
int spaces = 0;
cout<<"How many spaces?: ";
cin>>spaces;

switch (robotrat::pen_position) {

case UP: switch(robotrat::rats _direction) {
case NORTH: if (robotrat::current row - spaces)
robotrat::current_row —-= spaces;
else robotrat::current_row = 0;
break;

case SOUTH: if ((robotrat::current row + spaces) < ROWS)
robotrat::current_row += spaces;
else robotrat::current_row = (ROWS-1);
break;

case EAST: if((robotrat::current col + spaces) < COLS)
robotrat::current_col += spaces;

else robotrat::current_col = (COLS-1);
break;
case WEST: if (robotrat::current_col - spaces)
robotrat::current_col -= spaces;
else robotrat::current_col = 0;
break;
default: ;
}
break;

case DOWN: switch (robotrat::rats_direction) {

case NORTH: if ((robotrat::current_row - spaces)<=0)
spaces = robotrat::current_row;

while (spaces) {

robotrat::floor[robotrat::current row--] [robotrat::current_col] = true;
—-spaces;
}
break;
case SOUTH: if ((robotrat::current row + spaces) > ROWS)
spaces = ((ROWS-1) - robotrat::current_row);

while (spaces) {

robotrat::floor[robotrat::current_row++] [robotrat::current_col] = true;
--spaces;
}
break;
case EAST: if ((robotrat::current_col + spaces) >= COLS)
spaces = ((COLS-1) - robotrat::current_col);

while (spaces) {

robotrat::floor[robotrat::current_row] [robotrat::current_col++] = true;
--spaces;
}
break;
case WEST: if (robotrat::current_col - spaces<=0)

spaces = robotrat::current_col;

while (spaces) {

robotrat::floor[robotrat::current_ row] [robotrat::current_col--] = true;
—-—-spaces;
}
break;
default: ;
}
break;

default: ;

74 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 3: Project Walkthrough

void printFloor () {
for (int i=0; 1<ROWS; i++) {
for (int 3j=0; J<COLS; j++) {
if (robotrat::floor[i][3])
cout<<"[-]1";
else cout<<"[1";
}
cout<<endl;

}

void programExit () {
exit (0);

void doDefault () {

cout<<"Please Enter A Valid Menu Choice:

void processMenuChoice () {
char input = '0';
cout<<"Please Enter Menu Choice: ";
cin>>input;
switch (input) {

case 'l': setPenUp();
break;

case '2': setPenDown();
break;

case '3': turnRight();
break;

case '4': turnLeft ();
break;

case '5': move();
break;

case '6': printFloor();
break;

case '7': programExit ();

default : doDefault();

/***
File: main.cpp
Student Name:
Project:
Class:

...and any additional header info
**/

#include <iostream>
#include "robotrat.h"

using namespace std;

int main ()

{
for(;;){
displayMenu() ;
processMenuChoice () ;
}

return 0;

C++ For Artists ©2003 Rick Miller — All Rights Reserved

"<<endl;

Complete Robot Rat Source Code Listing

75

Summary Chapter 3: Project Walkthrough

Summary

Use the project approach strategy to help you sustain development momentum. Apply the development cycle iter-
atively. Don’t try to program everything at once. Break the problem into small pieces, solve the individual pieces, and
combine them into the total solution. Test, test, test!

Skill Building Exercises

1. Create Robot Rat Project: Using the source code from the robot rat project in this chapter, create a robot rat
project in your IDE, enter the source code, then compile and run the project.

2. Obtain Project Specifications: Obtain the project specifications or handouts for all the projects required for this
class. Apply the first phase of the project approach strategy to each one to ensure you understand the project
requirements.

Suggested Projects

1. Research: Research other software development methodologies. Compare them with the approach suggested in
this chapter. What are their similarities? What are their major differences?

Self Test Questions

1. What is the purpose of the project approach strategy?

2. What is the purpose of the development cycle?

3. Describe how to apply the project approach strategy and development cycle in an iterative fashion.

4. Why is it a good idea to do just enough design to get started coding? Does this approach have practical application
in the real programming world? What future problems regarding application design does using this approach help
to avoid?

5. How is function stubbing used in the robot rat project?

6. Why is component testing important?

7. Why is frequent component integration important?

8. What is the purpose of pseudocode?

9. What is the purpose of a state transition diagram?

10. What C++ flow control structure can be used to implement the functionality described by a state transition dia-

gram?

76 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 3: Project Walkthrough References

References

Metrowerks CodeWarrior Reference Documentation for Microsoft Windows 95/98/NT and Apple Macintosh.

Nortes

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 77

Notes Chapter 3: Project Walkthrough

78 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 4

Lines In The Sand

Compurters, PROGRAMS,
& Algorithms

Learning ODbijecrives

* Define the concepr of A computer

o Explain why the compurer is A remarkable device

* Explain low a compurer differs from orher machines

e Exphin how a compurer stores and Rerrieves proGrams for execution

o Snare the difference berween a compurer and A compurer system

* State the purpose of A microprocessor and The Role it plays iv A compurer system
* Define the concepr of a proGram from the human perspecrive avd the compurer perspecrive
* Describe How proGrams ARE REpRESENTEd iN A COMPUTER’S MEMORY

e List and describe the nine siages of the C++ proGram transformation process

e List avd describe the four steps of the processing cycle

* Snare the purpose and objective of A compurer’s memony system

* Define the concepr of an alGorithm

e List the characreristics of a Good algorithm

C++ For Artists ©2003 Rick Miller — All Rights Reserved

79

Introduction Chapter 4: Computers, Programs, & Algorithms

INTROducTiON

Computers, programs, and algorithms are three closely related topics that deserve your attention before you start
learning about C++ proper. Why? Simply put, computers execute programs, and programs implement algorithms. As
a programmer, you will live your life in the world of computers, programs, and algorithms.

As you progress through your studies you will find it extremely helpful to understand what makes a computer a
computer, what particular feature makes a computer a truly remarkable device, and how one functions from a pro-
grammer’s point of view. You will also find it helpful to know how humans view programs and how a human readable
program is translated into a computer executable form. Lastly, it will be imperative for you to thoroughly understand
the concept of an algorithm and how good and bad algorithms ultimately affect program performance.

Whar Is A Computer?

A computer is a device whose function, purpose, and behavior is prescribed, controlled, or changed via a set of
stored instructions. A computer can also be described as a general purpose machine. One minute a computer may exe-
cute instructions making it function as a word processor or page layout machine. The next minute it might be func-
tioning as a digital canvas for an artist. Again, this functionality is implemented as a series of instructions. Indeed, the
only difference between the computer functioning as a word processor and the same computer functioning as a digital
canvas is in the set of instructions the computer is executing in each case.

Computer vs. Computer System

Due to the ever shrinking size of the modern computer it is often difficult for students to separate the concept of
the computer from the computer system in which it resides. As a programmer, you will be concerned with both. By
that I mean you will need to understand issues that have a direct bearing on the particular processor that powers a
computer system in addition to issues related to the computer system as a whole. Luckily though, as a C++ program-
mer, you can be extremely productive armed with only a high-level understanding of each. Ultimately, I do recom-
mend spending the time required to get intimately familiar with your programming platform choice. For this chapter
I will use the Apple Power Mac G4 as an example, but the concepts are the same for any computer or computer sys-
tem.

Computer SysTem

A typical Power Mac G4 computer system is pictured in figure 4-1. The computer system comprises the system

Monitor > System Unit

A

Speaker \ / Speaker

Q
. < Mouse
Keyboard // Image courtesy Apple Computer, Inc.

Figure 4-1: Typical Power Mac G4 System

unit, monitor, speakers, keyboard, and mouse. The computer system also includes any operating system or utility soft-
ware required to make all the components work together.

80 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 4: Computers, Programs, & Algorithms What Is A Computer?

The system unit houses the processor, power supply, internal hard disk drives, memory, and other system com-
ponents required to interface the computer to the outside world. These interface components consume the majority of

available space within the system unit as shown in figure 4-2.

Image courtesy Apple Computer, Inc.

Power Suppl
Expansion Slots ipply
CD Rom/DVD
Hard Drive Bays
Main Logic Board .
Heat Sink
Processor

(under heat sink)

Figure 4-2: System Unit

The processor is connected to the system unit main logic board. Electronic pathways called buses connect the
processor to the various interface components. Other miscellaneous electronic components are located on the main
logic board to control the flow of communication between the processor and the outside world. Figure 4-3 is a block
diagram of a Power Mac G4 main logic board.

Processor Module

Processor connects Backside PowerPC G4
> L3 cache [3o ssek 1: Control circuits for sys
to main logic board L2 cachs: 29616 1:) Yy
tem buses and Input/
Main Logic Board 133 MHz Output devices
Max bus
; DIMM slots
A
Mainmemory |, e [ER 2 et on
expansion slots memery LA |
¥ Uni-N
e = | e
Memory bus and PCI PHY =) | Firewire port
PC slots bus bridge
O ki AGP 4xsiot
us
(= ——=1
System expansion >
B4-bit
slots 33 MHz
PCI bus
Internal CD or DVD Boot
connector ROM
EEEEEE
Internal Zip drive
connector Eh|uD$E usé port A
FEEEEER USB part &
Internal hard drive Dm?sﬁ DKGY;—:\?;
COMNEctors bus | and disk
controller Headphone jack
EEEEEEE Apple speaker mini-jack
Wireless LAN slot — s;:xz? Internal
—_— ki
Image courtesy Apple Computer, Inc. controller H e hetor

Figure 4-3: Main Logic Board Block Diagram

Figure 4-3 does a good job of highlighting the number of computer system support components required to help
the processor do its job. The main logic board supports the addition of main memory, auxiliary storage devices, com-
munication devices such as a modem, a wireless local area network card as well as a standard Ethernet port, key-
board, mouse, speakers, microphones, Firewire devices, and, with the insertion of the appropriate third party system
expansion card, just about any other functionality you can imagine. All this system functionality is supported by the
main logic board, but the heart of the system is the PowerPC G4 processor. Let us take a closer look.

C++ For Artists ©2003 Rick Miller — All Rights Reserved 81

What Is A Computer?

Processor

Chapter 4: Computers, Programs, & Algorithms

If you lift up the heat sink pictured in figure 4-2 you’d see a PowerPC G4 processor like the one shown in figure

4-4.

The PowerPC G4 7400 microprocessor pictured here runs at speeds
between 350 and 500 megahertz with a Millions of Instructions per Second
(MIPS) rating of 917 MIPS at 500 megahertz. All this means the G4 is a pow-
erful processor, yet at the time of this writing there are more powerful proces-
sors on the market, namely the G5!

The 7400 processor is a Reduced Instruction Set Computer (RISC)
meaning its architecture is optimized to execute instructions in as few clock
cycles as possible. The block diagram for the 7400 is shown in figure 4-5 and
is even more impressive than that of the main logic board. The G4 is a super-
scalar, pipelined processor. It is superscalar in that it can pull two instructions
from the incoming instruction stream and execute them simultaneously. It is
pipelined in that instruction execution is broken down into discrete steps
meaning several instructions can be in the pipeline at any given moment at
different stages of execution.

—

Figure 4-4: PowerPC G4 Processor

Instruction Unit

| Additional Features

- Time Base Counter/Decrementer
+ Clock Multiptier

+ JTAG/COP Interface

+ Thermal/Power Management

+ Performance Monitor

Instruction Queue
(6 Word)

Branch Processing
Unit
)

[

Instruction MMU 128-Bit

BHT
(512 Entry

)

2 Instructions

64-Bit (2 Instructions)

Y

Y

SRs

(Shado 1BAT
32-Kbyte

128-Entry| | Aray »| Tags ICacKee

ITLB

(4 Instructions)

A

Data MMU

|
(¢] |

L

32-Koyte

Tags | b Cache [

Y
A

Array

ntry
B

Reservation

Station {2 Entry)

Reservation
Station

FPR File

Load/Store Unit 6 Rename
[*] (EA Calculation) -
Finished Load Fold | | [¢ || [PointUnit

Buffers Floating-

Stores [—— | E— v

<AJA t\—»
Completed L1 [FPSCR |

Stores Operations| 64-Bit | 64-Bit

Reservation Reservation Reservation | | Reservation Reservation
Station Station VR File Station Station Station GPR File
\ + 6 Rename 6 Rename
Vector Vector ALU Buffers Integer Integer System Buffers
Permute Unit 2 Register Unit
Unit VSIU[VCIUVFPU 32-B
; ? [A = !II
[VSCR] i Vector
| 32-Bit 32-Bit Touch feea
Queue
128-Bit

o —

{

(8 Entry)
[——

Completion Unit

Completion Queue

Ability to complete up
| to two instructions per clock

18-Bit L2 Address Bus

Y

L2 Controller

L2 Data

Transaction [IXR]

Bus Interface Unit
1.2 Miss Data

A
Y

64-Bit L2 Data Bus

82

32-Bit Address Bus

¥

Transaction

e —

——/

Memory Subsystem
Data Reload Data Reload
Queue Table

Instruction Instruction
Reload Queue Reload Table
== £=d

Figure 4-5: Motorola PowerPC 7400 Block Diagram

©2003 Rick Miller — All Rights Reserved

Y

C++ For Artists

Chapter 4: Computers, Programs, & Algorithms What Is A Program?

Three Aspects of Computer ArchitecTure

There are generally three aspects of processor architecture programmers should be aware of: feature set, feature
set implementation, and feature set accessibility.

Feature Ser

A processor's feature set is derived from its design. Can floating point arithmetic be executed in hardware or must
it be emulated in software? Must all data pass through the processor or can input/output be handled off chip while the
processor goes about its business? How much memory can the processor access? How fast can it run? How much data
can it process per unit time? A processor’s design determines the answers to these and other feature set issues.

Feature Ser Implementation

This aspect of computer architecture is concerned primarily with how processor functionality is arranged and
executed in hardware. How does the processor implement the feature set? Is it a Reduced Instruction Set Computer
(RISC), or Complex Instruction Set Computer (CISC)? Is it superscalar and pipelined? Does it have a vector execu-
tion unit? Is the floating-point unit on the chip with the processor or does it sit off to the side? Is the super fast cache
memory part of the processor or is it located on another chip? These questions all deal with how processor functional-
ity is achieved or how its design is executed.

Feature Ser Accessibility

Feature set accessibility is the aspect of a processor's architecture you are most concerned with as a programmer.
Processor designers make a processor's feature set available to programmers via the processor's instruction set. A
valid instruction in a processor's raw instruction set is a set of voltage levels that, when decoded by the processor,
have special meaning. A high voltage is usually translated as “on” or “1” and a low voltage is usually translated as
“off” or “0”. A set of on and off voltages is conveniently represented to humans as a string of 1’s and 0’s. Instructions
in this format are generally referred to as machine instructions or machine code. However, as processor power
increases, the size of machine instructions grow as well, making it extremely difficult for programmers to deal
directly with machine code.

From Machine Code To Assembly

To make a processor's instruction set easier for humans to understand and work with each machine instruction is
represented symbolically in a set of instructions referred to as an assembly language. To the programmer, assembly
language represents an abstraction or a layer between programmer and machine intended to make the act of program-
ming more efficient. Programs written in assembly language must be translated into machine instructions before
being executed by the processor. A program called an assembler translates assembly language to machine code.

Although assembly language is easier to work with than machine code it requires a lot of effort to crank out a
program in assembly code. Assembly language programmers must busy themselves with issues like register usage
and stack conventions. High-level languages like C++ add yet another layer of abstraction. C++, with its object-ori-
ented language features, let programmers think in terms of solving the problem at hand, not in terms of the processor.

When you program in C++ you are targeting an abstract machine as defined by the ANSI C++ standard and
implemented in a particular compiler and supporting standard libraries.

Whar Is A Program?

Intuitively you already know the answer to this question. A program is something that runs on a computer. This
simple definition works well enough but as a programmer you will need to arm yourself with a better understanding
of exactly what makes a program a program. In this section I will discuss programs from two aspects: the computer
and the human. You will find this information extremely helpful and it will tide you over until you take a formal
course on computer architecture.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 83

What Is A Program? Chapter 4: Computers, Programs, & Algorithms

Two Views of A Program

A program is a set of programming language instructions and any data the instructions act upon or manipulate.
This is a reasonable definition and if you are a human it will do; If you are a processor it just will not fly. That is
because humans are great abstract thinkers and computers are not, so it is helpful to view the definition of a program
from two points of view.

The Human Perspecrive

Humans are the masters of abstract thought; it is the hallmark of our intelligence. High-level, object-oriented lan-
guages like C++ give us the ability to analyze a problem abstractly and symbolically express its solution in a form
that is both understandable by humans and readable by other programs. By other programs I mean the C++ code a
programmer writes must be translated from C++ into machine instructions recognizable by a particular processor.
This translation is effected by running a compiler that converts the C++ code to object code targeted to a specific
machine.

To a C++ programmer a program is a collection of classes that model the behavior of objects in a particular prob-
lem domain. These classes model object behavior by defining object attributes (data) and class methods to manipulate
the class attributes. On an even higher level, a program can be viewed as an interaction between objects. This view of
a program is convenient for humans.

The Compurer Perspective

From the computer’s perspective a program is simply machine instructions and data. Usually both the instruc-
tions and data reside in the same memory space. This is referred to as a Von Neumann architecture. In order for a pro-
gram to run it must be loaded into main memory and the address of the first instruction of the program given to the
processor. In the early days of computing programs were coded into computers by hand and then executed. Nowadays
all the nasty details of loading programs from auxiliary memory into main memory are handled by an operating sys-
tem, which, by the way, is a program.

Since both instructions and data reside in main memory how does a computer know when it is dealing with an
instruction or with data? The answer to this question will be discussed in detail below but here’s a quick answer: It
depends on what the computer is expecting. If a computer reads a memory location expecting to find an instruction
and it does, everything runs fine. The instruction is decoded and executed. If it reads a memory location expecting to
find an instruction but it is not an instruction, then the decode fails and the computer might lock up!

Concepr of Observable Behavior

When you write a C++ program you will use a compiler to translate the source code into a machine readable
form. The compiler you use represents an implementation instance of an abstract machine as defined by the ANSI
C++ standard.

Various aspects of the abstract machine fall into three categories. They are either implementation-defined,
unspecified, or undefined. What does this mean to you the programmer? It means that each compiler writer may
implement the abstract machine differently but, given a well-formed C++ program, each implementation should pro-
duce the same observable behavior. The best definition of observable behavior comes straight from the ANSI C++
standard.

The observable behavior of the abstract machine is its sequence of reads and writes to volatile data
and calls to library 1/O functions.

In other words, if you write a well-formed C++ program and compile it with compiler A, and again with another
compiler B, both compilers A and B should produce an executable program that when run demonstrates the same
observable behavior regardless how the writers of each compiler implemented the operation of the abstract machine.
Each compiler manufacturer documents how their product implements the abstract machine. I recommend you get to
know your development environment inside and out.

84 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 4: Computers, Programs, & Algorithms The C++ Program Transformation Process

The C++ Program Transformation Process

C++ programs are translated into executable modules via a nine phase process. Each phase is briefly discussed
below and illustrated in figure 4-6.

Phase 1

In phase 1, physical source file characters are mapped to the basic source character set. The basic source charac-
ter set includes the following 91 graphical characters:

Q

bcdefghijklmnopgerstuvwzx
BCDEFGHIJKLMNOPOQRSTUVWX
12345¢6 7189

YL HFE ()< >80 L2y =) N~ =, N

>
O

(@)

In addition to these there are five non-graphical characters: space, horizontal tab, vertical tab, form feed, and new
line.

Next, all trigraph sequences are replaced by corresponding single-character internal representations. Table 4-1
gives the trigraphs and their single replacement characters.

Trigraph Replacement
7= #
7 \
” A
™ [
7)]
m |
77< {
77> ¥
- ~

Table 4-1: Trigraph Replacement

Trigraphs are used by programmers who are programming in C++ on terminals that lack the special characters
required by the basic source character set.

Phase 2

In phase 2, new-line characters and preceding backslashes are deleted.

Phase 3

In phase 3, the source file is decomposed into preprocessing tokens and sequences of white-space characters.
Each comment is replaced by a single space character.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 85

The C++ Program Transformation Process Chapter 4: Computers, Programs, & Algorithms

Phase 4

In phase 4, the preprocessing directives are executed and macros are expanded.

Phase 9

In phase 5, each source character set member, escape sequence, or universal-character-name in character or string
literals is converted to a member of the execution character set. The execution character set is the basic source charac-
ter set plus the control characters plus a null character.

You were introduced to the basic source character set in phase 1. An escape sequence can be either simple, octal,
or hexadecimal. Table 4-2 gives the valid escape sequences.

Character Abbreviation szziﬁie
newline NL (LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR
form feed FF \f
alert BEL \a
backslash \ \
question mark ? \?
single quote ’ \
double quote " \"
octal number 000 \ooo
hexadecimal number hhh \xhhh

Table 4-2: Escape Sequences
A universal character name provides a way to name other characters. A universal character name is formed by a
backslash character followed by a lower case u or upper case U, followed by a sequence of 4 or 8 hexadecimal char-

acters. The following is an example of a universal character name:

\UAAAAAAAA

Phase 6

In phase 6, adjacent character or string literals are concatenated.

Phase 7

In phase 7, preprocessing tokens are converted to tokens. The tokens are then syntactically and semantically ana-
lyzed and translated.

86 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 4: Computers, Programs, & Algorithms The Processing Cycle

Phase 8

In phase 8, translated translation units and instantiation units are combined.

A translation unit consists of a source file, its headers and any source files included via the #include preprocessor
directive, minus any source lines skipped by conditional compilation.

If a translation unit instantiates template functions or classes then the required templates are located and the
instantiations performed.

Phase 9

In phase 9, external object and function references are resolved, and library components are linked. All output
from the translation is combined into a program image. Once the C++ source code has been translated into an execut-
able module targeted for a specific processor it can be executed. The entry point for all C++ programs is the main()
function.

Phase 1 Phase 2 Phase 3
Source file characters Newline characters and Source files decomposed
mapped to basic _ | preceeding backslashes _ into preprocessing
source character set. = deleted. - tokens. Comments
Trigraph sequences replaced with single
replaced. space.
Y
Phase 6 Phase 5 Phase 4
Adjacent string and Source character set Preprocessing
character literals » escape sequence and | directives executed.
concatenated. < universal character N Macros expanded.
names conversion.
y
Phase 7 Phase 8 Phase 9
Preprocessing tokens Translation and External object and
converted to tokens. _ instantiation units » function references
Tokens syntactically » combined. . resolved. Library
and sema;é‘lically components linked.
analyzed. Target image produced.

Figure 4-6: C++ Translation Phases

The Processing Cycle

Computers are powerful because they can do repetitive things really fast. When the executable code is loaded
into main memory the processor can start executing the machine instructions. When a computer executes or runs a
program it constantly repeats a series of processing steps commonly referred to as the processing cycle. The process-
ing cycle consists of four primary steps: instruction fetch, instruction decode, instruction execution, and result store.
The step names can be shortened to simply fetch, decode, execute, and store. Different processors will implement the
processing cycle differently but for the most part these four processing steps are being carried out in some form or
another.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 87

Memory Organization Chapter 4: Computers, Programs, & Algorithms

Ferch

In the fetch step, an instruction is read from main
memory and presented to the decode section of the pro-
cessor. If the requested memory address contents resides
in cache memory the read operation will happen quickly.
Otherwise, the processor will have to wait for the data to
be accessed from main memory, which has a slower
access time than does cache memory.

Processing
Cycle

Decode

Decode
In the decode step, the instruction fetched from main
memory is decoded. If the computer thinks it is getting an
instruction but instead it gets garbage there will be prob-
lems. A computer system’s ability to recover from such

situations is generally a function of a robust operating
system. Figure 4-7: Processing Cycle

Execure

If the fetched instruction is successfully decoded, meaning it is a valid instruction in the processor’s instruction
set, it is executed. A computer is a bunch of switches. Executing an instruction means the computer’s electronic
switches are switched either on or off, and clocked in a particular fashion to carry out the particular instruction.

StoRE

After an instruction is executed the results of the execution, if any, must be stored somewhere. Most arithmetic
instructions leave the result in one of the processor’s onboard registers. Memory write instructions would then be
used to transfer the results to main memory. Keep in mind that there is only so much storage space inside of a proces-
sor. At any given time, almost all data and instructions reside in main memory, and are only loaded into the processor
when needed.

Why A ProGram Crashes

Notwithstanding catastrophic hardware failure, a computer crashes or locks up because what it was told was an
instruction was not! The faulty instruction loaded from memory turns out to be an unrecognizable string of 1’s and 0’s
and when it fails to decode into a proper instruction the computer halts.

Memory ORGANIZATION

Most modern computer systems have similar memory organizations and as a programmer you should be aware of
how computer memory is organized and accessed. The best way to get a good feel for how your computer works is to
poke around in memory and see what’s in there for yourself. This section provides a brief introduction to computer
memory concepts to help get you started.

Memory Basics

A computer’s memory stores information in the form of electronic voltages. There are two general types of mem-
ory: volatile and non-volatile. Volatile memory will lose any information stored there if power is removed for any
length of time. Main memory and cache memory, two forms of Random Access Memory (RAM), are examples of

88 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 4: Computers, Programs, & Algorithms Memory Organization

volatile memory. Auxiliary storage devices such as CD ROMs, DVDs, hard disk drives, floppy disks, and tapes, are
examples of non-volatile memory.

Memory Hierarchy

Computer systems contain several different types of memory. These memory types range from slow and cheap to
fast and expensive. The proportion of slow cheap memory to fast expensive memory can be viewed in the shape of a
pyramid commonly referred to as the memory hierarchy as shown in figure 4-8.

Auxnllar% Memory
Hard Drives, DVD, CD- ROM
Tape, etc.

Figure 4-8: Memory Hierarchy

The job of a computer system designer with regards to memory subsystems is to make the whole computer per-
form as if all the memory were fast and expensive. Thus they utilize cache memory to store frequently used data and
instructions and buffer disk reads to memory to give the appearance of faster disk access. Figure 4-9 shows a block
diagram of the different types of memory used in a typical computer system.

Faster memory is checked for the requested data or instruction first. If it is not there, a performance penalty is
extracted in the form of longer overall access times required to retrieve the information from a slower memory source.

Birs, Byres, Words Main Memory

Program code and data are stored in main memory :
as electronic voltages. Since I'm talking about digital f—:
computers the voltages levels represent two discrete ﬁ’,,:r‘,fﬂ',;
states depending on the level. Usually low voltages = —]
represent no value, off, or 0, while a high voltage rep- ’}‘iﬁiﬁ;g?’ 4P ﬂ':,mic ﬁlx“ﬁ el
resents on, or 1. —

When program code and data is stored on auxil- Processor
iary memory devices, electronic voltages are translated _— i
into either electromagnetic fields (tape drives, floppy :
and hard disks) or bumps that can be detected by laser
beam (CDs, DVDs, etc.).

f

v

Bir

The bit represents one discrete piece of informa-
tion stored in a computer. On most modern computer Figure 4-9: Simplified Memory Subsystem Diagram
systems bits cannot be individually accessed from

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 89

Memory Organization Chapter 4: Computers, Programs, & Algorithms

memory. However, after the byte to which a bit belongs is loaded into the processor the byte can be manipulated to
access a particular bit.

Byre

A byte comprises 8 bits. Most computer memory is byte addressable although as processors become increasingly
powerful and can manipulate wider memory words, loading bytes by themselves into the processor becomes increas-
ingly inefficient. This is the case with the G4 processor and for that reason the fastest memory reads can be done a
word at a time.

Word

A word is a collection of bytes. The number of bytes that comprise a word is computer system dependent. If a
computer’s data bus is 32 bits wide and its processor’s registers are 32 bits wide then the word size would be 4 bytes
long. Bigger computers will have larger word sizes meaning they can manipulate more information per unit time than
a computer with a smaller word size.

Alignment and Addressability

C++ programmers can expect to find the memory on their systems to be byte addressable and word aligned. Fig-
ure 4-10 shows a simplified diagram of a main memory divided into bytes and the different buses connecting it to the
processor.

High Memory

FFEF | 00000000 | 00000000 | 00000000 | 00000000 Data is read into
Each word 00000000 | 00000000 | 00000000 | 00000000 the processor a
comprises word at a time
Jour bytes via the data bus
00000000 | 00000000 | 00000000 | 00000000
00000000 | 00000000 | 00000000 | 00000000
00000000 | 00000000 | 00000000 | 00000000
00000000 | 00000000 | 0oooo000 | oononooo
Addresses 00000000 | 00000000 | 00000000 | 00000000
increase from Data Bus
low to high ’ 00000000 | 00000000 | 00000000 | 00000000
memory sonouons [-address Bus
H0000000 | 0000000 | H0000000 | HODO00O0
00000000 | 00000000 | 00000000 Control Bus
00000000 | 00000000 | 00000000 | 00000000
00000000 | 00000000 | 00000000 | 00000000
00000000 | 00000000 | 00000000 | 00000000
00000000 | 00000000 | 00000000 | 00000000
Word bound- 000C
aries indicated 0008
by addresses 0004
divisible by 0000 | 00000000 | 00000000 | 00000000 | 00000000
four bytes Low Memory

Figure 4-10: Simplified Main Memory Diagram

The memory is byte addressable in that each byte can be individually accessed although the entire word that con-
tains the byte is read into the processor. Data in memory can be aligned for efficient manipulation. Alignment can be
to natural or some other boundary. For example, on a PowerPC system, contents of memory assigned to instances of
structures is aligned to natural boundaries meaning a one byte data element will be aligned to a one byte boundary. A
two byte element would be aligned to a two byte boundary. Individual data elements not belonging to structures are
usually aligned to four byte boundaries.

90 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 4: Computers, Programs, & Algorithms Algorithms

Understanding alignment will come in handy when you start trying to understand where your compiler is putting
your program variables. Figure 4-11 shows a project settings window for Metrowerks CodeWarrior™ . Notice the tab
pointed to by the arrow that says Struct Alignment. The options for this tab are listed in table 4-3.

You can specify structure memory alignment!

E _—————— PPC 5td C Console Settin’(E E
—_——

H Target Settings Panels E PFC FProcessor

~ Target

Target Settings Struct Alignmentzl PowerPC K S I D Processor Specific Instructions

Access Paths

Build Extras Traceback Tahles] Peephole Optimization

Runtime Settings _ — 1 Make Strings Read-0nly

File Mappings Target Processor] Generic PowsrPC | ¥

Source Trees I Profiler Information

[AltiYec Programming Model

PPC Target = i [Use FMADD & FMSUE
= Language Settings [A Generate YRSAVE Instructions i

C/C++ Language [Auto ¥ectorize {lgnored, TEI [Sehedule Instructions

C/C++ varnings

;Efﬁsm _EStore Small Static Data in TOC

= Code Generation [Store Static Yector Data in TOC
PPC Processor
PPC Dizassembler | []Euilt-Ins Instead of Common C Lib Routines
Global Optimizations
< Linker

PPE Linker

FFC FEF

= Fditor

[Factory Settings | | RevertPanel |

]

Figure 4-11: CodeWarrior Code Generation Settings Window

Tab Selected... Results In...

68K 2-byte boundaries, unless a field is only 1-byte long. This is the standard alignment for

(meaning a 68000 proces- | 68K Macintosh computers.

sor)

68K 4-byte 4-byte boundaries

PowerPC Its natural boundary. For example, it aligns a 1-byte character on a 1-byte boundary
and a 16-bit integer on a 2-byte boundary. The compiler applies this alignment recur-
sively to structured data and arrays containing structured data. So, for example, it
aligns an array of structured types containing an 8-byte floating point member on an
8-byte boundary. This is the standard alignment for Mac OS computers.

Table 4-3: CodeWarrior Structure Alignment
Algorithms

Computers run programs; programs implement algorithms. A good working definition of an algorithm for the
purposes of this book is that an algorithm is a recipe for getting something done on a computer. Pretty much every
line of source code you write is considered part of an algorithm. What I’d like to do in this brief section is bring to
your attention the concept of good vs. bad algorithms.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 91

Algorithms Chapter 4: Computers, Programs, & Algorithms

Good vs. Bad Algorithms

There are good ways to do something in source code and there are bad ways to do the same exact thing. A good
example of this can be found in the act of sorting. Suppose you want to sort in ascending order the following list of
integers:

1,10,7,3,9,2,4,6,5,8,0,11
One algorithm for doing the sort might go something like this:

Step 1: Select the first integer position in the list

Step 2: Compare the selected integer with its immediate neighbor

Step 2.2: If the selected integer is greater than its neighbor swap the two integers

Step 2.3: Else, leave it where it is.

Step 3: Continue comparing selected integer position with all other integers repeating steps 2.2 - 2.3
Step 4: Select the second integer position on the list and repeat the procedure beginning at step 2.

Continue in this fashion until all integers have been compared to all other integers in the list and have been placed
in their proper position.

This algorithm is simple and straightforward. It also runs pretty fast for small lists of integers but it is really slow
given large lists of integers to sort. Another sorting algorithm to sort the same list of integers may go as follows:

Step 1: Split the list into two equal sublists

Step 2: Repeat step 1 if any sublist contains more than two integers

Step 3: Sort each sublist of two integers

Step 4: Combine sorted sublists until all sorted sublists have been combined

This algorithm runs a little slow on small lists because of all the list splitting going on but sorts large lists of inte-
gers way faster than the first algorithm. The first algorithm lists the steps for a routine I call dumb sort. Example 4.1

gives the source code for a short program that implements the dumb sort algorithm.
4.1 Dumb Sort Test Program

1 #include <iostream.h>

2

3 int main () {

4 int afl] = {1,110, 7, 3, 9, 2, 4, 6, 5, 8, 0, 11};
5 int innerloop = 0;

6 int outerloop = 0;

7 int swaps = 0;

8

9 for(int 1 = 0; i<12; i++){

10 outerloop++;

11 for(int j = 1; 3j<12; Jj++){

12 innerloop++;

13 if(alj-1] > al3jl) |

14 int temp = al[j-1];

15 alj-1] = al3l;

16 alj] = temp;

17 swaps++; }}}

18

19 for(int 1 = 0; 1i<12; i++)

20 cout<<a[i]<<" ";

21

22 cout<<endl;

23 cout<<"Outer loop executed "<<outerloop<<" times."<<endl;
24 cout<<"Inner loop executed "<<innerloop<<" times."<<endl;
25 cout<<swaps<<" swaps completed."<<endl;

26 return 0;}

Included in the dumb sort test source code are a few variables intended to help collect statistics during execution.
These are innerloop, outerloop, and swaps declared on lines 5, 6, and 7 respectively. Figure 4-12 gives the
results from running the dumb sort test program.

92 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 4: Computers, Programs, & Algorithms Algorithms

Notice that the inner loop executed 132 times and that 30 swaps Dumb Sort.out.out
were conducted. Can the algorithm run any better? One way to checkis ([oo oo o
to rearrange the order of the integers in the array. What if the list of inte- || Duter loop executed 12 times.
gers is already sorted? Figure 4-13 gives the results of running dumb éEHZEG;OED:;Tg}”;g? 192 kines.
sort on an already sorted list of integers:

S |

0,1,2,3,4,5,6,7,8,9,10, 11

It appears that both the outer loop and inner loop are executed the
same number of times in each case, which is of course the way the
source code is written, but it did run a little faster because fewer swaps
were necessary.

Figure 4-12: Dumb Sort Results 1

Dumb_5ort.out.out
23456782018 11

loon executed 12 Fimes
loop executed 12 times.

s« |

Can the algorithm run any worse? What if the list of integers is completely
unsorted? Figure 4-14 gives the results of running dumb sort on a com-
pletely unsorted list:

a1
Oite
Inher loop executed 132 times.
8 zwaps completed.

11,10,9,8,7,6,5,4,3,2,1,0

The outer loop and inner loop executed the same number of times but 66
Figure 4-13: Dumb Sort Results 2 swaps were necessary to put everything in ascending order. So it did run a
little slower this time.

Dumb_Sort.out.out
812345678918 11

In dumb sort, because we’re sorting a list of 12 integers, the inner loop

executes 12 times for every time the outer loop executes. If Dump Sort Outer loop executed 12 times.
. . Inner loop executed 132 times.
needed to sort 10,000 integers then the inner loop would need to execute 66 swops completed.

10,000 times for every time the outer loop executed. To generalize the per-
formance of dumb sort you could say that for some number N integers to
sort, dumb sort executes the inner loop roughly N x N times. There is some
other stuff going on besides loop iterations but when N gets really large, the Figure 4-14: Dumb Sort Results 3
loop iteration becomes the overwhelming measure of dumb sort’s perfor-
mance as a sorting algorithm. Computer scientists would say that dumb sort has order N? performance. Saying it
another way, for a really large list of integers to sort, the time it takes dumb sort to do its job is approximately the
square of the number N of integers that need to be sorted.

When an algorithm’s running time is a function of the size of its input the term used to describe the growth in
time to perform its job vs. the size of the input is called the growth rate. Figure 4-15 shows a plot of algorithms with

the following growth rates: log n, n, n log n, n2, n on"

NEID

10
a0
" nlogn
o
n
n’ ¥
407 log n
n2
0]

=il 40 N & =] 100

Figure 4-15: Algorithmic Growth Rates

As you can see from the graph, dumb sort, with a growth rate of nz, is a bad algorithm, but not as bad as some
other algorithms. The good thing about Dumb Sort is that no matter how big its input grows, it will eventually sort all
the integers. Sorting problems are easily solved. There are some problems, however, that defy straightforward algo-
rithmic solution.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 93

Summary Chapter 4: Computers, Programs, & Algorithms

Don’t Reinvent The Wheel!

If you are new to programming the best advice I can offer is for you to seek the knowledge of those who have
come before you. There are many good books on algorithms, some of which are listed in the reference section. Study-
ing good algorithms helps you write better code.

Summary

Computers run programs; programs implement algorithms. As a programmer you need to be aware of develop-
ment issues regarding your computer system, the processor it is based on, and the programming language.

A computer system comprises a processor, I/O devices, and supporting operating system software. The processor
is the heart of the computer system.

Programs can be viewed from two perspectives: human and computer. From the human perspective, programs,
are a high-level solution statement to a particular problem. Object-oriented languages like C++ help humans model
extremely complex problems algorithmically. C++ programs can also be viewed as the interaction between objects in
a problem domain.

To a computer, programs are a sequence of machine instruction and data located in main memory. Processors run
programs by rapidly executing the processing cycle of fetch, decode, execute, and store. If a processor expects an
instruction and gets garbage it is likely to halt processing. Robust operating systems can mitigate this problem to a
certain degree.

C++ programs are translated into machine code via a nine phase process.

There are bad algorithms and good algorithms. Study from the pros and you will improve your code writing
skills.

Skill Building Exercises

1. Research Sorting Algorithms: The second sorting algorithm listed on page 86 gives the steps for a merge sort.
Obtain a book on algorithms, look for some C++ code that implements the merge sort algorithm, and compare it to
Dumb Sort. What’s the growth rate for a merge sort algorithm? How does it compare to Dumb Sort’s growth rate?

2. Research Sorting Algorithms: Look for an example of a bubble sort algorithm. How does the bubble sort algo-
rithm compare to Dumb Sort? What small changes can be made to Dumb Sort to improve its performance to that of
bubble sort? What percentage of improvement is obtained by making the code changes? Will it make difference for
large lists of integers?

Suggested Projects

1. Research Computer System: Research your computer system. List all its components including the type of pro-
cessor. Go to processor manufacturer’s web site and download developer information for your systems processor.
Look for a block diagram of the processor and determine how many registers it has and their sizes. How does it get
instructions and data from memory? How does it decode the instructions and process data.

2. Compare Different Processors: Select two different microprocessors and compare them to each other. List the
feature set of each and how the architecture of each implements the feature set.

94 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 4: Computers, Programs, & Algorithms Self Test Questions

Self Test Questions

1. List at least five components of a typical computer system.

2. What device do the peripheral components of a computer system exist to support?

3. From what two perspectives can programs be viewed? How does each perspective differ from the other?
4. List the nine phases of the C++ translation process.

5. What are the function of trigraphs?

6. What is a C++ translation unit?

7. List and describe the four steps of the processing cycle?

8. State in your own words the definition of an algorithm.

9. How does a processor’s architecture serve to implement its feature set?

10. How can programmers access a processor’s feature set?

References

Motorola. PowerPC 601 RISC Microprocessor User’s Manual
Motorola. PowerPC 7400 RISC Microprocessor User’s Manual

Sedgewick, Robert. Algorithms in C++, Addison-Wesley Publishing Company, Reading Massachusetts, 1992,
ISBN 0-201-51059-6.

Corman, Thomas, et. al. Introduction To Algorithms, The MIT Press, Cambridge, Massachusetts, 1990, ISBN 0-
262-03141-8

International Standard, ISO/IEC 14882, Programming Languages — C++, First Edition 1998-09-01

Notes

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 95

Notes Chapter 4: Computers, Programs, & Algorithms

96 ©2003 Rick Miller — All Rights Reserved C++ For Artists

C++ For Artists

Parr Il: C++ Language Fundamentals

©2003 Rick Miller — All Rights Reserved

97

98

©2003 Rick Miller — All Rights Reserved

C++ For Artists

CHApreR 2

Fiery Desert Nighr

Simple ProGRrAMS

Learning ODbijecrives

* Describe whar consritutes A minimum well-formed C++ proGram

e List the keywords reserved for use by the C++ lanGuage

* Siare the purpose of variables, consiants, expressions, and sTATEMENTS

* Demonstrate your Ability 1o declare, define, avd use variables

* Demonsirate your ability 1o declare, define, and use constants

e List and describe the purpose of the C++ fundamenial dam rypes

* Determine dara 1ype sizes with The sizeof OperATOR

e Urilize variables and consiants in sivple C++ proGrams

e List the narive C++ operators and state Their precedence

* Write C++ proGrams using simple and compound statements

* Describe variable scoping and smre how the block sructure of C++ can affecr variable visibility
o Urilize simple inpur and outpur technigues using the cin avd cour objects

* Describe the reguired parts of A minimal C++ proGram

e Urilize an IDE’s disassembly 100l 10 Gain deeper uvdersianding of C++ proGram sTRuCTURE

e List and describe the parts of a rypical C++ proGram 1o include source files, main() funcrion, library files, and
PREPROCESSOR dIRECTIVES

C++ For Artists ©2003 Rick Miller — All Rights Reserved

Introduction Chapter 5: Simple Programs

INTROducTiON

This is the most important chapter in this book! A thorough understanding of fundamental C++ language features
such as variable and constant declaration, variable scoping, operator usage, and statement construction, will provide
you with the background required to enhance your understanding of the more complicated aspects of the language.

My intent in this chapter is to present to you material that in most C++ courses is either glossed over or skipped
entirely because it is assumed the student will learn it along the way. This mode of thinking isn’t entirely faulty, but
the unfortunate result from such an approach is the formulation of bad programming habits early in a student’s career.
Bad programming habits are difficult to correct and inhibit one’s ability to understanding the more salient, and power-
ful, features of C++.

Keeping the above in mind, resist the urge to skip over material you think seems too easy. If you must challenge
the chapter, proceed to the skill building exercises, suggested projects, or self test question sections to see if you are in
fact ready to move along with your studies. You cannot make a mistake by giving yourself extra time to dwell on the
material covered in this chapter.

A Minimal C++ Program

The following source code is an example of the smallest C++ program you can write.
int main(){ }

The program doesn’t do much yet everything is there. Every C++ program must have one, and only one, main()
function. The main() function must return an integer value. The value returned by the main() function is a result code
intended for use by the operating system. The result code gives some indication of how the program terminated.
Readers with some experience will note the absence of a return statement in the body of main(). A return statement is
not necessary because the compiler does the job for you by default. You can compile and run this minimal program
but on most computers you’d receive no indication it had executed.

Example 5.1 gives a disassembled version of the minimal main() function targeted for a PowerPC processor
using Metrowerks CodeWarrior’s disassembly feature.

5.1 Disassembled Minimal
main() Function

Names:

1: .main

2: main

3: TOC
Hunk : Kind=HUNK GLOBAL CODE Align=4 Class=PR Name=".main” (1) Size=8
00000000: 38600000 11 r3,0

00000004: 4E800020 blr

Hunk: Kind=HUNK GLOBAL IDATA Align=4 Class=DS Name="main” (2) Size=8

00000000: 00 00 00 00 00 00 00 0O e !
XRef: Kind=HUNK_XREF_32BIT Offset=$00000000 Class=PR Name=".main” (1)
XRef: Kind=HUNK_ XREF_ 32BIT Offset=$00000004 Class=TCO0 Name="TOC” (3)

Hunk: Kind=HUNK GLOBAL IDATA Align=4 Class=TC0O0 Name="TOC” (3) Size=0

If you feel intimidated by example 5.1 don’t be. It looks complicated because to understand everything shown
requires some knowledge of the PowerPC processor and the Macintosh G4 system architecture, but for now, a quick
explanation of what’s going on will suffice.

100 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 5: Simple Programs A Minimal C++ Program

Example 5.1 contains five sections but I will only discuss the first two sections for now. Starting from the top, the
first section is a name table containing three entries: .main, main, and TOC. (TOC stands for Table of Contents) The
next section, prefixed with the label Hunk: is the code section. Its class is PR, meaning it is a Read/Write Control Sec-
tion and its name is .main. In this section there appear two instructions. The first instruction, 11, located at offset
00000000, is an extended PowerPC mnemonic meaning Load Immediate. Further to the right of the 11 instruction
are two operands, r3, which stands for register 3, and 0 which is the integer value zero. When this line is executed the
integer value zero will be loaded into register 3.

The next line contains the extended mnemonic b1 r which stands for Branch Link Register. The link register is a
special register in the PowerPC processor that will contain the memory address of the next instruction of the calling
routine. When this line is executed the program will return, or jump back to the program that called it. The fact that
the calling routine requires the result code to be located in register 3 upon program termination is a matter of protocol.

Putting the two instructions together yields the following behavior from the minimal main() function: When the
program is run, the value zero is loaded into general purpose register 3 and the program jumps back from whence it
came. The calling program may or may not make use of the result code.

Disassembly is A Grear Learning Tool

A great way to dig deeper into the workings of your computer and the C++ language is to disassemble your
source code. Example 5-1 was generated with CodeWarrior’s disassembly feature. To set the desired output format
for disassembled code listings from the Edit menu select the PPC Std C++ Console Settings... item as shown in Fig-

ure 5-1.
T @ File B:N@ Search Project Debug Window Help

Can't Undo ®Z This will bring up the PPC Std C++ Console Settings
Cantfedo o dialog box shown in figure 5-2. In the Code Generation sec-
cut #®X . . .

ey %C tion select the PPC Disassembler and select the options
S €3 shown. It is also a good idea to select the other options and
Clear clear .

select All %A then disassemble the source code to see what effects each
Balance #B option has on code generation.

Shift Left %[

Shift Right #]

Insert Reference Template [0 =————————""PPCS5td (++ CONSOIE semngs;a'
Preferences... Ii Target Settings Panels IE PPC Disassembler

PPC Std C++ Console Settings.,. [Taﬂfﬁ:t sotings
Version Control Settings
Commands & Key Bind

[Show Code Modules
[Usze Extended Mnemonics
(] Show Source Code

[oniy Show Operands and Mnemenica

Aocess Paths
Bt Eodens
Buitd Extras

Runtirme Settinas
13 o

.
i
I

Figure 5-1. Selecting Std C++ Console Settings

— [Show Data Modules
[Dissssemble Excaption Tables

C/C+ 4 Warnings

PPCazm M1 Shene SYM Infs
[Show SYM Infe

If you are targeting a PC then the options you |||, caw cseratian I Show e Table
will see when editing the Std C++ Console Set- A
tings will be different from those shown here. o iker
Regardless, the concepts are the same. ;;E il

Once you have selected the desired disassem-
bler options save the settings and exit the Std C++
Console Settings dialog. You are now ready to dis-
assemble a source file.

,,,,,,,,,,,,,,,,,,

Figure 5-2. PPC Std C++ Console Settings Dialog

Select the source file you wish to disassemble from those listed in your project window. For this example I cre-
ated a project called Minimal Program, created one file called main.cpp that contains the simple main() function and
located it in the Sources group. The Minimal Program project window is shown in figure 5-3 with the main.cpp file
highlighted.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 101

Another C++ Program

Chapter 5: Simple Programs

— - . -
=1 inimal_rrogram
| | E—]

|93 PPC 5ta C++ Console o |Eet A R I |
| File | Code | Data |9 [=
e ‘Snurces & 8 « @
B main.cpp g 2+ @
[o0, ammovnwocL_ o 4w s [}
b B} ANSILibraries 170K 3w B
[il Mac Libraries 14K 3K =
7 Tiles 184K 41K i

Figure 5-3. Minimal_Program Project Window

Next choose Disassemble from the Project menu as shown in figure 5-4

" @& File Edit SearchDehug Window Help
Add Window

Add Files...

Create New Group...

Check Syntax 38;
Preprocess
Precompile
Compile K

Bring Up To Date #®U
Make #M
Stop Build .

Remove Object Code... -
Re-search for files

Reset project entry paths

Synchronize Modification Dates

Enable Debugger
Run #R

Set Default Project
Set Default Target

v

Figure 5-4. Selecting Disassemble from the Project Menu

Disassembling the main.cpp file results in the output shown in example 5-1 above. That’s all there is to it! Use
the disassemble feature to explore your code to get a better idea of how it works on the inside.

Another C++ ProGram

102

Example 5.2 gives the source code for another short C++ program. Although short, it has a little more meat to it
than the minimal program discussed above.

JREK KKK KKKk KKKk kKKK KA KKK KKK Kk A KKk kA A K kA A KK kA KKk Kk 5.2 Another C++ Program

Simple C++ Program
**/

#include <iostream>
using namespace std;

int main () {
const int const_val = 100;
int i;
i 10;

cout<<”This is a simple C++ program!”<<endl;
cout<<*”The value of i is: “<<i<<endl;
cout<<“The value of const_val is: “<<const_val<<endl;

return 0;

©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 5: Simple Programs Another C++ Program

Parts of the ProGram

Let us discuss example 5.2 line by line. The numbers 1 through 19 in italics to the left of the listing are line num-
bers and are not part of the source code.
ComMenTs

Line 1 begins with the /* characters and is the start of a C-style comment. The comment proceeds to the end of
line 3 which ends with the * / characters. Everything appearing between the /* and * / characters is ignored by the
compiler. If you were to disassemble this code the comments would be omitted.

Preprocessor Direcrive

Line 5 begins with the preprocessor directive #include and names a library header file called iostream. The
library header file named iostream is enclosed in the < > character pair telling the preprocessor how it should con-
duct its search for the iostream file. If you are using an older development environment you may have to use the
filename iostream.h to access the iostream library.

Libraries

Libraries, like iostream, are code modules that implement some type of functionality and can be incorporated
into your programs. To gain access to a library the compiler must know where to find it and its header file must be
included in the source code via an #include preprocessor directive.

Using Direcrive

Line 7 contains a using directive indicating that the namespace std (the standard namespace) is being used.
This is required to gain access to various iostream objects. One iostream object, cout, is being used on lines 14, 15,
and 16 to send stream output to the standard output device. The standard output device in this case is the computer
screen.
main() Funcrion

Line 9 contains the start of the main() function. The body of the main() is comprised of everything appearing
between the opening left brace { at the end of line 9, and closing right brace } on line 19.

CONSTANTS

Line 10 declares an integer constant named const_val and defines its value as 100. A constant is an object
whose value is to remain unchanged during its lifetime. The keyword const is also used to prevent dumb program-
ming mistakes or to enforce good program design.

Variables

Line 11 declares an integer variable named i.On line 12 i is assigned the value 10. Unlike a constant, a variable

is an object whose value is allowed to change during its lifetime.

Statements and Expressions

Lines 10 through 12, lines 14 through 16, and line 18 each contain a statement. Line 12 is an example of a state-
ment that is also an expression.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 103

Keywords Chapter 5: Simple Programs

Keywords

C++ programs, like example 5-2, are constructed using certain identifiers that are reserved for use by the C++
compiler. These reserved words are known as keywords. You can name your variables and constants anything you like
so long as you avoid using keyword names. The keywords are listed in the first four columns of the C++ keyword list
below. The fifth column lists identifier names that are reserved to implement alternative representations of certain
operators and punctuators. The alternative representation identifiers may or may not be implemented by the compiler
you are using. Regardless, you are advised not to create user-defined types using these reserved names because doing
so may break your program sometime in the future.

asm else new template
auto enum operator this
bool explicit private throw
break export protected true
case extern public try
catch false register typedef and
char float reinterpret ca typeid and_eq
class for st typename bitand
const friend return union bitor
const_ cast goto short unsigned compl
continue if signed using not
default inline sizeof virtualvoid not eq
delete int static volatile or
do long static cast wchar t or_eq
double mutable struct while XOor
dynamic_ cast namespace switch X0or_eq

C++ Keyword List

Fundamental Types

C++ comes with several built-in data types ready for immediate use. Each of the character, integer, and floating
point types has a corresponding range of values they should represent. I use the word “should” because each compiler
implementation can choose to increase the value range of a particular type so long as they meet certain American
National Standards Institute (ANSI) requirements as specified in the C++ standard.

Your compiler defines its fundamental data type value ranges in the following header files: climits.h, limits.h, and
cfloat.h. The value ranges of each type is largely hardware dependent. For example, a 32-bit processor will have a
smaller maximum long integer value than a 64-bit processor, assuming the compiler is keeping pace with the hard-

ware it is running on.

Table 5-1 gives the type value ranges for the Metrowerks CodeWarrior C++ compiler version 5.0.

Type Minimum Value Maximum Value
bool false (0) true (1)
signed char -128 127
char -128 127

Table 5-1: Fundamental Types and their Value Ranges

104

©2003 Rick Miller — All Rights Reserved

C++ For Artists

Chapter 5: Simple Programs

Fundamental Types

Type Minimum Value Maximum Value
unsigned char 0 255
wchar_t 0 65,535
signed short int -32,768 32,767
short int -32,768 32,767
unsigned short int 0 65,535

signed int

-2,147 483,648

2,147 483,647

int

-2,147 483,648

2,147 483,647

unsigned int

0

4,294 967,295

signed long int

-2,147.483,648

2,147 483,647

long int

-2,147.483,648

2,147 483,647

unsigned long int

0

4,294,967,295

signed long long int

-9,223.372,036,854,775,808

9,223,372,036,854,775,807

long long int

-9,223.372,036,854,775.,808

9,223,372,036,854,775,807

unsigned long long int 0 18,446,744,073,709,551,615
float 1.17549¢8 3.40282¢*38

double 2022507¢3%8 1.079769¢+308

long double 2022507¢3%8 1.079769¢+308

Note: These ranges are valid for Metrowerks CodeWarrior C++ version 5.0 for Macintosh. Your ranges may look sim-
ilar or somewhat different for some of the larger types depending on your compiler implementation.

Table 5-1: Fundamental Types and their Value Ranges

Determining Your Darta Type Ranges

There are a couple of ways to determine your data type ranges. The first is by inspecting the climits.h and cfloat.h
header files. In them you will find the valid ranges listed for each fundamental type. If you are not used to reading
commercial grade header files this is an excellent exercise. Another benefit to this approach is that it lets you get bet-
ter acquainted with your development environment.

The second way to determine your fundamental type ranges is by calculation. The limits.h file in newer imple-
mentations of C++ defines the numeric limits template class. Example 5.3 gives a short program showing you
how to use the numeric_limits class to calculate a type’s range. If you don’t feel comfortable using template classes

just yet don’t worry. The inspection method is all you need for now.

The line numbers to the left of example 5.3 are not part of the source code.

DLW N W=

[

}

Running this short program produces the output shown in Figure 5-5.

C++ For Artists

int main () {
numeric_limits<int> _1i;

#include <iostream>
#include <limits>

using namespace std;

cout<<"Integer Range: "<< i.min()<<"

©2003 Rick Miller — All Rights Reserved

5.3 Using numeric_limits
Template Class to Calculate

"<< i.max () <<endl;

Type Ranges

105

Literals Chapter 5: Simple Programs

Numeric_Example.outout =oa=——7——H
Integer Range: -2147483648 2147432647 i
|
|
|

Figure 5-5: Results of Running Example 5.3

I"d like to take a moment to explain what’s happening here. On line 7 a numeric_limits<int> object named
_i (pronounced underscore i) is declared. The numeric limits<int> type is an example of how to create a new
type with a template class. The numeric limits< > class has several methods a programmer can use to get imple-
mentation specific information regarding fundamental data types. Two of these methods are used on line 8. The first is
min(), and the second is max(). Calling the min() and max() functions on the _i object results in the output of an inte-
ger’s minimum value and its maximum value.

The numeric_limits< > class can be used on all the C++ data types. For example, if you need information regard-
ing the char type, just use char instead of the int type used in example 5.3 when creating the numeric_limits object.
Expanding example 5.3 to print out all the data type ranges for your compiler implementation is left as an exercise.

Derermining Dara Type Size with the sizeof Operator

The size of the data type directly determines the range of values it can effectively store. The bigger the type, the
more bits it has available to represent data. If you need to know how large a particular data type is in bytes you can
use the sizeof operator. To use the sizeof operator first declare an object of a particular type then use the sizeof
operator on the object. Example 5.4 shows a short program that declares an integer object and then uses the sizeof
operator to report its size:

5.4 Using the sizeof

#include <iostream> Operator

using namespace std;

int main () {
int 1 = 0; Declare and initialize object
cout<<sizeof i<<endl;

return 0; Use sizeof to report

} size of object in
bytes.

Literals

You often need to represent data “literally” in your program. The following statement gives an example:

int i = 25;

The integer value 25 is being assigned to the newly declared integer variable named i. When numbers, charac-
ters, and strings of characters appear directly in source code, like the 25 does in this example, they are called literals.
Here, the value 25 is known as a decimal integer literal.

106 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 5: Simple Programs Literals

InteGer Literals

There are three types of integer literals: decimal, octal, and hexadecimal.

Decimal

You have already seen an example of a decimal integer literal above. Decimal literals must start with a non-zero
digit. Digits following the first can be zero or non-zero. Decimal literals can have a suffix of L or 1, or U or u, attached
marking them as long or unsigned. You can combine the suffixes to indicate a decimal literal is both unsigned and
long. Decimal literals have no decimal point. Here are a few more examples of decimal literals:

123L
34
2887934567ul
281

Ocnl

Octal literals are formed beginning with a zero digit prefix followed by octal digits. The octal digits include the
integers O - 7. They can have the same suffixes attached as their decimal counterparts. Examine the following octal lit-
eral examples:

0123L
034
010
0673467UL

Hexadecimal

Hexadecimal literals are formed beginning with the zero digit and the letter x prefix. The x can be lowercase or
uppercase. The prefix is followed by hexadecimal digits. The hexadecimal digits include the digits 0-9 and the letters
a-f or A-F. Hexadecimal literals can be suffixed like their octal and decimal counterparts. Here are a few examples:

0x123L
0X1la2b3c4dL
0x2887934567ul
0x281
A Word of Caurion

Always be aware of the size of your integer literal and how it is being used. If you are assigning it to a variable
make sure the variable’s type is large enough to hold the literal’s complete value. For example, the following state-
ment attempts to assign a large literal to a variable whose type isn’t big enough to sufficiently store it:

unsigned short small fry = Oxffffffff;

In this case, small fry is an unsigned short which is only two bytes long. The literal being assigned is four
bytes long. Assigning big literals to objects with insufficient storage capacity will result in truncation of the literal
value and no compiler warning. The following statement will work fine:

unsigned int tough guy = Oxffffffff;

In this case tough guy is an unsigned integer type that’s four bytes long.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 107

Literals Chapter 5: Simple Programs

Character Literals

Character literals are formed by enclosing characters between single quotes. Essentially four things can appear
between the single quotes: a single character or multiple characters, a simple escape sequence, an octal escape
sequence, or a hexadecimal escape sequence. Escape sequences provide a way of representing special characters or
characters not otherwise represented in the implementation character set.

Single Characrer Literals

Single character literals are formed by enclosing a single character between single quotes. Single character liter-
als are of type char. Here are a few examples of single character literals:

11

/tl

Mulriple Characrer Literals

Multiple character literals are formed by enclosing more than one character between single quotes. Multiple
character literals have the type and the numeric value they contain is implementation dependent. You normally don’t
use multiple character literals. For example, the following statement attempts to assign a multiple character literal to a
char variable:

char ¢ = ‘Help’;

In this example the multiple character literal consists of four chars. Each char takes up a byte of storage. The char
variable is one byte. There’s just not enough space. After making this assignment, printing the variable c results in the
character p being printed to the screen.

What’s happening here is that value of the characters between the single quotes is being assigned to the char vari-
able. If you change the type from char to int there will be no loss of data in the conversion. The following source code
gives an example:

int ¢ = ‘Help’;

Now when the assignment is made there is no loss of data. But what value will the variable ¢ contain? It is not the
four characters ‘Help’, rather, it is the value of the 32-bit word that contains the ASCII value of ‘H’ in the most signif-
icant byte, followed by the ASCII value of ‘e’ in the next byte, followed by the ASCII value of ‘1’ in the third byte,
followed lastly by the ASCII value of ‘p’ in the least significant byte.

Figure 5-6 illustrates how the integer value of ‘Help’ can be manually calculated. Determine the hexadecimal
value for each character from an ASCII table. The conversion from hexadecimal to binary is then a straightforward
operation. The binary positional values are then calculated and added yielding a total of 1,214,606,448.

The important thing to remember about multiple character literals is that they are not strings of characters
although a quick glance misleads the uninitiated to believe otherwise.

108 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 5: Simple Programs

/

| |
0100 1000 01100101 0110 1100 OT

48 6
/

e
|

5

1
6C
I A

1,024
2,048
8,192
16,384
65,536
262,144
2,097,152
4,194,304
134,217,728
1,073,741,824

Escape Seouences

p

7

1
|3

64

0
\

1 0000

16

2

Total:

Figure 5-6: Integer Value of Character Literal ‘Help’

16

32

64

1,024

2,048

8,192

16,384

65,536
262,144
2,097,152
4,194,304
134,217,728
+1,073,741,824
1,214,606,448

Literals

Character literals can also be represented as escape sequences. An escape sequence begins with the backslash
character ‘\’. Three different things can follow the backslash character: a character that together with the backslash
results in a simple escape, a series of octal digits resulting in an octal escape, or a series of hexadecimal digits result-
ing in a hexadecimal escape.

Simple Escape SeQuences

Table 5-2 lists the simple escapes.

C++ For Artists

Escape Sequence Meaning
\n Newline
\t Horizontal Tab
\v Vertical Tab
\b Backspace

Carriage Return

\f Form Feed
\a Alert
\\ Backslash
\? Question Mark
\ Single Quote
\” Double Quote

Table 5-2: Simple Escape Sequences

©2003 Rick Miller — All Rights Reserved

109

Literals Chapter 5: Simple Programs

Simple escape sequences must be enclosed in single quotes. The following statement gives an example of a sim-
ple escape in use:

char ¢ = “\’'"’;

The character being assigned to the variable c is the single quote.

Ocnl Escape Seuences

Octal escape sequences are formed with the backslash character followed by up to three octal digits. Octal escape
sequences must be enclosed in single quotes. The following statement gives an example of an octal escape:

char ¢ = “\230’;

Printing the variable ¢ with this octal value results in the character O being printed to the screen on a Macintosh.

Hexadecimal Escape Se@uences

Hexadecimal escape sequences are formed with the backslash character followed by the character x, then a
sequence of hexadecimal digits. Hexadecimal escape sequences must be enclosed in single quotes. Here’s an exam-
ple:

char ¢ = “\xC0";

Printing the variable ¢ with this hexadecimal value results in the character ; being printed to the screen.

Floating Point Literals

Figure 5-7 dissects a floating point literal.

Integer part 2 43 3 24 5 e- 3 2F Type suffix

optional optional

Integer exponent

Decimal point Fraction part optional
optional optional eorE Sign: + or -
optional optional

Figure 5-7: Parts of a Floating Point Literal

Well...everything’s not optional at the same time. There are some rules. The integer part or the fraction part can
be omitted but not both at the same time. The (decimal point) or (the letter e and the exponent) can be omitted. I
added the parenthesis for clarification of grouping.

The natural type for a floating point literal is double. It can be changed to float or long double by adding the suf-
fix F or L respectively. Suffixes can be in upper or lower case. Here are a few examples of floating point literals:

2e+3

-2e3f
357E5

50L

Notice that you can sign the integer part.

110 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 5: Simple Programs Expressions

StriNG Literals

String literals are sequences of characters enclosed in double quotes. String literals are automatically terminated
with a null character “\0’. This is important in that what differentiates strings from ordinary arrays of characters is the
presence of the null terminator at the end of each string. The null terminator is used by string processing programs to
determine the end of the string. Here’s another very important characteristic of string literals to keep in mind: A string
literal is an “Ivalue” as opposed to all the other types of literals which are “rvalues”. Let us take a closer look at string
literals.

The following statement assigns a string literal to an array:

char char array[] = “Hello World!”;

The next statement prints the contents of char array to the screen:

cout<<char array<<endl;

The following statement will print the size of char array to the screen:

cout<<sizeof char array<<endl;

The value printed by the previous statement is 13. This leads to an important property of strings: The size of a
string is the number of characters the string contains plus the null terminator.

To embed double quotes in a string literal use an escape sequence. The following statement gives an example:

cout<<“The man yelled, \”Run Jimmy, run!\””<<endl

Boolean Literals

The boolean values 1 and O are represented by the boolean literals frue and false. The following statement gives
an example of their use:

bool keep going = true;

In this example, a boolean variable named keep going is declared and assigned the value 1 or true. The fol-
lowing statement prints the value of the variable keep_going to the screen:

cout<<keep going<<endl;
The following statement will print the values of the boolean literals true and false to the screen:

cout<<true<<* “<<false<<endl;

ExpRressions

Expressions are built using operators and operands. The operators and operands in the expression specify a com-
putation from which a value may result. The following statement offers several examples:

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 111

Expressions Chapter 5: Simple Programs

Assignment operator " Multiplication operator
int 1 = (3 * 6);

Assignment expression ﬂ

In this example, the two integer literals 3 and 6 are the operands to the multiplication operator. The resulting
value from the multiplicative expression becomes one of the operands to the assignment operator. The other operand
is the integer variable named i which is declared in the same statement.

There are many types of expressions and, in my opinion, they are best learned gradually rather than all at once.
However, it will be helpful to get a feel for the different expression forms you will encounter as you learn C++. Table
5-3 lists different expression forms along with an example.

Multiplicative expression

Expression Form Examples
Primary “Literals are examples of primary expressions!”
Postfix
- subscripting my array[3]
- function call printScreen ()
- explicit type conversion(functional notation) float (int_val)
- pseudo destructor call my class.~my class ()
- class member access my class.printScreen/()
- increment count++
- decrement count—-
- dynamic cast dynamic_cast<float> (int_val)
- type identification typeid(float) .name ()
- static cast static cast<char>(a + b)
- reinterpret cast reinterpret cast<int>(long ptr)
- const cast const cast<A*>(&ra2)
Unary
- increment ++1 or i++
- decrement -—1i or i--
- sizeof sizeof 1
- new int * int ptr = new int (7)
- delete delete int ptr
Explicit type conversion(cast notation) short s = (short) (3.5 + 2.6);
Pointer-to-member operators class foof
public:
foo () {i=3;}
int 1i;

bi

foo f1;

int foo::* ip = &foo::i;

cout<<fl.*ip<<endl;
Multiplicative operators i* 3

i/ 3

1%]
Additive operators i+ 3

- J

Table 5-3: Expression Forms

112 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 5: Simple Programs Operators

Expression Form Examples
Shift operators i << 2
i>> 2
Relational operators i< 9
i> 3
i<=7
i >= 3
Equality operators i==3
i l=3
Bitwise AND operator i& 3
Bitwise exclusive OR operator i~
Bitwise inclusive OR operator i1 3
Logical AND operator i && 3
Logical OR operator i1 73
Conditional operator (1 <3j) 2?2 1=3:1=7
Assignment operators i=7
io*=]
i/=7
is= 3
i 4= 5
i-=]
i >>= J
i <<= 7]
is=3
i A= 5
il=73
Comma operator inti=3,j=2,k=8
Constant expressions const int MAX_VALUE = 500;
inti=MAX_VALUE;

Table 5-3: Expression Forms

No doubt some of the examples shown in table 5-3 will seem confusing to you if you are new to C++. Have no
fear. Your understanding of complex expressions will grow as you progress in your C++ studies. And, as I said earlier,
you don’t have to learn all the expression types at once.

You will, however, need to know some of the common operators and issues surrounding their use to be produc-
tive with C++ right away so I will discuss a few of these below.

OperRATORS

Most of the expressions listed in table 5-3 involve the use of multiplicative, additive, relational, conditional, and
assignment operators. You may already have a fundamental understanding of how these operators work, especially
the multiplicative, additive, and assignment. I will discuss these and a few others in this section. Any operator I fail to
discuss here will be introduced to you later in the book when you are ready to learn its use.

Before I talk about each operator I want to talk briefly about operator precedence.

C++ For Artists ©2003 Rick Miller — All Rights Reserved 113

Operators Chapter 5: Simple Programs

Operator Precedence

Operators in C++ have a precedence associated with their use. Table 5-4 lists C++ operators in order of their pre-
cedence, from highest to lowest, along with their associativity. The use of parentheses is covered in the next section.
Use them and you will have fewer bugs in your code and fewer headaches.

Operator Description Associates
++ Post-increment Left to right
-- Post-decrement Left to right
@) Function call Left to right
[] Array element Left to right
-> Pointer to structure member Left to right
Structure or union member Left to right
++ Pre-increment Right to left
-- Pre-decrement Right to left
! Logical NOT Right to left
~ Bitwise NOT Right to left
- Unary minus Right to left
+ Unary plus Right to left
& Address Right to left
* Indirection Right to left
sizeof Size in bytes Right to left
new Allocate program memory Left to right
delete Deallocate program memory Left to right
(type) Type cast (includes all C++ cast operators) Left to right
JE Pointer to member (objects) Left to right
->% Pointer to member (pointers) Left to right
* Multiply Left to right
/ Divide Left to right
% Modulo or Remainder Left to right
+ Add Left to right
- Subtract Left to right
<< Left shift Left to right
>> Right shift Left to right
< Less than Left to right

Table 5-4: C++ Operators, Precedence, and Associativity

114 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 5: Simple Programs

Operators

Operator Description Associates
<= Less than or equal to Left to right
> Greater than Left to right
>= Greater than or equal to Left to right
== Equal to Left to right
= Not equal to Left to right
& Bitwise AND Left to right
A Bitwise exclusive OR Left to right
| Bitwise OR Left to right
&& Logical AND Left to right
Il Logical OR Left to right
?: Conditional Right to left
= Assignment Right to left
*=, /=, %=, 4=,-= Compound assignment Right to Left
<<=,>>=, &=,"=, =
s Comma Left to right

Table 5-4: C++ Operators, Precedence, and Associativity

Use Parentheses

Using table 5-4 as a guide, can you determine what value will be printed to the screen when this statement exe-

cutes?

How about the next statement?

cout<<?7 * 3 + 1

cout<< (7

And this one?

cout<<((((7 * 3) + 1) - 201) % 20)<<endl;

(3 + 1)) — (201 % 20)<<endl;

- 201 % 20<<endl;

//version 1

//version 2

//version 3

As you might guess, each version of the expression results in a different value. Version 1 results in a value

derived from performing the computations using each operator’s native precedence. Versions 2 and 3 result in differ-
ent values because the parentheses force a different order of computation.

From a human perspective, versions 2 and 3 are easier to understand. Version 1 takes a little effort unless you are
already familiar with the precedence of the operators used. The next version produces the same result as version 1:

cout<<(((7 * 3) + 1) - (201 % 20))<<endl; //version 4

The parentheses make the expression easier to read and understand. Now you are faced with a dilemma; try and
memorize the precedence of every operator, or, use parentheses and simplify your life! Choose wisely grasshopper!

C++ For Artists ©2003 Rick Miller — All Rights Reserved 115

Operators Chapter 5: Simple Programs

Mulriplicarive Operators

Table 5-5 lists the three multiplicative operators.

Operator Description
* multiplication
/ division
% modulus

Table 5-5: Multiplicative Operators

The multiplication and division operators are overloaded to work on all the arithmetic types such as float, double,
and integer, and enumerations. The modulus operator works on integral type and enumerations only.

Mulriplication Operator

The asterisk is used as the multiplication operator. The following code gives an example of its use:

int i=0, 7j=10, k=10000;
i = 3%k;
cout<<i<<endl;

Be careful when using the multiplication operator. You can easily calculate a value that is too big to fit into a
small integer variable. The following code looks like the previous example with one exception. Can you spot the dif-
ference?

int j=10, k=10000;
short i = J*k;
cout<<i<<endl;

The variable named i is now declared a short, which holds half as much as a regular integer. This causes a trunca-
tion of the larger value to a size that will fit into the smaller data type. These types of errors are easy to make and hard
to detect because the compiler offers no warning.

The asterisk, like other symbols in C++, is overloaded to perform more than just multiplication in C++. It is also
used to declare and dereference pointers. (See chapter 8) As you gain experience reading and writing C++ code you
will become comfortable recognizing the context in which operators are used, but, until that happens, you will be a
little confused to see what you think is the multiplication operator being used for something other than multiplication.

Division OperaTor

The division operator works as you would expect although there are a few issues to keep in mind when you use it.
The following statement shows the division operator in use:

float £ = 3.5f / 1.5f;
In this example, a float variable named f is declared and initialized to the value of 2.33333. In this case, each of
the numeric literals are of type float and the size of the result fits into the variable f. You will run into trouble when
you attempt to store the results of floating point division into an integer variable. The following statement shows an

example:

int result = 3.5f/1.5f;

116 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 5: Simple Programs Operators

Integer types are not designed to represent the decimal portion of floating point values so you will lose the .33333
portion of the result. The variable result will be initialized with the value 2 and you will not be warned about the
loss of numeric precision.

You can perform division on complex expressions by using parentheses. The following statement gives an exam-
ple:

float £ = (3.5 + 1.5) / 2.5;
You should also be aware that an attempt to divide a number by zero will result in a compiler warning.

Modulus Operator
The modulus or remainder operator works like the division operator but returns the remainder and discards the
quotient. The following statement shows the modulus operator in use:

int remainder = 215 % 20;

This statement declares an integer variable named remainder and initializes its value to 15.
The primary thing to remember with the modulus operator is that it is to be used on integral types only. Using it
on floating point literals or variables results in a compiler error.

Additive Operators

Table 5.6 lists the additive operators.

Operator Description
+ Addition
- Subtraction

Table 5-6: Additive Operators

Addition Operator

The addition operator performs arithmetic addition on arithmetic, enumeration, or pointer types. The following
code shows an example of the addition operator being used with an enumeration type:

enum set one {up, down, left, right};
int where = 1 + down;

In this example, an enumerated type named set_one is declared with the four enumerations up, down, left,
right. The value of up is 0, the value of down 1, the value of left 2, and the value of right 3. (Enums are covered in
more detail in chapter 10) The integer variable where is declared and initialized to the value of the integer literal 1
plus the enumeration value of down.

The following code gives an example of the addition operator being used with a pointer operand:

int int arrayl[] = {(1,2,3,4,5};
int int val = *(int array + 3);

In this example an array of integers named int array is declared and initialized with five integer values. On the
next line an integer variable named int val is declared and initialized to the value that resides at the 4 element of
the array. In this case the value stored in the 4 element of the array is 4. Arrays are covered in excruciating detail in
chapter 8 but here’s a quick explanation of what’s going on here. The array name int array points to the start of the

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 117

Operators Chapter 5: Simple Programs

integer array. This means the name of the array is a pointer, which means it contains a memory address. Since the
addition operator is being applied to a memory address that points to an array of integer elements, the value 3 means
3 integer storage units. The addition will be the memory address of the array + (3 times the size of an integer in bytes)
or array address + (3 x 4) or array address + 12.

The value resulting from the addition is a memory address or pointer. The overloaded asterisk symbol, in this
case used as the pointer dereferencing operator, must be applied to the result to obtain the actual integer object resid-
ing in the 4 element of the array. It is this value that is ultimately assigned to the integer variable named int val.

Don’t worry if you don’t fully understand all this pointer stuff right now. After you read chapters 7 and 8 you will
be an expert!

Subtracrion Operator

Besides being used for traditional arithmetic subtraction operations on arithmetic data types, the subtraction
operator can be used on pointers as well. The following code demonstrates the use of the subtraction operator on
pointer types:

int val = *((&int_array[4]) - 3);

Using the integer array from the previous example, the subtraction operator is being used to subtract 3 integer
storage units from the address of the 5 element of int_array. This will result in the value 12 being subtracted from
the address of the 5 array element which will yield the address of the 2" element. The result of the subtraction is a
memory address and must be dereferenced to access the integer object stored at that address. When this statement is
executed the integer value 2 will be assigned to the variable named int val.

Shifr Operators
Shift operators let you perform bit shifting operations on integral objects. Table 5-7 lists the shift operators.
Operator Description
<< Left Shift
>> Right Shift

Table 5-7: Shift Operators

Lefr Shifr Operator

The following code shows the left shift operator in use.

unsigned shift val = 1;
shift val = shift val << 1;

The first statement declares an unsigned integer variable named shift_val and initializes its value to 1. In a com-
puter with 32 bit registers the value 1 looks like this in binary:

00000000000000000000000000000001

The second statement shifts the bits of shift_val to the left by one bit and assigns the result of the shift operation
back to the shift_val variable. As the bits are shifted to the left, the right-hand replacement bits are set to zero. Figure
5-8 shows what happens to shift_val when its bits are shifted to the left four times.

The effect of left shifting a bit value by one bit is the same as multiplying the value by two. But you need to be
careful and not left shift it too far. You also have to pay attention to the type of bit pattern you are shifting. For
instance, left shifting a signed type will result in values going from positive to negative depending on the value of the
bit that moves into the sign bit position.

118 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 5: Simple Programs Operators

shift_val starts with the value 1

00000000000000000000000000000001 shift_val ==
shift_val = shift_val << 1;

00000000000000000000000000000010 shift_val ==
shift_val = shift_val << 1;

00000000000000000000000000000100 shift_val ==
shift_val = shift_val << 1;

0000000000000000000000000000 1000 shift_val ==
shift_wval = shift_val << 1;

000000000000000000000000000 10000 shift_val == 16

Figure 5-8: Left Shifting shift_val

Right Shifr Operator

The right shift operator works similar to the left shift operator. If the value being shifted is an unsigned type or a
signed type with a positive value then the effect of shifting the bits to the right by one bit will be the same as dividing
the value by 2. If the value being shifted is a negative number then the result of shifting right is implementation
dependent, meaning the operator’s behavior in this regard is left to the discretion of the compiler manufacturer. The
following code shows the right shift operator in use on a negative number:

int shift val = OxFFFFFFFF;

shift val = shift val >> 1;

The first statement declares the integer variable shift_val and initializes it to the hexadecimal value FFFFFFFF.
This is the bit pattern for -1. When statement two is executed the bits are shifted to the right by one bit. On Metrow-
erks CodeWarrior the value remains -1. This is due to the bits coming in from the left being set to 1, which keeps the
sign bit set.

It will be helpful to see another example. The following code initializes shift_val to the maximum negative num-
ber an integer can hold then shifts it to the right by one bit.

int shift val = 0x80000000;

shift val = shift val >> 1;

In the first statement, shift_val is initialized to the value -2,147,483,648. After the execution of the second state-
ment its value will be -1,073,741,824. Shifting the negative number the right by one bit has the effect of dividing the
number by 2. However, this will only work until you have shifted all the way to the right, at which time the value will
be -1. Further right shifting will have no effect. Figure 5-9 shows what happens to the variable shift_val when the
right shift operator is applied 4 times.

You can see in figure 5-9, with a negative number, the bits shifted into the bit pattern in the most significant bit
position are set to 1. This keeps the value negative.

If you start with a positive number in a signed integer type the number will remain positive as you shift bits to the
right. This means the bit being shifted into the most significant bit position is set to O.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 119

Operators Chapter 5: Simple Programs

shift_val starts with the value -2,147 483,648

10000000000000000000000000000000 shift_val ==-2,147,483,648
shift_val = shift_val >> 1;

11000000000000000000000000000000 shift_val ==-1,073,741,824
shift_val = shift_val >> 1;

11100000000000000000000000000000 shift_val == -536,870,912
shift_wval = shift_val >> 1;

11110000000000000000000000000000 shift_val == -268,435,456
shift_val = shift_val >> 1;

11111000000000000000000000000000 shift_val == -134,217,728

Figure 5-9: Right Shifting shift_val

Relatrional Operators

Table 5-8 lists the relational operators.

Operator Description
< Less Than
> Greater Than
<= Less Than or Equal To
>= Greater Than or Equal To

Table 5-8: Relational Operators

Relational operators are used to compare the value of arithmetic, enumeration, or pointer objects. A relational
operator returns a boolean value which is either true or false.

Less Than Operator

The less than operator takes two operands and returns true if the left operand is less than the right operand. The
following statement illustrates the use of the less than operator:

bool result = 3 < 5;
When this statement is executed the boolean variable named result will be initialized to the value true or 1.

Greater Than Operator

The greater than operator takes two operands and returns true if the left operand is greater than the right operand.
The following statement illustrates the use of the greater than operator:

bool result = 3 > 5;

In this case, the variable result will be initialized to false or 0.

120 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 5: Simple Programs Operators

Less Than or Eoual To Operator
The less than or equal to operator takes two operands and returns true if the left operand is of lesser value or
equal to the right operand. The following statement illustrates the use of the less than or equal to operator:
bool result = 3 <= 5;

When this statement is executed the boolean variable result will be initialized to true or 1.

Greater Than or Eoual To Operator
The greater than or equal to operator takes two operands and returns true if the left operand is of greater value or
equal to the right operand. The following statement illustrates the use of the greater than or equal to operator:

bool result = 3 >= 5;

When this statement executes result will be initialized to the value false or 0.

You will use relational operators heavily to make decisions in your source code in order to figure out what to do
next. You will see more about relational operators covered in chapter 6 when I discuss how to control the flow of pro-
gram execution.

Eouality Operators

Table 5-9 lists the equality operators. Equality operators can compare arithmetic, enumeration, and pointer values
just like the relational operators but have a lower precedence.

Operator Description

== Equal To

1= Not Equal To

Table 5-9: Equality Operators

Eoual To Operator

The equal to operator compares two operands for equality and returns a boolean value of true or false based on
the result of the comparison. The following statement shows the equality operator in action:

bool result = 3 == 5;
This statement will initialize the boolean variable result to false.

Nor Eoual To Operator

The not equal to operator compares two operands and returns true if they are not equal. The following code illus-
trates the use of the not equal to operator:

bool result = 3 != 5

This statement will initialize the variable result to true or 1.

Birwise AND Operator - &

The bitwise AND operator takes two operands, ANDs them, and returns the result. What the heck is an AND
operation you ask?

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 121

Operators

An AND operation compares two bits. The result of the bit comparison is either 1
or 0 depending on the state of the two bits compared. An AND on two bits will result
in a true or 1 output only when both bits being compared are true or 1. Figure 5-10
gives the truth table for an AND operation. The following statement shows the bitwise
AND operator in use:

int and result = 0x00000001 & OxFFFFFFFE;

In this example, the variable and_result will be initialized to the result of the
AND operation which, in this case, is 1. Take a look at this operation again in slow
motion:

00000000000000000000000000000001
11111111111111111111111111111111
00000000000000000000000000000001

Chapter 5: Simple Programs

A&B

o)
0
o)
1

Figure 5-10: AND Truth Table

R~ OOy
= O K Ol

When the hexadecimal is converted to binary you can easily see the only bit comparison that results in a true is
the two least significant bits. The rest of the bits are set to false or 0 because only one bit in each comparison is on or

true. I use the terms on, true, and 1 interchangeably here as well as off, false, or 0.

Birwise Exclusive OR Operator - *

Bitwise exclusive OR operations take place according to the truth table shown in figure 5-11. The following

statement illustrates the use of the exclusive OR operator in action:

int ex or result = 0x00000001 ~ OxFFFFFFFF;

When this statement is executed the variable ex_or_result will be initialized to
OxFFFFFFFE. Take a look at the binary version:

00000000000000000000000000000001
11111111111111111111111111111111
11111111111111111111111111111110

Bitwise Inclusive OR Operaror - |

The bitwise inclusive OR takes two operands and returns the result of an inclusive
OR comparison between each bit. Figure 5-12 gives the truth table for an inclusive OR
operation. The following statement show the bitwise inclusive OR operator in action:

int in _or result = 0x00000001 | OxFFFFFFFF;

The variable in_or_result will be set to the value OXFFFFFFFF. Examine the
binary version:

00000000000000000000000000000001
11111111111111111111111111111111
11111111111111111111111111111111

A B|A"B

0 0| O
0 1| 1
1 0| 1
1 11 O

Figure 5-11: Exclusive OR
Truth Table

A B|A|B
0
1
1
1 1] 1

Figure 5-12: Inclusive OR
Truth Table

= OO
or o

In this case all bits are set to 1 as the truth table for the inclusive OR operation would suggest.

122 ©2003 Rick Miller — All Rights Reserved

C++ For Artists

Chapter 5: Simple Programs Operators

Logical AND Operaror - &&

The logical AND operator takes two boolean expressions as operands and returns true or false based on the truth
table given in figure 5-10. This is different from its bitwise counterpart in that it is not comparing bits, rather, it is
comparing the result of one expression to that of another, and returning a result base on the result of the comparison.
The following code gives an example of the logical AND operator in use:

int a = 0;
boolean and result = (a<5) && (true);

On the first line an integer variable named a is declared and initialized to 0. On the second line the boolean vari-
able and_result is declared and initialized to the result of the logical AND expression. The logical AND operator
will compare the results of (a<5), which is true, to the (true), which is always true.

Logical OR Operaror - | |

The logical OR operator makes comparisons of two boolean expressions according to the truth table shown in
Figure 5-12. The following code gives an example of the logical OR in use:

int a = 0;
boolean or_ result = (a<5) || (true);
In this example, the boolean variable or_result is initialized to the result of the OR comparison between (3<5)
which is true, and (true), which is still true!

Condirional OperatoR - ? :

This is a cool operator but until you get used to it you will look a little cross-eyed at it when you see it in source
code. To discuss the conditional operator I have to get ahead of my story a little bit. The conditional operator is a
shorthand way of writing an if statement. If statements are covered in detail in chapter 6.

The conditional operator will evaluate a boolean expression and offer two possible alternatives, depending on the
result of the evaluation. The expression to be evaluated comes before the question mark. The first alternative, or state-
ment you want to execute if the expression is true is placed to the right of the question mark and to the left of the
colon. The statement you want to execute if the expression evaluates to false is placed to the right of the colon. Use
this handy map to the conditional operator if you get lost while trying to impress your friends by using it:

Trve
(expression) ? execute this statement if true : execute this statement if false;
False

Figure 5-13: Conditional Operator Map

The following statement shows the conditional operator in use:
(3>5) ? cout<<”True statement”<<endl : cout<<”False statement’”<<endl;
When this statement is executed the expression (3>5) will be evaluated and result in a boolean value of false.

This will cause the false statement to be executed. In this case the text False statement will be printed to the
screen. The following if statement will do the same thing:

if (3>5)
cout<<“True statement’”<<endl;

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 123

Operators

else cout<<“False statement”<<end;

AsSiGNMENT OPERATORS

Table 5-10 lists the assignment operators.

Chapter 5: Simple Programs

Operator Description
= Assignment
*= Compound Multiplication Assignment
/= Compound Division Assignment
Yo= Compound Modulus Assignment
+= Compound Addition Assignment
-= Compound Subtraction Assignment
>>= Compound Right Shift Assignment
<<= Compound Left Shift Assignment
&= Compound Bitwise AND Assignment
A= Compound Bitwise Exclusive OR Assignment
I= Compound Inclusive OR Assignment

Table 5-10: Assignment Operators

You have seen the assignment operator, =, in action many times in this chapter. The important thing to remember
when using the assignment operator is that it is not the Equal To operator, ==, which is an equality operator vice an
assignment operator. To better understand the use of the assignment operator it is helpful to know the difference

between an “Ivalue” and an “rvalue”.

Ivalue vs. rvalue

If you are new to C++ programming you have probably seen the compiler error, “Not an lvalue...”, and wondered

what it meant.

When making an assignment using an assignment operator, what you are trying to do is assign the result, or
value, of some expression to a memory location. The assignment expression, when viewed in this context, looks like

this:

The left operand must
point to a memory loca-
tion. The object in memory
must be modifiable.

memory location = expression result;

Object in Memory

«

Figure 5-14: Assignment Operator Operands

124 ©2003 Rick Miller — All Rights Reserved

The right operand
must evaluate to an
object of some type T.

C++ For Artists

Chapter 5: Simple Programs Operators

An assignment is an expression and therefore returns a result. The type of the result is the type that was stored in
the memory location pointed to by the left operand. The following example might help clarify this concept:

int a = 0, b = 0;
a= (b =5);

In this example, two integer variables named a and b were declared and initialized to 0 using the assignment
operator. The second statement assigns to the variable b the value 5. The result of the assignment is 5 and is assigned
to the variable a.

Compound AssiGNmenT OpERATORS

The rest of the assignment operators are known as compound assignment operators and are used as a shorthand
way of getting things done in C++. The following code shows the compound multiplication assignment operator in
action:

int a = 3;
a *= 3;

The first statement declares the integer variable named a and assigns it the value 3. The next statement multiplies
a by 3 and assigns the result back to the variable a. The second statement is equivalent to the following longer version
that does the same thing:
a=a * 3;

The rest of the compound operators work the same way.

Comma OPpERATOR -,

The comma operator can be used to separate expressions. The following code shows the comma operator in use:

The first statement shows the comma operator being used to separate variable declarations and assignments on
the same line. The second statement shows two assignment expressions being separated by the comma operator. The
third statement is something not often seen but reiterates the use of the comma operator’s ability to separate any
expression, not just assignment expressions.

INcRemenT AN DecRement OpEeRraTORs (++, -)

There are many times during the course of programming that you need to increment or decrement a variable by 1.
You could increment the old fashioned way...

i=1+1; or i += 1;
..in this example the variable i is being set to the value it contains plus 1, or use the ++ operator:
i++; or ++1i;

There are two versions of the increment and decrement operators: prefix and postfix. Consider the following
example:

int a = 0, i = 1;

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 125

Identifiers Chapter 5: Simple Programs

a = 1i++;

This is an example of the postfix version of the increment operator in use. When the second statement executes a
will be assigned the value of 1, which is the value of i before the increment operator expression is evaluated. The
following example demonstrates the use of the prefix version of the increment operator and will result in the variable
a being assigned the value 2:

int a = 0, i = 1;
a = ++i;

The decrement operator works the same way. You will most likely see the increment and decrement operators
used in for statements to do array processing. The following code gives an example:

for (int i=0; i<ARRAY SIZE, i++) {
//array processing statements here

Chapter 6 discusses program control flow statements like the for statement, above, in detail.

IdenTifiers

Identifiers are names given to various objects in a program. You have already seen several identifiers declared and
used in this chapter; they were given short names like i, a, b, and represented simple data types. Identifiers are also
used to name functions, labels, and other user defined data types. The C++ reserved keywords, listed in the Keywords
section of this chapter, are examples of identifiers you cannot use to name your objects because they are reserved by
the compiler.

Identifiers are formed using letters and digits, however, an identifier must start with a letter or underscore “_”
character. The following are valid identifiers:

count
_count
I count to 10
_9tob
getCount ()
printScreen ()
Labell

Idenvifier Naming CoNVENTIONS

In chapter 1 I discussed the importance of adopting a naming convention and sticking with it. I also proposed a
simple naming convention you could use in your programs. However, other naming conventions exist.

Hungarian NotaTion

Some naming conventions are famous, such as Hungarian notation, formulated by Dr. Charles Simonyi of
Microsoft. The concept of Hungarian notation goes something like this: Variable names are prefixed with an abbrevi-
ation indicating the variable’s type or class. Table 5-11 lists possible type prefixes.

Prefix Description

c signed character

Table 5-11: Possible Hungarian Notation Prefixes

126 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 5: Simple Programs Identifiers

Prefix Description
uc unsigned character
i integer
ui unsigned integer
si short integer
li long integer
n an integer number where the actual size is irrelevant
f float
d double
S string of characters
Sz string of characters, terminated by a null character
b an integer or character being used as a boolean value
by single byte
ct an integer being used as a counter or tally
p pointer to a structure or general void pointer
pfs file stream pointer
pfn pointer to a function
px pointer to a variable of class x, e.g. pc, pf, pSubmarine
v void type

Table 5-11: Possible Hungarian Notation Prefixes

To derive identifiers combine the prefixes with names that describe the use of the identifier. Capitalize the first
letter of each word in the identifier name. Here are a few examples:

pf_grade_average — pointer to float type
li_number_of_cars — long integer type

You could also apply this naming scheme to functions. The purpose of prefixing the function name would be to
indicate what type, if any, the function returned. Here’s a couple examples:

vprintScreen() — returns nothing
igetCount() — returns integer

Again, the important thing about naming conventions is not necessarily which one you choose, but that you use it
consistently.

C++ For Artists ©2003 Rick Miller — All Rights Reserved 127

Constants Chapter 5: Simple Programs

CONSTANTS

A constant is an object in your program that you intend to remain unchanged during its lifetime. The use of con-
stants can vastly improve the readability and maintainability of your code.

You can declare constants in C++ using the keyword const. Constants have to be defined at the point of declara-
tion. The following statement gives an example of a constant declaration and definition:

const int MAX COUNT = 25;

There is an exception to the define-at-the-point-of-declaration rule, and that is when you are declaring constants
for use in classes or structures. In chapter 11 I will show you how to use constructors to define class constant mem-
bers.

Once you have defined the constant, any attempt to change its value will be met with disapproval from the com-
piler.

Variables

A variable is an object whose value will likely change during the execution of a program. Variables have a stor-
age class, and a visibility or scope

Declaring

You have seen several variables declared and used in this chapter. You precede the identifier with the variable’s
type as in the following example:

char* f name;
In this case the type of the variable named f_name is pointer to char. Here’s another example:
float account balance;

Variables can be defined or initialized at the point of declaration or later if necessary. As a rule, though, it is a
good idea to initialize the variable to some known value so you don’t try to use a variable that contains a garbage
value. Here’s an example:

long defunct dot coms = 0;

defunct dot coms = 32345;

Here the variable named defunct_dot_coms is declared and initialized to 0. You can also initialize a variable
using “constructor” notation. Check this out:

int cool variable (40);

Scope

Variables have a scope or authorized area of usage within a program. Sorting out all the scoping rules can be
overwhelming and they re best mastered on-the-fly so I will only discuss two basic scoping rules here and leave the
others to the chapter to which they more aptly belong.

128 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 5: Simple Programs Variables

Scoping is also related to the topic of linkage, so, to understand each completely, you must understand both as

they relate to each other. The best way to learn them both is by studying examples so I will go light on the verse and
heavy on the code.

Local Scope

A variable is available for use after its point of declaration. Let us look at an example:

int a;
a = 3;
cout<<a<<endl;

The variable a is available for use just after the its declaration on the first line, just before the semicolon indicat-
ing the end of the first statement. From that point forward a is in scope and can be used as shown. The braces { } can
be used to introduce local blocks of scope into a sequence of statements as shown in the following example:

int a =1, b = 2;
{
cout<<a<<endl;
int a = 3;
cout<<a<<endl;
}

cout<<a<<” “<<p<<endl;

N Oy s W N =

In this example, two integer variables, a, and b, are declared and initialized on line 1. On the line 2 a new scope
is introduced with the left brace and proceeds up to the closing right brace on line 6. Within this scope a new integer
variable named a is declared and initialized on line 4. Its scope is up to the closing right brace. Figure 5-15 gives a
graphical view of what’s happening:

int a =1, b = 2; Outer or enclosing scope
{
cout<<a<<endl;
int a = 3;
cout<<a<<endl;j Inner or enclosed scope

}

cout<<a<<” “<<p<<endl;

N oY O W N =

Figure 5-15: Creating Local Scope Blocks with Braces

When a local scope is created within another scope, the inner scope is said to be the enclosed scope, while the
outer scope is referred to as the enclosing scope. If you declare a variable in an enclosed scope using the name of a

variable already in scope in the outer scope it causes the outer scope variable to be hidden or masked from the point of
declaration in the enclosed scope.

Looking at figure 5-15, the variable a declared in the outer scope is visible up to where the second variable a is
declared in the inner scope. The statement on line 3 will print the outer scope a value to the screen. The statement on

line 5 will print the inner scope’s a value to the screen, and finally, the last statement will print the values of both
outer scope variables a and b.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 129

Variables Chapter 5: Simple Programs

Funcrion Scope

Functions will be discussed in detail in chapter 9 so I will keep the examples here simple. Variables declared
within a function have scope within that function. Examine the following code:
1 int a =1, b = 2;

2

3 void someFunction () {

4 cout<<”In someFunction(): outer scope a == *<<a<<endl;
5 int a = 3;

6 cout<<”In someFunction(): inner scope a == *<<a<<endl;
7

In this example, the integer variable a declared on line 1 exists in the outer scope and is visible within someFunc-
tion() up to the point of declaration of someFunction()’s local variable a. Example 5.5 illustrates the scoping issues

discussed thus far:
5.5 Source Code Showing Local,
Function, and File Scoping

1 #include <iostream>
2
3 using namespace std; //introduces namespace std
4
5 void someFunction () ;
6
7 int a =1, b = 2;
8
9 void someFunction () {
10 cout<<"In someFunction(): outer scope a == "<<a<<endl;
11 int a = 3;
12 cout<<"In someFunction(): inner scope a == "<<a<<endl;
13 }
14
15 int main () {
16 someFunction () ;
17 {
18 cout<<a<<endl;
19 int a = 3;
20 cout<<a<<endl;
21 }
22 cout<<a<<" "<<b<<endl;
23 return 0;
24 }

Referring to example 5.5, line 5 gives the function declaration of someFunction(). On line 7 appears the declara-
tion and definition of integer variables a and b. Since these two variables are declared outside of any function they
have file scope. Variables with file scope are often referred to as global variables because they are visible to all func-
tions defined within the file in which they appear and, as you will see below, to functions appearing in other files as
well.

File Scope

As mentioned above, variables declared outside of any function within a file have file scope. These are referred to
as global variables because they can been seen globally throughout the program.

Keep the use of global variables to the absolute minimum required to reduce coupling in your program. Remem-
ber from chapter 1 that intermodule coupling is a bad thing! Minimize coupling — maximize cohesion.

130 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 5: Simple Programs Multifile Variable Usage

Mulrifile Variable Usage

If you must use global variables and are programming multifile projects you will need to know how to control
your variables across many files. In some cases you will want to make your global variables visible to all the files in
your program; in others, you will want to limit the visibility of file scope variables to one file. Here’s how you do it...

Sharing File Scope Variables Across Mulriple Files

File scope variables by default have external linkage meaning they are visible across all the files in your project.
Examine the two source files shown in example 5.6:

5.6 file scope linkage

Finclude <iostream>
using namespace std;
int a = 1;

void someFunction();

void someFunction () {

#include <iostream>
using namespace std;
void someFunction () ;
extern int a;

int main () {

cout<<a<<endl; a = 3;
} someFunction () ;
cout<<a<<endl;
return O;

filel .cpp file2.cpp

filel.cpp and file2.cpp represent two files belonging to the same project. filel.cpp contains the declaration and
definition of someFunction() along with a global variable a which is assigned the value of 1. file2.cpp declares some-
Function() again before calling it in the main() function. file2.cpp also declares the variable a but prefaces it with the
keyword extern to tell the linker that the variable a has been declared and defined in another file and that you intend
to use that variable in this file too.

When a is assigned the value 3 in the body of the main function, that’s the value printed to the screen when
someFunction() is called.

If the keyword extern were to be left off the declaration of a in file2.cpp the following link error would occur
when you tried to compile and run the program:

Link Error : multiply-defined 'a' (data)
Defined in filel.cpp
Defined in file2.cpp

Limiting File Scope Variable Visibiliry 1o One File

Example 5.7 shows the same two files after being modified slightly: The keyword static now prefaces the decla-
ration of a in filel.cpp, limiting its visibility to filel.cpp. With filel.cpp’s variable a safely limited to file scope
file2.cpp can declare its own variable a and use it as it sees fit. The results of calling someFunction() and executing
the cout statement now produce different results, namely, the values 1 and 3 are printed to the screen.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 131

The main() Function

Chapter 5: Simple Programs

5.7 static linkage

#finclude <iostream>
using namespace std;
static int a = 1;

void someFunction();

void someFunction () {

#include <iostream>
using namespace std;
void someFunction () ;
int aj;

int main () {

cout<<a<<endl; a = 3;
} someFunction () ;
cout<<a<<endl;
return 0;

filel .cpp file2.cpp

The main() Funcrion

Every C++ program contains a main() function. You may write library routines that do not contain a main func-
tion but the program that ultimately uses them will have a main() function. This section will briefly discuss the pur-
pose of the main() function and the two forms it can take.

The Purpose of the main() Funcrion

The main() function marks the start of program execution. A program may be small and contain only a main()
function that itself only contains a few simple statements, or it may be huge and be comprised of many different
objects and stand-alone functions that are defined across thousands of files and millions of lines of source code. What
ever form it takes, it all starts with main().

Two Forms of main()

The main() function can be written two ways. You have seen the first, and most simple, form of writing main() in
this chapter already:

int main () {
// some statements here
return 0;

The second way to write main() looks like this:
int main(int argc, char* argvl[]) {
//process command line input

//along with other statements here
return 0;

132 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 5: Simple Programs Simple Input and Output

This form of main() is used to write programs that process command line arguments. If you have used DOS or
UNIX you have probably used utility commands that required command line arguments to run properly.

Exiting main()

There are several ways to exit the main() function. You seen one way used throughout this chapter and that is by
using the keyword return followed by a 0. This is actually the lazy way of doing things, mainly because having the
value 0 in a statement gives no clue to what 0 means.

It just so happens that the value 0, when returned from main(), means the program executed successfully. In fact
there is a constant already declared for your use called EXIT_SUCCESS. You will find it and some other cool stuff in
the cstdlib header file. (stdlib.h on older C or C++ environments) Here is an example of using EXIT_SUCCESS:

int main () {

// amazingly clever code goes here...
return EXIT SUCCESS;

}

Instead of using the return keyword you can use the function exit(int status):

int main () {

//code gone bad
exit(EXIT_FAILURE);
}

In chapter 7 you will see other ways to use the exit() function and what effects it has on objects in your program.

Calling Funcrions Upon Exiting main)

Use the atexit(void (*func)(void)) to register a function you want called when the exit() function is called. Exam-
ple 5-8 gives the code:

#include <iostream> 5-8 Registering Functions with atexit()
#include <cstdlib>

using namespace std;
void goodBye () ;

void goodBye () {
cout<<”Goodbye cruel world!”<<endl;

Register the goodBye() function by
calling atexit() with the goodBye()
function’s address. Use only the
name goodBye leaving off the
parenthesis.

int main () {

atexit (&goodBye) ;
exit (EXIT SUCCESS);
}

Simple Inpur aANd Outpur

C++ provides character stream input and output in the form of the cin and cout objects. You have already seen the
stream insertion operator in use to send variable values and strings to the cout object. My objective in this book is to

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 133

Simple Input and Output Chapter 5: Simple Programs

limit the use of cin and cout to the absolute minimum required to facilitate program interaction. I do this because
there exist several good iostream books on the market that go into much greater detail than I wish to do so in this
book.

My second reason for limiting my coverage is that should you decide to specialize in a particular operating sys-
tem you will need to learn how to use the graphical user interface components like windows, text boxes, text fields,
etc., supported by that operating system.

CiN
The iostream header file declares the cin object for your console stream input use. The cin object takes input from

the standard input device, which is usually the keyboard, and directs it to designated variables. Example 5.9 shows the
cin object being used to read in several integer values and direct the input to the integer variables a, b, and c:

1 #include <iostream> 5.9 Using cin Object to Read
2 Integer Values from Keyboard
3 using namespace std; //introduces namespace std

4

5 int main () {

6 int a = 0, b =0, ¢ = 0;

7

8 cout<<"Enter values for a, b, and c: ";

9 cin>>a>>b>>c;
10 cout<<a<<" "<<pb<<" "<<c<<endl;
11
12 return 0;
13 '}

Notice the way the >>’s point when using the cin object vs. the cout object. The >> is called the stream extraction
operator and the << is called the stream insertion operator.

TrappinG Bad Inpur

A problem arises when using the cin object to read input from the keyboard. If you are expecting a certain type,
say, an integer, but the user enters a character or string of characters, it causes the extraction operation to fail and cin’s
internal fail bit will be set. What the user sees when this happens is a screen scrolling wildly out of control; the pro-
gram just crashed.

A simple solution, until you learn more robust error trapping techniques, is to test for the success of the cin
stream extraction. Example 5.10 offers an example. Example 5.10 shows the cin object being tested for success or

5.10 Testing for Valid Input

1 int d;
2
3 cout<<"Enter an integer value: "<<flush;
4 cin>>d; Should extract an integer value
5
6 while(!cin) { Test for cin failure
7 cout<<"Input was bad! Try Again..."<<endl;
8 cin.clear(); Reset cin object to good state
9 cin.ignore (INT MAX, '\n');
10 cout<<"Enter an integer value: "<<flush; Get rid of garbage characters
11 cin>>d; Try it again...
12 }

134 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 5: Simple Programs Summary

failure in the expression section of a while loop. If the extraction operation was successful, which in most cases
means the correct type was extracted from the input stream and stored in the designated variable, then the while loop
is skipped. If the extraction operation failed then the body of the while loop is entered and will loop until the extrac-
tion operation is a success.

court

The cout object sends stream output to the standard output device, usually the screen. You have seen the cout
object in action throughout this chapter. As noted above “<<* is called the stream insertion operator. It is overloaded
to properly handle all the native C++ types.

The most common mistake made when using the cout object is forgetting to put quotation marks around strings,
but practice makes perfect.
Learning More Abour cour and cin

My favorite book on C++ iostreams is the C++ [0Streams Handbook by Steve Teale, Addison Wesley, ISBN 0-
201-59641-5.

Summary

All C++ programs require a main() function and a minimum, well-formed C++ program may have nothing but a
main() function, although it wouldn’t be very useful. You can learn a lot about the language and the host computer by
disassembling programs. The Metrowerks CodeWarrior disassembler can be configured to display output in several
different formats.

Keywords are identifiers reserved for use by the compiler. You build C++ programs from declarations, state-
ments, and expressions constructed from keywords, identifiers, fundamental data types, and operators.

C++ contains several fundamental data types such as char, int, float, and double, etc. Fundamental data types can
represent a certain range of values depending on their size. Learn the size, in bytes, of data types by using the sizeof
operator. Determine the range of data types by using the numeric_limits template class.

Numbers, characters, and strings of characters that appear directly in programs are known as literals. Integer lit-
erals can be expressed in decimal, octal, or hexadecimal format. Multiple character literals have a value equal to the
integer value of their bit representation. Special characters can be represented by escape sequences. Floating point lit-
erals have type double unless specified as float with the f or F suffix. String literals are terminated with the null char-
acter \0’. Boolean literals true and false represent the values 1 and 0.

Expressions, constructed from operators, specify a computation from which a value may result. Operators have
precedence; use parenthesis to explicitly define operator precedence in an expression and make code easier to read
and understand.

Identifiers are names given to objects in a program; adopt a naming convention and stick with it. A constant is an
object whose value will remain unchanged during its lifetime. A constant must be defined at the point of declaration
except in class member constants which require initialization in the class constructor. (see chapter 11)

A variable’s value will change during its lifetime. Variables have an area of authorized usage within a program
known as scope. Redeclaring a variable in an enclosed scope can mask or hide a variable of the same name in outer or
enclosing scopes. File scope variables have external linkage by default. Use the static keyword to limit file scope vari-
able visibility to the file in which it is declared.

The main() function takes two forms. The cstdlib header defines the constants EXIT_SUCCESS and
EXIT_FAILURE for use in the return statement or exit() function. Use atexit() function to call a function of your
choosing upon exiting a program.

Stream input and output is provided by the cin and cout objects.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 135

Skill Building Exercises Chapter 5: Simple Programs

Skill Building Exercises

1. Disassembly: Write a short program that adds two integer literals together and assigns the result to an integer vari-
able. Disassemble the program and study the resulting output.

2. Fundamental Type Sizes: Write a program demonstrating the use of the sizeof operator and calculate the sizes of
all the fundamental data types for your development environment.

3. Fundamental Type Value Ranges: Write a program demonstrating the use of the numeric_limits template class
and calculate the range of values of all the fundamental data types for your development environment.

4. Hex To Binary Conversion: Convert the following hexadecimal numbers to binary:
0xD3F45C88
0x864EE701
0xAAFFAAFF
0x37808978
OxA1E5A1ES

5. Decimal to Binary Conversion: Convert the following decimal numbers to binary. Indicate the smallest C++ data
type necessary to represent the value:
34 (ASCII)
-246
32,746
124,256
4,294,967,295

6. Multiple Character Literals: What integer value does the character literal ‘Stop’ represent?

7. Operator Usage: Write a program that demonstrates the use of each of the following operators: postfix ++ and
prefix ++, postfix and prefix --, *,/, %, +, -, <<, >>, <, >, <=,>=, ==, =, &, M |, &&, |, 7:, *=, /=, o=, +=, -=,>>=,
<<=, &=,"=,|=.

8. Exiting main(): Write three short programs demonstrating how to exit the main() function using 1) a return state-
ment, 2) the exit() function, and 3) the exit() function with a clean-up function registered with the atexit() function.

9. Variable Scoping and Linkage: Write a short, two-file program demonstrating the following aspects of variable
scoping and linkage and answer the associated questions:
-Declare an integer variable named shared_global in one file and redeclare it with the extern keyword and use it in
the other file. What effect does using the variable in each file have on the value of the variable?
-Declare an integer variable named file_global in both files using the static keyword. What effect does using this
variable in each file have on the value of the variable?
-In the body of the main() function declare and initialize an integer variable named var1. Print its value to the
screen using the cout object.
-Below the cout statement declare a local block using the braces { }, and print the variable again using the cout
object. Did its value change? Explain why or why not.
-In the local block, below the cout statement, redeclare and initialize to a different value from the original, the vari-
able varl. Print varl to the screen using the cout object. Did its value change? Explain the results.
-Is there a way to access the original varl variable from within the local block?

10. IOStream Input and Output: Write a short program demonstrating simple iostream input and output using the

cin and cout objects. Declare a few variables of various types and set their values via the keyboard using the cin
object. Use the technique shown in this chapter to catch bad input. Print the contents of each variable to the screen

136 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 5: Simple Programs Suggested Projects

using the cout object.

Suggested Projects

1. Calculate Averages: Write a program that calculates the average age of the members of your family. If you have a
large family limit the number of ages you use to ten. Use the cout object to prompt for the entry of each age. Use
the cin object to read the input from the keyboard and store it in a variable. Use the technique shown in the chapter
to trap bad input.

2. Calculate Area: Write a program that calculates the area of a square given the length of one side. Use the cout
object to prompt for input and the cin object to read the input from the keyboard and assign it to a variable for com-
putation.

3. Calculate Area: Write a program that calculates the area of a rectangle given its length and width.Use the cout
object to prompt for input and the cin object to read the input from the keyboard. Use two variables of the appropri-
ate type to store the store the values of length and width. Print the values of the rectangle’s length and width, and its
area, using cout.

4. Experiment: Write a program that prints out all the escape sequences listed in table 5-2. You may want to add
characters to the output string when printing the horizontal tab and vertical tab so you can gage the effect.

5. Bitwise AND: Write a program that takes two hexadecimal numbers as input, performs a bitwise AND on them,
and displays the result.

6. Bitwise Exclusive OR: Write a program that takes two hexadecimal numbers as input, performs a bitwise exclu-
sive OR on them, and displays the result.

7. Bitwise Inclusive OR: Write a program that takes two hexadecimal numbers as input, performs a bitwise inclusive
OR on them, and displays the result.

8. Comparison Operators: Write a program that takes two decimal integers as input, compares their values with the
<,>, <=, and >= operators, and displays the results.

9. Calculate Formula: Write a program that performs the following computation:

_ (a-b)/c

2
a

X

Enter the values for a, b, and ¢ from the keyboard. Display the value of x using cout.

10. Left Shift, Right Shift: Write a program that reads a decimal value from the keyboard, stores it in a variable, left
shifts it 4 bits, prints the value, then right shifts it 8 bits and prints the value.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 137

Self Test Questions Chapter 5: Simple Programs

Self Test Questions

1. What’s the purpose of the main() function? Why does every C++ program need one?

2. Describe how disassembling your programs and studying the results can improve your understanding of the C++
language and your computing platform.

3. What is the purpose of the preprocessor directive #include?
4. (True/False) You can use the C++ reserved keywords to name your own program objects.
5. The sizeof operator will return the size of data types in what unit of measure?

6. You can either memorize C++ operator precedence or use to force precedence and make
source code easier to read at the same time.

7. Why can an unsigned data type represent a larger positive value than a signed data type?
8. When negative numbers are shifted to the right using the >> operator what is the effect on the sign bit?
9. How are string literals terminated?

10. Study the following code and answer the following questions:

1 #include <iostream>

2 using namespace std;

3

4 int vall = 1;

5

6 int main () {

7 {

8 cout<<vall++<<endl;
9 int vall = ::vall;
10 cout<<vall<<endl;
11 }

12 cout<<vall<<endl;

13 return 0;

14 }

-What value will the new variable named vall be initialized to on line 9?7

-Which vall will be printed to the screen on line 10?

-What is the value of vall printed to the screen on line 12?

-Describe the effect of using the unary scope resolution operator :: on line 9. Why is its use necessary?

References

International Standard, ISO/IEC 14882, Programming Languages — C++, First Edition 1998-09-01

Metrowerks CodeWarrior Version 5.5 Reference Documentation for Windows 95/98/NT and Apple Macintosh.

138 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 5: Simple Programs Notes

Steve Teale. C++ 10Streams Handbook, Addison-Wesley, Reading Massachusetts, 1993, ISBN 0-201-59641-5.

Paul J. Lucas. The C++ Programmer’s Handbook, Prentice Hall P T R, Englewood Cliffs, New Jersey, 1992,
ISBN 0-13-118233-1.

Nortes

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 139

Notes Chapter 5: Simple Programs

140 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chaprter 6

Twisted Trees

Conrrolling The Flow OF

ProGgrAam Execution
Learning Objecrives

* Conirol 1he flow of proGram execurion with C++ conirol flow statements
* State the purpose and use of The if starement

o Explain 1he purpose of a wull starement

e Urilize blocks 1o create local variable scopes in conmrol siatements

* Snare the purpose and use of nested if siatements

* Stare 1he purpose and use of the for statement

o State the purpose and use of nested for statements

* Snare the purpose and use of the keywords break and continue

o Siare the purpose and use of the while starement

* Siare the purpose and use of the do starement

o State the purpose And use of the switch starement

e Explain the impormance of using break 1o exit case starements properly

e Explain 1he impormnce of a defaulr case

* Demonsirate your ability write effective, selfcommenting expressions urilizing sound ideniifier naming Technioues

C++ For Artists ©2003 Rick Miller — All Rights Reserved 141

Introduction Chapter 6: Controlling The Flow Of Program Execution

INTROducTiON

Control flow statements are a critical component of the C++ programming language, for without them processing
would proceed from beginning to end with no detours and how boring would that be?

In this chapter I will show you how to use the selection statements if, and switch. Selection statements allow you
to evaluate an expression and continue processing in a direction based on the result of an expression.

The selection statements will be followed by the iteration statements while, do, and for. Iteration statements are
used to do repetitive processing controlled by the evaluation of an expression. I will also cover the use of labeled
statements, goto statements, break statements, continue statements, and null statements.

Whatever you do, don’t forget the material covered in chapter 5. Most of the operators introduced there can be
used to build the expressions used in the selection and iteration statements.

Along the way I will show you the idiomatic way of writing each type of statement. Idioms are important in C++
and other languages because knowing the accepted way of writing a while loop, for loop, etc., increases the readabil-
ity of your code while reducing the opportunity to introduce syntax errors or logic flaws into your programs.

Statements, Null Statements, ANd Compound Statements

Before talking about if statements, for statements, do statements, and the like, it will be a big help to you to
understand statements, null statements, and compound statements. If all this talk about statements is making you
dizzy just hang on, it will soon make perfect sense.

STATEMENTS

You have seen various statement forms used in the preceding chapters. For instance, expressions, discussed in
chapter 5, are a form of statement known as expression-statements. Statements are terminated by a semicolon “;”. A
statement will usually result in something happening, as in the case of expression statements that perform a calcula-
tion, or assignment expressions where a value is being assigned to some memory location. (remember lvalues and
rvalues?) Here are a few examples of statements:

int aj

a = 1;

for (int 1=0; i<some_ val; 1i++)
cout<<i<<endl;

The first statement is a declaration statement; the variable name a is being introduced. The second statement is an
assignment expression, a.k.a., expression-statement. The third example is a for statement, which will be discussed
below. For now, however, see where the semicolon occurs in the for statement. It could have been written like so...

for (int 1i=0; i<some_val; i++) cout<<i<<endl;

...and you will no doubt see short for statements written in this format. The semicolon also serves as a sequence
point meaning the statement it terminates and all side effects associated with the statement will be fully executed
before the next statement executes.

Statements are executed sequentially, that is, one right after the other, unless the flow of program control is
changed with a selection statement, iteration statement, or goto statement.

Null Statements

Sometimes you need a statement that does nothing. A semicolon appearing by itself serves as a null statement.
The following is a null statement:

142 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 6: Controlling The Flow Of Program Execution Selection Statements

The null statement doesn’t have to be on a line by itself but it often appears that way; it could immediately follow
another statement. The following code shows an expression statement followed by a null statement:

int a = 25; ;

It does look weird doesn’t it? Regardless, keep the null statement in mind. You will see it again soon being put to
good use.

Compound Statements

Throughout the rest of this chapter you will see blocks like this:

statement

Where you can use a statement, you can also use a compound statement, otherwise known as a block statement.
Compound statements are formed using the opening and closing braces { }. The following code is an example of a
compound or block statement:

{
int i = 3;
cout<<i<<endl;

}

You will rarely see compound statements used in the middle of nowhere. They are more often employed in if
statements, for statements, while statements, etc. If the body of a selection statement or iteration statement requires
more than one statement a compound statement can be used. You will see compound statements used heavily through-
out the rest of this chapter.

SelecTioN STATEMENTS

Selection statements change the flow of program execution by evaluating the result of an expression, referred to
as a condition. The if and switch statements are selection statements.

if STATEMENT

An if statement evaluates a condition and executes its associated statement if the condition is true. Otherwise it
skips the statement and processing continues on to the next statement following the if.

(condition) statement [§

Jfalse

Figure 6-1: if Statement Diagram

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 143

Selection Statements Chapter 6: Controlling The Flow Of Program Execution

Figure 6-1 illustrates the if statement. The expression that formulates the condition must evaluate to either true or
false. True is any non-zero integer value. The following code gives an example of a simple if statement:

]l int a = 0, b = 1; 6.1 if statement
2 if(a++ > b)
3 cout<<*”a is greater than b”<<endl;

In this example the postfix ++ operator will increment a after the greater than comparison is made comparing a’s
value with b’s value. This will result in the expression evaluating to false. However, after the if statement executes, a

will be 1.

The expressions that form the condition can be simple or complex. I should warn you that the most common mis-
take novice programmers make with regards to selection statement conditions is using an assignment operator, =,
where they really meant to use an equality operator, ==. The following example is perfectly legal in C++:

6.2 assignment

1 int a = 0;

2 if(a = 3)
3 cout<<"Assignment expressions can be conditions too!"<<endl;

The condition on line 2 evaluates to true because the result of the assignment is the value assigned to a, which is
3, which is a non-zero integer value and therefore considered true. The following example looks similar but is com-
pletely different from example 6.2:
6.3 equality
1 int a = 0;

2 if(a == 3)
3 cout<<"Assignment expressions can be conditions too!"<<endl;

In this example the condition on line 2 will evaluate to false because a is not equal to 3. This leads me to my first
good piece of advice regarding selection statements:

Don’t use the = operator
when you really mean to use
the == operator!

Declarations can be part of the condition, in which case the scope of the declared variable are the statements con-

trolled by the selection statement. Examine the following example:
64 declaration in condition

1 if(int a = 3)
2 cout<<"Declarations are allowed in the condition!"<<endl;

The scope of variable a would be up to the end of line 2.

if Statements and Compound Statements

Compound statements can be used with if statements. Examine the following example:

144 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 6: Controlling The Flow Of Program Execution

int a = 0, b = 1;

1

2

3 if(++a == b){

4 int ¢ = 2;

5 cout<<"The value of a is: "<<a++<<endl;
6 cout<<"The value of b is: "<<b<<endl;

7 cout<<"The value of c is: "<<c<<endl;

8 cout<<"The value of a is: "<<a<<endl;

9

}

Selection Statements

6.5 compound statements

All the statements appearing between the opening and closing braces will be executed if the condition on line 3
evaluates to true which it will. The variable ¢ declared on line 4 has block scope within the braces from its point of

declaration up to the closing brace on line 9.

iFelse STATEMENT

The if-else statement works like the if statement with one major difference. If the condition evaluates to false the
statement following the else keyword will execute. A diagram of the if-else statement is shown in Figure 6-2.

(condition) statement

else

false

Statement

Figure 6-2: if-else Statement Diagram

The following code gives an example of an if-else statement in action:

I int a = 0;

2

3 if(a)

4 cout<<"True statement."<<endl;

5 else

6 cout<<"False statement."<<endl;

6.6 if-else

In this example the variable a is evaluated resulting in false since a is zero. Line 4 will be skipped and the state-

ment on line 6 will execute.

The ! operator can be used to negate an expression. Examine the following example:

I int a = 0;

2

3 if(la)

4 cout<<"True statement."<<endl;

5 else

6 cout<<"False statement."<<endl;

6.7 ! operator

The statement is read, “if not a...”. Since a is zero, !a will evaluate to true causing the statement on line 4 to exe-

cute.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved

145

Selection Statements Chapter 6: Controlling The Flow Of Program Execution

Compound statements can be used with if-else statements as illustrated by the following example:
1 int - 1. 6.8 compound statements
ntoa = 4j with if-else

N

3 if(la){

4 int b = 1;

5 cout<<"The value of a: "<<a++<<endl;
6 cout<<"The value of b: "<<b<<endl;

7

8

}

else{
9 int b = 2;
10 cout<<"The wvalue of a: "<<a<<endl;
11 cout<<"The value of b: "<<b<<endl;
12 }

On line 1 the variable a is initialized to 1 causing !a to evaluate to false. The variable a is in scope of the entire if-
else statement while each variable b has only block scope within each compound statement.

Nesing if-else Statements

Nesting if-else statements refers to putting one if-else statement within another or chaining them together. One
method of nesting if-else statements is to follow the else keyword with another if-else statement. The following short
program reads a character from the keyboard and prints a message to the screen based on the character entered:

#include <iostream> 6.9 nesting if-else

using namespace std;

1
2
3
4 int main () {
5
6 cout<<"Enter the character a, b, or c: ";
7 char input;
8 cin>>input;
9
10 if (input == 'a')
11 cout<<"You entered a."<<endl;
12 else if (input == 'b')
13 cout<<"You entered b."<<endl;
14 else if (input == 'c'")
15 cout<<"You entered c."<<endl;
16 else
17 cout<<"You entered the wrong character!"<<endl;
18
19 return EXIT SUCCESS;
20 }

In this complete example a character is read from the input stream and assigned to the variable named input. The
variable input is then compared to three different values in each if-else statement starting on line 10. If the character
entered matches the compared value then the expression evaluates to true, otherwise it is false. If the input character is
not an ‘a’, ‘b’, or ‘c’ then the final else is executed.

What is helpful to keep in mind is that almost anywhere a statement can be used, a selection statement can be
used there as well. Examine the following complete program:

146 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 6: Controlling The Flow Of Program Execution Selection Statements

6.10 use of selection statements

1 #include <iostream>

2 using namespace std;

3

4 int main () {

5

6 cout<<"Enter the character a, b, or c: ";

7 char inputl;

8 cin>>inputl;

9
10 cout<<"Enter the character u or p: ";
11 char input2;
12 cin>>input2;
13
14 if(inputl == 'a'){
15 cout<<"You entered a."<<endl;
16 if (input2 == 'u')
17 cout<<"You entered u."<<endl;
18 else if (input2 == 'p')
19 cout<<"You entered p."<<endl;
20 else cout<<"You didn't enter u or p!"<<endl;
21 }telse if(inputl == 'b'"){
22 cout<<"You entered b."<<endl;
23 if (input2 == 'u'")
24 cout<<"You entered u."<<endl;
25 else if (input2 == 'p')
26 cout<<"You entered p."<<endl;
27 else cout<<"You didn't enter u or p!"<<endl;
28 }else if (inputl == 'c'){
29 cout<<"You entered c."<<endl;
30 if (input2 == 'u')
31 cout<<"You entered u."<<endl;
32 else if (input2 == 'p')
33 cout<<"You entered p."<<endl;
34 else cout<<"You didn't enter u or p!"<<endl;
35 lelse {
36 cout<<"You didn't enter a, b, or c!"<<endl;
37 if (input2 == 'u')
38 cout<<"You entered u."<<endl;
39 else if (input2 == 'p'")
40 cout<<"You entered p."<<endl;
41 else cout<<"You didn't enter u or p!"<<endl;
42 }
43 return EXIT SUCCESS;
44 }

In this example two character inputs are read from the keyboard and compared to character literals in the if state-
ments. This example gives you a good idea of how messy nested if-else statements can become even if liberal indent-
ing is used to improve readability. Luckily, there is an alternative to the nested if-else —the switch statement.

swirch STATEMENT
A switch statement evaluates a condition much like nested if-else statements. The condition must evaluate to

either an integral value or enumeration value. Enumerations will be covered formally in chapter 10 but I will give you
an example of their use with switch statements in this section. Figure 6-3 shows a diagram of the switch statement.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 147

Selection Statements Chapter 6: Controlling The Flow Of Program Execution

Use the break keyword
to exit switch state-
ment and prevent fall-
ing through to the next
case label.

Case (constant-expression 1) .

break;

Case (constant-expression 2) .

break;

switch o .
(COI‘IdlﬂOH) CaSEC (constant-expression n-1) .

break;

CaSC (constant-expression n) .

break;

default :

Figure 6-3: switch Statement Diagram

Execution will transfer to the statement whose case label constant expression matches the result of the condition
evaluation.

Important!!! Execution of a case statement will fall through to the next case statement unless the keyword break
is used to exit the switch statement. (Sometimes you want a case statement to fall through to the next case — and
sometimes you do not) If a default label is present, and the result of the condition fails to match any of the cases, the
default case will execute. Keep the following advice in mind when using switch statements:

Use break to exit the switch and prevent
case statement fall-through, always
have a default case!

Example 6.11 gives the switch statement version of the nested if-else statement shown in example 6.10:

1 #include <iostream> 6.11 switch statement
2 using namespace std;
3
4 int main () {
5
6 cout<<"Enter the character a, b, or c: ";
7 char inputl;
8 cin>>inputl;
9
10 cout<<"Enter the character u or p: ";
11 char input2;
12 cin>>input2;
13
14 switch (inputl) {
15 case 'a':{
16 cout<<"You entered a."<<endl;

148 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 6: Controlling The Flow Of Program Execution

17 switch (input?2) {

18 case 'u': cout<<"You entered u."<<endl;
19 break;

20 case 'p' : cout<<"You entered p."<<endl;
21 break;

22 default : cout<<"You didn't enter u or p!"<<endl;
23 }

24 break;

25 }

26 case 'b':{

27 cout<<"You entered b."<<endl;

28 switch (input2) {

29 case 'u': cout<<"You entered u."<<endl;
30 break;

31 case 'p' : cout<<"You entered p."<<endl;
32 break;

33 default : cout<<"You didn't enter u or p!"<<endl;
34 }

35 break;

36 }

37 case 'c': {

38 cout<<"You entered c."<<endl;

39 switch (input?2) {

40 case 'u': cout<<"You entered u."<<endl;
41 break;

42 case 'p' : cout<<"You entered p."<<endl;
43 break;

44 default : cout<<"You didn't enter u or p!"<<endl;
45 t

46 break;

47 }

48

49 default: {

50 cout<<"You didn't enter a, b, or c!"<<endl;

51 switch (input?2) {

52 case 'u': cout<<"You entered u."<<endl;
53 break;

54 case 'p' : cout<<"You entered p."<<endl;
55 break;

56 default : cout<<"You didn't enter u or p!"<<endl;
57 }

58 }

59 }//end switch

60

61 return EXIT SUCCESS;

62

63 } //end main ()

Selection Statements

6.11 (continued)

The switch statement begins on line 14 and evaluates the character variable inputl. There are four possible cases
that can be executed. If the inputl evaluates to ‘a’ then the statements associated with case ‘a’: on line 15 execute.
Case ‘a’ contains all the statements between the opening brace on line 15 to the closing brace on line 25. Notice that
case ‘a’ also contains a nested switch statement that evaluates the variable input2. Case ‘b’ and case ‘c’ execute in
similar fashion. The break statements in each case will exit the switch and prevent execution falling through to the
next case. If none of the cases match the input then the default case is executed. The use of braces to enclose state-

ments associated with a case label are optional.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved

149

Iteration Statements Chapter 6: Controlling The Flow Of Program Execution

Break and the Defavlr Case

As long as the default case is the last labeled statement in the switch statement then a break is not required; exe-
cution will fall through to the end of the switch. However, if another case label appears beneath the default label then
use break to make sure you exit the switch normally. Here is another piece of advice to keep in mind when using a
switch statement:

Make the default case the last case in a
switch statement!

IreraTiON STATEMENTS

Selection statements like if and switch are required to give your programs decision making capability, however,
once through the selection statement that is it! Sometimes you want to do things over and over again either forever or
at least until something happens to break the loop. This is where iteration statements come into the picture.

In this section I will discuss the while, do, and for statements. Each statement gives you the ability to perform
one or more operations repeatedly. Your choice of which iterative statement to use depends on what needs to be done.

while StaTement

Figure 6-4 shows a diagram of a while statement. The while statement will evaluate the condition before execut-
ing the associated statement. As indicated in figure 6-4, the statement may never execute if the condition is always
false.

Condition evaluated before state-
/ ment is executed

-—Wh ile (condition)

If the condition is initially false,
the statement will never be exe-
cuted!

Once inside the loop the condition
should eventually evaluate to false
or the loop will repeat forever.
Sometimes this is the desired
behavior.

— statement +—

Figure 6-4: while Statement Diagram

Once inside the body of the while loop the condition must eventually evaluate to false or the loop will execute
forever. In many programming situations you want to loop forever until the program exits from within the body of the
loop. An example of this would be a menu-processing while loop. I will show you an example of this below, but for
now, take a look at a simple while statement:

150 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 6: Controlling The Flow Of Program Execution Iteration Statements

I int count = 0; 6.12 while statement

2

3 while (count++ < 5){

4 cout<<"Count = : "<<count<<endl;
5 }

One line 1 the integer variable count is declared and initialized. The condition expression involves the use of two
operators. First, the less than comparison is made followed by the postfix increment. When first compared, the vari-
able count is zero, the body of the while loop is entered, and the statement on line 4 executes. What values of count
will print to the screen?

In this case, the postfix increment is evaluated prior to entry into the body of the loop. The first value to be
printed to the screen is one. This while loop will execute five times. The following while loop behaves somewhat dif-
ferently:

I int count = 0; 6.13 while statement

2

3 while (++count < 5){

4 cout<<"Count = : "<<count<<endl;
5 }

In this example the prefix operator increments the value of count before the less than expression is evaluated. The
first value of count to print to the screen is still one but the loop executes only four times. The lesson here is clear: Be
sure you understand the effects operators have on your expressions.

Conrrolling while Statements with Sentinel Values

In most instances you won’t know how many times a while loop should execute. In these situations you can
employ sentinel values. A sentinel value is simply a value, in most cases arbitrary, of your choosing, that when used in
the condition expression of the while loop forces the loop to exit. Sentinel values can be set based upon some condi-
tion in the body of the while loop, or, they can be entered via the keyboard. Examine the following code:

6.14 use of sentinel
value

float total = 0, average = 0, input = 0;
int count = 0;

while (input >= 0) {

cout<<"Please enter a positive number to average "
<<" or negative number to exit: ";
cin>>input;

® NNy O W N =

[
S o

if(!cin) {

=
=

cin.clear () ;
cin.ignore (INT MAX, '\n');
}else if (input >= 0) {
total += input;
average = (total/ (++count));
cout<<"The average is: "<<average<<endl;
}
}//end while

R T e e
D Ny W N

In this example the while loop condition will evaluate to true so long as the number entered is positive. Any neg-
ative number will cause the while loop condition to evaluate to false thus exiting the loop. This code also shows an if-
else statement being used in the body of a while loop. On line 10 the cin object is examined for failure. If the cin

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 151

Iteration Statements Chapter 6: Controlling The Flow Of Program Execution

object fails it means the wrong input type was entered. If the cin object was successful the else statement on line 13 is
executed. The else statement includes another if statement that checks to make sure a positive number was entered. If
so the averaging calculation is performed, otherwise, the calculation is skipped.

In this case the sentinel value is any negative number. So long as the number entered is greater than or equal to
zero the while loop will repeat. A negative number will terminate execution of the while loop.

Nesting while Statements

While statements can be nested just like their if-else cousins. The following code offers an example:

1 bool done = false; 0.13 nested while
statements
2 int inner count = 0, outer count = 0;
3
4 while (!done) {
5 while (inner count < 3) {
6 cout<<"Inner count is: "<<inner count++<<endl;
7 }
8 if (outer count++ > 3){
9 done = true;
10 }
11
12 inner count = 0;
13 }

In this example, the outer loop is controlled by a boolean sentinel value which is set to false prior to entry into the
loop and subsequently set to true in the body of the outer loop via the if statement on line 8. The inner while loop will
execute until the variable inner_loop becomes greater than three, at which time the inner loop terminates. The
outer_count variable is compared to three and then incremented. If outer_count is less than three the variable done
remains false, inner_count is reset to zero, and the outer while loop executes again. When outer_count is greater than
three done is set to true causing the outer loop to terminate.

Doing Something Forever

While statements are often used without sentinel values to indefinitely repeat an operation, leaving the proper
exiting of the program to some statement within the body of the while loop. The idiomatic way of writing a while
loop so that it repeats forever is shown in the following example:

I while (true) { 6.16 looping forever
2 //repeat what's in here forever
3}

The condition of the while loop is simply the boolean literal value true. Alternatively the statement can be written
in the following manner...

I while (1) { 6.17 looping forever
2 //repeat this stuff too!
3}

...although I don’t recommending doing so!

Exiting While Loops with the break Statement

The important thing to remember when using forever-repeating while loops is they must be explicitly exited by
the programmer. One way to exit a while loop is with the break statement. Examine the following source code:

152 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 6: Controlling The Flow Of Program Execution

[
S O NG W N =

11 }

while (outer loop++ < 3){

while (true) {

if

(inner loop++ < 3)

int inner loop = 0, outer loop = 0;

Iteration Statements

6.18 nested while loop

cout<<"Outer loop = "<<outer loop<<endl;

cout<<"Inner loop = "<<inner loop<<endl;

else break;

This example shows nested while loops. The inner while loop, starting on line 6, will repeat forever until the if
statement’s condition on line 7 evaluates to false, at which time the break statement will be executed exiting the inner
loop. Since the variable inner_loop is not reset to zero the inner loop executes only once.

A break exits its immediate enclosing iteration statement. In example 6.18 above, the break statement is part of
an if-else statement, which itself is contained within a while loop. Since the inner while loop contains the break it is
the one exited when the break statement is executed.

You can also exit the entire program from a while loop using the exit() function. The following extended example
shows how a forever-repeating while loop can be used to continuously execute a switch statement that processes key-
board input. The program terminates when the letter q or Q is entered.

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

C++ For Artists

cout<
cin>>

char input = ' ';

while (true) {

<"Enter a character: ";
input;

switch (input) {

case
case

case
case

case
case

case
case

case
case

case
case

case
case

6.19 switch inside of
while loop

lal:

'A': cout<<"You entered "<<input<<"!"<<endl;
break;

lbl:

'B': cout<<"You entered "<<input<<"!"<<endl;
break;

IC'.

'C':cout<<"You entered "<<input<<"!"<<endl;
break;

ldl:

'D':cout<<"You entered "<<input<<"!"<<endl;
break;

lel:

'E':cout<<"You entered "<<input<<"!"<<endl;
break;

lf'.

'F':cout<<"You entered "<<input<<"!"<<endl;
break;

lgl:

'G':cout<<"You entered "<<input<<"!"<<endl;

©2003 Rick Miller — All Rights Reserved 153

Iteration Statements

154

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

case
case

case
case

case
case

case
case

case
case

case
case

case
case

case
case

case
case

case
case

case
case

case
case

case
case

case
case

break;

lhl:
'H':cout<<"You
break;

lil-
'I':cout<<"You
break;

'j':
'J':cout<<"You
break;

lkl:
'K':cout<<"You
break;

lll:
'L':cout<<"You
break;

lml .
'M':cout<<"You
break;

lnl:
'N':cout<<"You
break;

lol-
'O':cout<<"You
break;

lpl:
'P':cout<<"You
break;

lql:
'Q':cout<<"You

entered

entered

entered

entered

entered

entered

entered

entered

entered

entered

cout<<"Goodbye!";
exit (EXIT SUCCESS);

lrl:
'R':cout<<"You
break;

ISI:
'S':cout<<"You
break;

ltl:
'T':cout<<"You
break;

lul.
'U'icout<<"You
break;

entered

entered

entered

entered

Chapter 6: Controlling The Flow Of Program Execution

"<<input<<"

"<<input<<"

"<<input<<"

"<<input<<"!

"<<input<<"

"<<input<<"

"<<input<<"

"<<input<<"

"<<input<<"

"<<input<<"

"<<input<<"!

"<<input<<"

"<<input<<"

"<<input<<"

"<<endl;

"<<endl;

"<<endl;

"<<endl;

"<<endl;

"<<endl;

"<<endl;

"<<endl;

"<<endl;

"<<endl;

"<<endl;

"<<endl;

"<<endl;

"<<endl;

©2003 Rick Miller — All Rights Reserved

6.19
continued

C++ For Artists

Chapter 6: Controlling The Flow Of Program Execution Iteration Statements

94 case 'v': 6.19
95 case 'V':cout<<"You entered "<<input<<"!"<<endl; continued
96 break;
97
98 case 'w':
99 case 'W':cout<<"You entered "<<input<<"!"<<endl;
100 break;
101
102 case 'x':
103 case 'X':cout<<"You entered "<<input<<"!"<<endl;
104 break;
105
106 case 'y':
107 case 'Y':cout<<"You entered "<<input<<"!"<<endl;
108 break;
109
110 case 'z':
111 case 'Z':cout<<"You entered "<<input<<"!"<<endl;
112 break;
113
114 default: cout<<"Character not part of alphabet!"<<endl;
115 break;
116 } //end switch

117 }// end while

do STATEMENT

The do statement differs from the while statement in the posi-
tion of the condition test. In the while statement the condition test do
took place before the loop was executed. This resulted in a possi-
bility of the while loop never executing the body of the loop. The
do statement tests the condition after the body of the loop. This statement
results in the body of the do loop executing at least once.

Figure 6-5 shows a diagram of the do statement. The follow-
ing source code shows a do statement in action:

1 int count = 0; 6.20

2

3 do { while < (condition)
4 cout<<"Count ="<<count<<endl;

5 }while (count++ < 3);

Nesting do STaTEMENTS

Do statements can be nested in exactly the same way as while Figure 6-5: do Statement Diagram
statements.

for STATEMENT

There is often a need in programming to repeat a series of steps a known amount of times. You can do this with
the while statement or the do statement and you have seen it done several times already in this chapter. To make a
while or do statement iterate for a specified number of loops you must perform the following general steps:

Step 1 - Declare an integer variable with which to keep count of the number of loops,

Step 2 - Initialize the counting variable declared in step one (step one and two can be combined into one state-
ment),

Step 3 - Test the condition,

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 155

Iteration Statements Chapter 6: Controlling The Flow Of Program Execution

Step 4 - Perform the statement or statements in the body of the statement if condition is true,
Step 5 - Increment the loop counting variable,
Step 6 - Repeat steps 3 through 5 until the condition evaluates to false.

The following example shows a while statement with steps 1 through 5 labeled:

6.21 while loop behaving
like for loop

1 int count = 0; Steps 1 & 2: count variable
2 declared and initialized

3 while (count <= 3){ Step 3: Condition tested
4 cout<<"Loop executed ";

5 cout<<count<<" times!"<<endl; Step 4: Body executed

6 count++;

7

Step 5: count variable incremented

The for statement provides a convenient format for performing steps 1, 2, 3, and 5, as shown in figure 6-6.

false

for(|for initialization statement|; »| expression |)

frue

Statement

!

Figure 6-6: for Statement Diagram

The following source code shows a for statement in action:

1 for(int 1 = 0; 1<3; 1i++){ 6.22 for statement
2 cout<<"I equals = "<<i<<endl;
3}

On line one, the variable i is being declared and initialized for the purpose of loop counting. The condition is
tested and, if true, the body of the for statement is performed, and i is incremented. The scope of the variable i is local
to the body of the for statement and is visible to any enclosing scopes. Examine the following code:

1 for(int 1 = 0; 1<3; 1i++){ 6.23 for loop scope
2 cout<<"I equals = "<<i<<endl;

3}

4 int 1 = 0;

On line four another variable i is being declared and defined. This is legal because the i declared in the for state-
ment initialization section on line one is visible only in the body of the for statement.

I"d like to point out that example 6.22 illustrates the idiomatic way of writing a for statement. Writing the for
statement in the idiomatic way makes your source code easier to read and comprehend.

156 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 6: Controlling The Flow Of Program Execution Iteration Statements

For statements are an ideal way to implement summations in source code. Example 6.24 implements the follow-
ing summation:

100
Y i
i=1

1 for(int i = 1, total = 0; i<=100; i++)({ 6.24 implementing
. summation

2 total += 1i;

3 cout<<"i = "<<i<<" ";

4 cout<<"Total = "<<total<<endl;

5}

Note on line one how the variable total is declared and initialized in the for statement initialization section as well
as the variable i.

Nesting for StaTements

For statements can be nested like the while and do-while statements. The following code gives an example:

1 for(int i = 0; i<3; i++){ 6.25 nesting for
. . statements

2 cout<<"i = "<<i<<endl;

3 for (int j = 0; j<3; Jj++){

4 cout<<"j = "<<j<<endl;

5 }

6}

When nesting for loops you have to be especially aware of variable scoping within each for loop’s body block. In
this example, the variable i is in scope for the outer loop as well as the inner loop. Most times, however, a separate
counting variable is required to keep track of enclosed nested loop iterations. The variable j is declared in the for loop
on line 3 for this purpose.

Nesting for loops in this fashion results in the inner loop being executed each time the outer loop is executed.

break

The break statement can be used to terminate for loops. The break statement exits its enclosing loop. Examine the
following source code:

1 for(int i = 0; 1<3; i++){ 6.26 break statement
2 cout<<"i = "<<i<<endl;

3 for(int j = 0; 3<3; Jj++){

4 cout<<"j = "<<j<<endl;

5 if(j3 == 1)

6 break;

7 }

8}

This code is similar to example 6.25 with the addition of the if statement on line 5. If the variable j, which is vis-
ible only in the body of the inner for statement, is equal to 1, then the inner loop will terminate and control will be
passed to the outer for statement.

Doing Something Forever with a for StaTement

A for statement can also be used to perform an operation repeatedly forever. The following code shows how this

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 157

Writing Elegant Code Chapter 6: Controlling The Flow Of Program Execution

is done:

1 for(;;){ 6.27 looping forever
2 //do this forever
3

}

CONTINUE

The continue keyword can be used with while, do, and for statements to pass control to the end of the loop.
Here’s an example:

6.28 continue statement

1l char ch =" ';

2 int count = 0;

3

4 cout<<"Enter characters or numbers: "<<endl;
5

6 while (cin>>ch) {

7 if((ch >= '0") && (ch <= '9")){

8 continue;

9 }
10
11 cout<<"Count is "<<++count<<" and the character is ";
12 cout<<ch<<endl;
13
14 if(ch == 'qg'"){
15 cout<<"Goodbye!"<<endl;
16 break;
17 }
18 }

This while loop will repeat as long as characters are input via the keyboard or until the q character is entered. If a
0 through 9 is entered the continue statement on line 8 causes any statements appearing on lines 9 through 17 to be
skipped.

Avoiding break and continue

Use break and continue statements sparingly. Their overuse leads to hard-to-understand code and dang-near-
impossible-to-detect programming errors. Break is used mostly in switch statements, otherwise, there is usually a
more elegant way of rewriting code that avoids break and continue. The ability to write elegant code comes from
experience.

WRriting Elegant Code

I"d like to expand on the last sentence of the previous paragraph. Writing code is closely related to writing a story
or a novel. You will find that as you are happily programming along you will write whatever code pops into your mind
as you type along. As with ordinary writing, rarely will you write code that can’t be improved to a certain degree,
either in function or appearance, from editing or a complete rewrite. Experience brings with it the ability to edit on the
fly.

However, don’t try too hard to write “beautiful” code. Rather, ensure you have chosen, or developed, the opti-
mum algorithm with which to solve a particular problem. Implement the algorithm with your best possible effort and
let the optimizing compiler do its magic.

158 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 6: Controlling The Flow Of Program Execution

Labeled Statements

Labeled Statements

There are three types of labeled statements: case, default, and identifier.

You have seen the case and default labeled statements used in the switch
statement. In this section I will discuss the identifier labeled statement.

A statement can be preceded with an identifier label which consists of
the label’s name and a colon as shown in figure 6-7. The only use of such
labeled statements is with the goto statement

GOTO STATEMENT

The goto statement performs an unconditional jump either forward or
backward in source code to a labeled statement. The range of the jump is
within the current function. In other words, you can’t jump out of a function
into another function, or back to the calling function, using a goto statement.
But then you wouldn’t want to do that anyway! The following example
shows a goto statement in action:

int count = 0;

if (count++ < 3)
goto start;

® NG W N R

cout<<"All done!"<<endl;

label: | statement

Statement

goto label;-J

Figure 6-7: goto Statement Diagram

6.29 labeled statement

start: cout<<"This is the start!"<<endl;

In this example line 3 is labeled with the identifier start:. The if statement will evaluate count and, if it is less than
three, will execute the goto statement on line 6. This code can be rewritten without a goto statement by using a while

loop as in the following example:

I int count = 0;
2

3 while (count++ < 3)

4 cout<<"This 1is the start!"<<endl;

5
6 cout<<"All done!"<<endl;

Advice on Using Goro

6.30 gotoless code

If you must use a goto statement keep the jump within eye sight on the same page of code.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved

159

Control Statement Usage Guide Chapter 6: Controlling The Flow Of Program Execution

Control Statement Usage Guide

Table 6-1 will come in handy when deciding when to use a particular C++ control statement:

Control Statement Use
if ...for simple decision
if-else ...for decision with alternative action
switch ...in place of nested if-else statements where the condi-

tion is an integral or enumeration type

while ...when condition must be tested first
do ...when body must be executed at least once
for ...to loop for a known amount of times
break ..in case statement to prevent case statement fall-
through;
...to terminate while, do-while, and for loops.
continue ...to skip to the end of a while, do-while, or for loop.
goto ...to perform unconditional jump to a labeled statement

Table 6-1: Control Statement Usage Guide

Summary

Program flow can be controlled using selection, iteration, and goto statements. The selection statements include
the if and switch statements; the iteration statements include the while, do, and for statements.

Use the if statement to perform a simple decision operation. Be on the watch for conditions that always evaluate
to false. Use the if-else statement to provide a path of execution should the condition evaluate to false. The switch
statement should be used in place of nested if-else statements where the condition is an integral or enumeration type.
Place a break statement at the end of every case to prevent case fall-through. Every switch should have a default case.
If the default case is placed last in the switch statement a break is not necessary, but a good idea nonetheless.

Be careful not to use the assignment operator in a condition expression when you really mean to use the equal to
operator. This error alone causes more heartache for novice students and professional programmers than any other I
know.

The while statement places the condition test before the body statements are executed; the do places the condi-
tion test after the body statements ensuring they are executed at least once. Use a for statement when the number of
loop repetitions is known. It provides a convenient format for statement variable initialization, condition testing, and
expression evaluation.

If you use while, do, or for statements to perform indefinite looping either use sentinel values or provide some
other way to terminate the loop.

Break and continue statements give you an extra measure of iteration statement control but use them sparingly.

Goto statements provide a way to perform unconditional jumps within your program. If you use them keep the
jump within eye sight.

160 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 6: Controlling The Flow Of Program Execution

Skill Building Exercises

Skill Building Exercises

1. if statements: Write a program that declares two integer variables, a and b, initialized to values of your choice. In
this program write ten if statements that use the following conditions:

(a <= b)

'(b == a)

(3 < a) && (3 < b)

(a Il D)

(((++a) == (==b)) |1 b)

(a ~ Db)

((a && b && (!'0)) || true)

(int ¢ = Db)

(b == 10)
)

(a I'I (b))

Disassemble your source code and examine how each if statement and its condition is implemented in assembly.

2. if-else statement: Write a program that declares two char variables, a and b, and initialize them both to ¥ . Write
ten if-else statements using the following condition expressions:

a="y)
(@ == 'Y)
(1(b = 'n'))
(o == 'n’)
(‘¢ <= b)
((YA <= a) && (a <= 'Z"))
(a == b)
(a '= D)
(b >=a) || (a<= ‘1))

3. nested if-else statements: Write a program using nested if-else statements that reads character input from the key-
board one character at a time and performs the following operations:

- if the input is ‘1’ through ‘5°, add 1 to the character value and print the resulting character to the screen,
- if the input is ‘6’ through ‘9’, add 5 to the character value and print the resulting character to the screen,

- if the input is ‘a’ through ‘z’, convert to upper case and print to the screen,
- if the input is ‘A’ through ‘Z’, convert to lower case and print to the screen.

4. switch statement: Rewrite exercise three above using a switch statement.

5. while statement: Add a while statement to the code you wrote in exercise four to repeatedly process keyboard
input. Use a sentinel value to terminate the loop.

C++ For Artists

©2003 Rick Miller — All Rights Reserved

161

Suggested Projects Chapter 6: Controlling The Flow Of Program Execution

6. do-while statement: Use do-while statements to calculate the following: Prompt the user for the value of n.

7. for statement: Rewrite exercise 6 using for statements.

Suggested Projects

1. Game Program: Write a game program that generates a random number between 0 and 100. Prompt the user to
guess what number was generated. Keep track of the number of guesses the user makes and print the statistics to
the screen at the end of each game.

2. Adder: Write a program that continuously adds numbers entered via the keyboard until zero is entered. Print the
running total to the screen after the entry of each number.

3. Calculator: Write a calculator program. Have the program alternately prompt the user for numbers, then operators.
Implement the following operators: +, -, *,/, %, and C for clear. Print the results of each operation.

4. Converter: Write a program that calculates the integer value of characters input via the keyboard.

5. Create Multiplication Tables: Write a program that prints multiplication tables. Prompt the user for the multipli-
cation table to print. Calculate the table up to the 12 factor.

6. Weight Guesser: Write a program that tries to guess the weight of the user. Prompt the user for their sex, age,
height, and level of physical activity. (hi, moderate, or low) Use their input as a starting point for the computer’s
guess. If a guess is high, have the user enter ‘h’; if the guess is low have the user enter ‘1’. If the guess is right on
have the user enter ‘y’. Keep statistics on the number of high, low, and total guesses the computer makes. Print the
statistics at the end of each game. Ask the user of they want to play again or quit.

7. Calculate Area: Write a program that calculates the area of a circle given its radius. Prompt the user for the radius.
After the calculation is complete print the results to the screen and prompt the user to continue or quit.

162 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 6: Controlling The Flow Of Program Execution Self Test Questions

8. Calculate Sin, Cosine, and Tangent: Write a program that calculates and prints the sin, cos, and tangent tables for
triangles given the values of their side, angle, and side.

9. Temperature Converter: Write a program that converts fahrenheit to centigrade.

10. Course Made Good: Write a program that calculates the sum of distance vectors movement 360 degrees. Prompt
the user to enter a direction in degrees and a distance in units. Calculate the direction and distance made good.

Self Test Questions

1. What characters are used to begin and end compound statements?

2 .How does the if-else statement differ from the if statement?

3. What control statement can be used in place of nested if-else statements?

4. Why should a break statement be added to the end of each case of a switch statement?
5. What’s the purpose of a default case in a switch statement?

6. What’s the difference between a while and a do-while statement? When would you use a do-while instead of a
while statement?

7. Convert the following while statement to a for statement:
int i = 0;
while (1<10) {

//do something
i++;

8. What will happen when the following code executes:

int i = 0;

while (i++ < 3){
cout<<#i = *“<<i<<endl;
break;

9. What happens when the following code executes:

int i = 0;

while (i < 3){
cout<<”i = *“<<i<<endl;
continue;
i++;

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 163

References Chapter 6: Controlling The Flow Of Program Execution

10. True/False: Goto statements can be used to jump outside of functions.

References

International Standard, ISO/IEC 14882, Programming Languages — C++, First Edition 1998-09-01
Metrowerks CodeWarrior Version 5.5 Reference Documentation for Windows 95/98/NT and Apple Macintosh.
Steve Teale. C++ [0Streams Handbook, Addison-Wesley, Reading Massachusetts, 1993, ISBN 0-201-59641-5.

Paul J. Lucas. The C++ Programmer’s Handbook, Prentice Hall P T R, Englewood Cliffs, New Jersey, 1992,
ISBN 0-13-118233-1.

Notes

164 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chaprer 7

Balboa Hall

Pointers ANd References

Learning Objecrives

o State the purpose and use of pointers and references in C++

* Snare the definition of av objecr

* Explain How 10 determine an object’s address using The & operator
o Exphin how 10 declare pointers using the pointer declararor *

* Explain how 10 dereference A pointer using The * operator

* Describe the concepr of dynamic memory allocation

e Exphin how 10 dynamically creare objects using the New operator
* Explain how 10 desmroy objects using the delere operator

o Exphin how 10 declare references using the reference declararor &
o Explain why references must be defived ar the point of declaration

* Describe the benefits of using References vs. pointers

e Urilize pointers and references 10 create powerful C++ proGrams

C++ For Artists ©2003 Rick Miller — All Rights Reserved 165

Introduction Chapter 7: Pointers and References

INTROducTiON

Mastering the concept and use of pointers is crucial to understanding just about all other aspects of the C++ lan-
guage. An understanding of pointers is required to really understand what’s going on in arrays, dynamic object cre-
ation, function argument passing by reference, iterators, and a whole host of other language topics.

Pointers are easy to learn but can be confusing at first. I think the reason for this is that C++ uses the same opera-
tor, like the asterisk * for instance, for several purposes. The purpose you’re most familiar with at this point is multi-
plication. But the asterisk is also used to declare and dereference pointer variables. The concept of using an operator
for more than one purpose in C++ is referred to as operator overloading and is done to keep the language small and
manageable. The compiler knows how to deal with overloaded operators based upon what context the operator
appears. This is convenient for the compiler and the compiler writer but confuses the novice to no end. You’ll learn
more about overloaded operators in chapter 14.

The question students ask when they first encounter pointers is, “OK...but what are they good for?” That’s a fair
question. Pointers let you write leaner, meaner code. Pointers, combined with dynamic object instantiation, (creating
objects at runtime using the new operator) let you conserve memory space, creating objects only when needed in a
program. Pointers let you do things faster. An example of this can be found in sorting operations where the objects
being compared are large. The objects themselves can remain in their original memory locations and only their
addresses need be manipulated during the sort operation. Pointers let you pass the address of a large object to a func-
tion for processing without moving the object itself. Additionally, an understanding of pointers is key to understand-
ing more complex data structures like linked lists and trees.

The purpose of this chapter, then, is to give you a solid understanding of pointers, what they are, how to declare
them, how to dereference them, how to dynamically create objects in memory using the new and delete operators, and
how to determine the address of objects in memory. I do not cover all the different ways to use pointers in this chapter
because doing so would require discussing aspects of the language to which you have not yet been exposed. An exam-
ple of this would be the use of pointers with functions which is left to chapter 9.

Bur First, A Short Story

Perplexed One sat listening to the professor drone on about C++ pointers.
He tried hard to stay awake but couldn’t and his head dropped to the desk with
a dull thud. He was soon fast asleep.

3 2R
=

Droning Professor

N\ /Y7 {p:mﬂ

Perplexed One
Fast Asleep!

166 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 7: Pointers and References But First, A Short Story

Poor Perplexed One. It looked as if pointers were about to get the best of him, but alas, he was roused from his
peaceful state by the sound of cats screeching and dogs howling! Could it be? Yes, it’s C++ Man!

C+r {/

C++ Man

Perplexed One looked up to see C++ Man hovering where the droning professor once stood.

“Tell me Perplexed One, why are pointers putting you to sleep?” C++ Man asked.

“I just don’t get’em...” Perplexed One answered, nervously looking around the room wondering where all the
other students had disappeared to.

“Don’t let pointers get you down, they 're really quite simple. Tell you what, write down all your questions about
pointers and I’ll answer each one.

Perplexed One agreed and before long he handed C++ Man the following list:

What is an oﬁjecﬁ
What is a memory address?
How do you determine an object’s memory address?
What is a pointer?
How do you declare a pointer?
How do you access the object a pointer points to?

How do you create oﬁjects d'ynarmca?g with the new operator?
How do you delete dynamically created objects with the delete operator?
What’s the difference éy tween a }oomter and a reference?

How do you declare and use reg(erences?‘

“These are great questions Perplexed One” C++ Man said as he poured over the list. “Let’s get started right away
beginning with the first question!”
Perplexed One agreed excitedly and took out a piece of paper to take notes.

WHar is an object?

According to the ANSI C++ standard an object is a region of storage. An object can be a fundamental data type
like an integer, char, etc. In the case of fundamental data types the regions of memory occupied by each data type are
set by the environment. For instance, on a 32-bit computer with a 32-bit wide memory organization, an integer will
occupy four contiguous bytes. Thus, an integer object occupies a region of memory four bytes wide.

Objects can be user-defined or abstract data types as well. Abstract data types are types you create by combining
fundamental data types or other abstract data types in order to model the problem you are trying to solve on the com-
puter. Most abstract data types will be either structures or classes. The region of memory occupied by an abstract data
type is dictated by its composition. Abstract data types are discussed in detail in chapter 10.

An object can be created in three ways:

1. by definition,
2. by using the new or new[] operator,
3. or by the compiler when required.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 167

But First, A Short Story Chapter 7: Pointers and References

C++ Man waved his hand at the board causing the following code to appear:

I int a =1, b = 2; 7.1 integer objects
2
3 cout<<"a = "<<a<<endl;

4 cout<<"b = "<<b<<endl;

In this example, Perplexed One, there are two integer objects being created via definition. The variable names a
and b are NOT the objects, but the identifiers that become bound to a region of memory at compile time. The process
of associating an identifier with a memory location is called binding. In this case the size of the memory region asso-
ciated with each of the variables a and b is four bytes which is the size of an integer object.

“So you see Perplexed One, an object occupies a region of
memory. Objects can be simple data types and occupy only a
small amount of memory or they can be complex data types and
occupy large amounts of storage. While your computer is run-
ning, memory is filled with many different kinds of objects of all
different sizes.”

“Remember, identifier names appearing in your source code
are bound to their object locations during the compilation pro-

cess.”
“Thanks C++ Man! I think I finally understand the concept \ \ ' } /
of objects. I always used to confuse the identifier names with \\

the objects they represented.”

Perplexed One scribbled a few more notes then looked up
at C++ Man. “OK C++ Man, I’'m ready to discuss the next
question on the list!”

“Great, Perplexed One! Let’s do it.”

WHar is A memory Address?

C++ Man waved his hand at the board causing the following diagram to appear:
“Here’s a simple diagram showing the arrangement of
computer memory Perplexed One. Memory is essentially an 4 bytes per word 1 fddressed
array of byte addressable elements in which binary values H‘Y"
can be stored. Memory addresses start at zero and go up to
however much memory you have in your computer. For
instance, a computer with 256 megabytes of main memory '
has more storage, and therefore more byte addressable stor-

age elements, than a computer with only 128 megabytes of &
memory.” |6

“If you recall from chapter 4, the hardware architecture 1
of the computer system dictates how physical memory is s
arranged and accessed, but here we will assume that the 1
word size is 32 bits. Looking at figure 7-1, memory starting Add 5 2
at address O contains the four bytes with addresses 0, 1,2, resses go trom Lov Addresses

I high
and 3 for a total of 32 bits. The 32-bit memory words are oW to g

aligned on addresses divisible by 4, which is why the
addresses 0, 4, 8, 12, etc., are going up the left side of mem-
ory in the diagram.”

Figure 7-1: Memory

168 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 7: Pointers and References But First, A Short Story

“Figure 7-2 shows another way of representing memory that reinforces the idea that it is a contiguous array of
elements.

00000000 | 00000000] 00000000 | 00000001 |00000000 |00000000 |00000000 |000000|0 | 00000000|00000000 e

o ! 2 3 4 5 6 7 8 9 A

Addresses go from low to high Hexadecimal A

Figure 7-2: Another Way To Represent Memory

Figure 7-2 also shows the memory initialized with two integer values. The integer object beginning at address 0
has a value of 1. The second integer object begins at address 4 and contains the value 2. This way of thinking of mem-
ory will come in handy when you learn about arrays in chapter 8.”

Perplexed One studied the two diagrams for a while. “Why did you use hexadecimal A in figure 7-2 to represent
the address 10?”

“Good question Perplexed One!” C++ Man answered. “You’ll find it helpful in your studies of C++, and comput-
ers in general, to become accustomed to using hexadecimal. It’s easier to work with than large decimal numbers. Fig-
ure 7-3 is another diagram of memory using hexadecimal addresses.”

C++ Man lifted his pinky finger and figure 7-3 appeared on the board.

“So you see, Perplexed One, all e
objects in memory are accessible 3¢ 00000000 00000000 00000000]00000000

via an address. The addresses go 38 00000000 00000000 00000000]00000000

from low to high and are organized 34 00000000| 00000000 00000000 | 00000000

according to the hardware architec- 3000000000, 00000000 (0000000{00000000

ture of the computer. A large object 2 00000000/ 00000000 (0000 00000000

may span several addresses but have 28 00000000/00000000 00000000/00000000

only one starting address.” 24 00000000/ 00000000 00000000 00000000

20 00000000] 00000000’ 00000000 00000000

Perplexed One looked up 1C 00000000 00000000 00000000]00000000
from his notes.“This is cool. I was \\\ \ ' } / 12 00000000/0000000000000000/00000000
totally lost but now I understand 1400000000 00000000 00000000 00000000
the whole addressing thing.” 1000000000/ 00000000 00000000/00000000
C++ Man beamed with pride. € 00000000 00000000 00000000 /00000000
“Are you ready to talk about the </ 00000000 00000000 00000000 00000000
next question Perplexed One?” he .+ 00000000/ 00000000 00000000 00000000
asked. o 00000000 000000 (D 0000000

“Ready! Perplexed One

replied.” Figure 7-3: Hexadecimal Addressing

How do you derermine AN object’s memory Address?

“An object’s memory location can be determined by using the & operator” C++ Man said. Perplexed One looked
even more perplexed.

“What do you call & operator?” he asked, pencil ready to record C++ Man’s answer.

“I call it the ‘address-of” operator” C++ Man replied, waving his hand in the direction of the board. “Let’s see
how it works.”

C++ For Artists ©2003 Rick Miller — All Rights Reserved 169

But First, A Short Story

1 int a 3;
2
3 cout<<" a

4 cout<<"Address of a

Chapter 7: Pointers and References

7.2 Using & operator

"<<a<<endl;
"<<ga<<endl;

“In this example, an integer variable named a is declared and defined. Remember, definition is one way objects
are created in memory. On line 3 the value of a is being printed while on line 4 the & operator is applied to the vari-
able a in order to determine the address of the object to which the identifier a is bound to. Let’s disassemble this code

and study it before running the program. The listing has been edited to make it easier to read

1%

Hunk :Kind=HUNK_GLOBAL_CODE Align=4 Class=PR Name=".main" (22) Size=136

00000000: 7C0802A6 mflr r0

00000004: 90010008 stw r0, 8 (SP)

00000008: 9421FFCO stwu Sp,-64(sp) < Set stack register (SP) to our stack

0000000C: 38000003 1i r0,3 < Load 3 into r0 register

00000010: 90010038 stw r0,56 (SP) « Store 3 at offset 56 from stack pointer

00000014: 80620000 1wz r3,cout__ 3std(RTOC)

00000018: 80820000 1lwz r4,@661 (RTOC)

0000001C: 48000001 bl .__1s<Q23stdldchar_traits<c>>_ 3stdFRQ23std39basic_ostream | L0ad character a
<éjbz3stdl4char7trélts<c>>PCc47 - and print

00000020: 60000000 nop

00000024: 80810038 1wz r4,56 (SP) < Load 3 into register r4...

00000028: 48000001 bl . 1s 023std3%basic_ostream<c,Q23stdl4char traits<c>>Fi < ---.then print

0000002C: 60000000 nop

00000030: 80820000 1wz rd4,endl<c,Q23stdl4char_ traits<c>>_ 3stdFRQ23std39%basic_ostream
<c,Q23stdl4char_ traits<c>>(RTOC)

00000034: 48000001 bl . 1s_ Q23std39%basic_ostream<c,Q23stdl4char_traits<c>>FPFRQ23std39basic_ostream
<c,Q23stdl4char_traits<c>>_ RQ23std39basic_ostream<c,Q23stdl4char_traits<c>>

00000038: 80620000 1lwz r3,cout__ 3std(RTOC)

0000003C: 80820000 1lwz r4,@662 (RTOC)

00000040: 48000001 b1 ._ 1s<Q23stdld4char_traits<c>>_ 3stdFRQ23std39basic_ostream
<c,023stdl4char_ traits<c>>PCc endl, load "Address of a "

00000044: 60000000 nop ...then print

00000048: 38810038 addi r4,8p,56 4 Address of a = value in SP + 56)

0000004C: 48000001 bl . 1s__023std39%basic ostream<c,Q23stdl4char traits<c>>Fpcy <« print

00000050: 60000000 nop

00000054: 80820000 1wz rd4,endl<c,Q23stdl4char traits<c>>_ 3stdFRQ23std39%basic_ostream
<c,Q23stdl4char_ traits<c>>(RTOC)

00000058: 48000001 bl . 1ls_ Q23std39%basic_ostream<c,Q23stdl4char_traits<c>>FPFRQ23std39basic_ostream
<c,Q23stdl4char_traits<c>> RQ23std39basic_ostream<c,Q23stdl4char_traits<c>>

0000005C: 38600000 1i r3,0

00000060: 80010048 lwz r0,72(SP) endl, print, housekeep, reset SP, and return

00000064: 38210040 addi SP, SP, 64

00000068: 7C0803A6 mtlr r0

0000006C: 4E800020 Dblr

00000070: 00000000 dc.1 $00000000 ; traceback table

00000074: 00092041 dc.1 500092041

00000078: 80000000 dc.1 $80000000

0000007C: 00000070 dc.1 $00000070

00000080: 00052E6D dc.l $00052E6D

00000084: 61696E00 dc.l $61696E00

Listing 7.1: Example 7.2 Disassembled

“Running example 7.2 can produce different results, depending on what other programs are running on the com-
puter at the same time. Figure 7-4 shows the results of running the program from the CodeWarrior programming envi-

ronment.”

“Notice here, Perplexed One, that the address of a is
shown to be 0x18da0078. Shutting down all other pro-
grams and then running example 7.2 again produced the
results shown in figure 7-5.”

“Notice in figure 7-5 that the address of a has
changed to 0x19f72078. If you try this experiment on
your computer at home, Perplexed One, you will get dif-
ferent results from those shown here.”

170

©2003 Rick Miller — All Rights Reserved

i}

Pointers.out.out

3
@1 2daBE 2

Q
Address of a

NEID

Figure 7-4: Running Example 7.2 with Code Warrior

C++ For Artists

Chapter 7: Pointers and References

But First, A Short Story

Pointars_ out.out

Q=3
Address of q =

Bx1917287S

s W

Figure 7-5: Running Example 7.2 Alone

“The disassembled code shown in listing 7-1 shows

that the integer object of example 7.2 will always be
located at an offset 56 bytes from the value of the stack.
This could be anywhere in main memory depending on

where the program loads.*

Luckily, you don’t have to worry about the actual
addresses. That’s the job of the operating system. The
important thing to remember is that the & operator will

return the address of an object’s memory location, what-

ever that address may be.”

\ \ l } / Perplexed One quickly summarized what he had
\\ learned so far. “OK, an object is a region of memory, and all
objects have an address that can be determined by using the

& operator.”

“That’s great Perplexed One!” C++ Man said smiling.
“Now that you understand the foundation material it’s time
to talk about pointers for real. Are you ready?”

“Ready!” Perplexed One said, taking out another piece

of paper.

WHaT is A pOINTER?

C++ Man sneezed, causing the following diagram to appear on the board:

“I’ll begin with a definition of a pointer and then explain
in greater detail” C++ Man said floating from one end of the
board to the other.

“A pointer is a variable that holds a memory address. The
important part of this definition is the word variable. You can
assign an object’s address to a pointer variable and later,
change the contents of the pointer to point to some other
object.”

“When a pointer contains the address of an object located
somewhere in memory, the pointer is said to point to that
object, hence the term pointer.”

“Pointer variables are all the same size, which is the size
of the address bus. If the machine you are using has a 32-bit
address bus, then a pointer will be 4 bytes long. However, a
pointer can only contain addresses to objects of its declared
type. For instance, a pointer to float objects can’t have the
address of integer objects assigned to it. The reason for this is
that the compiler needs to know what size objects a pointer is
pointing to.”

A ponker i
s an syt

Figure 7-6: Pointer

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 171

But First, A Short Story Chapter 7: Pointers and References

“Pointers can point to other pointers, that is, a pointer can contain the address of a pointer.”

“Remember, Perplexed One, that a
pointer is simply a variable that can hold
an object’s address. Because it’s a vari-
able, the address a pointer contains can
be changed, just like any other variable.”

“I see.” said Perplexed One, star- \\\ \) //
ing at the diagram on the board. “But
how do you tell a pointer what size
objects it can point to?”

“That’s an excellent question!”
C++ Man said, “And it’s the next one
on your list!”

How do you declare A pointer?

“A pointer is declared with the help of the asterisk *. Let’s look at an example.” C++ Man waved his hand at the
board and the following code appeared:

int a = 3; 7.3 Using * operator
int* int ptr = &a;

cout<<" a = "<<a<<endl;
cout<<"Address of a = "<<&a<<endl;
cout<<" int ptr = "<<int ptr<<endl;

o G W N =

“Notice how the asterisk is used on line 2. The variable int_prt has the
type pointer to integer or pointer to int. The address of the variable a is
assigned to int_prt with the help of the & operator. When this code is compiled || qgdrecs of o
and run it produces the results shown in figure 7-7. Remember, Perplexed One, | int_ptr
if you run this program at home you will most likely see a different address —
than the one shown here. The actual value of the address depends on where in -
memory the program is loaded, which depends in turn on how much memory %
your computer has installed and what programs are running at the same time.”

C++ Man let Perplexed One think about what had been discussed so far Figure 7-7: Contents of int_ptr
for a moment and then continued.

“The placement of the asterisk is a personal matter. Some programmers will do it differently than others. Line 2
of example 7.3 could be written in any of the following ways with the same results:”

Pointers.out.out=—=H

2
B 179abdes
Bx179abdas

int* int ptr = &a;
int * int ptr = &a;
int *int ptr &a;

“I like the first method” Perplexed One said, busily scratching notes with his pencil. “It makes it clear to me
what’s being done” he added.

C++ Man continued. “It’s also a good idea to choose a name for a pointer variable that gives a hint of its purpose.
For instance, the variable int_ptr does a good job of indicating that the identifier is a pointer and what type of objects
it can point to.”

Perplexed One was writing as fast as he could. He was sure this stuff would be on a test!

172 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 7: Pointers and References But First, A Short Story

“Remember, use the asterisk to declare

pointer variables. You can declare a pointer to —
any type of object, even user-defined objects. U’f" . L
You’ll learn how to do that in chapter 10. ;

You can use the & operator to get the < > s
address of an object so it can be assigned to a
pointer. Later, I’ll show you how to use the new %
operator to create objects out of thin air!”

C++ Man continued. “I can see from your hair that
(Fal you’re beginning to understand pointers much better than
before!”

Perplexed One wondered what C++ Man was talk-
ing about but was too busy writing notes to check his
hair.

“I’m ready to discuss the next question C++ Man”
Perplexed One said, pulling out another piece of paper.

How do you access the object A pointer points 107?

“This is where things get a little tricky” C++ Man started. Perplexed One looked nervous. “Don’t worry, Per-
plexed One, it will all make perfect sense when we’re done. Remember, a pointer will contain an object’s memory
address. You can get to the object itself with the help of the * operator.” Perplexed One’s eyes glazed over.

“This is confusing” Perplexed One said defiantly. “The asterisk is already used to declare pointers.

“You’re right,” C++ Man said, “but I'll show you how you can easily remember the difference between using the
asterisk for declaring pointers and dereferencing them.”

“OK, show me” Perplexed One said, sitting ready to copy notes.

“Examine the following code” C++ Man said as he waived his hand at the board.

1 int a = 3; 7.4 dereferencing pointers
2 int* int ptr = &a;

S _

4 cout<<" a = "<<a<<endl;

5 cout<<"Address of a = "<<g&a<<endl;

6 cout<<" int ptr = "<<int ptr<<endl;

7 cout<<" a = "<<*int ptr<<endl;

“One line 2, the asterisk appears to the right of the data type when you declare a pointer variable. When you use
the * operator to dereference a pointer the asterisk appears to the left of the pointer as shown on line 7.”

Perplexed One’s eyes brightened immediately. “That’s all there is to it?”

“Yep, that’s about it.” Here’s another example:

1 int a = 3; 7.5 dereferencing pointers
2 int* int ptr = &a;

3 cout<<" a = "<<a<<endl;

4 *int ptr = 4;

5 cout<<"

6 (*int ptr)++;

7 cout<<" a

o)
Il

"<<a<<endl;

"<<a<<endl;

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 173

But First, A Short Story Chapter 7: Pointers and References

Perplexed One studied the code on the board.

“As you can see,” C++ Man began, “the variable a is initialized to 3 on line 1. On line 2 the variable int_ptr is
declared and initialized to the address of a using the & operator. From that point on, all modifications to variable a can
be effected via the pointer with the help of the * operator. Notice how the * operator appears on the left side of the
pointer variable. On line 4 the pointer is used to change the value of a from 3 to 4. Line 6 shows how parentheses can
be used along with the * operator to help force operator precedence. Running example 7.5 produces the results shown
in figure 7-8.

Pointers.out.out

900
o
[LRE]

Sl _lm

Figure 7-8: Running Example 7.5

When the asterisk appears to the right of a
data type it is being used to declare a pointer vari-
able. When the asterisk is applied to the left side of
a pointer it is called dereferencing and is the way
you access the object the pointer is pointing to.

“That seems too easy, there must be a
catch.” Perplexed One stated confidently. \\\ \l } /
“Nope,” replied C++ Man. “there’s no
catch. It’s just spine-tingling isn’t it?”
“Isn’t what?” Perplexed One asked, look-
ing more perplexed.
“Why, all the fun we’re having with
pointers! Prepare for the next topic.” —

How do you dynawically create and delere objecrs?

“Now you’re really going to learn some cool stuff!” C++ Man began. Perplexed One was ready and felt confident
he’d understood everything up to this point, and they were over half way though the list of questions. “So far so good”
he thought to himself, pencil poised to scribble with wild abandon. C++ Man began again.

“Up to this point you’ve seen how the address of a statically allocated object can be determined with the & oper-
ator. You’ve seen how pointer variables can be declared and used to modify the object they point to. The real power of
pointers comes from being able to dynamically create objects when a program is running, also referred to as run time
or dynamic object allocation. Before I talk about the use of the new operator I want to discuss the two different kinds
of memory a program has access to, namely, the stack and the heap.”

“You’ve seen stack memory in action in listing 7-1. The program in example 7.2 used stack memory to store the
value of the variable a. Stack memory works well in this case because all the program’s storage needs were deter-
mined at compile time.”

“When a program does not know up front how much storage it needs it must dynamically allocate memory dur-
ing run time from an area of memory known as the heap. The heap is managed by the operating system. A program
makes requests to the operating system for memory space and, if there is enough space available on the heap, the
memory is reserved and an address is returned to the program.”

174 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 7: Pointers and References But First, A Short Story

“Figure 7-9 shows where stack and heap memory are located with respect to one another in a computer’s mem-
ory space.”

High Memory
Application 1 Code Section
File-mapped - :
code se([:)tli)gns Import Library Code Section

Application 2 Code Section
Stack Memory

S 7 Saved Registers Stack
arows

e . abes | o
application 1 /s Local Variables

Heap y Parameter Area

Linkage Area

N Stack Stack “Top”
rhectony
application 2 | : : _V

Heap

Dynamically

Allocated
SIOWS
up
System Operating System Code Heap Memory
Partition | and
Global Variables
M Unused Memory
Low Memory

Figure 7-9: Application Stack and Heap Relationship

When the operating system loads a program it sets up an application partition. The partition will be organized
into two sections, namely, the stack and the heap. During program execution the stack will grow downwards as func-
tions are called and upwards as functions return to the calling routines. The heap will grow upwards and downwards
as dynamically allocated objects are created and destroyed. When an application requests dynamically allocated
memory it is carved out of its application partition’s heap section.”

The new Operator

“The new operator is used to dynamically allocate objects during program runtime. The new operator makes a
request for heap memory space to the operating system and, if memory is available, will return the newly created
object’s memory address. In the case of complex objects like structures and classes, the address returned will be the
start of the object’s memory region.”

C++ For Artists ©2003 Rick Miller — All Rights Reserved 175

But First, A Short Story Chapter 7: Pointers and References

Difference Berween new and new]

“There are two types of new operator: new, and new|[]. The new operator is used to create singular object
instances. The new[] operator is used to create arrays of objects.” (The new[] operator is discussed in detail in chap-
ter 8.)

Formar of 1hie new Operaror

“The new operator takes the following format:”

Returns memory address . Type can be native
of newly created object neW z ;’ p e 0

or user-defined

Using 1he new Operator

C++ Man waived his hand at the board and the following source code appeared:

1 int* int ptr; 7.6 dynamic memory
2 int ptr = new int; allocation
3 *int ptr = 0;

4

5 cout<<"The reserved address is: "<<int ptr<<endl;

6 cout<<"The value of the int object is: "<<*int ptr<<endl;

7

8

delete int ptr;

Perplexed One studied the code intensely and quickly copied it into his notebook. C++ Man began his explana-
tion. “On line 1 I declared a pointer variable named int_ptr to hold the address returned by the new operator. On line
2 the new operator is used to create an object of type int. The address returned is assigned to int_ptr, which is then
used on line 3 to access the integer object itself.”

C++ Man summarized, “Dynamic object allocation is a
way to create objects in memory at program runtime. The
new operator will request memory from the operating sys-
tem and return a memory address you can use in your pro-
gram. Dynamic objects are created in an application’s heap
memory.”

“What does line 8 in example 7.6 do?” Perplexed

One asked, looking up from his notes. \\\ \] } /
“Good question Perplexed One” he began. “When

you’re finished with a dynamically allocated object you

must remember to release the memory back to the

operating system. Failure to do so will result in a mem-

ory leak.”
Perplexed One liked the sound of the term memory

leak. He thought it was cool.

176 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 7: Pointers and References But First, A Short Story

The Difference Between delere and deleref]

C++ Man pointed once again to the code on line 8 in example 7.6. “There are two types of delete operators” he
began. “The delete operator, shown here, is used with the new operator, and is used to release the memory assigned to
singular objects back to the operating system.”

“The delete[] operator is used to delete memory dynamically assigned to an array via the new[] operator. A
detailed discussion on the delete[] appears in chapter 8.”
A Near Trick: Calling Object ConstrucTors

“I want to show you something you’ll find helpful when using the new operator” C++ Man told Perplexed One.
Perplexed One looked at the board just as C++ Man was waving his hand, causing the following code to appear:

1 int* int ptr; 7.7 calling object
2 int_ptr = new int(0); //Constructor call constructor
3

4 cout<<"The reserved address is: "<<int ptr<<endl;

5 cout<<"The value of the int object is: "<<*int ptr<<endl;

6

7 delete int ptr;

“Study the difference between example 7.6 and 7.7. In example 7.6 the object was initialized via the pointer after
it was created in memory. In example 7.7 the object is initialized when it is created via a constructor function call. A
constructor is a special function whose purpose is to properly initialize objects when they are created in memory. The
integer constructor is invoked by enclosing an integer value in parentheses after the type name int when used with the
new operator as shown on line 2 above. Other fundamental data types can be initialized in similar fashion.” (Con-
structors are formally covered in chapters 10 and 11.)

“Here’s another example Perplexed One” C++ Man said, looking toward the board.

1 int* int ptr = new int(7); 7.8 calling object
2 char* char ptr = new char('e'); constructor
3

4 cout<<" The int value is: "<<*int ptr<<endl;

5 cout<<"The char value is: "<<*char ptr<<endl;

6

7 delete int ptr;

8 delete char ptr;

Whar’s the difference berween A pointer And A Reference?

Perplexed One was eager to continue the lesson and started a new sheet of notes. C++ Man waived his hand at the
board and removed all the code so there would be nothing to confuse Perplexed One.

“The basic thing to remember about a pointer is that it is a variable. Because a pointer is a variable, it can be
changed to point to different objects of the same type.”

“A reference is different from a pointer in that once a reference is initialized it cannot be changed. Another good
way of thinking about a reference is that it is a nickname for the object it references. A nickname is just another name
for the same object. Pointers must be dereferenced to gain access to the object they point to. Not so with references.”

C++ Man waived his hand at the board and table 7-1 appeared. Perplexed One took notes furiously.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 177

Summary Chapter 7: Pointers and References

Characteristic Pointers References
Variable Yes No
Must be initialized at the point of declaration No Yes
Must be dereferenced with the * operator Yes No
Can be thought of as another name for the referenced object No Yes
Can be used in place of pointers to reduce errors and simplify code No Yes

Table 7-1: Pointers VS. References

How do you declare And use Rreferences?

Perplexed One looked worried. C++ Man asked him what was the matter. “This is where things get tricky” Per-
plexed One said, fidgeting at his desk.

“Fear not, Perplexed One,” C++ man said assuringly, “all you have to remember is when to use the & operator.
Can you tell me, from what you’ve learned so far, when you would use the & operator?”

Perplexed One studied his notes and answered timidly. “When you want to find an object’s memory address?”

“That’s exactly right!” C++ Man said, flying a victory circle in front of the room. “Now there’s another use for
the &. Tell me Perplexed One, how do you declare a pointer variable?”

“You have to use the asterisk between the data type and the identifier.” Perplexed One answered, this time with
more confidence.

“Right again!” C++ Man said, waiving his hand at the board. “Take a look at this code:”

1 int a = 3; 7.9 using a reference
2 int& ref a = a;

3

4 cout<<" a = "<<a<<endl;

5 cout<<"ref a = "<<ref a<<endl;

“Notice how the & is used on line 2 to declare a reference type. The identifier ref_a can now be used in place of
the identifier a without any dereferencing, as is shown on line 5.

“References come in handy when you’re passing function parameters by reference or returning objects by refer-
ence from functions. Functions will be discussed in detail in chapter 9.”

Perplexed One felt relieved. “That doesn’t seem so hard!” he said, finishing his notes.

C++ Man hovered in front of the class. “Your basic understanding of pointers and references will serve you well
as you progress through your studies of C++ Perplexed One. Why don’t you summarize all your pointer knowledge
before I have to fly and help another perplexed student.”

Summary

Perplexed One gathered his notes and walked to the front of the class. C++ Man took a seat in the front row and
listened attentively as Perplexed One reviewed what he had learned.

“An object is a region of memory. An object can be a fundamental data type like a character or integer, or a com-
plex user-defined type. An object can be created in three ways: 1) by definition, 2) by using the new or new[] operator,
or 3) as required by the compiler.”

“All objects in memory can be accessed via a memory address. To determine the memory address of an object
use the & operator.”

“A pointer is a variable that holds a memory address. Because a pointer is a variable, the address it contains can

178 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 7: Pointers and References Skill Building Exercises

be changed, causing it to point to something else. Use the asterisk to declare a pointer and the asterisk to access the
object a pointer points to. This is also referred to as dereferencing the pointer.”

“Dynamic object allocation allows programs to create objects at program runtime. Dynamically allocated objects
are created on the application heap. Use the new operator to create dynamic objects, and don’t forget to deallocate
objects when you no longer need them with the delete operator. Constructors can be used during dynamic object allo-
cation to initialize objects in memory.”

“References differ from pointers in several ways. References must be initialized when they are declared because
they are not variables. A reference is considered another name for a particular object. Use the & to declare references.
The cool thing about references is that they don’t need to be dereferenced.”

Skill Building Exercises

1. Research Memory Organization: Research the architecture of your computer. Write a brief description of how
the hardware and operating system work together to manage memory resources.

2. Determine Object Address Using & Operator: Write a program that creates three variables with different data
types and assign each a value. Use the & operator to determine the address of each variable. Print the value of each
variable and its memory address to the screen.

3. Dissemble Code: Disassemble the program you wrote in exercise 2 above and study the output. Examine the list-
ing to determine how and where the variables are being stored in memory.

4. Declare and Initialize Pointers: Write a program that declares a char, int, float, and double variable. Initialize
each variable to a value of your choice. Next, declare four pointers, one for each data type char, int, float, and dou-
ble. Assign the address of each object to the proper corresponding pointer variable using the & operator. Print the
value of each object to the screen using the variable name, and the dereferenced pointer. (Remember to use the *
operator to dereference each pointer.)

5. Modify Objects Via Pointer: Using the code you wrote in exercise 4, change the value of each object via the
pointer. Print the new values to the screen.

6. Dynamically Create and Destroy Objects: Write a program that declares four pointer variables, one for each data
type char, int, float, and double. Use the new operator to dynamically create an object of each type and assign its
address to the corresponding pointer variable. Use the pointer to initialize each object and print their values to the
screen. Use the delete operator to release the dynamically allocated memory back to the operating system.

7. References: Write a program and declare and initialize three variables of any type and value your choose. Declare
three references of the required type and initialize them using the three variables previously declared. Access and

modify each of the three objects via the references. Print the object values to the screen using the references.

8. Thinking: Describe in your own words the differences between pointers and references.

Suggested Projects

1. Dynamic Object Creation: Write a program that dynamically creates integer objects. Declare five integer point-
ers. Prompt the user to enter integer values via the keyboard. Read the integer values and use them to initialize the
integer objects. Print the object values to the screen via the pointers.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 179

Self Test Questions Chapter 7: Pointers and References

Self Test Questions

1. What is an object? What is the difference between an object and the identifier name used to reference the object?
2. Describe in general terms how computer memory is typically organized.

3. What operator do you use to determine an object’s memory address? Give an example of its use.

4. What is a pointer?

5. What character do you use to declare a pointer? Give several examples of its use.

6. What operator do you use to access an object via a pointer? Give an example of its use.

7. What character is used to declare a reference?

8. What are the primary differences between a pointer and a reference?

9. How do you access the object referred to by a reference? How is this different from accessing an object via a
pointer?

10. (T/F) A pointer is a variable.

References

International Standard, ISO/IEC 14882, Programming Languages — C++, First Edition 1998-09-01

Robert J. Traister. Conquering C++ Pointers. Academic Press Professional, Inc., Harcourt Brace & Company,
Publishers, Boston, Massachusetts, 1994. ISBN: 0-12-697420-9

Paul J. Lucas. The C++ Programmer’s Handbook. Prentice Hall PTR, Englewood Clifs, New Jersey, 1992.
ISBN: 0-13-118233-1

180 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 7: Pointers and References Notes

Nortes

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 181

Notes Chapter 7: Pointers and References

182 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chaprer 8

Race Day Waikiki Beach

ARRAYS

Learning ODbijecrives

* Describe the concepr of an ARray

* Siare the purpose and use of single- and mulri-divensional Arrays

¢ Describe how 10 declare and initialize sinGle- and mulri-dimensional arrays

o Explin how the compiler uses 1he array’s declared 1ype 10 calculare offser addresses into an array
* Explain How 10 Access ARRAy ElEments using ARRAY subsCRIpT NoTaTiON ANd pOINTER NOTATION

e List and describe the similarities berween A Array namie ANd A pOINTER

o Explain how 10 use pointers 10 dynamically allocate memory for an array with the new|] operaror
o Explain how 10 release dynamically allocared array memory with the delerel] operaror

* Explain how T0 idiomarically process an array using A for loop

* Explain how 10 process multi-dimensional arrays using nested for loops

e Exphin how smrings are implemented in C++

o Uilize single- anvd mulri-dimensional arrays in your C++ pROGRAMMING PROJECTS

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 183

Introduction Chapter 8: Arrays

INTROducTiON

Arrays are the workhorses of data structures. An understanding of arrays, their declaration, their use, and their
manipulation, presents a wealth of programming possibilities. No longer will you be limited to modeling data as indi-
vidual objects; with arrays you will have the power to manipulate collections of objects.

The primary focus of this chapter is to give you a thorough understanding of array basics. You will learn what
arrays are, how they are represented in memory, how to declare single- and multi-dimensional arrays, and how to
manipulate them. The material presented here builds on what you learned in chapters 5 through 7. You will continue
to expand your knowledge of pointers by learning how to create arrays dynamically using the new[] operator. The
secondary focus of this chapter is to give you a good understanding of when to use an array — and when not to.

Since a formal discussion of user-defined data types occurs later in chapter 10, the examples in this chapter will
use arrays of fundamental data types such as char, int, or float only. I took this approach to keep the discussion
focused on the topic of arrays, however, the principles learned here will apply to arrays of user-defined data types as
well.

Whar Is AN Array?

An array is a contiguous allocation of memory to homogeneous objects. Contiguous means the objects are stored
in memory one after the other. Homogeneous means the objects in the array are of the same type. Figure 8-1 shows an
array of 4 integer objects.

High Memory /\

Addresses
Other type object
Array elements
...and ends here Integel‘ Obj ect
001C
Integer Object
0018
Integer Object
0014
Int / 1
stris here.. ——| Integer Object
0010
Other type object

Low Memory « -
Addresses W

Figure 8-1: Array of Four Integer Objects

The array begins at a certain memory address. Each integer object in the array follows the one before it and is
located at a memory address one allocation unit higher than the previous object in the array. In the case of integers, an
allocation unit is equal to four bytes on a 32-bit machine, since an integer occupies four bytes of memory. As an
example, if the integer array shown in figure 8-1 starts at memory address 0010, then the next integer object will be
located at memory address 0014, the next at memory address 0018, and the last at memory address 001C.

184 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 8: Arrays Declaring & Defining Statically Allocated Arrays

Locaring Array Elements

Each object in an array is referred to as an array element. Individual array elements are accessed by combining
the starting address of the array with a memory address offset that points to the beginning of the particular array ele-
ment. The offset address is calculated by multiplying the size of an array object in bytes by the number of the element
to be accessed minus 1. For instance, to access the third array element in the integer array shown in figure 8-1, the
address of the beginning of the array, 0010, is added to the offset, (4 bytes x (3 -1)) = 8, to yield an element address of
0018. Thus, the third element of the array is located at memory address 0018.

You may be wondering why you need to subtract one from the element number. Since the first element of the
array is located at the start of the array, no offset is required to access the first element. In other words, the address of
the start of the array points to the first element of the array, the second element of the array is located one allocation
unit from the start of the array, the third element is located two allocation units from the start of the array, and so on.
Remember, the size of the allocation unit used to calculate array element offsets depends on the type of objects the
array is declared to contain.

Fortunately, C++ provides a convenient notation for accessing array elements that is discussed in the next sec-
tion.

Declaring & Defining Starically Allocated Arrays

Statically allocated arrays, like statically allocated variables, exist in stack memory as opposed to dynamically
allocated arrays which are located in memory allocated from the application heap. This section will discuss the decla-
ration and initialization of static arrays of both single and multiple dimensions.

Single-Dimensional Arrays

Single-dimensional arrays, like the one shown in figure 8-1, are declared using the following format:

rype identiﬁer[constant_expression];

Any valid type like int, float,

A valid C++ identifier. Use A constant value that denotes
etc., or user-defined type

your variable naming rules! the number of array elements

The type of the array denotes what kind of objects the array will contain. Arrays can be constructed from the fol-
lowing types:
efundamental types such as int, float, char, efc.
euser-defined structures and classes
epointers to fundamental types, user-defined types, and functions
epointer to member
eenumeration types
eother arrays

This information is used by the compiler to determine the size of each element. The identifier is the name of the
array. Name your arrays like you name your variables — something that makes sense! Here are a few examples:

int number 1list[3]; //array of 3 integer objects

float account balances[25]; //array of 25 float objects

char search string[200]; //array of 200 char objects

double* double pointers([10]; //array of 10 pointers to double objects

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 185

Declaring & Defining Statically Allocated Arrays Chapter 8: Arrays

This last example is interesting in that the array of pointers itself is statically allocated, but the double objects
each pointer ultimately points to can be dynamically allocated using the new operator you learned about in chapter 7.
You will see a more detailed example of this later.

The examples above use integer literals as the constant expression to denote the size of each array. You can also
use a named constant as the following example illustrates:

const int ARRAY SIZE = 25;
int integer array[ARRAY SIZE]; //array of 25 integer objects

Accessing Array Elements

There are two primary methods you can use to access the objects stored in an array. The first, and most common
method, utilizes the array name and the subscript operator []. The second method, pointer arithmetic, treats the array
name like a pointer and uses the pointer dereference operator *. Let us look closer at the subscript method.

Subscripr Method

The subscript operator is overloaded in C++ meaning it is used both to declare arrays, as shown in the previous
section, and to access individual array elements. To access the objects stored in an array, apply the subscript operator
to the name of the array, enclosing between the brackets the element number you wish to access minus one. (Remem-
ber, the 1st element in an array is the array name plus a zero offset) The following code declares an array of integers
and sets each element to a unique integer value using the subscript method:

8.1 declaring & using

int int array[5]; integer array

int_ array

~.

(0]

int array[1]

int arrayl[2] =
[31]
[41]

Y

int_ array

~.

N oYy O W N =
g w N
~

~.

int_ array

This code declares a five element array of integers named int_array. Lines 3 through 7 sets each integer object to
the value specified. The following example prints the contents of int_array to the console:

8.2 using integer array
cout<<int array[0]<<endl;
cout<<int array[l]<<endl;
cout<<int arrayl[2]<<endl;
cout<<int array[3]<<endl;

[4]<<endl;

G W N =

cout<<int array

The number appearing between the subscript brackets is referred to as the array index or array subscript. It must
be an integer type and can be either a literal, as is used above, or a variable. The following code sets the values of
int_array using a for loop and then prints the values to the console with another:

8.3 manipulating array

1 int int_array[5]; with for statement

2

3 for(int 1 = 0; i<5; i++)

4 int arrayl[i] = 1i+1;

5

6 for(int i = 0; i<5; i++)

7 cout<<int array[i]<<endl;

186 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 8: Arrays Declaring & Defining Statically Allocated Arrays

Pointer Arithmeric Method

The subscripted array name returns the object located at that memory location. The subscripted array name is
exactly equivalent to the array name plus the index dereferenced with the * operator. For example, int_array|[1]
returns the same element as *(int_array + 1). Look at example 8.4.

int int array[5]; 8.4 pointer arithmetic

for(int i = 0; i<5; i++)
*(int_array + 1) = i+1;

for(int i = 0; i<5; i++)
cout<<* (int array + 1)<<endl;

N oYy s W N =

Beware the Uninirialized Array!

It is important not to make any assumptions about the state of each object in a newly declared array. For example,
consider for a moment what the value is of each array element in the following example:

int number 1ist[3]; //what’s the value of each integer element?

If you guessed garbage you're right. Examine the code in example 8.5 and the result it produces. Keep in mind
that running these examples on your computer will yield different garbage values.

8.5 garbage out

Arraysoutout = H
—zE5720E
@

int number 1list[3];
|—33423368

for (int i=0; 1i<3; i++)
cout<<number list[i]<<endl;

N W N =

NEE

Figure 8-2: Results of Running Example 8.5

Notice in figure 8-2 the values contained in the first and third elements of the array. The values represent the ran-
dom state of the memory region in which the array is created. One way to ensure the values of array elements are ini-
tialized properly is to combine the definition of each array element with the array’s declaration.

Combining Array Definition with Array Declaration

You can define each element of an array at the same moment you declare it by enclosing element initializers in
braces following the declaration as is shown in the following examples:

int number 1list[3] = {1,2,3}; //array of 3 ints

int number list[] {1,2,3,4,5}; //array of 5 ints

int number 1list[10] = {}; //array of 10 ints initialized to 0O
int number 1ist[10] = {3}; //first element 3, the rest 0

Notice in the second example the constant expression between the brackets is missing. Defining an array in this
manner results in an array with the same number of elements as there are initializers. In the third example, the ten ele-
ment array is initialized to all zeros, whereas in the forth example, the first element is initialized to three and the rest
of the elements are initialized to zero.

Now observe the behavior of the following code:

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 187

Declaring & Defining Statically Allocated Arrays Chapter 8: Arrays

Arrays.out.out =B 8.6 good output

oo

int number 1list[3] = {};

-

for(int 1=0; i<3; 1i++)
cout<<number list[i]<<endl;

%

N N =

Figure 8-3: Results of Running Example 8.6

All the elements of number_list are initialized to zero.

Arrays of PoinTers

An array of uninitialized pointers behaves like an array of uninitialized integers when declared in that each

pointer will, unless properly initialized, contain a garbage value. Observe the behavior of the code shown in example
8.7.

= Arrays.outout = B 8.7 uninitialized pointers
B f fdBedad
s a]= ale s lx]x]
FXFEBQBBBB

= 7 int *int pointers[3];

= 2

3 for(int i=0; 1<3; i++)
Figure 8-4: Results of Running Example 8.7 4 cout<<int_pointers[i]<<endl;

To initialize the pointers to null you can use NULL in the initializer list as shown in example 8-4 or you can sim-
ply use an empty initializer list as was used in example 8.6.

= Amays.outout = B 8.8 good output
e] |
o coscnses
! T} 1 int *int pointers[3] = {NULL};
= 2
= 3 for (int 1i=0; 1i<3; i++)
4

Figure 8-5: Results of Running Example 8.8 cout<<int pointers[i]<<endl;

It is always a good idea to set pointers to NULL if they aren’t pointing to anything in particular.
Now that you have an array of pointers you need to create the object the pointers will ultimately point to. Figure

8-6 gives a visual idea of what needs to happen. Integer objects will be dynamically created in heap memory using the
new operator and the resulting memory address assigned to an array element.

array of pointers integer objects

1 | 1l |

stack heap

Figure 8-6: Array of Integer Pointers and Dynamically Created Integer Objects in Heap Memory

The following code declares the array of integer pointers initialized to NULL. It then creates three integer objects
and assigns the address of each to an array element:

188 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 8: Arrays Declaring & Defining Statically Allocated Arrays

8.9 pointer NULL initialization

int *int pointers[3] = {NULL};
for(int i = 0; i<3; i++)

int pointers[i] new int (i+1);

N N =

Note the use of the new operator to create the integer objects. The value of each integer is created by calling its
constructor using the value of the for loop index value plus one.

The following code prints the values of the integer objects created above:

8.10 using delete operator on
pointer array elements

for(int i = 0; i<3; i++)
cout<<*int pointers[i]<<endl;

for(int i = 0; i<3; i++)
delete int pointers[i]; //use delete to release memory

G W N =

Notice how the pointer dereference operator * is used with the array to access the actual object pointed to by each

array element. Just as with ordinary pointers, you need to ensure you release the memory reserved on the heap back to
the operating system using the delete operator.

Mulri-Dimensional Arrays

An array of more than one dimension is actually an array of arrays. This section will discuss two-dimensional
arrays followed by arrays of three and more dimensions.

Arrays of Two Dimensions

The hardest part of working with multi-dimensional arrays is deciding exactly what each dimension represents,
picturing the array representation in your mind, and then translating that understanding into an array declaration. Let

us pause for a moment to consider once again the single-dimensional array. Figure 8-7 offers a visual representation
of a single-dimensional array of 5 integer objects.

5 columns

1 row

A single-dimensional array

lnt lnt array [5] . declaration specifies num-
. s ¢

ber of columns for an array
of one row.

Figure 8-7: Single-Dimensional Array Representation and Declaration

You can safely think of a single-dimensional array as having one row by default and that the declaration’s pur-
pose is to establish how many elements, or columns, the row will contain. Thinking in this manner will help you visu-
alize not only single-dimensional arrays, but arrays of two, three or more dimensions.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 189

Declaring & Defining Statically Allocated Arrays Chapter 8: Arrays

The declaration of a two-dimensional array looks similar to that of a single-dimensional array with the addition
of another set of brackets indicating the number of rows the array will contain. Check out the following examples:

int integer grid[5][5]

; // a5 x 5 integer array
float float matrix[10][10]

; //a 10 x 10 float array

But which number in the above declarations represents the columns and which one represents the rows? C++
stores arrays in row-major order meaning in memory, a row of elements exists, followed by the next row with its ele-
ments, and so on for each row. Named constants can be used in place of the integer literals for the constant expression
and this will clarify things a little as shown in the following example:

const int ROWS 5;
const int COLS = 5;

int integer grid[ROWS] [COLS];

Notice how ROWS comes before COLS. There is a pattern here. If you think of array dimensions as groupings or
sets you will see that the smallest set of objects, which is ultimately the object itself, always moves to the right in the
array declaration. Since, in a single-dimensional array, the array itself can be thought of as a grouping of elements in
one row, a two-dimensional array can be thought of as a grouping of rows that each contain a grouping of elements. In
other words, an array of arrays. Let us take a look at a visual representation of a two-dimensional array.

5 columns

. A two-dimensional array is an

array of arrays. In this example,
integer_grid is an array of five
arrays of five integers.

5 rows

. . Larger grouping precedes

smaller grouping in the
declaration.

int integer_grid[ROWS][COLS];

Figure 8-8: Two-Dimensional Array and Declaration

190 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 8: Arrays Declaring & Defining Statically Allocated Arrays

.

Figure 8-9 shows how the two-dimensional array depicted above might be represented in memory.

Ve 7 S Vg

A

g &
?@# § ?@* §
(010] (o1 (2 [o)3) (o)) %lli[U] [e el o i[ﬂlﬂl e e e 5[3][0] B B2 BB B4 A0 M M 6 @

Figure 8-9: Two-Dimension Array Memory Representation

Figure 8-9 shows how C++ arranges two-dimensional arrays in memory in row-major order. Row-major order is

an arrangement where a row and all its elements are stored followed by the next row and all its elements and so forth

for

the entire array.

Arrays of Three or More Dimensions

Keeping in mind that in C++ multi-dimensional arrays are simply arrays of arrays helps tame the complexity

when thinking of arrays of three or more dimensions. The following code declares a three-dimensional array of inte-
gers:

int integer cube[5][5][5];

Using integer constants to name each dimension results in a clarification of the intended use of each dimension:
const int DEPTH = 5;

const int HEIGHT = 5;

const int WIDTH = 5;

int integer cube[DEPTH] [HEIGHT] [WIDTH];

Another programmer might choose different constant names to reflect a different intended use for the array:
const int SHEETS= 5;

const int ROWS= 5;

const int COLUMNS= 5;

int integer cube[SHEETS] [ROWS] [COLUMNS];

Figure 8-10 shows one possible visual representation of a three-dimensional array.

Just as with two-dimensional arrays, the larger dimensional grouping displaces the smaller groupings to the right,

so the [SHEETS] dimension is declared before [ROWS], which is declared before [COLUMNS]. A drawing of the
memory representation of a three-dimensional array is left as a skill building exercise.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 191

Declaring & Defining Statically Allocated Arrays Chapter 8: Arrays

Sheets

Rows

Figure 8-10: Visual Representation of a Three Dimensional Array

Although most of your programming needs can be satisfied using either one-, two-, or three-dimensional arrays,
sometimes arrays with more than three dimensions are required. The following code declares an array of four dimen-
sions:

const int BOOKS = 2;
const int SHEETS = 5;
const int ROWS = 5;
const int COLUMNS = 5;

int four d int array[BOOKS] [SHEETS] [ROWS] [COLUMNS] ;

Figure 8-11 offers a visual representation of this array.

Books

' C_I—‘
Columns olumns >

Figure 8-11: Visual Representation of a Four-Dimensional Array

192 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 8: Arrays Declaring & Defining Statically Allocated Arrays

Autowmaric Initialization of Mulri-Dimensional Arrays

Multi-dimensional arrays can be initialized at the point of declaration like their single-dimensional counterparts.
Example 8.11 demonstrates the declaration and initialization of a three-dimensional array:

1 const int SHEETS = 5; 8.11 using 3-dimensional array
2 const int ROWS = 5;

3 const int COLUMNS = 5;

4

5 int three d int array[SHEETS] [ROWS] [COLUMNS] = {};
6

7 for(int i = 0; 1<SHEETS; i++){

8 for(int j = 0; J<ROWS; J++) {

9 for(int k = 0; k< COLUMNS; k++) {
10 cout<<three d int array[i] []] [k];
11 }
12 cout<<endl;
13 }
14 cout<<endl;
15 }

Figure 8-12 shows the results of running example 8.11.

Arrays.outout = E

BEEEE =

Jalalslalo] J
BEEEE
|lslalslz]
BEEEE

=
=
=
=
=
[]e]

Figure 8-12: three_d_int_array Initialized to Zeros

Using different combinations of braces and integer values results in different possible array initializations. Con-
sider the code shown in example 8.12. This results in all the rows of the first sheet being initialized as shown in figure
8-13. Example 8.13 declares the array and initializes the first row of each sheet. Examine the use of the braces in the
declaration and see if you can spot a pattern. Figure 8-14 shows the results of initializing the array in this fashion.

The outermost brace pair represents the array. In the case of three_d_int_array it is an array of five user-concep-
tualized elements called SHEETS. Each sheet is an array of five user-conceptualized elements called ROWS, and
each row is comprised of five integer elements conceptualized as COLUMNS. Figure 8-15 illustrates the relationship
between the braces in the array declaration and each of these conceptualizations.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 193

Declaring & Defining Statically Allocated Arrays Chapter 8: Arrays

8.12 initializing 3-
dimensional array

1 int three d int array[SHEETS] [ROWS] [COLUMNS] = {{{1,2,3,4,5},
2 (1,2,3,4,5},
3 {1,2,3,4,5},
4 (1,2,3,4,5},
5 (1,2,3,4,5}1}};

== Arrays.outout =B

12345 %
12343
12345
12345
12345

aoEaE
[alelela o}
BEEEG
falal=lalc]
BEHEE

ezl
BEEEE
falalalals)
Jolslalala]
BEEAE

aaeae
La s lal5 5]
BaEaEE
BEEEE
[l o]

BEEaE
BREEE
5 E]5]5 2]
[lolclolo]
BREEE

s

Figure 8-13: All Rows of First Sheet Initialized

8.13 brace
usage

int three d int array[SHEETS] [ROWS] [COLUMNS] = {{{1,2,3,4,5}},
{{1,2,3,4,5}},
{{1,2,3,4,5}},
{{1,2,3,4,5}},
{{1,2,3,4,5}}};

G W N =

First Row of Each Sheet

40y, U0y, C0y)y, 0y, {03)

Each Sheet
Array of Sheets

Figure 8-15: Relationship of Declaration Braces to Array Elements for three_d_int_array

194 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 8: Arrays Declaring & Defining Statically Allocated Arrays

== Arrays.out.out =

Tl m

12345
HHAGE
GEaGE
HHAGE
GEaGE

=

2

=

=

=
IR

Figure 8-14: First Row of Each Sheet Initialized

Using the brace map shown in figure 8-15 as a guide I’ll show you one more initialization scenario. Let us initial-
ize the first three rows of three_d_int_array with the values 1,2,3,0,0, and the rest of the rows to all zeros.

1 int three d_int array[SHEETS] [ROWS] [COLUMNS] = {{{1,2,3}, {1,2,3}, {1,2,3} }, 8.14 brace
2 ({1,2,3}, {1,2,3}, {1,2,3} }, usage
3 {{1,2,3}y, {1,2,3}, {1,2,3} },

4 ({1,2,3}, {1,2,3}, {1,2,3} },

5 ({1,2,3}, {1,2,3}, {1,2,3} }};

Figure 8-16 shows the results of the initialization shown in example 8.14 above.

12308 First three rows of each
BBARA sheet initialized to

12380 1,2,3,0,0. Remaining rows
12268 initialized to zeros.

=

=

=

=

=
S

Figure 8-16: Results of Initialization Shown In Example 8.14

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 195

Declaring and Defining Dynamic Arrays Chapter 8: Arrays

Declaring and Defining Dynamic ArRrAys

A dynamic array is one that has been created in application heap memory using the new[] operator. The benefit of
dynamic array creation is that the array size can be determined at runtime and an array meeting your exact storage
needs can be created on the fly. In this section I'll show you how to declare and create dynamic arrays. Once a
dynamic array is created its elements are accessed like an ordinary array.

Dynamically Allocared Single Dimensional Arrays

Figure 8-17 shows a memory representation of a dynamic array of three integer pointers.

L R s - -
~ ™~ { e A ™
7 N L . . \
Stack Memory L L Heap Memory
Pointer to array of integer pointers Array of integer pointers Integer objects

Figure 8-17: Dynamic Array of Three Integer Pointers

Before showing you the code to create the array depicted in figure 8-17 it will help you to know the steps
involved with the dynamic array creation process.

You first need to declare a pointer to the type of objects the array will contain. In figure 8-17 the array contains
integer pointers so the pointer to the array must be a pointer to a pointer. If, however, you simply wanted an array of
integers, you would just need a pointer to an int. For now, let us stick with an array of integer pointers. Here is the
declaration for the pointer:

int** int pointer array;

The second step is to dynamically allocate the memory space for the array of integer pointers in the heap and
assign the address to the pointer. You do this with the new[] operator:

int pointer array = new int*[3];

This line allocates memory for an array of three integer pointers in the heap and assigns the address of the first
element to the int_pointer_array pointer located in the stack.

Once the array of integer pointers is created you can dynamically create each integer object. You will do this with
the new operator as you’ve done before with regular pointers.

int pointer array[0] = new int (1l);

This line allocates space on the heap for an integer object and assigns its address to the first element of
int_pointer_array. Notice how ordinary array subscript notation is used on the dynamic array.

When your program no longer needs the dynamically allocated array you must remember to release the memory
resources back to the operating system using the delete and delete[] operators. The following code releases each
object pointed to by the elements of int_pointer-array and then deletes the array itself:

196 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 8: Arrays Declaring and Defining Dynamic Arrays

for (int i=0; 1i<3; i++) {
delete int pointer arrayl[il];

}

delete [] int pointer array;

Example 8.15 shows a complete example:

1 int** int pointer array = new int*[3]; 8.15 dynamic array
P - - allocation
3 for(int 1 = 0; i<3; 1i++)

4 int pointer array[i] = new int (i+1);

5

6 for(int 1 = 0; i<3; 1i++)

7 cout<<*int pointer array[i]<<endl;

8

9 for(int i = 0; 1i<3; i++)
10 delete int pointer array([i]; //release memory for each object
11
12 delete[] int pointer array; //then release the array

Notice on line 1 how the creation of the dynamic array takes place on the same line as its declaration. On line 7
each integer value is accessed using ordinary pointer dereferencing.

The integer value 3 on line 1 of example 8.15 can be replaced with an integer variable. The variable’s value can
be set at runtime and used to set the size of the array. Example 8.16 prompts the user to enter a value to be used for
dynamic array allocation. This example simply declares an array of integers, not an array of integer pointers, although

you can dynamically create an array of any type.
8.16 dynamic array
allocation

1 int array size = 0;

2 int* int array = NULL;

3

4 cout<<"Please enter array size: ";
5 cin>>array size;

6

7 int array = new int[array size];

8

9 for (int i=0; i<array size; i++)
10 int arrayl[i] = 1i+1;
11
12 for (int i=0; i<array size; i++)
13 cout<<int array[i]<<endl;
14
15 delete[] int array; //release the array when done

Dynawmically Allocared Mulri-Dimensional Arrays

Dynamically allocated multi-dimensional arrays are not as easy to create as their statically allocated cousins, but

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 197

Declaring and Defining Dynamic Arrays Chapter 8: Arrays

once you have created them they’re as easy to use as a normal array. I’ll show you two methods for dynamically cre-
ating a multi dimensional array.

The first method involves knowing the dimension of the smallest set of elements and dynamically allocating the
largest. This is demonstrated in example 8.17.

8.17 dynamic multi-dimensional
array allocation

1 int rows = 0;

2 const int cols = 5;

3 int (*two d int array) [cols];

., _a_ _

5 cout<<"Please enter the number of rows: ";
6 cin>>rows;

7

8 two d int array = new int[rows] [cols];
9
10 for (int i=0; i<rows; i++)
11 for (int 3j=0; Jj<cols; Jj++)
12 two d int array[i][j] = J+1;
13 - B
14 for (int 1=0; i<rows; i++){
15 for (int 3j=0; Jj<cols; Jj++){
16 cout<<two d int arrayl[i][]];
17 } -
18 cout<<endl;
19 }

20 delete[] two_d int array; //release the array

Study the syntax on line 3. A pointer named two_d_int_array is declared to point to arrays containing 5 integer
objects. What must be done next is to dynamically allocate the number of rows the two-dimensional array will con-
tain. This is accomplished by getting an integer value from the user on lines 5 and 6 and assigning it to the variable
rows. Next, the variable rows is used to create the array using familiar syntax on line 8. The rest of the code initializes
the newly created array of integers and prints the values to the screen. This method is restrictive in that the values of
the smaller dimensions must be known at compile time. Running the code from example 8.17 with a row value of 6
produces the results shown in figure 8-18.

Arrays.outout =——H

Pleaze enter the number of rows: 6

12245

12345

123473

12345

12343]

12345 -
k

7

Figure 8-18: Results of Running Example 8.17 Using Row Value 6

To dynamically allocate both dimensions you must resort to the fundamental knowledge that a multi-dimensional
array is an array of arrays. The following example allows the user to dynamically allocate both the rows and cols of a
two-dimensional array.

198 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 8: Arrays Declaring and Defining Dynamic Arrays

8.19 dynamically allocating
2-dimensional array

1 int rows = 0;

2 int cols = 0;

3

4 int** two_d int array;

5

6 cout<<"Please enter number of rows and columns: ";
7 cin>>rows>>cols;

8

9 two d int array = new int*[rows];
10 o B
11 for(int 1i=0; i<rows; i++)
12 two d int array[i] = new int[cols];
13 - B
14 for(int 1i=0; i<rows; i++)
15 for (int 3j=0; Jj<cols; Jj++)
15 two d int array[i] [Jj] = Jj+1;
17 -
18 for(int 1i=0; i<rows; i++) {
19 for (int j=0; Jj<cols; J++){
20 cout<<two d int arrayl[i][]];
21 } - N
22 cout<<endl;
23 3
24 for(int i1 = 0; i<rows; i++)
25 delete[] two_d int array([i]; //release each row array
26

27 delete[] two_d int_array; //release array of rows

As you study example 8.19 you will notice there is an extra step required when utilizing this method. First, on
line 4, a pointer to a pointer to an integer is declared. Lines 6 & 7 get the array dimensions from the user. Line 9 cre-
ates an array of integer pointers using the rows variable. The extra step occurs at line 11. Here the for loop allocates
an array of integers for each row using the variable cols. The remaining code uses normal array notation to initialize
each element of the array and print the values to the screen. Figure 8-19 shows the results of running this code using a
rows value of 10 and cols value of 6.

Arrays.outout =———H

Flease enter number of rows and columns: 18 &
12324356
12324356
123456
123456
122456
123456
12324356
1232456
123455
122456

Sl]

Figure 8-19: Results of Running Example 8.19 Using rows = 10 & cols =6

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 199

Strings Chapter 8: Arrays

STRINGS

A string in C++ is an array of characters terminated by the null character “\0’. The following code declares a
character array and initializes it to a string literal:

char stringl[] = “C++ For Artists”;

You could then print this string to the screen by using the name of the array as is demonstrated by the following
code:

cout<<stringl<<endl;

You could have initialized the array using an initializer list. Examine the following code:

char stringl[] = {'C', '+', '+', ' ', 'E', ‘o', 'r', ' U, VAT, tpv ongr viv orgroovgnovgn i\Qry;

Notice the explicit inclusion of the ‘\O’ character. You will need to allow for one extra space in any array you
intend to use for strings for the purpose of including the null character terminator.

Summary

This chapter introduced you to arrays, their purpose, and their use. An array is a contiguous allocation of memory
to homogeneous objects. Contiguous means the objects are stored one after another in memory, and homogeneous
means the objects in the array are all the same type. Arrays can contain user-defined data types as well as fundamental
data types like int or float. They can also contain pointers to these types and function pointers. Arrays of user-defined
data types are covered in subsequent chapters.

An array begins at a certain memory address. A static array name is a const pointer. For statically allocated arrays
of objects the array name points to the first element. Each successive object in an array is located one allocation unit
from the previous object. The size of the allocation unit is determined by the type of objects an array is declared to
contain.

There are two ways to access array elements: array subscripting using the [] operator and an index value, or via
pointer arithmetic using the pointer dereference operator *. Thus, array_name[0] will yield the same element as
*(array_name).

Beware the uninitialized array! Use an initializer list to set the values of an array at declaration.

Multi-dimensional arrays are arrays of arrays. Multi-dimensional arrays are stored in memory in row major
order. Using named constants or variables in array declarations can help clarify the intended use of each dimension.
Remember the pattern: smaller dimensional units are displaced to the right in array declarations.

A dynamic array is one that has been created in the application heap using the new[] operator. Do not forget to
release dynamically allocated arrays using the delete[] operator or you will suffer memory leaks. Also, if you have an
array of pointers to object, do not forget to release the memory for each dynamically created object using the delete
operator before releasing the array.

Strings are arrays of characters terminated with a null character \0’. Allow for one extra element in the sizing of
any array in which you intend to hold or manipulate strings.

200 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 8: Arrays Skill Building Exercises

Skill Building Exercises

1. Memory Representation: Draw the memory representation for a statically allocated three dimensional array of
integers.

2. Static Array: Write a program that declares a static array of ints with ten elements. Prompt the user to enter ten
integer values. Store each value in the array and print the contents of the array to the screen.

3. Static Arrays: Write a program that declares five static arrays of ints each with ten elements. Use an initializer list
to initialize each array to the following values. Print the values to the screen.

, 0, 0, 0, 0, 0, O, O, O

, 3, 0, 0, 0, O, O

, 10, 125, 256, 3, 25, 67, 78, 9
, 0, 0, 0, 0, 0, O, 0, O, 1

2, 23,45, 0, 0, 4, 5, 0, 8

~
O v N O

4. Array of Pointers: Write a program that creates an array of integer pointers 5 elements long. Use an initializer list
to set each pointer to NULL. Use a for loop to create the integer objects and assign their addresses to each array
element. Print the values of each integer object to the screen. Remember to release the memory for each dynami-
cally created object using the delete operator.

5. Array of floats: Write a program that creates an array of floats seven elements long. Prompt the user to enter the
total of their daily expenses for seven days and assign each value to an array element. Sum the array elements to
create a grand total and print the total to the screen.

6. Array of ints: Write a program that creates a two-dimensional array of ints. Make each dimension five elements
long. Initialize each element value to zero using an initializer list. Use a nested for statement to print the contents
of the array to the screen so that it looks similar to this:

O O O O O
O O O O O
O O O O O
O O O O O
O O O O O

7. String Processing: Write a program that creates a char array 25 elements long. Prompt the user to enter a short
character string and assign the string to the array. Reverse the order of characters in the array and print the results
to the screen.

8. Dynamic Arrays: Write a program that creates a dynamic array of ten integer pointers. Prompt the user to enter ten
numbers and dynamically create each integer object using the value entered by the user. Print the integer object
values to the screen. Also print the pointer values. Remember to release all dynamically allocated memory.

9. Dynamic Array: Write a program that creates a dynamic array of integer objects. Prompt the user to enter the size
of the array, and then prompt the user to enter the values for each integer. Sum the contents of the array and print
the results to the screen. Remember to release all dynamically allocated memory before exiting the program.

10. String Concatenation: Write a program that creates two char arrays. Prompt the user to enter two short character
strings and store one string in each array. Print the contents of each array to the screen. Next, calculate the size of
each sting and create a dynamic array large enough to hold both strings and combine the two. Print the combined
string to the screen.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 201

Suggested Projects Chapter 8: Arrays

Suggested Projects

1. Matrix Multiplication: Given two matrices A;; and Bj, the product Cjy can be calculated with the following equa-
tion:

n
Ciy = Z aijbjk
j=1

Write a program that multiplies the following matrices together and stores the results in a new matrix. Print the
resulting matrix values to the screen.

2
3 234
34 345
45

2. Calculate Class Averages: Computer Write a program that computes class averages. Allow the user to set the size

of the array of floats based on class size. Prompt the user for each grade. Average the grades and print the results to
the screen.

3. Number Counter: Write a program that counts the number of times a user enters a particular number between the
values 1 through 20. Exit the program when the user enters a number outside that range. Before the program exits,
print a histogram to the screen showing the distribution of the numbers entered by the user. The histogram may
look something like this...

. kK

ok ok ok ok k ok ok ok ok

DSw NN

20:*****

...indicating the number 1 was entered two times, the number 2 was entered nine times, etc.

4. String Reader: Write a program that reads a string from the user of arbitrary length and counts the number of
times each letter of the alphabet appear in the string. Print a histogram to the screen showing the results.

5. Command Line Echo: Write a program that echoes command line arguments by implementing the main(int argc,
char *argv[]){} function. The argc argument is a count of the number of command line arguments with which the
command was evoked. It includes the command itself so the value of argc will at least be 1 and will equal 1 in the
absence of any command line arguments. The argv argument is an array of char pointers, each pointing to a partic-
ular command line string. For example, if the name of the program was echo_args then the following command
line...

[localhost:~] swodog% echo _args This works great!

...would result in argc = 4, and argv[0] = “echo_args”, argv[1] = “This”, argv[2] = “works”, and argv[3] = “great!”.

202 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 8: Arrays Self Test Questions

Self Test Questions

1. An array is a allocation of memory to objects.

2. A static array name is what type of pointer?

3. (T/F) An array name points to the first element of the array.

4. How are multi-dimensional arrays stored in memory.

5. Multi-dimensional arrays are arrays of

6. What determines the size of an allocation unit?

7. How does a dynamically allocated array differ from a statically allocated array?

8. List at least four types of objects an array can contain.

9. Describe the two methods available to access array elements.

10. To what values will the array elements be initialized to in the following declaration:
int int array[25];

11. To what values will each array element be initialized to in the following declaration:
int int array[25] = {1,2,3};

12. What’s the difference between the new operator and the new[] operator?

13. Why is it important to release dynamically allocated array memory with the delete[] operator?

14. List and discuss the steps required to create a single dimensional dynamic array.

15. Discuss the two methods for creating multi-dimensional dynamic arrays. Which method would you prefer to use
and why?

References

Thomas H. Corman, et. al., Introduction to Algorithms, The MIT Press, Cambridge, Massachusetts, 1990. ISBN:
0-262-03141-8.

Brian W. Kernighan, et. al., The C Programming Language, Prentice Hall, Englewood Cliffs, New Jersey, 1988.
ISBN: 0-13-110370-9

International Standard, ISO/IEC 14882, Programming Languages — C++, First Edition 1998-09-01
Paul J. Lucas. The C++ Programmer’s Handbook. Prentice Hall PTR, Englewood Cliffs, New Jersey, 1992.

ISBN: 0-13-118233-1

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 203

Notes Chapter 8: Arrays

Nortes

204 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chaprter 9

Charlome and George

FuncTions

Learning ODbijecrives

o Snare the purpose and use of funcrions in C++

e Exphin how 10 declare and define funcrions

* Snare the purpose and use of funcrion ReTuRN Types

* Siate the purpose and use of funcrion paramerers

* Describe the concepr of funcrion calling

o Explain 1he use of local funcrion variables and their scoping rules

* Describe how 10 pass arGuments 1o A function by value and by reference

* Describe how 10 maximize funcrion cokliesion and minimize coupling

¢ Describe the concepr of funcrion signatures

* Describe how 10 overload funcrions

* Explain the concepr of recursion

o Explain 1he concepr and use of funcrion pointers

* Explain how 10 create funcrion libraries

o Urilize funcrions in your C++ pROGRAMMING PROJECTS

* Describe how funcrions are used 1o modularize C++ proGram funcrionality
* Demonsirate your ability 1o minimize funcrion coupling and maximize funcrion cohesion in C++ pROGRAMMING pROjECTs

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 205

Introduction Chapter 9: Functions

INTROducTiON

Functions provide a convenient way to package program behavior into manageable units with an eye towards
reuse. However, as you will soon learn, writing effective and efficient functions takes more than simply breaking a
large program into arbitrarily sized blocks of code.

In your studies of C++ and object-oriented programming you will be confronted by the terms function and mem-
ber function, and wonder what is the difference between the two. The difference lies not in shape and form but rather
in how each is employed.

When you think in terms of functions you are thinking in terms of program functional decomposition and the C-
style way of writing programs. Chapter 3 provided a complete example of this approach to implementing a solution to
a programming problem. In C-style programming the data structures required to implement a program are established
and followed by the functions that manipulate those data structures. Although they are highly cohesive, which is a
good thing, they are at the same time tightly coupled to the problem being solved via the file scope variables, which is
a bad thing. It would be hard to reuse the functions appearing in chapter 3 in another program without rewriting them.

In C++ programming a member function is the term used to describe a function defined as part of a structure or
class interface. A member function is a critical component of the data structure itself. There is a different type of
thinking that goes into the creation of member functions. A member function is, by its very nature, tightly coupled to
the member attributes of the class in which it appears because of the free access it has to those attributes. But now that
is a good thing because when you think in object-oriented terms you stop thinking in functional decomposition terms,
and think instead of a program’s objects and the messages they pass between each other. These messages are passed
via member functions. This is discussed in detail in chapters 11 and 12.

As you study object-oriented programming in general you will encounter the term method used interchangeably
with the term member function. (e.g., “Invoke a method on an object...”) The term method has its roots in the Small-
talk programming language. In C++ you declare and define functions, not methods, although it is safe to think of one
being like the other.

Ultimately, the only significant difference between a function and a member function is the function exists on its
own, whereas the member function is declared as being associated with a class of objects, and thus has free access to
the internals of those objects.

In this chapter I intend to show you how to write functions. Everything you learn here will apply directly to writ-
ing member functions. This will require you to understand and master several key concepts regarding functions to
include function declaration and definition, function argument passing, and function variable scoping rules. You will
learn how to write functions that minimize their connection or coupling to the outside world while maximizing the
cohesion of the statements that comprise the body of the function. I will also show you how to share the functions you
write via function libraries.

Whar is A Funcrion?

A function is a collection of logically related program statements written to perform a specific processing activ-
ity. A function is also a code module. A function is given a name and with this name the function can be called or exe-
cuted by any program that needs to use the function. The program statements that comprise the body of the function
give the function its behavior. Function behavior can be built upon the behavior of other functions. In other words,
functions can call other functions. Once a function is written and its behavior defined, you can effectively forget about
the details of how the function performs its duties and call the function in the program when needed.

Grouping often-repeated program statements into a function saves memory space, but, most importantly, allows
you to break apart a complex processing problem into a set of process abstractions. Just like well-chosen variable
names lend a level of abstraction to data, well-chosen function names provide a way to achieve process abstraction.

A well-written or well-formed function can be used in many different programs on many different computers by
many different programmers. This functionally is achieved by giving the function a singular purpose, or, in other
words, maximizing its cohesiveness while at the same time decoupling it as much as possible from other program ele-
ments. The rule of thumb: maximize cohesion — minimize coupling.

206 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 9: Functions What is a Function?

A function can simply be a collection of often-repeated statements that returns no value. Functions of this type
are extremely useful in their own right and are what Pascal programmers would call procedures. On the other hand,
functions can communicate the results of their processing via either return values or parameter references.

Interface vs. Implementation

All you need to know about a function to use it is its interface. A function’s interface describes certain character-
istics of the function such as its name, what type, if any, it returns, and what parameters, if any, it needs to perform its
job. When writing a function, you will first declare the function’s interface and then define what it means to be that
function. You declare a function’s interface by declaring a function prototype. You define what a function does by
adding the necessary code to the body of a function definition to achieve the function’s purpose.

Put Funcrion Interface Declarations in Header Files

Place function declarations in header files. This is a good habit to form early in your programming career because
you will do the exact same thing with class declarations. If you’re writing a small program with only a few functions
you can group all the required function declarations into one header file. If you’re writing a large application, you can
logically group related function declarations together. Putting function declarations in header files is the key to writ-
ing function libraries.

#ifndel... # define.... #endif

Your header file should use the #ifndef, #define, & #endif preprocessor directives to allow you to include it in any
file that needs access to the function declarations it contains. The structure of a typical header file will look like this:

#ifndef HEADER NAME H
#define HEADER NAME H

// function declarations appear here
fendif
Substitute your own header name where HEADER_NAME_H appears above. I use the name of the header file,

in all caps, separating words and extensions with underscores. For example, if I name a header file myheader.h then
the #ifndef, #define, #endif structure would look like so:

#ifndef MY HEADER H
#define MY HEADER H

// function declarations appear here
#endif

The file myheader.h can now be included in other source files using the #include preprocessor directive without
fear of getting multiple declaration errors:

#include "myheader.h"

Pur Funcrion Definitions in Implementation Files

Place function definitions in a separate implementation file. An implementation file in C++ has the extension .cp
or .cpp. Whereas the header file contains the function’s interface declaration, the implementation file will contain the
definition of the function. A function definition gives meat or meaning to a function. It is where you as a programmer
define exactly what it is the function will do using C++ programming statements in the body of the function. Every-

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 207

Declaring and Defining Functions Chapter 9: Functions

thing you have learned about C++ up to this chapter, and a whole lot more, can be used when you write the function
code.

Characreristics of A Well-Written Funcrion

A well-written function should exhibit several fundamental characteristics. Several of these were briefly dis-
cussed above. A function should serve one purpose and its purpose should be reflected in its name, so it should be
named well too. A function that does what it should and nothing surprising is said to be highly cohesive. In function
writing you should strive to maximize the cohesiveness of your functions.

A function, to the fullest extent possible, should stand on its own, and not be too tightly coupled to other program
elements. This characteristic, referred to as coupling, should, to the fullest extent possible, be minimized. The danger
of having tightly coupled functions or code modules is that a change to one function may affect the behavior of
another function or code module somewhere else in your program. Perhaps the most difficult task you face as a pro-
grammer of not just functions, but of object-oriented programs in general, is the minimization of intermodule depen-
dencies or intermodule coupling.

Table 9-1 summarizes the characteristics of a well-written function.

Characteristic Description

Singular purpose/Maximally cohesive | The program statements in the body of the function are logically related
and exist to implement function behavior as described by the function’s in-
terface declaration (prototype). There should be nothing surprising going
on in the body of the function that isn’t hinted at in the function name.

Well-named | A function’s name should reflect the function’s purpose. Since most func-
tions perform an action, function names should be formed from action
words (verbs).

Minimally coupled | Take steps to reduce a function’s dependency on other program elements.
You can do this by using local function variables when possible, and pass-
ing other required program elements to a function via arguments.

Table 9-1: Characteristics of Well-Written Functions

Declaring and Defining FuncTtions

Now that you know what a function is it is time to learn how to create them. To write and use functions you will
need to know how to do four things:
1. How to name the function
2. How to declare the function,
3. How to define the function, and
4. How to call the function in a program

Nawming Funcrions

A function’s name should reveal its purpose. A program written with well-named functions is easy to read and
easy to maintain. If you are writing programs for the first time you will be tempted to write short, cryptic function
names in the interest of completing a project on time. The problem with this shortcut approach is that if you have
problems getting your program to run, your instructors have to decipher your code before they can help you. Some
so-called professional programmers do not follow this advice because they think they’re so good they do not need to
follow any rules. These cowboy programmers produce code that’s hard if not impossible to maintain when they
finally do leave the project. Develop good naming habits early. Doing so will pay off in the long run.

A function name can be any valid identifier, but since functions invoke some sort of processing they should be

208 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 9: Functions Declaring and Defining Functions

named using action words. The following examples show good function naming form:

getClassCount
setTemperature Value
computeSum
addArrayElements

The naming convention used here is to lowercase the first letter of the first word and then use uppercase letters
for the first letter of each word thereafter.

Funcrion Declaration

Before a function can be defined or called from another function it must be declared. A function declaration takes
the following form:

A valid identifier Declares parameter types, if any,
required by the function

return type functionName(parameter list);

Any valid type such as int, float, or user-defined types, pointers
or references to these types, etc., or void if no value returned

Here are a few examples of function declarations:

int getClassCount();

void setTemperature Value(float temp_val);
float computeSum(float a, float b = 0);

double addArrayElements(double the_array[]);

The getClassCount() function is declared to return an integer type and take no arguments. The setTemperature()
function is declared to return no value and take one floating point argument. The third function, computeSum(), takes
two floating point arguments and returns a float value. The parameter b is set to a default value of zero. In the absence
of a second argument, computeSum() will set the value of the parameter b to zero for use in the body of the function.
This means that computeSum() can be called with either one or two arguments. The addArrayElements() function
takes an array of doubles as an argument and returns a double value.

Funcrion Definition

Once a function has been declared it can be defined. Any programming statements required to give a function its
behavior go into the body of the function definition. You will need a couple of things handy before you write a func-
tion definition. First, you will need access to the declaration of the function you are defining. If you have placed the
declaration of the function in a separate header file you will need to include that file in the function implementation
file. Second, you will need to include the header files for any other functions you are using to define your function.

Before studying a complete example take a look at the form of a function definition:

Funcrion Calling

A function is invoked via a function call. To call a function simply use the name of the function, supplying to it
any arguments it requires. If you’re calling functions written by other programmers, like third party libraries, then you
will need to include the header file that contains the function declaration, and the library code so your development

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 209

Declaring and Defining Functions Chapter 9: Functions

return type functionName(parameter list) {

Return statement
returns an object

of type return type //Place implementation code here in the body

unless return type //of the function. The function body is enclosed

is void, in which //by the opening and closing braces.

case no return Function body
statement is return (object of return type) enclosed by
required } opening and

closing braces

environment can link to the function’s object code. If you’re writing the function, you will need to add the function’s
implementation file to your project before you compile. Let us take a look at a complete example.

A Complere Example

In this example I will step you through the declaration, definition, and use of a simple function called testFunc-
tionOne() that prints a short message to the screen. First, create the header file and to it add the function declaration. I
am naming the file testfunctionone.h:

#ifndef TEST FUNCTION ONE H 9.1 testfunctionone.h
#define TEST FUNCTION ONE H

void testFunctionOne () ;

o Oy W N =

#endif

Next, create the definition for testFunctionOne(). The definition should go in its own .cpp file. I am naming the
file testfunctionone.cpp:

#include "testfunctionone.h" 9.2 testfunctionone.cpp
#include <iostream>

using namespace std;

void testFunctionOne () {

1
2
3
4
5
6
7 cout<<"Function Called: testFunctionOne () "<<endl;
8

Notice on line 1 I've included the header file testfunctionone.h. This will make the testFunctionOne() function
declaration accessible to the testfunctionone.cpp file. If you fail to declare a function before you define it you will
receive a compiler error stating something to the effect, ““...function does not have a prototype.” The exact message
you receive will depend on your development environment.

On line 2 I’ve included the iostream header file. I need to do this because I’m using the cout object which is
declared in that header file. The function definition for testFunctionOne() appears on lines 6 through 8. Since it is a
void function no return statement is required. All that’s left now is to use testFunctionOne(). I will use it in the main()
function as is shown in the following example:

210 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 9: Functions Declaring and Defining Functions

#include "testfunctionone.h" 9.3 main.cpp

int main () {
testFunctionOne () ;
return 0;

oy Oy W N =

Contents of main.cpp

The main() function is in a file to itself called main.cpp. Notice on line 1 that testfunctionone.h is included. This
allows access to the declaration of the function so it can be called in the main() function. testFunctionOne() is then
called on line 4, followed by a return statement, which is required by the main() function.

The two files, testfunctionone.cpp and main.cpp can now be compiled. Figure 9-1 is a CodeWarrior project
screen shot showing the two files as part of the project:

0O ==————————Testhunctionbne="F———— B
e |
| S S |
—
(o oo .. o = o l:ll__hi Tl
|'II FFC 5id C++ Consoie | [SIEL | I \-};I " I] I
#| File | Code | Data |4 |=
w W} Sources 12K ZK + @
ﬁ main.cpp &4 20 o« =
B testfunctionaone .cpp 12552 2312 o« =
[Gl ANSI Libraries 170K 37K = =
[[, Mac Libraries 14K 3K =
8 files 197K 43K 2

Figure 9-1: TestFunctionOne Project Screen Shot

The testfunctionone.h file is not explicitly added to the project but will be brought into the compilation process
via the #include directive. It simply needs to reside in the same directory as the other project files. If you’re using an
IDE other than CodeWarrior your process may differ somewhat but the basic steps are the same. (see chapter 2)

When all files are ready to go the project can be compiled and run. Figure 9-2 shows the results of running the
program and the message printed to the screen by testFunctionOne():

=—— TestFunctionOne.cutout ="—=—§H

Function Called: testFunctionOney}

Figure 9-2: Results of Calling testFunctionOne()

Quick Review

Before a function can be defined or called it must first be declared. Start your function creation process by declar-

ing the function in its own header file. That way you can use the #include directive to provide access to the function
declaration to any file that needs it.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 211

Local Function Variable Scoping Chapter 9: Functions

Local Funcrion Variable Scoping

testFunctionOne(), although complete, is a simple example. Most functions you write will be far more complex
and will no doubt require arguments to be passed to it and a value of some sort returned. To master the art of writing
meaningful functions you will need to get smart about variable scoping rules and how they apply to functions.

It is helpful to think of a function as a world unto itself. Variables can be declared and used within the body of a
function. Any variables declared within the body of a function are referred to as local variables. Local variables exist
for the life of the function, that is, when the function is called, any local variables required are set up and ready for use
by the function. When the function returns, its stack frame collapses and with it go all the local variables. Therefore,
local function variables, unless declared as being static, exist and retain their values only for as long as the function
exits actively in memory.

In this section I will discuss how local variables can be declared and used within a function, how global or file
scope variables can be masked or hidden by local variables, how to use scoping blocks within a function, how to
declare and use static function variables, and how function parameters are used by a function.

Declaring Local Variables

Variables can be declared and used within the body of a function. Any variables declared within the function are
considered local to that function and are referred to as local variables. Study example 9.4:

94 local function

1 void testFunctionTwo () { .
) i variables
2 int 1 = 2;
3 cout<<"Local 1 = "<<i<<endl;
4}

Line 2 declares and initializes a variable named i within the body of testFunctionTwo() and prints its value to the
screen.

Hiding Global Variables with Local Variables

A local variable declared within a function will hide a global variable of the same name. Consider the following
example:

1 4#include "testfunctiontwo.h" 9.5 masking global
. . variables
2 #include <iostream>
3 using namespace std;
4
5 int 1 = 1;
6
7 void testFunctionTwo () {
8 int 1 = 2;
9 cout<<"Local 1 = "<<i<<endl;
10 cout<<"Global i1 = "<<::i<<endl;
11 %

The variable i declared at file scope on line 5 will be masked or hidden by the declaration of testFunctionTwo()’s
local variable i declared on line 8. There are several lessons to be learned here. First, functions have access to any glo-
bal variables declared within their translation unit unless hidden by a local variable of the same name. Second, if a
local variable hides a global variable, the global variable can be accessed via the :: operator as shown on line 10.

Using Scoping Blocks in Funcrions

Scoping blocks can be used within the body of a function to redeclare variables of the same name. Variables
introduced in this fashion are considered to be within an enclosed scope and hide variables of the same name in the

212 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 9: Functions Local Function Variable Scoping

enclosing scope. Study the following example:
1 #include "testfunctiontwo.h" 9.6 block scope

2 #include <iostream>

3 using namespace std;

4

5 int 1 = 1;

6

7 void testFunctionTwo () {

8 int i = 2;

9 cout<<"Local 1 = "<<i<<endl;
10 cout<<"Global 1 = "<<::i<<endl;
11 { Variable i declared within
12 int 1 = 3; scoping block hides vari-
13 cout<<"Block 1 = "<<i<<endl; able of same name in outer
14 } block
15)

You generally will not use scoping blocks for the express purpose of hiding outer block variables, but you will
regularly experience their effect when you use iteration or looping statements. Consider the following code:

1 #include "testfunctiontwo.h" 9.7 scope of variables in
2 #include <iostream> looping statements
3 using namespace std;

4

5 int 1 = 1; //global i

6

7 void testFunctionTwo () {

8

9 int 1 = 2; //local i
10 cout<<"Local 1 = "<<i<<endl;
11 cout<<"Global i = "<<::i<<endl; The for loop’s i variable
12 has scope within the
13 for (int i=0; i<5; i++) body of the for statement

\ , and hides the local vari-

14 cout<<"for loop i = "<<i<<endl; able i
15

The variable i declared in the for statement on line 13 hides the local variable with the same name declared on
line 9. The global i variable can be accessed within the body of the for loop using the :: operator.

Static FunctioN Variables

The local function variables you have seen so far are created and destroyed with each invocation of their associ-
ated function. If you want a local variable to retain its value between function calls you must declare the variable as
being static using the static keyword.

A static local function variable will be initialized when the function is first called. Any change to the value of a
static variable will be preserved for use by the next invocation of the function. Examine the code in example 9.8. Fig-
ure 9-3 shows the results of invoking testFunctionTwo() five times. On each invocation of the function both variables
are incremented after they are printed to the screen as is shown on lines 9 and 10 of example 9.8. When testFunction-
Two() is called the first time, both variables are initialized to zero. On the second call to testFunctionTwo() and on
each call thereafter, the local variable i is reinitialized to zero while the static variable j retains its incremented value
from the prior function call.

Static function variables come in handy when you need to preserve function state between function calls.
Although the value of the static variable is preserved between function calls, its scope is still local to the function in
which it is declared.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 213

Local Function Variable Scoping Chapter 9: Functions

#include "testfunctiontwo.h" 9.8 static function variables

#include <iostream>
using namespace std;

void testFunctionTwo () {
static int i = 0;
int §j = 0;

cout<<"Local Static i "<<i++<<endl;
cout<<"Local Auto J = "<<Jj++<<endl;

N O W NN WN =

= =

ST il m

Locai_Variabies.out.out

Local Static i
Local Auto i
Local Static
Local Auto
Local Static
Local Auto
Local Static
Local Auto
Local Static
Local Auto

[I I VI T T
-

[l A VI

[M E Y

Figure 9-3: Results of Calling testFunctionTwo() Five Times with Static Variable

Scope of Funcrion PaRAmMETERS

When a function has a parameter list, the parameter names have local scope within the function. Any attempt to
redeclare a local variable within the function that has the same name as one of its parameters will result in a compiler
error. Function parameters hide global variables with the same name. Examine the following code:

1 #include "testfunctionthree.h" 9.9 masking function
2 #include <iostream> parameters
3 using namespace std;

4 Function takes one integer
5 int i = 25; argument named i. i has

6 local scope within

7 void testFunctionThree (int i) { testFunctionThree()

8 cout<<"Parameter i = "<<i<<endl;

9 cout<<"Global i = "<<::i<<endl;
10 1}

In this example, the function testFunctionThree() is defined to take one integer argument. The parameter name
used to access the value of the argument supplied to the function when it is called is i. The following example shows
testFunctionThree() being called from a main() function with the argument 5:

I #include <iostream> 9.10 function call with
#include "testfunctionthree.h" argument
using namespace std;

int main () {
testFunctionThree (5) ;
return 0;

[S RN NNC I N CUIN N

214 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 9: Functions Passing Arguments to Functions

Figure 9-4 shows the result of running this program.

TestfunciionThree.out.out =

Farameter i = 3

=

A KGR i

Figure 9-4: Results of Calling testFunctionThree() with an Argument Value of 5

Quick Review

Variables declared inside the body of a function have local scope within that function. Local variables will hide
global variables of the same name. Local variables exist for the life of the function and will be reinitialized each time
the function is called. If you need a local variable to retain its value between function calls use the static keyword in
its declaration. Function parameters have local scope within the function and mask global variables with the same
name. To access global variables with the same name as local variables use the :: operator.

PassinGg ARGUMENTS TO FuNcTioNns

Arguments are passed to functions in two ways; by value or by reference. It is important to know the difference
between the two and the effect each form of argument passing produces. But first, I want to show you some of the
mechanics of a function call so you will better understand what’s happening behind the scenes when one function
calls another.

Funcrion Calling

It is helpful to understand the concepts of function activation records and function calling protocols. Figure 9-5
shows the sequence of action records of a calling function and a called function before, during, and after a function
call.

e S e e o ol o e e | e b A o L e e T 1
Calling Function’s T_i Calling Function’s Calling Function’s

Activation Record / | Activation Record Activation Record
Control Link : Control Link

Parameters

Parameters

Control Link

Local Data

Parameters

Called Function’s
Activation Record

Control Link
Local Data

Parameters

Before Function Call After Function Call

During Function Call

Figure 9-5: Function Activation Record Sequence

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 215

Passing Arguments to Functions Chapter 9: Functions

Every programming language that implements functions assigns a set of responsibilities to the function making
the call and the function being called. These responsibilities are referred to as function calling conventions or function
calling protocols, or simply calling conventions. The important thing to know about calling conventions is that if
you’re only programming in C++ you can read this section and then safely forget about them. On the other hand, if
you’re planning to do mixed language programming, you will have to be aware that some programming languages
have different calling conventions than others.

Responsibilities of the Calling Function

A calling function is usually responsible for providing a called function access to any arguments with which it
was called. As you will see below, a calling function will usually make a called function’s arguments available in pro-
cessor registers.

Responsibilities of the Called Funcrion

A called function must save the contents of any processor register it intends to use, and restore the contents of
those registers before returning to the called function. As figure 9-5 illustrates, a link between the called function and
calling function is established in each activation record. The control link facilities a called function’s return to its
caller.

Passing Arguments by Value

You saw an argument passed to a function by value in the testFunctionThree() function shown in examples 9.9
and 9.10. When an argument is passed to a function by value, the value of the argument is copied to the function
parameter for use inside the function. Figure 9-6 shows a partial disassembly of the main.cpp file from the testFunc-
tionThree program. The listing is given in PowerPC assembly.

1 mflr r0 move contents of link register to r0
2 stw r0, 8 (SP) store r0 to stack pointer + 8
3 stwu SP,—64 (SP) allocate some stack space
4 11 r3,5 load 5 into r3
5 bl .testFunctionThree Fi call testFunctionThree
6 nop
7 11 r3,0
8 lwz r0, 72 (SP)
9 addi SpP, SP, 64 Cleanup and return
10 mtlr r0
11 Dblr

Figure 9-6: Partial Disassembly of main.cpp

The first thing main() does on lines 1 and 2 is to preserve the contents of the link register. This value will be used
to return control to the function that called this program. Next, on line 3, the stack pointer is reset. Remember, the
stack grows down and the heap grows up. That’s why a negative value is added to the stack pointer.

On line 4, the integer value 5 is loaded into r3. This is followed by a branch to testFunctionThree(). Upon
testFunctionThree()’s return, the 13 is set to zero; this is the return value. Next, the saved link register value is
retrieved from the stack and placed in r0. The stack is reset to its previous position and the return is made.

What has main() done? Essentially, it placed the value of testFunctionThree()’s argument in a register so it would
be accessible to it when called. After the call to testFunctionThree(), main() placed a zero in the same register so it
would be available to main()’s caller.

What do you suppose testFunctionThree() will do? Before looking at figure 9-7 go back and look at the C++ list-
ing for testFunctionThree(). It has access to two values: a global i which equals 35, and a local parameter named i
which has been set by main(). Remember, every function will go through the same house keeping chores. These
include preserving the return link and preserving and restoring any registers used by the function.

216 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 9: Functions Passing Arguments to Functions

1 Hunk :Kind=HUNK_GLOBAL_IDATA Align=4 Class=RW Name="i" (20) Size=4

2 00000000: 00 00 00 19 ol
3
4 Hunk :Kind=HUNK_LOCAL_IDATA Align=1 Class=RW Name="@661"(21) Size=15
5 00000000: 50 61 72 61 6D 65 74 65 72 20 69 20 3D 20 00 'Parameter i = .'
6
7 Hunk :Kind=HUNK_LOCAL_IDATA Align=1 Class=RW Name="@662"(22) Size=15
8 00000000: 47 6C 6F 62 61 6C 20 20 20 20 69 20 3D 20 00 'Global i=."
9

10 Hunk :Kind=HUNK_GLOBAL_CODE Align=4 Class=PR Name=".testFunctionThree Fi" (23) Size=148

11 mflr r0

12 stw r0, 8 (SP)

13 stwu SP, 64 (SP)

14 stw r3,88(SP)

15 lwz r3,cout__ 3std(RTOC)

16 lwz r4,@661 (RTOC)

17 bl . 1s<Q23stdl4char traits<c>> 3stdFRQ23std39basic ostream

18 <c,Q23stdl4char_traits<c>>PCc

19 nop

20 lwz r4, 88 (SP)

21 bl . 1s_ Q23std39basic_ostream<c,Q23stdl4char_ traits<c>>Fi

22 nop

23 lwz r4,endl<c,Q23stdl4char traits<c>> 3stdFRQ23std39basic ostream

24 <c,Q23stdl4char_traits<c>>(RTOC)

25 bl . 1s_ 023std39basic_ostream<c,Q23stdl4char_ traits

26 <c>>FPFRQ23std39%asic_ostream<c,Q23stdl4char traits

27 <c>> RQ23std39basic_ostream<c,Q23stdld4char_traits<c>>

28 lwz r3,cout__ 3std(RTOC)

29 lwz r4,@662 (RTOC)

30 bl ._ 1s<Q23stdl4char_traits<c>>_ 3stdFRQ23std39%basic_ostream

31 <c,Q23stdl4char_traits<c>>PCc

32 nop

33 1wz r4,1i (RTOC)

34 lwz r4,0(r4)

35 bl . 1s 023std39%vasic_ostream<c,Q23stdl4char traits<c>>Fi

36 nop

37 1wz r4,endl<c,Q23stdl4char traits<c>> 3stdFRQ23std39basic_ostream

38 <c,Q23stdl4char_ traits<c>>(RTOC)

39 bl . 1ls_ Q23std39%basic_ostream<c,Q23stdl4char_traits

40 <c>>FPFRQ23std39%asic_ostream<c,Q23stdl4char_traits

41 <c>> RQ23std39%basic_ostream<c,Q23stdl4char traits<c>>

42 1wz r0, 72 (SP)

43 addi SP, SP, 64

44 mtlr r0

45 blr

Figure 9-7: Partial Disassembly of testFunctionThree.cpp

The assembly code for testFunctionThree() is more complicated than main() because it is making several ios-
tream function calls itself. I have to remind you, this is not the complete assembly listing. Due to the iostream func-
tions the complete listing is just too long and has a lot of stuff not related to the discussion, but it is interesting to look
at!

The function starts on lines 11 and 12 where the contents of the link register is saved for the return trip. Line 13
allocates some stack space for the function. The instruction on line 14 stores the value of 13 in memory for future use.
Remember, 13 is where main() put the value 5. Line 15 loads the location of the cout object code in 3 in preparation
for the iostream calls. (RTOC stands for Table of Contents Register) Line 16 loads the location of the string “Parame-
ter i = *“, followed by line 17°s branch to the code that prints it out.

Next, line 20 loads the value 5 from memory to r4, followed by a call to the code to print it out. Line 23 loads the
endl code in r4, followed by a call to the code that prints it.

Line 29 loads the string, “Global i = *“, followed by the call to the code to print the string. Next, on line 33, the
global variable i’s address is loaded into r4, and then, on line 34, the value pointed to by the address is loaded into r4.
Where is it getting i from? Look at lines 1 and 2. The symbolic name for that hunk of data is “i”” and its value is hexa-
decimal 19, which equals 25 in decimal. Once its value is loaded in r4 it is printed to the screen.The rest of the func-
tion prints endl, does housekeeping and returns to main().

It is a good idea to disassemble simple functions to see how they work. Although high-level languages are meant
to provide a certain level of abstraction, it is helpful to know what is happening at the assembly level. And although
PowerPC assembly is used here, the same principles apply to other processors as well.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 217

Passing Arguments to Functions Chapter 9: Functions

Another Example

Let us look at another example of passing arguments by value that better shows the side effects of using this
method. The header file, implementation file, and main file are shown in examples 9.11 through 9.13 below.

I #ifndef TEST FUNCTION FOUR 9-11 testfunctionfourh
2 #define TEST FUNCTION FOUR
3
4 void testFunctionFour (int input);
5
6 #endif
1 #include <iostream> 9.12 testfunctionfour.cpp
2 #include "testfunctionfour.h"
3 using namespace std;
4
5 void testFunctionFour (int input) {
6 input++;
7 cout<<"Function argument input = "<<input<<endl;
8 }
I #include <iostream> 9.13 main.cpp
2 #include "testfunctionfour.h"
3 using namespace std;
4
5 int main () {
6 int i = 0;
7 cout<<"Before function call i = "<<i<<endl;
8 testFunctionFour (1) ;
9 cout<<"After function call i = "<<i<<endl;
10 return 0;
11

In this example, an integer variable named i is declared in the main() function and initialized to zero. The value of
iis printed to the screen before i is passed to the function testFunctionFour() as an argument. testFunctionFour() is
declared to take an integer argument with the parameter name input. Inside the body of testFunctionFour(), input is
incremented by one and its value is then printed to the screen. testFunctionFour() then returns control to the main()
function and the value of i is again printed to the screen. What do you suppose the value of i will be when it is printed
the second time? Figure 9-8 shows the results of running this program.

As you can see, the manipulation of testFunctionFour()’s input parameter had no effect on the value of the vari-
able i. That’s because the value of i was copied to testFunctionFour()’s input parameter, and it was this copy that was
incremented and printed to the screen inside the function. When you need to manipulate directly the values of the

218 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 9: Functions Passing Arguments to Functions

TactFunrtinnEaur aut ant ——
(s Bt L IR R R R e H————
EBefore function call i = @&
Function argument input = 1
After function call i =@

sler] JiE

Figure 9-8: Results of Running testFunctionFour Program

arguments passed to functions you should pass those arguments by reference. This is discussed in the next section.

Passing Arguments by Reference

When you need to directly manipulate a function argument or intend for a function to work on large objects, you
should pass the argument to the function by reference, meaning, you need to supply the argument’s memory address
to the function so it has direct access to the argument. The argument is then accessed via its memory address. In the
case of large objects, passing arguments by reference can significantly increase processing efficiency.

It is important to note what is really happening when you pass an argument by reference. The memory address is
being copied to the function parameter (pass by copy), but the object can then be manipulated directly via this
address. The efficiency comes from only copying word sized objects (memory addresses) no matter the size of the
object itself. The following test program demonstrates how addresses are passed by copy.

#include <iostream>

i 9.14 passing addresses
using namespace std;

by copy

Function Declaration

4 kK ok K ok ok ok ok ok ok K ok ok ok ok ok o ok ok ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok K ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok ok ok ok ok ok Kk
6 KKk kkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkhkkkkkkhhkhkkhkkkkkhkkkkkhkkhkkkkkkkkk /

void addressCopyTest (int* ipA);

9

lO /‘k*************************
11 Function Definition

12 ***/
13

14 void addressCopyTest (int* ipA) {

15 cout<<"Address of ipA = "<<ipA<<" Value at ipA = "<<*ipA<<endl;
16 ipA++;

17 cout<<"Address of ipA = "<<ipA<<" Value at ipA = "<<*ipA<<endl;
18 '}

19

20 /**
21 main () Function

22 *‘k************************/
23

24 int main () {

25 int 1 = 3;

26 cout<<"Address of i = "<<&i<<" wvalue of i = "<<i<<endl;

27 addressCopyTest (&1) ;

28 cout<<"Address of i = "<<g&i<<" wvalue of i = "<<i<<endl;

29

30 return 0;

31 }

The function addressCopyTest() takes an integer pointer as an argument. Inside the function the address and
value referenced by the address of the ipA parameter is printed to the screen. The ipA parameter is then incremented
and the address and value is again printed to the screen.

In the main() function, an integer variable named i is declared and initialized to 3. 1’s address and value is printed
to the screen both before and after the call to the addressCopyTest() function. Figure 9-9 shows the results of running
this program. Note the address of i has not changed even though the address passed to the function was incremented
during the function call. This happens because although you’re passing arguments by reference, you're passing the
address to these arguments by copy. The addresses you see if you run this program on your computer will be different,
but the ultimate result will be the same.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 219

Passing Arguments to Functions Chapter 9: Functions

AddressCopyTest.outout =——"——H
Addraes=s of | = Bx1?2=22002 wvalus of i = 2
Address of ipA = Bx178=ed98 Value at ipA = 32
Addre=s=s of ipA = Bx178ee@9c Yalue at ipA = A8

Addres=s of i = Bxl 782092 wvalue of i = 2

ST

Figure 9-9: Results of Running addressCopyTest Program

Conrinving The Story...

Passing by reference can be accomplished in two ways. You can use pointers, and do all the pointer dereferencing
yourself, or you can use references, and have the pointer dereferencing done for you. There are advantages and disad-
vantages to each method.

The advantage of using pointers is the flexibility they provide. If you know how to manipulate pointers the C++
programming world is your oyster! (Remember chapter 7? Vaguely? I thought so!) The biggest disadvantage I can
think of to using pointers for passing arguments by reference is that sloppy use can result in bugs that are difficult, if
not impossible, to detect. Pointer misuse often results in memory leaks. However, experience and attention to detail
should mitigate this disadvantage to a large extent.

If you use references to pass arguments to functions your code is cleaner and easier to read. However, you are
restricted to what you can do with a reference, hence, you lose the programming flexibility otherwise enjoyed with
the use of pointers.

Which method you use depends directly on what you need to do inside the function. For some jobs, either
method will work fine; for others, your only option will be to use pointers. Let us take a closer look at each method.

Passing PoinTers
To pass an argument to a function using a pointer you must declare the function to take a pointer type argument.
The following statement declares a function that takes an integer pointer as an argument:

void testFunctionFive (int* ipA);

When testFunctionFive() is called, the address of an integer object must be supplied as an argument. The follow-
ing example gives the complete definition of testFunctionFive():

1 #include "testfunctionfive.h" 9.15 testfunctionfive cpp

void testFunctionFive (int* ipA) {
(*ipA) ++;

G W N

On line 4, the parameter ipA is dereferenced and the resulting value is incremented. The parentheses are used to
explicitly show the operator association. Example 9.16 shows testFunctionFive() being called in a main() function.

On line 5, two global variables i and j are declared and initialized. Their value is printed to the screen on line 8
prior to calling testFunctionFive() for the first time. Lines 9 and 10 show testFunctionFive() being called twice, once
with the address of i, and the second time with the address of j. Note how the address of each variable is passed to the
function by using the & operator.

The values of i and j are printed to the screen again on line 11. Figure 9-10 shows the results of running this pro-
gram. Notice that after the function calls the values of the global variables have changed.

This example showed you how to pass the address of a variable. You prefix the & operator to the variable name to
get its address and it is this address that is passed to the function. If the variable you want to pass to the function is a
pointer then you pass only the name of the variable and leave off the & operator. Example 9.17 uses testFunction-
Five() again to demonstrate.

220 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 9: Functions Passing Arguments to Functions

#include <iostream> 9.16 main.cpp

#include "testfunctionfive.h"
using namespace std;

int i=1, 3=2;

int main () {
cout<<"Value of i: "<<i<<" J: "<<j<<endl;
9 testFunctionFive (&1);
10 testFunctionFive (&7);
11 cout<<"Value of i: "<<i<<" J: "<<j<<endl;
12 return 0;

oy G W N

Sl Im

TesiFuncionive.ouLout

Value of i:

1
Walus of i1 2

jv 2
HIRC]

i
1

Figure 9-10: Results of Running testFunctionFive Program

#include <iostream>
#include "testfunctionfive.h"
using namespace std;

9.17 main.cpp

int main () {
int* ipl = new int (3);

W Ny O W N =

cout<<"Value of integer pointed to by ipl
testFunctionFive (ipl);

10 cout<<"Value of integer pointed to by ipl = "<<*ipl<<endl;
11 delete 1ipl;

12 return 0;

13 }

"<<*ipl<<endl;

e}

Referring to example 9.17, an integer pointer is declared and initialized to the address of an integer object allo-
cated on the heap. The pointer is passed to testFunctionFive() on line 9. Notice that delete must be called on ipl to
release the heap memory.

Passing References

Remember references? They 're kinda like pointers except a pointer is a variable and a reference is not. You can
change what a pointer points to but once you set a reference it can’t be changed to refer to anything else. To pass an
argument to a function in the form of a reference requires the function prototype to declare parameters of type refer-
ence. This confuses many students because the & operator is overloaded for this purpose. The following code shows a
function named testFunctionSix() that’s declared to take an integer reference as an argument:

void testFunctionSix (int& irA);

A reference to an argument is treated differently than a pointer in the body of the function. Examine the defini-
tion of testFunctionSix() given in example 9.18 below.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 221

Passing Arguments to Functions Chapter 9: Functions

. . . 9.18 [ONnSix .
#include "testfunctionsix.h" testfunctionsix.cpp

void testFunctionSix (int& 1irA) {
irA++;

G W N =

When an argument is passed to a function in the form of a reference the parameter name is used as if it were that
object. No pointer dereferencing is required. Notice above on line 4 how the parameter irA is incremented and com-
pare this with how the equivalent operation is performed on a pointer in example 9.15.

Now, to call this function with an integer argument requires no special action on your part. You simply use the
name of the object as shown in the following example:
#include <iostream> 9.19 main.cpp

#include "testfunctionsix.h"
using namespace std;

=

int main () {
int 1 = 35
cout<<"Value of i before function call = "<<i<<endl;
testFunctionSix (i) ;
cout<<"Value of i after function call = "<<i<<endl;
return 0;

m O L ® oy W

==

Figure 9.11 shows the results of running this program.

TestFunctionSix.out.out =—=H
Yalus of i bafore function call = 2
Yalus of | after function call = 4
=
-
=

Figure 9.11 Results of Running testFunctionSix Program

Passing Arrays 10 FuncTions

Arrays are passed to functions by reference. The name of the array is a pointer that contains the address of the
first element of the array. (see chapter 8)

The first step in writing a function that takes an array as an argument is to declare the function in such a way that
it knows what to expect and that readers of the function declaration can figure out what you’re trying to do! The fol-
lowing code declares a function named printIntArray() that prints the contents of an integer array. It takes a single-
dimensional integer array as the first argument and the number of array elements as the second:

9.20 printIntArray()
1 #ifndef Print Int Array H

2 #define Print Int Array H

3

4 void printIntArray (int intArray[], int elements);
5

6

#endif

The function definition follows:

222 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 9: Functions Passing Arguments to Functions

#include "printintarray.h" 9.21 printintarray.cpp
#include <iostream>
using namespace std;

void printIntArray (int intArrayl[], int elements) {
for(int 1 = 0; i < limit; i++)
cout<<intArray[i]l<<" ";
cout<<endl;

O O G W N =

The following main() function illustrates how the function is called:

1 #include "printintarray.h" 9.22 main.cpp
2

3 int main () {

int my arrayl] = {1,2,3,4,5,6,7,8,9,10};

printIntArray (my array, (sizeof my array / sizeof(int)));

return 0;

N oy o

Referring to the main() function shown above, an integer array named my_array is declared and initialized on
line 4. The printIntArray() function is called on line 5. Notice that only the name of the array is passed as the first
argument. The sizeof operator is used to calculate the size of the array in bytes, which is then divided by the size of
the int type in bytes to determine the number of elements contained in my_array. The result of this expression is
passed as an argument to printIntArray()’s elements parameter.

Passing Mulri-Dimensional Arrays To Funcrions

Multi-dimensional arrays are passed to functions in the same manner as their single-dimensional counterparts.
Your primary concern is how to declare the function so it knows what arguments to expect. Examine the following
function declarations:

print2DIntArray (int intArray[][5], int rows);
print3DIntArray (int intArray[][3]1[5], int sheets);

The print2DIntArray() function declares an array parameter of two dimensions, the right-most dimension being
specified as 5 and the left-most dimension unspecified. There can be only one unspecified dimension, which is the
case with normal static array declarations. The print3DIntArray() function declaration specifies an array parameter of
three dimensions, two of which are specified and one not.

You can specify all dimensions of the multi-dimensional array if you desire. Doing so lessens ambiguity but at
the price of flexibility. The following complete example declares, defines, and uses an alternative version of the
print2DIntArray() function.

#ifndef PRINT 2D INT ARRAY H 9-23 print_2d_ini_array.h
#define PRINT 2D INT ARRAY H

[y

const int ROWS = 5;
const int COLS 5;

void print2DIntArray (int intArray[ROWS] [COLS]);

W © 3o G W N

#endif

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 223

Passing Arguments to Functions Chapter 9: Functions

Notice on lines 4 and 5 that two integer constants have been declared to specify the dimensions of the array.

These are included in the header file and can be used by any file that includes the print_2d_int_array.h header as is
shown in the following code:

1 #include "print 2d int array.h" 9.24 print_2d_int_array.cpp
2 #include <iostream>
3 using namespace std;
4
5 void print2DIntArray (int intArray[ROWS] [COLS]) {
6 for(int i = 0; 1 < ROWS; 1i++){
7 for(int j = 0; J < COLS; J++){
8 cout<<intArray[i] [jI<<" ";
9 }
10 cout<<endl;
11 }
12}

Notice how the constants are then used in the body of the function to manipulate the array. The following main()
function shows the print2DIntArray() function in action:

#include "print 2d int array.h" 925 main.cpp

1
2
3 int main () {

4 int my 2d array[ROWS] [COLS] = {{1,2,3,4,5},
5 {2,3,4,5,1},
6 {3,4,5,1,2},
7 {4,5,1,2,3},
8 {5,1,2,3,4}};

9
10 print2DIntArray (my 2d array);
11
12 return 0;
13}

Another Example

The following example program reuses the printIntArray() function used in examples 9.20 through 9.23. Another
function called sortIntArray() is declared and defined. sortIntArray() takes an integer array as an argument and sorts
the contents of the array. The printIntArray() function is used to print the array to the screen. The following code
declares the sortIntArray() function:

1 #ifndef SORT_INT ARRAY H 9.26 sort_int_arrayh
#define SORT INT ARRAY H

2
3
4 void sortIntArray (int intArray[], int elements);
5
6

#endif

Example 9.27 gives the definition of sortIntArray(). Notice how the function performs exactly what its name
implies. It performs the sort on the array elements. It doesn’t print anything to the screen or otherwise do something
not hinted at by its name. This is an example of a highly cohesive and loosely coupled function.

224 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 9: Functions Using Function Return Values

13 }

#include "sort int array.h"

9.27 sort_int_array.cpp

void sortIntArray (int intArray[], int elements) {

for(int i = 0; i<elements; i++) {
for(int j = 1; Jj<elements; J++) {
if (intArray[j-1] > intArray[J]) {

int temp intArray[j-1];
intArray[j-1] = intArray[j]l;
intArray[]j] = temp;

The following main() function shows how both printIntArray() and sortIntArray() are used together in a pro-

gram:

W 0 3o G W N R

10
11
12
13
14 1}

#include <iostream>
#include "sort int array.h"
#include "printintarray.h"
using namespace std;

9.28 main.cpp

int main () {

int myArray[] = {10,5,9,4,3,8,2,7,6,1,0};
printIntArray (myArray, ((sizeof myArray)/sizeof (int)));
sortIntArray (myArray, ((sizeof myArray)/sizeof (int)))

2
printIntArray (myArray, ((sizeof myArray)/sizeof (int)));

return 0;

Figure 9-12 shows the results of running this program.

————&n ntAreawv ot ot =——
RO R H PR S LI R
1854042827618
5}

IB12345E\?891

ST m

Figure 9-12: Results of Running Example 9.28

Using Funcrion ReTurn Values

Functions can return values which can then be used by the function or program that called the function. Up to this
point, all the example functions, except main(), have been declared to return void, which means they do not return a
value. Functions can return objects of fundamental data types such as int, float, char, etc., or objects of user-defined
types. User-defined types are discussed in chapters 10 and 11. Functions can also return pointers and references to
these types as well as pointers to other functions. The important thing to remember about functions is that they can be

C++ For Artists

©2003 Rick Miller — All Rights Reserved 225

Using Function Return Values Chapter 9: Functions

used anywhere in your program where their return type and value can be used. For example, a function that returns an
integer object can be used anywhere you could otherwise use an integer object. Let us first take a look at functions
that return objects.

Returning Objects
Specify the type of object you want a function to return in its declaration. Check out the following examples:
int returnInt ();
float calculatePay(int hours_worked, float hourly rate);

double getStarCount () ;
bool engineIsOn{();

Once you have specified the type of object the function will return you have to return an object of that type when
you define your function. The following example gives the function definition for the returnInt() function declared
above:

#include "returnint.h" 9.29 returnint.cpp

1

2

3 int returnInt () {
4 return 2;

5

}

This function returns the integer value 2 via the return statement on line 4. The integer value could have also been
a local integer variable, or perhaps the result of a calculation. For instance, line 4 could have been written like so:

return 1 + 1;
The following main() function shows the returnInt() function in use:

#include <iostream> 9.30 main.cpp
#include "returnint.h"
using namespace std;

int main () {
cout<<returnInt () <<endl;
return O;

W 0 N oy U WN =

}

Notice here how the returnInt() function was used as an input to the cout object. Since returnInt() returns an inte-
ger object, it can be used anywhere an integer can be used.

The rerurn Keyword: Mantra on Proper Usage

The return statement should be the last line of code in the function. I'd like to say that one more time. The return
statement should be the last line of code in the function. And there should only be one return statement in a function.
I repeat. There should only be one return statement in a function. Now, having said that I will add that there are good
reasons to violate this mantra.

Rerurn keyword Manira Ancillary

If you can keep the multiple return statements close together so you can see intuitively where they are in relation
to the function’s code, then you should be safe.

226 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 9: Functions Using Function Return Values

Another Example

Let us take a look at another relatively simple example, but this time the value returned will depend on the value
of the argument used when the function is called. The following code gives the declaration for a function called
square():

#ifndef SQUARE H 9.31 square.h
#define SQUARE H

1
2
3
4 double square (float value = 1);
5

6 #endif

The square function is declared to take a float argument whose parameter name is value and has a default argu-
ment value of 1.

Dehaulr Argument Values

Setting a parameter to a default value enables the function to be called in two different ways: 1) with an argu-
ment, and 2) without an argument. In the first case, the parameter will be set to whatever the argument’s value hap-

pens to be. In the second case, the parameter value will be set to 1. The following example shows the function
definition for the square function:

#include "square.h" 9.32 square.cpp

1

2

3 double square (float wvalue) {
4 return (value * value);
5

Nothing surprising going on here. The function simply returns the result of the parameter value multiplied by
itself. Now, examine the main() function showing the square() function in use:

The square() function makes its appearance on line 14 above. After the user’s input is read into the 25 character
array named input, the array is used as an argument to a C Standard Library function named atof(). (ASCII to float)
As its name implies, the atof() function converts an ASCII character string to a floating point value. Notice how the
atof() function appears as an argument to the square() function. This example brings together pretty much everything

you have learned about functions up to this point. The rest of the main() function just provides a simple user interface
and program control.

ReTurNiNG PoinTeRs

A function can return the address of an object. Just like the case of a function returning an object, a function that
returns a pointer can be used wherever a pointer of that type is required. To illustrate this concept let us take a look at
an example program that dynamically creates pointers to integer objects and stores the addresses in an array. The fol-
lowing code declares a function named getNewIntAddress() that will perform the dynamic memory allocation and
return a pointer to the integer object created:

) 9.34 getnewintaddress.h
1 #ifndef GET NEW INT ADDRESS H

2 #define GET NEW_INT ADDRESS H
3
4 int* getNewIntAddress();
5
6

#endif

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 227

Using Function Return Values Chapter 9: Functions

1 #include <iostream> 9.33 main.cpp
2 #include <stdlib.h>
3 #include "square.h"
4
5 using namespace std;
6
7 int main () {
8 bool keep going = true;
9 char input[25];
10
11 while (keep going) {
12 cout<<"Please enter a value to square: ";
13 cin>>input;
14 cout<<endl<<"The squared value is: "<<square (atof (input))<<endl;
15 cout<<"Continue? Y or N: ";
16 cin>>input [0];
17 switch (input[0]) {
18 case 'y':
19 case 'Y': break;
20 case 'n':
21 case 'N': keep going = false;
22 break;
23 default: break;
24 }
25 }
26 return 0;
27 }

Notice the return type declared on line 4 is of type pointer to int. Example code 9.35 gives the function definition:

. " . " 9.35 getnewintaddress.cpp
1 #include "getnewintaddress.h

int* getNewIntAddress () {
return (new int);

N W N

All getNewIntAddress() does is create a new integer object in the heap and return its address. Example 9.36 gives
a main() function showing the getNewIntAddress() function in action.

The getNewIntAddress() function is called in the body of the first for statement on line 9. When getNewIntAd-
dress() is called the resulting address is assigned to ip_array[i]. The assignment is enclosed in parentheses and deref-
erenced using the * operator. The resulting integer object is then assigned the value (i+1). The next for statement on
line 11 prints the contents of the newly-filled array. The for statement on line 16 simply modifies the integer values,
followed by the for statement on line 19 which prints the contents of ip_array to the screen again. The for statement
on line 22 iterates over ip_array and deletes each pointer to free up memory. Failure to release the memory using
delete would result in a memory leak.

228 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 9: Functions Using Function Return Values

9.36 main.cpp
1 #include <iostream>
2 4#include "getnewintaddress.h"
3 using namespace std;
4
5 int main () {
6 int* ip array[10];
7
8 for(int 1 = 0; i < 10; i++)
9 *(ip_array[i] = getNewIntAddress()) = (i+l);
10
11 for(int i = 0; i < 10; 1i++)
12 cout<<*ip array[i]<<" ";
13
14 cout<<endl;
15
16 for(int i = 0; 1 < 10; i++)
17 *ip_array[i] += 2;
18
19 for(int i = 0; 1 < 10; i++)
20 cout<<*ip arrayl[i]<<" ";
21
22 for(int i = 0; 1 < 10; i++)
23 delete ip_arrayl[il;
24
25 return 0;
26}

How Nor To Rerurn a Pointer From A Funcrion: Avoiding the Dangling Reference

Do not do this:

int* badFunction () {
int 1i;
//...do something with i here
//...and then later...

return &ij;

What is happening here is a local function variable, in this case an integer object named i, is declared and used
inside the function body, and its address is returned. The problem is that since i is a local variable there is no telling
what will happen to the memory in which i resided when badFunction() returns. On the other hand, i could be
declared to be static, and therefore exist across calls to badFunction(), but I still do not recommend the practice
because it violates loose coupling. Returning pointers in this manner creates what is referred to as a dangling refer-
ence. Avoid dangling references!

Rerurning References

A function can return a reference. This can be real handy, especially when you start writing class member func-
tions that return references to instance objects. Unfortunately, that material isn’t discussed until chapter 11! To tide
you over, [will show you a short example of reference returning in action so you get a feel for the mechanics
involved.

The following example program will use a function named getLargestInteger() to compare two integer objects
and return a reference to the largest one. With this reference, the original integer object can be manipulated. Let us
start with the function declaration:

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 229

Using Function Return Values Chapter 9: Functions

#ifndef GET LARGEST INTEGER H 937 getlargestintegerh

1
2 #define GET LARGEST INTEGER H

3

4 int& getLargestInteger (int& a, inté& b);
5

6 #endif

The getLargestInteger() function takes two integer references as an argument and returns a reference to the object

with the largest positive value. Here is the function definition:
9.38 getlargestinteger.cpp

[

#include "getlargestinteger.h"

int& getlLargestInteger (inté& a, inté& Db) {
if(a >= b) return a;
else return b;

oy G W N

The two integer reference parameters a and b are compared to each other on line 4 and the corresponding return
statement is executed based on the results of the comparison. In this example, multiple return statements make sense
and comply with the return statement mantra ancillary. The following main() function shows getLargestInteger() in
use:

1 #include <iostream> 9.39 main.cpp
2 #include "getlargestinteger.h"
3 using namespace std;
4
5 int main () {
6 int ivall = 0, ival2 = 1;
7
8 cout<<"The largest number is: "<<getLargestInteger (ivall, ival2)<<endl;
9
10 int& largest int = getlLargestInteger (ivall, ival2);
11
12 largest int = -8;
13
14 cout<<"The largest number is: "<<getLargestInteger (ivall, ival2)<<endl;
15
16 return 0;
17 }

In this example, two integer objects, ivall, and ival2, are declared and initialized on line 6. getLargestInteger() is
first called on line 8. The result of the function call then becomes the argument to the insertion operator for the cout
object. On line 10, the reference returned by getLargestInteger() is used to initialize the integer reference largest_int.
largest_int is then used to manipulate the object it references, which, in this case, is ival2. With ival2’s value now -8,
getLargestInteger() is called again in another cout statement on line 14.

Quick Review

Functions can return objects, pointers to objects, or references to objects. The objects can be fundamental data
types, user-defined types, or functions. (You will begin learning about user-defined data types in chapter 10) Declare
the return type in the function declaration and use the return keyword to return an object of the specified type from the
body of the function declaration. Try to avoid multiple return points from a function. In cases where you have to break
this rule keep the multiple return statements as close together as possible for clarity.

230 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 9: Functions Function Overloading

Funcrion Overloading

Multiple functions of the same name can be declared and used in the same program. Functions with the same
name but different parameter types or parameter list lengths are said to be overloaded. A function with the same name
but different parameter types or parameter list length is said to have a different function signature.

Which of the overloaded functions is actually called is resolved by the compiler based on the types of arguments
passed to the overloaded function. Return types play no role in resolving overloaded functions. Let us look at a simple
function named functionA() that is overloaded in five different ways. Here is the header file:

#ifndef FUNCTION A H 9.40 functiona.h
#define FUNCTION A H

void functionA();

void functionA (int 1i);

void functionA (float f);

void functionA(int i, int 7j);
(

void functionA (char messagel]);

S O NG W N =

[

#endif

functionA() is overloaded to take no arguments, one integer argument, one float argument, two integer argu-
ments, or a character array. Each version of functionA() has a different function signature and will display different

behavior when called as you will see by examining the following function definitions:

1 #include "functiona.h" 941 functiona.cpp

#include <iostream>
using namespace std;

2

3

4

5 void functionA() {
6 cout<<"functionA: no arguments"<<endl;
7

8

9 void functionA (int i) {

10 cout<<"functionA: int argument = "<<i<<endl;

11 1}

12

13 void functionA (float f) {

14 cout<<"functionA: float argument = "<<f<<endl;

15 }

16

17 wvoid functionA(int i, int 7J) {

18 cout<<"functionA: two int arguments = "<<i<<", "<<j<<endl;
19 }

20

21 void functionA (char messagel[]) {

22 cout<<"functionA: char string = "<<message<<endl;
23}

As you can see, each version of the function, when called, will result in a different message being displayed on
the screen. The compiler will resolve the issue of which version of functionA() to call based on what type of argument
appears in the argument list at the time of the function call. Example 9.42 gives a main() function showing all five ver-
sions of functionA() in action:

Figure 9-13 shows the results of running this program.

You will routinely overload functions in your C++ programming career, especially class constructor functions.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 231

Calling Functions Recursively Chapter 9: Functions

1 4#include <iostream> 9:42 main.cpp
2 4#include "functiona.h"

3 using namespace std;

4

5 int main () {

6 int ivall = 1, ival2 = 2;

7 float fval = 25.345;

8 char char array[] = "\"Hello World!\"";
9
10 functionA () ;
11 functionA (ivall);
12 functionA (fval) ;
13 functionA (ivall, ival2);
14 functionA (char array);
15
16 return 0;
17)

=— OverloadedFunction.outout =H
functionA: no arguments
functionA: int argument = 1
functionf: float argument = 23.343
functionA: two int grguments = 1, 2
functionA: char string = "Hello Horld!"

s

Figure 9-13: Results of Calling Overloaded Function functionA()

Calling Funcrions Recursively

In C++ a function can call itself. When it does so it is said to be making a recursive function call.

Functions intended to be called recursively are designed differently from ordinary functions. First, they are writ-
ten to solve a problem that can be solved in a recursive fashion. An example of a problem of this type is one that can
be continually divided into smaller pieces until the smallest piece is reached, then, each of the small pieces of the
problem is solved and the solved pieces combined to form the whole solution.

Second, a recursive function has to eventually come to a point where the recursion stops. If a recursive function
didn’t have this stopping point it would continue to recurse forever. This behavior would eventually overwhelm the
resources of the computer on which it was running.

To illustrate the concept of recursion let us examine a simple recursive function that takes an integer argument
and recurses based on its value. The name of the function is countInput() and its declaration is given below:

#ifndef COUNT INPUT H 9.43 countinput.h
#define COUNT INPUT H

1
2
3
4 void countInput (int input);
5
6

fendif

The function definition for countInput() is given in example 9.44.

232 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 9: Functions Calling Functions Recursively

1 #include "countinput.h" 944 countinput.cpp
2 #include <iostream>

3 using namespace std;

4

5 void countInput (int input) {

6 static int count = 0;

7 if (count < (input + count)) {

8 cout<<"Still counting!"<<endl;

9 count++;
10 cout<<"The input was: "<<input<<endl;
11 countInput (input - 1);
12 }
13}

Pause for a moment here to study example 9.44. The countInput() function is called with an integer argument
named input. On line 6 a static integer variable named count is declared and initialized. The body of the if statement
is where most of the action takes place. The variable count is compared with the result of (input + count). If the com-
parison is true the body of the if statement executes, count is incremented, a message is printed to the screen, and the
countInput() function is called recursively with a new argument, namely, input - 1.

The if statement represents the recursion stopping point. If the test is true, recursion continues. If the test result is

false, then recursion stops. The following main() function shows the countInput() function in action:
945 main.cpp

[y

#include <iostream>
#include "countinput.h"

using namespace std;
int main () {

countInput (5);

2
3
4
5
6
7
8 return O;
9

}

Figure 9-14 gives the results of running this program:

SimpleRecurse.out.out =

i m

Still counting!
The input was: 3
Still countingl!
The input was: 4
S5till counting!
The input was: 3
S5till counting!
The input was: 2
Still counting!

The input was: 1

N0

Figure 9-14: Results of Running the Simple Recurse Program

Another Exawple

Although the countInput() function demonstrated the concept of recursion, it does not do a very good job of illus-
trating how recursion can be used to solve a meaningful problem. To address this I would like to show you a recursive
sorting function called quickSort().

The quicksort algorithm, developed by C.A R. Hoare, partitions an input file into two parts and sorts the subparts.
Improvements to quicksort have been made here and there by many computer scientists and the implementation I use
below can be found in (Sedgewick). A complete analysis of quicksort is beyond the scope of this book but an excel-
lent treatment can be found in both (Sedgewick) and (Knuth).

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 233

Function Pointers Chapter 9: Functions

The following code gives the declaration of quickSort() and a utility function named swap():

1 #ifndef QUICK SORT H
#define QUICK_SORT_H

9.46 quicksort.h

void quickSort (int al], int 1, int r);
void swap (int al]l, int i, int 7J);

N oy o W N

#endif

The definitions of both functions appear below:
947 quicksort.cpp

I #include "quicksort.h"
2
3 wvoid swap(int al[], int i, int J){
4 int temp = alil;
5 ali] = aljl;
6 aljl = temp;
7}
8
9 wvoid quickSort (int af[], int 1, int r){
10 int i, j, temp;
11
12 if(r > 1){
13 temp = alr];
14 i =1-1;
15 J = r;
16 for (;;){
17 while(a[++1i] < temp);
18 while(a[--3j] > temp);
19 if (i >= Jj) break;
20 swap (a, i, 7J);
21 }
22 swap(a, i, r);
23 quickSort(a, 1, i-1);
24 quickSort (a, i+1, r);
25 }
26)

The swap() function is called in the body of the quickSort() function. swap() simply exchanges array elements
indicated by the parameters i and j.

The quickSort() function takes as arguments the array of integers to be sorted, the left index value, and the right
index value. On the first call to quickSort(), given an array to be sorted of size N, the argument value for the 1 param-
eter will be 0, and the argument value for the r parameter will be N-1. Lines 12 through 21 partition the array based on
the final resting position of array element a[r]. Line 22 puts element a[r] in its final sorted position and then the two
array partitions are then sorted with recursive calls to quickSort(). The following main() function shows the quick-
Sort() function in action:

Figure 9-15 shows the results of running this program:

FuncTion PoINTERS

Function pointers are cool! Just like you can declare a pointer to an object, so too can you declare a pointer to a
function. The address of an existing function can then be assigned to and called via the function pointer. There are
many great uses for function pointers, as you will see shortly. Also, an understanding of function pointers will help
you understand the C++ virtual function call mechanism which is implemented as an array of function pointers. Let

234 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 9: Functions Function Pointers

1 #include <iostream> 948 main.cpp
2 #include "quicksort.h"
3 using namespace std;
4
5 int main () {
6 int al[] = {15,200,83,1,22,5,44,77,12,23,99,100,32,64,25,0,40};
7
8 for(int i = 0; i< ((sizeof a)/sizeof (int)); i++)
9 cout<<ali]l<<"™ ";
10 cout<<endl;
11
12 quickSort (a, 0, ((sizeof a)/sizeof (int)));
13
14 for(int i = 0; i< ((sizeof a)/sizeof (int)); i++)
15 cout<<ali]l<<"™ ";
16
17 return 0;
18 }

QuickSort.out.out B
15 280 22 1 22 5 44 77 12 22 00 1@@ 22 64 25 @ 4@
B 1 512 15 22 22 25 22 468 44 64 77 82 QQ 1BBZBB|
-
-
i

Figure 9-15: Results of Running the QuickSort Program

us start by looking at how function pointers are declared.

Declaring Funcrion Pointers

The function pointer syntax looks a little strange at first glance but it is easy to master. The following code
declares a pointer named fun_ptr to a function that returns a float and takes two float arguments:

float (*fun ptr) (float, float);

This next example declares a function pointer named sortDirection that can point to a function that returns a bool
and takes two integer arguments:

bool (*sortDirection) (int, int);

Now that you have a pointer to a type of function, all you need now is a function to point to!

AssigNiNG The Address of A Funcrion 1o A Funcrion Pointer

Here is a function declaration for a function named add() that returns a float and takes two float arguments:
float add(float a, float b);
Here is the definition for this function:

float add(float a, float b) {return a+b;}

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 235

Function Pointers Chapter 9: Functions

Now armed with a function pointer and a function to point to, here is how you assign the function’s address to the
function pointer:

fun ptr = add;

Calling the Funcrion via the Funcrion Pointer

After assigning the address of a function to a function pointer you can now call the function via the pointer. The
following code gives an example:

cout<<fun ptr(5,5)<<endl;
When this line of code executes, the value 10 will be printed to the screen.

Arrays of Funcrion Pointers

You can create interesting behavior by building an array of function pointers and assigning different functions to
each pointer. The following complete example illustrates how to create an array of function pointers, assign a differ-
ent function to each array element, and then iterate over the array calling each function via the function pointer. Let us
start with the header file that declares four arithmetic functions add(), sub(), mul(), and div():

#ifndef ARITH FUNCTIONS H
#define ARITH FUNCTIONS H

949 arithfunctions.h

[y

14

float add
float sub
float mul
float div

float a, float b)
float a, float b);
float a, float b);
float a, float b)

—~ o~ o~ —~

14

W N o Wi

#endif

The following listing gives the definition for each of these functions:

9.50 arithfunctions.cpp
1 #include "arithfunctions.h"

2

3 float add(float a, float b) {return a+b;}
4 float sub(float a, float b) {return a-b;}
5 float mul (float a, float b) {return a*b;}
6 float div(float a, float b) {return a/b;}

The following main() creates the array of function pointers and assigns each of these arithmetic functions to an
array element:

Line 6 uses the typedef keyword to create a function pointer type synonym named fun_ptr. The synonym is then
used on line 8 to create an array of function pointers named fun_ptr_array. Note that each array element can only
point to a function of fun_ptr type. In other words, each element can only point to functions that return a float and
take two float arguments.

On lines 10 through 13 the addresses of the functions add(), sub(), mul(), and div() are assigned to each array ele-
ment. The for loop on line 15 then iterates over fun_ptr_array and calls each function via its pointer with two argu-
ments.

Let us now take a look at another interesting use for function pointers — callback functions.

236 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 9: Functions Function Pointers

1 #include <iostream> 9.51 main.cpp
2 #include "arithfunctions.h"

3 using namespace std;

4

5 int main () {

6 typedef float (*fun ptr) (float, float);
7

8 fun ptr fun ptr arrayl[4];

9
10 fun ptr array([0] = add;
11 fun ptr array[l] = sub;
12 fun ptr array([2] = mul;
13 fun ptr array[3] = div;
14
15 for(int i = 0; i < 4; i++)
16 cout<<fun ptr arrayli] (5,5)<<endl;
17 return 0;
18 }

Implementing Callback Funcrions with Funcrion Pointers

It is often desirable to change the behavior of a function by calling the function with a behavior-modifying func-
tion as one of its arguments. The behavior-modifying function is referred to as a callback function. The following
complete example will revisit a simple sort routine encountered in chapter 4 called dumbsort. By rewriting the dumb-
sort function to take a callback function, dumbsort’s behavior can be modified so it can sort in ascending or descend-
ing order based on what callback function is supplied as an argument when the dumbsort function is called. The
following code gives the function declaration for dumbSort() and two utility functions named compareAscending()
and compareDescending):

1

© N oy W N

#ifndef DUMB SORT_ H 9.52 dumbsort.h
#define DUMB_SORT H

void dumbSort (int a[], int 1, int r, bool (*sortDirection) (int, int));
bool compareAscending(int a, int b);

bool compareDescending(int a, int b);

#endif

Notice how the declaration for dumbSort() includes a function pointer parameter named sortDirection. The sort-
Direction parameter will take a pointer to either the compareAscending() function or the compareDescending() func-
tion as an argument. The sortDirection function pointer is then used in the body of the dumbSort() function to provide
the comparison of two array elements. The following code gives the definitions for all three functions declared above:

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 237

Function Pointers

1 #include "dumbsort.h"
2
3 bool compareAscending (int a, int b) {return a>b;}
4 bool compareDescending(int a, int b) {return a<b;}
5
6 void dumbSort (int a[], int 1, int r, bool (*sortDirection) (int,
7 for(int 1 = 1; i< r; 1i++){
8 for(int 7 = (1+1); J < r; j++){
9 if (sortDirection(alj-1], aljl)) |
10 int temp = al[j-1];
11 alj-11 = al3jl;
12 = temp;
13 }
14 }
15 }
16 1}

Chapter 9: Functions

9.53 dumbsort.cpp

int)) {

The compareAscending() and compareDescending() functions each return the boolean value that results from
comparing two integer arguments via the > or < operators. The dumbSort() function takes the sortDirection function
pointer parameter and calls the supplied function argument in the expression test of the if statement on line 9. By
using the appropriate callback function, dumbSort()’s sorting behavior can be changed to sort in either ascending or
descending order. The following main() function shows dumbSort() and the callback function mechanism in action.

0 oy O W N

NDNNNNNRRRRRRRRR R
G WNh RO WLWW®WISNON WNhROOOLO

#include <iostream>
#include "dumbsort.h"
using namespace std;

int main () {

int int array([10] = {34,3,16,2,8,10,1,0,5,11};

for(int i = 0; 1<10; i++)
Cout<<int_array[i]<<n n;
cout<<endl;

dumbSort (int array, 0, 10, compareAscending);

for(int i = 0; i<10; i++)
Cout<<int_array[i]<<n n;
cout<<endl;

dumbSort (int array, 0, 10, compareDescending);

for(int 1 = 0; i<10; i++)
cout<<int array[i]<<" ";

cout<<endl;

return 0;

9.54 main.cpp

On line 7 an array of 10 integers is declared and initialized. It is printed to the screen on lines 9 and 10. On line
13 dumbSort() is called to sort the array in ascending order with the compareAscending() callback function as an
argument. The array is then printed to the screen once again and on line 19 dumbSort() is called to again sort the array
but this time in descending order using the callback function compareDescending(). Figure 9-16 shows the results of

238

©2003 Rick Miller — All Rights Reserved

C++ For Artists

Chapter 9: Functions Creating A Function Library

running this program.

=— smartDumbsSortout.out =H

24 21622161 8 5 11

B1 2358168 11 16 34

341611 18833218
F
=
e

Figure 9-16: Results of Calling DumbSort() Using compare Ascending()
and compareDescending() CallBack Functions

Crearting A Funcrion Library

OK. You have slaved at the computer and have developed a great function that you would like to reuse in other
projects without having to recompile its source code. Or perhaps you have developed a set of functions that do some-
thing no one has ever seen done on a computer before and you would like to sell them and retire early! Whatever your
motivation you will start by creating a function or code library.

A library is compiled code that can be used in other programs. All that’s needed to use the library is the library
object code and a header file that provides the declarations for the functions in the library. Aren’t you lucky! You
already know about header files and how to use them. And because you know how to create multiple file programs
you already know how to do the hardest part of the library creation process.

Steps 10 Creating A Library

The following is a quick overview to creating a function library: The first two steps you already know how to do
from reading this chapter. Steps 3 through 8 apply to Metrowerks CodeWarrior but will be similar on other develop-
ment environments. The final word on how to create a code library can be found in your IDE’s documentation. Here
is the process at a glance:

Step 1: Put the function declarations for any functions you want in the library in a header file. (.h
file)

*Step 2: Put the definitions for the library functions in a separate implementation file. (.cpp file)
*Step 3: Create an empty project in your Integrated Development Environment and add the imple-
mentation file to it.

*Step 4: Add any library files to the project required to support the implementation file. For
instance, if your function uses the iostream library then you need to add that library to your project.
*Step 5: Set the required target settings for the project.

*Step 6: Name the library output file and set project type.

*Step 7: Compile the project.

*Step 8: Use the library!

That’s pretty much it. Now, let us step through the process in more detail. For an example I will create a library
using the dumbSort() function along with the two supporting functions compareAscending() and compareDescend-
ing(). These three functions will constitute the dumbSort library and after the library is created they can be used in
other projects without having to add and recompile the dumbsort.cpp file.

Create Empry Project

Since you already know how to do the first two steps, creating separate header and implementation files, I will
start with creating the empty project. Start your IDE and create a new empty project. An empty project is a project
with no source or library files pre-added. Since you’re creating a library, all you will need is the implementation file

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 239

Creating A Function Library Chapter 9: Functions

for the code you want to turn into a library and any libraries your code depends on. Figure 9-17 shows a screen shot
for creating an empty project in CodeWarrior:

New
Project File Object
%AP Stationery Project name:
Empty Project IDuthnrtLlhrary |
y@ Java applet wizard Location:

‘HE Java pplication wizard
Jawva Bean ywizard

?@ Java Stationery [[] Add te prejoct:

U MacO C/C+ + Stationery [

i Macts PowerFlant Stationsry

HB Multi-Target Stationery

[wi1d wild Rick:Desktop Folder:C+ + Bool| [Set__]

]

]

Figure 9-17: Creating an Empty Project in CodeWarrior

Add Implementation File

Add to the empty project the implementation file containing the functions of interest. Figure 9-18 shows the
DumbSortLibrary project with the dumbsort.cpp implementation file added.

DumbsortLibrary = =]

i |

|'ﬁ DumnbSortL ibkary

wl Fila

[R
B dumbseit.opp

1 File

220 =6 =

Figure 9-18: dumpsort.cpp Added to the Empty Project

Ser Library Targer Sertings

Now set the target setting for the library as shown in figure 9-19.

4] umbSortLibrary Settings
I 1/ Target Settings
— = =
Tarqat Sattings Target Mame: [DumbSorilibrery]
Ariess Paths
Build Extras Linker: [MacO3 PPC Linker i]
Runtime Settings _ -
File Mapaings Pre-linker: [Hone =]
Source Trosa Post-linker: [Tne 3l
PPC Target =
Sulput Bireclory:
C —_—
| | Choose...
| [{Fruject}.
i Claar
[Code Generation [save project entrics using relative paths
PPC Processor
FFC Disassembler
Global Optimizations r
[~]
| FactorySettings | | RevertPanel | |_Save

Figure 9-19: Setting Library Target Settings

240 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 9: Functions

Name Library and Ser Project Type

Creating A Function Library

Next, set the name of the library file and the project type. The name shown in 9-20 below is dumbsort.lib. Other
names for the library could have also been used such as dumbsort.o, dumbsort.out, or dumbsortlib.lib. This name will

be used to name the code module produced by the compiler when the project is built.

0 —————Dumbsortlibrary Settngs —————

IE Target Settings Panels E PPC Target

= Target
Target Settings —
Atcess Paths

Build Extras Filg NamEIUUmDSDI’l.HD

Runtime Settings
File Mappings
Source Trees

PP Target

= Language Settings
CAC++ Lanquage
C/C++ Warnings
PPCAsm

Rez

I= Cade Ceneration

PPC Processor

PPC Dizassermblar]
Global Optimizations
= Linker

PPC Linker

FFC FEF

= Fditar

(]

[Factory Settings] [Revert Panel l

Figure 9-20: Selecting Project Type and Library Name

Build the Project

Build the project. The library file you named in the previous step will be generated. You will not be able to run
this type of project, so, to test your library you will have to create a new project and write some code that uses the

functions contained in the library. The following step shows this being done.

Use the Library

To use the library you will need the library header file and the library code module. You will use the header file as

normal and add the library code module to the project as shown in figure 9-21.

O

9 PPC Std C++ Console

<=3l]

——————"=—" librarnyTest D—"0F"————=

I =]

| File | code | pata [3& [=
b [Sources 51K 6K « [=
B roain.cpp 52464 E945 « [®
[» [, ANSI Libraries 170K ITK =
- [, Mac Libraries 14K 3K =
E FM5SL FuntimePFC . Lib 14544 Exa=in =
E Interfacelib a] a] =
S MathLib [u} [u} =
BB dumbzort.lib 2z0 36 =

-

8 files 2I5K 47K A

Figure 9-21: Using the dumbsort Library

The contents of the main() file in this project is the same as that shown in example 9.54. The difference between
the previous dumbsort project and this project is that what was once the dumbsort.cpp file has been transformed into

a code library.

C++ For Artists

©2003 Rick Miller — All Rights Reserved

241

Summary Chapter 9: Functions

Summary

Functions provide a convenient way to package program behavior into manageable units with an eye towards
reuse. A function is a collection of logically related program statements written to perform a specific processing activ-
ity. A function is also a code module; it is given a name, and with its name, it can be called or executed by any pro-
gram that needs to use the function. The program statements that comprise the body of the function give the function
its behavior. Function behavior can be built upon the behavior of other functions.

Every function needs to be declared and defined. A function declaration or prototype is a statement of a func-
tion’s interface. Put function prototypes in separate header files and function definitions in their own implementation
files. This separates a function’s interface from its implementation and makes it easier to create function libraries.
Prevent multiple header file inclusion by using the preprocessor directives #ifndef, #define, and #endif.

A well-written function has the following characteristics: It is maximally cohesive, it is well-named, and it is
minimally coupled.

It is helpful to think of a function as a world unto itself or as a “black box”. Variables declared within the body of
a function are called local variables. Static function variables exist across function calls, are initialized during the first
call to the function in which they appear, and retain their value between function calls. Automatic local variables are
initialized during every function call. Local function variables mask global variables with the same name. Function
parameters have local scope.

Arguments can be passed to functions by value or by reference. The advantage to passing arguments to functions
by reference is realized when using large arguments such as user-defined data structures.

Functions can return values. Where possible have only one return statement in a function. If you must have more
than one return statement, keep them close together to aid clarity. Do not return the address of a local variable. This is
a common programming error that results in a dangling reference.

Functions can be overloaded. An overloaded function shares a name but differs in parameter type and number.
Overloaded functions are said to have different function signatures. The compiler resolves which version of an over-
loaded function to call based on the number and type of arguments used to call the function.

Recursive functions are written to solve special types of problems. A recursive function calls itself and must
eventually come to a halt or else it will recurse forever.

Function pointers have many interesting uses, one of them being to implement callback functions. An under-
standing of function pointers leads to a better understanding of the C++ virtual function calling mechanism.

When you have come up with a great function, or several great functions, convert them into a library to make
their reuse easier

Whew! You learned a lot in this chapter. Great! You will use every bit of it as you progress through the text. Study
hard!

Skill Building Exercises

Note: For all exercises create separate header and implementation files. In exercises that result in more than one
function, you can group the function declarations in one header file and all function definitions in one implementa-
tion file.

1. Text Message Display: Write a simple function that displays a text message on the screen when called. Give the
function a name that gives a hint of what it does. Write a program that calls the function. Hint: The function should
return void and take no arguments.

2. Print Array Contents: Write a function that takes a character array as an argument and prints the contents of the
character array to the screen. Write a program that calls the function several times using different character arrays
as arguments. Hint: If you use an array of chars to hold the message make sure the last character is \0’.

242 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 9: Functions Suggested Projects

3. Array Reversal: Write a function that takes a character array as an argument. Print the array to the screen, then
reverse the order of characters in the array and print the array to the screen again. In the same function, count the
number of characters in the array and print the count to the screen. Also include a static variable that counts the
number of message arrays that have been printed to the screen. Write a program to test the function.

4. Dynamic Array: Write a function that takes two character arrays as arguments and creates a dynamically allocated
array that contains the elements of both array arguments. Return the address of the dynamically allocated array.
Caution: Do not forget to delete[] the array before the program ends. But, do not delete[] it in the function! Write a
program to test the function.

5. Array Parameter: Write a function that takes a character array as an argument and prints out every permutation of
the array. Return the integer value corresponding to the number of permutations that were calculated. Write a pro-
gram to test the function.

6. Lotto Number Generator: Write a function that calculates every possible combination of lottery numbers. The
function should take two integer arguments indicating how many numbers there are to choose from and how many
numbers are required to be picked. i.e., 52 numbers to choose from, pick 6 out of 52. Return the number of possible
lottery ticket combinations. Write a program to test the function.

7. Sum of all floats: Write a function that takes an array of floats as an argument and returns the sum of the array.
Write a program to test the function.

8. Converter: Write a function that takes an integer argument and prints the binary and hexadecimal equivalent val-
ues to the screen. Write a program to test the function and convert a few integer values.

9. Function Pointer: Write a program that creates a function pointer to the type of function you created in skill build-
ing exercise 8. Use the function pointer to call the function.

10. Research: Research the steps involved to create a function library using your integrated development environ-

ment. Once you have figured it out, create a library from the lottery function you created in skill building exercise
6.

Suggested Projects

1. Word Counter: Write a program that reads a text file and counts the occurrence of each word. Print a summary of
the statistics to the screen shown what word was found and its number of occurrences.

2. Game Program: Write a game program called tic-tac-toe. The object of tic-tac-toe is to get three X’s or three O’s
in a row either horizontally, vertically or diagonally. The tic-tac-toe game board is a 3 x 3 grid and looks something
like this:

During a typical game, players takes turns placing their X’s and O’s on the game board. The first to get their pat-

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 243

Suggested Projects Chapter 9: Functions

tern in a row wins. The follow game board represents what the results of a typical game might look like:

Use a 3 x 3 array to track player turns. Check the array after each player’s turn to see if they’ve won. Draw the
game board on the screen after each turn so players can see the game’s progress. Make it a two player game.

3. Quick Sort: Modify the recursive quickSort() function given in example 9.46 so it will sort in either ascending or
descending order based on a callback function.

4. Computer Simulator: You are a C++ developer with a high-tech firm engaged in contract work for the Depart-
ment of Defense. You company has won the proposal to develop a proof-of-concept model for an Encrypted
Instruction Set Computer Mark I. (EISCS MKI). Your job is to simulate the operation of the EISCS MKI. To do
this you must write a small computer simulator *. Here are the specifications:

EISCS MKI Language Ser

The only language a computer understands is its machine language instruction set, and the EISCS MKI is no dif-
ferent. An EISCS instruction consists of a four digit integer with the two most significant digits being the opcode and
the two least significant digits being the operand. For example, the instruction 1133, as shown here,...

1133
Opcode — T~ Operand

...would instruct the computer to write the contents of memory location 33 to the screen. The full set of EISCS
opcodes grouped by function is given below:

Input/Output Operations

READ =10 Read an integer from the console into a specified memory location

WRITE =11 Write an integer from specified memory location to the console

Load/Store Operations

LOAD =20 Load an integer value from a specified memory location into the accumulator

STORE =21 Store an integer value from the accumulator into a specified memory location

Arithmetic Operations

ADD =30 Add an integer from a memory location to the contents of the accumulator and leave
the result in the accumulator

SUB =31 Subtract an integer from a memory location from the contents of the accumulator
and leave the result in the accumulator.

MUL =32 Multiply an integer from a memory location by the contents of the accumulator and
leave the result in the accumulator.

244 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 9: Functions Suggested Projects

DIV =33 Divide the contents of the accumulator by an integer from a specified memory lo-
cation. Leave the results in the accumulator.

Control/Transfer Operations

BR =40 Branch to a specified memory location

BRN =41 Branch to a specified memory location if the contents of the accumulator is negative
BRZ =42 Branch to a specified memory location if the contents of the accumulator is zero.
HALT =43 Stop program execution

Savple ProGram

Using the EISCS machine language instruction set above you can now write simple programs. Here is an exam-

ple:
Memory Location | Instructions/ Action
Contents
00 1007 Read integer from input into memory location 07
01 1008 Read integer from input into memory location 08
02 2007 Load integer from memory location 07 into accumulator
03 3308 Divide contents of accumulator by integer from memory location 08
04 2109 Store contents of accumulator in memory location 09
05 1109 Print contents of memory location 09 to the screen
06 4010 Branch to memory location 10
07 0000
08 0000
09 0000
10 4300 Exit program

Basic Operation of the EISCS MKI

Memory

The machine language instructions that comprise an EISCS program must be loaded into the EISCS’s memory
before they can be executed. Simulate the EISCS’s memory as an array of 100 integers.

Instruction Decoding

In order to execute programs correctly the EISCS must be able to separate opcodes from operands. Take as an
example the instruction located at memory location 00 in the sample program above. the instruction 1007 must be
separated into its opcode (READ) and operand (memory location 07). since the EISCS programs must be loaded into
memory prior to execution the following statements might be used to extract an instruction from memory and decode
it:

int instruction, op code, operand, program counter = 0;

C++ For Artists ©2003 Rick Miller — All Rights Reserved 245

Suggested Projects Chapter 9: Functions

instruction = memory[program counter++];
op_code = instruction / 100;
operand = instruction % 100;

Addirional EISCS Specificarions

Allow for EISCS programs to be loaded into memory from the keyboard or read into memory from a file.
Encrypt the instruction in memory and decrypt them prior to execution by the EISCS. Use an encryption algo-
rithm or your choice.

Write several small programs in the EISCS machine language set and run them on the EISCS.

*This project adapted from the Simpletron exercises 5.18 and 5.19 of Deitel & Deitel’s C++ How To Program,
Second Edition.

5. Assembler Program: Write a program that converts a text file containing high level EISCS commands and creates
a file with EISCS machine instructions. This type of program is called an assembler. For example, the text file
might contain the following instructions:

read 07
read 08
load 07
div 08
store 09
write 09
brn 10
halt

The assembler program would read each of these high-level instructions and convert them to their EISCS
machine instruction equivalent. The machine instructions can then be loaded into the EISCS memory.

6. Assembler Program Modified: The alternative form of the main() function is main(int argc, char * argv[]) which
allows command line arguments to be read and acted upon by a program when it is first executed. The parameter
argc is the argument count, or the number of command line arguments used to call the program. The parameter
argv[] is an array of character strings representing the names of the command line arguments. argv[0] will always
contain the name of the command that was executed. (i.e., the name of the program). Convert the assembler pro-
gram written in project 5 so that the name of the input file and output file can be given as command line arguments.

7. Explore the C and C++ Standard Library: The C and C++ Standard Library provides many useful routines you
can use in your programs. Research the standard library and write a brief description of each header and the func-

tions they contain.

8. Scientific Calculator: Write a scientific calculator program using routines from the C++ Standard Library. Keep
the interface text based and prompt the user for each operator and operand.

9. Mortgage Calculator: Write a program that calculates the payment schedule of a 30-year, fixed-rate mortgage.
10. Expanded Computer Simulator: Expand the EISCS MKI computer simulator to include the scientific functions

you wrote for Project 8. Modify the assembler so it can generate the new machine instructions.

246 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 9: Functions Self Test Questions

Self Test Questions

1. Describe in your own words the definition of a function.
2. List and describe the three characteristics of a good function.

3. What is the difference between a function’s interface and its implementation? What constitutes a function’s inter-
face? What constitutes a function’s implementation? Why is it important or desirable to separate a function’s inter-
face from its implementation?

4.What is the purpose of the #ifndef, #define, & #endif preprocessor directives as they apply to header files?
5. List at least three benefits to giving functions good names.

6. In what two ways can arguments be passed to functions? What is the difference between the two ways? What
advantages or disadvantages are associated with each way?

7. What is the difference between an automatic local variable and a static local variable?

8.What is meant by the phrase, “Maximize Cohesion — Minimize Coupling”?

9. Describe how functions can be overloaded.

10. Given the following function pointers describe what type of function each can point to:
(void) (*fun ptr) ();

(float) (*fun ptr) (int, char*, float);
(char*) (*fun ptr) (float, float);

References

International Standard, ISO/IEC 14882, Programming Languages — C++, First Edition 1998-09-01

Donald E. Knuth. The Art of Computer Programming. Volume 3. Sorting and Searching. Second Edition. Addi-
son-Wesley, Reading, Massachusetts, 1998. ISBN:0-201-89685-0

Robert Sedgewick. Algorithms in C++. Addison-Wesley, Reading, Massachusetts, 1992. ISBN: 0-201-51059-6

Harvey M. Deitel, Paul J. Deitel. C++ How To Program. Second Edition. Prentice Hall, Upper Saddle River,
New Jersey, 1997. ISBN: 0-13-528910-6

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 247

Notes Chapter 9: Functions

Nortes

248 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chaprer 10

E ON A Tree

Toward Problem Abstracrion:
Creating New Dara Types

Learning ODbijecrives

e Create New dara Types 10 improve problem absmracrion

e Use the 1ypedef keyword 10 create 1ype synonymss for existing dara 1ypes berier suited 1o 1he problem domain

e Explain how 1ype syvonyms can be used 10 improve proGram mainminability avd readability

o Creare and use enumerated dara Types iN yOUR PROGRAMMING PROJECTS

* Describe the defaulr enum state values and explaiv how they can be changed

* Explain How 10 Resolve enum state nvame conflicrs

* Create ANd USE STRUCTURES iN YOUR PROGRAMMING PROJECTS

e Exphin how 10 use the dor operaror 1o Access sructure and class elements

o Create and use simple classes in your proGramming projects

o State the difference berween structures and classes

* Describe when you would want 10 USE STRUCTURES vs. classes iN A PROGRAMMING pROJECT

e List 1he key differences benween smucrures and classes

* Siare the purpose and use of the this poinrer

e List and define the following 1erms: class, base class, derived class, superclass, subclass, absmracr base class, virmual funcrion,
object, message passing, OOA&D, inkeritance, dama encapsularion, interface, & implemenarion

C++ For Artists ©2003 Rick Miller — All Rights Reserved 249

Introduction Chapter 10: Toward Problem Abstraction

INTROducTiON

A computer program consists of data and instructions that manipulate data. How data is modeled in source code
is the primary topic of this chapter.

The C++ programming language provides facilities for creating your own data types. Up to now you have only
been exposed to the fundamental data types C++ has to offer like char, int, and float. You can further abstract the prob-
lem you’re trying to solve by renaming these fundamental data types using the typedef (type definition) keyword. You
saw an example of this being done in the function pointer section of chapter 9.

You can also create your own data types using the enum (enumeration), struct (structure), and class keywords.
The enum keyword lets you create enumerated data types. By using enumerated types you can add a level of clarity to
your program difficult to achieve otherwise. The struct and class keywords let you create complex, custom data types
best suited to model the problem you are trying to solve.

In this chapter you will learn how to use typedefs, enumerations, and structures in your programs. You will also
be introduced to classes and learn the fundamental differences between structures and classes.

This is an important chapter! After learning the material in this chapter you will know enough C++ to start solv-
ing real-world problems. You will also be prepared to approach the detailed study of classes and object-oriented
design methodologies presented in subsequent chapters.

Toward Data AbstracTion: Typedef

When you write a program you will want to represent the data you wish to manipulate in such a way that makes
it clear to you and to others what you are doing. The data also should be modeled in a manner that best suits the prob-
lem at hand. And because you are modeling a real-world problem in a computer program you will have to select data
elements of the real-world problem and map them into the program you are writing. If you limit yourself to the funda-
mental data types C++ offers this would be a difficult task. Luckily you’re not limited!

The first facility C++ provides to help with data abstraction is the type definition. The typedef keyword lets you
declare an alternate name for an existing data type. This alternate name functions like a type synonym. There are sev-
eral good reasons for creating type synonyms using typedef.

First, it increases program portability by allowing you to substitute appropriate machine-dependent data types
when you compile your program on different computers. A good explanation of using typedef in this manner can be
found in [Kernighan]. Second, you can use typedef to tame complicated type declarations. You saw an example of
typedef used in this way in chapter 9’s section on function pointers.

Another good reason for using typedef is better program readability. By declaring type synonyms for existing
data types you can more closely match their purpose in your program. This leads to a significant improvement in your
program’s aesthetics. Let us take a closer look at the use of typedef to accomplish these last two objectives: taming
complex data types and improving program aesthetics.

Creating Type Synonyms

The following examples show typedef being used to create a synonym for an existing data type:

typedef float Currency;
typedef int Hours;
typedef char* String

The first example declares a type synonym for the float data type called Currency. Currency is now just another
name for a float. The second example declares a synonym for int named Hours, and the third example declares a syn-
onym for a char pointer named String. These synonyms can now be used in a program.

I have adopted a synonym naming convention here that capitalizes the first letter of the identifier as to make it
distinguishable from a variable. You can place typedef declarations in header files. The following example program
shows typedef in action starting with the header file that contains the typedef declarations:

250 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 10: Toward Problem Abstraction Toward Data Abstraction: typedef

#ifndef MY DEFS_H 101 mydefs-h

#define MY DEFS H

typedef float Currency;
typedef int Hours;

N Oy s W N =

#endif

The header file mydefs.h can now be included wherever the type synonyms Currency and Hours could be used to
improve the clarity of the code. The following header file uses the declarations in mydefs.h to declare a function
named calculatePay():

1 #ifndef CALCULATE PAY H 102 caleulatepay.h
2 #define CALCULATE PAY H
3 #include "mydefs.h"

4

5 Currency calculatePay (Hours hoursWorked, Currency payPerHour);

6

7 #endif

The calculatePay() function is then defined in the normal way:

1 #include "mydefs.h" 103 calculatepay.cpp
2 #include "calculatepay.h"

3

4 Currency calculatePay (Hours hoursWorked, Currency payPerHour) {

5
6}

return (hoursWorked * payPerHour);

The following main() function shows calculatePay() in action:

® NNy O W N =

[S N S A s T
O ®® NN W N RO o

20 }

C++ For Artists

#include <iostream>
#include "calculatepay.h"
#include "mydefs.h"

10.4 main.cpp

using namespace std;

int main () {

Hours employeeWorkHours = 0;
Currency employeePayRate = 0.0;

cout<<"Please enter hours worked: ";
cin>>employeeWorkHours;
cout<<endl<<"Please enter employee hourly pay rate: ";

cin>>employeePayRate;

cout<<endl<<"The employee's pay is: "
<<calculatePay (employeeWorkHours, employeePayRate)<<endl;

return 0;

©2003 Rick Miller — All Rights Reserved 251

Creating Enumerated Data Types With enum Chapter 10: Toward Problem Abstraction

Creating Enumerated Data Types With enum

When programming, you will encounter many situations where code clarity can be improved by referring to inte-
ger values by a meaningful name rather that just the integer value itself. Enter the enumerated data type. An enumer-
ated data type is a new type that you declare and assign possible integer value states that are referred to by name. Let
us look at an example:

enum EyeColor {Black, Hazel, Blue, Brown};

This line of code declares a new data type called EyeColor that has four possible states: Black, Hazel, Blue, and
Brown. The state names Black, Hazel, Blue, and Brown equate to the integer values 0, 1,2, and 3 respectively. The
type name EyeColor can now be used to declare a variable that can hold one of the four possible EyeColor state val-
ues:

EyeColor my eye color;

The variable my_eye_color can be assigned any one of the following values: Black, Hazel, Blue, or Brown.
Observe the following line of code:

my eye color = Brown;

The nice thing about enum types is that the compiler will ensure you are only assigning one of the valid state val-
ues to the enum variable. For instance, the following line of code will produce a compiler error:

my eye color = 6; //Error...6 is an int not an EyeColor

Enums and Switch Statements

Enumerated types can be used with switch statements to improve their readability. Observe the following exam-

ple:

1 switch (my_eye_color) { 10.5 switch statement
2 case Brown: cout<<"You have brown eyes!"<<endl;
3 break;

4 case Black: cout<<"You have black eyes!"<<endl;
5 break;

6 case Hazel: cout<<"You have hazel eyes!"<<endl;
7 break;

8 case Blue: cout<<"You have blue eyes!"<<endl;

9 break;
10 default : cout<<"You have blue eyes!"<<endl;
11 '}

In this example, the value of my_eye_color is examined and the appropriate case statement is executed. The
switch statement is rendered easier to read because the EyeColor state value names are used in each case statement.
You no longer have to think in terms of 0, 1, 2, or 3. You are comparing the my_eye_color to Black, Hazel, Blue and
Brown. As this switch statement shows, the order in which you perform the comparison is immaterial.

Changing an Enum’s Defaulr State Values

The enum EyeColor’s states Black, Hazel, Blue, and Brown are assigned the integer values 0, 1,2, and 3 by
default. Since the name Black appears first in the list of possible states between the curly braces, its value is, by
default, set to zero. The value of any enum state can be explicitly set in the following manner:

252 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 10: Toward Problem Abstraction Creating Enumerated Data Types With enum

enum EyeColor {Black = 1, Hazel, Blue, Brown};

In this example, the EyeColor state Black has a value of 1. Each subsequent state will have the next integer value
unless explicitly set in similar fashion. For instance, Hazel has the value 2, Blue has the value 3, and Brown has the
value 4.

Although the values associated with the EyeColor enum states may not be important, there are cases where an
enum’s state values might be a concern. Examine the following enum declaration:

enum BeveragePackage {Single = 1, SixPack = 6; TwelvePack = 12, EconoPack = 24};

In this example the enum BeveragePackage has four states, each with a non-default, non-consecutive value.

Enum Stare Name Conflicts

Two different enumerated types declared within the same namespace that contain one or more identical state
names will cause a compiler error. Examine the following code:

enum EyeColor {Black, Hazel, Blue, Brown};
enum HairColor {Black, Blond, Red, Brown}; //error

If these two enum declarations appeared in the same header file the compiler would generate an error because
EyeColor has two states, Black and Brown, that also appear in HairColor. This can be fixed by changing the case of
the first letter of either of the enum state names. For example, changing the state names in HairColor to begin with
lowercase letters removes the conflict:

enum EyeColor {Black, Hazel, Blue, Brown};
enum HairColor {black, blond, red, brown}; //OK

Although this works, it is not the preferred resolution. I recommend instead putting each enum declaration in its
own namespace as shown in the following example:

10.6 namespaces
namespace EyeColor{

enum EyeColor {Black, Hazel, Blue, Brown};

namespace HairColor{

1
2
3
4
5
6 enum HairColor {Black, Blond, Red, Brown};
7

Putting enum declarations in separate namespaces is like wrapping them in a cocoon. With each enum declara-
tion in its own namespace the state names can safely begin with capital letters. To access each enum and state name,
prefix each with its associated namespace using the scope resolution operator as shown in the following example:

HairColor::HairColor my hair color = HairColor::Black;
EyeColor: :EyeColor my eye color = EyeColor::Black;

Example 10.7 shows the switch statement of example 10.5 rewritten to use the EyeColor namespace:

The Urility of name spaces

Namespaces are good places to put related declarations and attributes to prevent identifier name collisions with
identical identifier names in the global namespace. The topic of namespaces will arise again in the study of structs
and classes below.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 253

Structures: C-Style Chapter 10: Toward Problem Abstraction

10.7 switch statement

1 switch(my eye color) {
2 case EyeColor::Brown: cout<<"You have brown eyes!"<<endl;
3 break;
4 case EyeColor::Black: cout<<"You have black eyes!"<<endl;
5 break;
6 case EyeColor::Hazel: cout<<"You have hazel eyes!"<<endl;
7 break;
8 case EyeColor::Blue: cout<<"You have blue eyes!"<<endl;
9 break;
10 default : cout<<"You have blue eyes!"<<endl;
11 1}

Quick Summary

Typedefs let you create synonyms for existing data types. A typedef synonym is not a new type, just a nickname
by which the typedefed name can be referenced. Typedefs can make your code easier to read and maintain. Enums are
new types that can take on a range of integer values represented by names rather than numbers. When a variable of an
enum type is declared, the compiler will check to ensure no other values are assigned to that variable other than those
authorized. Enums can make your source code easier to read and help prevent programming errors by catching mis-
takes at compile time.

Structures: C-Style

Structures are a double-edged sword in C++. Some authors do not bother to give structures much coverage
because they are closely related to classes in capability, as you will soon see. I take the opposite approach because I
can foresee times when a C++ programmer will be tasked with either maintaining C code or converting legacy C code
to C++. When these situations arise it is helpful to know the procedural mind set behind the use of structs.

In C, a structure is a set of heterogeneous data elements grouped together to form a new data type. The C struct
mind set separates the structure from the functions that manipulate structure elements. It goes something like this:
declare a structure and put in it any required data elements, then, declare and write some functions that can be used to
manipulate the structure’s data elements. The C way of thinking of structures is decidedly procedural.

Let us examine an extended C-style example that declares a struct named Person and some functions that manip-
ulate Person data elements. Example 10.8 gives the source code for the personstruct.h header file.

1 #ifndef _ PERSON STRUCT H 10.8 personstruct.h
#define _ PERSON STRUCT H

namespace HairColor{
enum HairColor {Black, Red, Auburn, Brown, Blond, Silver, Grey};

® oy s W N

namespace EyeColor({
enum EyeColor {Black, Hazel, Blue, Brown};

Ne)

11

12 const int NAMESIZE = 26;

13

14 struct Person {

15 char f name[NAMESIZE];

16 char 1 name[NAMESIZE];

17 HairColor::HairColor hair color;
18 EyeColor::EyeColor eye color;

19 };

20 #endif

254 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 10: Toward Problem Abstraction Structures: C-Style

In example 10.8 two name spaces are declared that contain enum type declarations. You have seen these in previ-
ous examples above. On line 12 a constant named NAMESIZE is declared and initialized to the value 26. NAME-
SIZE is used to set the size of each character array declared in the body of the Person structure.

The declaration of the Person structure begins on line 14. The Person structure contains four elements: two char-
acter arrays named f_name and 1_name to contain a person’s first name and last name respectively, a hair_color
attribute of type HairColor::HairColor and an eye_color attribute of type EyeColor::EyeColor. The data elements of
Person represent the attributes of a particular person.

Before moving on I would like to show you how to access structural elements.

Accessing Structural Elements

There are two ways to access the data elements appearing inside of a structure. If you have an ordinary variable
of a struct data type you can use the dot “.” operator. If you have a pointer to a struct object then you can use either the
dot operator applied to a dereferenced pointer or the shorthand member access “->” operator. Let us examine each of
these structural member access methods a little closer.

Accessing Structural Data Members Via the Dor “.” Operator

Given a variable of type Person...:
Person Bill;

...you can access Bill’s f_name element using the dot operator like so:
Bill.f name

Having access to each of Bill’s elements in this manner offers you the ability to manipulate Bill in just about any
way you need to as shown in the following code:
1

strcpy (Bill.f name, 10.9 accessing struct

strcpy (Bill.1l name,
Bill.eye color

"Bill") ;
"Smith") ;
EyeColor::Blue;

elements

Bill.hair color

cout<<"

cout<<"First Name:
Last Name:
cout<<"Hair Color:

HairColor: :Blond;

"<<Bill.f name<<endl;
"<<Bill.l name<<endl;
"<<Bill.hair color<<endl;

W ©® J oy s W

cout<< "Eye Color: "<<Bill.eye color<<endl;

This code, when appearing inside a main() function, should produce the results shown in figure 10-1:

[Hair Color 4?
First Hame: Biil

Last Mame: Smith

Hair Color: 4

Eye Color: 2 Eye Color 2?

Figure 10-1: Example 10.9 Output

Wait a second! Notice the output shown for hair color and eye color in figure 10-1. This highlights a slight prob-
lem with enumerated data types; they are simply integer values. If your compiler gives you a problem compiling the
code shown in example 10.9 try adjusting the C++ language settings so enums are treated as ordinary integers. You
may have to do this if you have problems sending enum variables or elements to the output stream. The C++ language
settings window for CodeWarrior is shown in figure 10-2.

C++ For Artists

©2003 Rick Miller — All Rights Reserved 255

Structures: C-Style

Chapter 10: Toward Problem Abstraction

PPC 5td C++ Console Settings

[Deferred Inlining
[Pool Strings
[bon't Reuse Strings

CAC++ Warnings
PPCAsm

Rez
I Code Generation

|
I
C/C++ Language ‘
|
|
|

1
" i
. II [y TR, P, [y SATET TR

Target Settings Jj| g Activate T+ + Lompiier ¥ ARSI Strict

#ooess Paths] &#RIM Confor mance] &NS1 Keywords only

Build Extras X X

Runtime Settings A Enable C++ Exceptions [Expand Trigraphs

File Mappings [A Enable RTTI 1 Multi- Bute dware

Source Trees - — s

PPC Target EI Inline Depth] Don’t Inline Direct to SOM{ 0ff |
[+ Language Setiings Il [#uta-1nline L] Map newlines to CR

[Relaxed Pointer Type Rules
b Enums Always Int
[use Unsigned Chars

I b Require Function Prototypes I EC++ Car Made
PPl Disassemote 1| [Enable bool Support] Enable Objective ©
Liobal Uptimizations
|+ Linker [Enable wehar—t Suppart
PPC Linker L
PPC PEF = Prefix File: |
Editor x>
—
| Factory Settings | | Revert Panel | | Save |
u a !

Figure 10-2: C++ Language Settings: Set Enums Always int

Accessing Structural Elements Via the Shorthavd Member Access “->” Operator

256

You can use the *

> operator to access structural elements via pointers. Examine the following code:

1 Person* Bill = new Person; mégZZZjﬁﬁi
2 pointers
3 strcpy(Bill->f name, "Bill");

4 strcpy(Bill->1 name, "Smith");

5 Bill->eye color = EyeColor::Blue;

6 Bill->hair color = HairColor::Blond;

7

8 cout<<"First Name: "<<Bill->f name<<endl;

9 cout<<" Last Name: "<<Bill->1 name<<endl;
10 cout<<"Hair Color: "<<Bill->hair color<<endl;
11 cout<<" Eye Color: "<<Bill->eye color<<endl;
12
13 delete Bill;

On line 1 an object of type Person is dynamically allocated from the heap. Using the pointer Bill, you can access
Bill’s data members using the short-hand member access operator “->” as is shown throughout the rest of the pro-
gram. An alternative to the short-hand access operator is the long way, which is simply dereferencing the pointer and
applying the dot operator like so:

strcpy ((*Bill) .f name,

“Bill”); //The long way

Continuing with the C-style way of structure programming, the following header file declares several functions
that will be used to make manipulating Person objects slightly easier. Example 10.11 shows a header file named per-
sonfunctions.h that contains eight functions specifically designed to manipulate Person structural elements. Example
10.12 shows the implementation file for these functions named personfunctions.cpp.

©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 10: Toward Problem Abstraction Structures: C-Style

. 10.11 personfunctions.h
1 #ifndef PERSON FUNCTIONS H personft
2 #define __ PERSON FUNCTIONS H
3 #include "personstruct.h"
4
5 void setFirstName (Person& person, char* f name);
6 void setLastName (Person& person, char* 1 name);
7 void setHairColor (Personé& person, HairColor::HairColor hair color);
8 void setEyeColor (Person& person, EyeColor::EyeColor eye color);
9 char* getFirstName (Person& person);
10 char* getLastName (Person& person);
11 char* getHairColor (Person& person);
12 char* getEyeColor (Person& person);
13
14 #endif
1 #include "personstruct.h" 10.12personfunctmns.cpp
2 #include "personfunctions.h"
3 #include "string.h"
4
5 char HairColorStrings[][7] = {{"Black"}, {"Red"}, {"Auburn"}, {"Brown"}, {"Blond"},
6 {"Silver"}, {"Grey"}};
7 char EyeColorStrings [][7] = {{"Black"}, {"Hazel"}, {"Blue"}, {"Brown"}};
8
9 void setFirstName (Person& person, char* f name) {
10 strcpy (person.f name, f name);
11 }
12
13 void setLastName (Person& person, char* 1 name) {
14 strcpy (person.l_name, 1_name);
15 }
16
17 void setHairColor (Person& person, HairColor::HairColor hair_ color) {
18 person.hair color = hair color;
19 }
20
21 void setEyeColor (Person& person, EyeColor::EyeColor eye color) {
22 person.eye color = eye color;
23 '}
24
25 char* getFirstName (Person& person) {
26 return person.f_ name;
27 '}
28
29 char* getLastName (Person& person) {
30 return person.l_name;
31 }
32 char* getHairColor (Person& person) {
33 char* hair color = NULL;
34 switch (person.hair color) {
35 case HairColor::Black : hair color = HairColorStrings[HairColor::Black];
36 break;
37 case HairColor::Red : hair color = HairColorStrings[HairColor::Red];
38 break;
39 case HairColor::Auburn : hair color = HairColorStrings[HairColor::Auburn];
40 break;
41 case HairColor::Brown : hair color = HairColorStrings[HairColor::Brown];
42 break;
43 case HairColor::Blond : hair color = HairColorStrings[HairColor::Blond];
44 break;
45 case HairColor::Silver : hair color = HairColorStrings[HairColor::Silver];
46 break;
47 case HairColor::Grey : hair_color = HairColorStrings[HairColor::Grey];
48 break;
49 default : hair color = HairColorStrings[HairColor::Blond];
50 }
51 return hair_ color;
52 '}

C++ For Artists ©2003 Rick Miller — All Rights Reserved 257

Structures: C-Style Chapter 10: Toward Problem Abstraction

53 char* getEyeColor (Person& person) { 10.12 Continued
54 char* eye_color = NULL;

55 switch (person.eye color) {

56 case EyeColor::Black : eye_color = EyeColorStrings[EyeColor::Black];
57 break;

58 case EyeColor::Hazel : eye color = EyeColorStrings[EyeColor::Hazel];
59 break;

60 case EyeColor::Blue : eye color = EyeColorStrings[EyeColor::Bluel;
61 break;

62 case EyeColor::Brown : eye_color = EyeColorStrings[EyeColor::Brown];
63 break;

64 default : eye color = EyeColorStrings[EyeColor::Bluel;

67 }

66 return eye_color;

67 }

Referring to example 10.12, on lines 5 and 7 two arrays of strings are declared and initialized to hold the string
representations of both EyeColor and HairColor. These arrays are used, along with their related enumerated types, in
the last two functions to render a Person object’s hair_color and eye_color attribute into a string representation.

The functions in example 10.12 can be classified two ways: functions that change or set a person’s attributes, and
functions that simply return the value of a person’s attributes. Functions that change or manipulate structural data
members are referred to as mutator functions; functions that simply return the state of a data member are referred to
as accessor functions.

The setFirstName() function takes the first argument, a reference to a Person object named person, and sets per-
son’s f name element to the string of characters pointed to by the second argument. Notice how setFirstName() is
simply calling the strcpy() library function. The strcpy() function is a standard C++ library functions whose declara-
tion can be found in the string.h header file. The rest of the set functions operate in similar fashion, although setHair-
Color() and setEyeColor() need only make a simple assignment to complete their mission.

The getFirstName() and getLastName() functions return pointers to the person object’s f_name and 1_name
arrays. The two functions getHairColor() and getEyeColor() are somewhat more involved. Both getHairColor() and
getEyeColor() operate the same so only the getHairColor() function will be discussed in detail.

The getHairColor() function takes a reference to a person object and in the switch evaluation section checks the
state of the hair_color attribute and compares it with each of the HairColor::HairColor states. When the matching case
is found, the local char pointer variable hair_color is set to point to the proper string located in the HairColorStrings
array. Assume for a moment that the person’s hair_color was Black. The first case statement would apply and the
local hair_color variable would be set to point to the string “Black” located in the HairColorStrings array by using the
enumeration state HairColor::Black as an offset value into the array. The main() function in example 10.13 shows
these functions in action on several person objects.

Referring to example 10.13, on line 7 a Person variable named Bob is declared. On lines 8 through 11 each of the
set functions is called using Bob as the first argument to set each of Bob’s attributes. Bob’s attributes are then printed
to the screen on lines 12 through 15 using the get functions.

On line 18 another Person object is created dynamically and its address is assigned to the Person pointer Bill.
Since Bill is a pointer the “*” operator must be used on Bill to gain access to what Bill points to, namely, a Person
object in dynamic memory. Otherwise, all the functions perform the same tasks on Bill as they do on Bob.

Quick Summary

C-style structures provide a way to collect related data elements together and create a new composite data type.
The Person structure can be thought of as stamp or a mold with which new Person objects can be created. Every Per-
son object created will have four attributes: f_name, 1_name, hair_color, and eye_color.

[T L)

There are two primary ways to access structure data elements. When dealing with objects, use the dot “.” opera-
tor. When dealing with pointers to objects use the shorthand member access “->” operator and let the compiler do the
pointer dereferencing for you.

The C-style way of using structures is based on procedural programming techniques. In the procedural program-
ming paradigm, data structures are defined separately from the functions used to manipulate or access those data
structures.

258 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 10: Toward Problem Abstraction Structures: C++-Style

1 #include <iostream> 10.13 main.cpp
2 #include "personstruct.h"

3 #include "personfunctions.h"

4 using namespace std;

5

6 int main () {

7 Person Bob;

8 setFirstName (Bob, "Bob");

9 setLastName (Bob, "Smith");
10 setHairColor (Bob, HairColor::Red);
11 setEyeColor (Bob, EyeColor::Blue);
12 cout<<"First Name: "<<getFirstName (Bob)<<endl;
13 cout<<" Last Name: "<<getLastName (Bob)<<endl;
14 cout<<"Hair Color: "<<getHairColor (Bob)<<endl;
15 cout<<" Eye Color: "<<getEyeColor (Bob)<<endl;
16 cout<<endl<<endl;
17
18 Person* Bill = new Person;
19 setFirstName (*Bill, "Bill");
20 setLastName (*Bill, "Jones");
21 setHairColor (*Bill, HairColor::Blond);
22 setEyeColor (*Bill, EyeColor::Brown);
23 cout<<"First Name: "<<getFirstName (*Bill)<<endl;
24 cout<<" Last Name: "<<getLastName (*Bill)<<endl;
25 cout<<"Hair Color: "<<getHairColor (*Bill)<<endl;
26 cout<<" Eye Color: "<<getEyeColor (*Bill)<<endl;
27 delete Bill;
28
29 return 0;
30 }

Structures: C+H+-Style

In the previous section I introduced you to structures and showed you an example of using structures with a C-
style, procedural mind set. In this section I want to show you what structures can do in C++. This section marks the
beginning of your initiation into the world of object-oriented programming.

In C++, structures are more than just a collection of heterogeneous data elements. Structures can contain both
data elements and the functions that manipulate those data elements. Let us revisit the Person structure and redesign it
in C++ fashion, combining both the data elements and the functions needed to manipulate those data elements into
one structure.

Person Structure Redesign

Interestingly enough, it will be much easier to completely redesign the functions rather than copy and paste them
from the previous project so that’s what I will do. Example 10.14 gives the revised header file personstruct.h.

OK, what is going on here? This version of the Person struct looks a lot different from its C-style counterpart.
Namely, both structure data elements like the f_name and 1_name arrays, hair_color and eye_color, and functions, are
all part of the structure. This forces the functions to be slightly redesigned. No longer are the functions separate from
the data structure they are intended to manipulate, so, there is no need to supply a reference to a Person object.

Structure functions have complete access to all structure attributes. Because the functions have access to Person
data elements the function parameter names that remain were changed to make them unique. For example, in the set-
FirstName() function, an underscore “_" was added to the parameter f_name to make it _f _name. Making member
function parameter names unique eliminates potential name conflicts between structural data members and member
function parameter names.

Public Interface Funcrions and the Public Access Specifier

With the addition of the functions to Person struct comes the notion of an interface to Person objects. The func-
tions represent operations that can be performed on Person objects. The functions have been collectively declared as
being publicly accessible through the use of the public access specifier appearing on line 15 in example 10.14. C++
structures have public accessibility by default so the use of the public access specifier at the top of the structure is

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 259

Structures: C++-Style Chapter 10: Toward Problem Abstraction

1 #ifndef _ PERSON STRUCT H 10.14 personstruct.h
2 #define _ PERSON_STRUCT_ H
3
4 namespace HairColor({
5 enum HairColor {Black, Red, Auburn, Brown, Blond, Silver, Grey};
6 }
7
8 namespace EyeColor{
9 enum EyeColor {Black, Hazel, Blue, Brown};
10 }
11
12 const int NAMESIZE = 26;
13
14 struct Person {
15 public:
16 void setFirstName (char* _f name);
17 void setLastName (char* _1 name);
18 void setHairColor (HairColor::HairColor _hair color);
19 void setEyeColor (EyeColor::EyeColor _eye color);
20 char* getFirstName () ;
21 char* getLastName () ;
22 char* getHairColor();
23 char* getEyeColor();
24
25 private:
26 char f name[NAMESIZE];
27 char 1 name [NAMESIZE];
27 HairColor::HairColor hair_color;
28 EyeColor::EyeColor eye_color;
30 }i

31 #endif

redundant but a good documentation technique. The set of public interface functions is intended to be the only autho-
rized way to set, manipulate, or otherwise access any object’s attributes.

Private Data Members and the Private Access Specilier

Since the public interface functions are going to be the only authorized form of access into the internals of a Per-
son object, Person data elements have been declared as being private through the use of the private access specifier. A
private data element is accessible only from within the structure itself. This means that all the functions have access to
the private data elements but no data element can be accessed directly from outside an object. Observe the following
example:

Person Bob;
Bob.setFirstName ("Bob"); //OK...Public function
cout<<Bob.f name<<endl; //Error! Private attribute

These few lines of code teach us a lot. First, a Person object named Bob is declared. Next, because the setFirst-
Name() function is a part of the Person structure, it is called on an object of type Person rather than with an object of
type Person as an argument, as was done in the C-style example. Since the setFirstName() function is declared as
being public, its use on a Person object is authorized. However, since f_name is declared as being private, its use in
this fashion is unauthorized and your compiler will produce an error stating that you have attempted to access a pri-
vate data member. Now that you have seen the personstruct.h header file let us take look at the implementation file,
shown in example 10.15.

Referring to example 10.15, compare example 10.15 against example 10.12. The string arrays declared at the
beginning of the file remain unchanged from the previous version. The format of each function has changed some-
what to reflect the fact that the functions are now declared inside the Person structure namespace. The format for
defining a function declared inside a structure is shown in figure 10-3.

Since the setFirstName() function belongs to the Person structure, it has direct access to Person’s f_name data
element. All it needs to do is call the strepy() function using Person’s f name and its _f name parameter. This is were
things start to get somewhat confusing, so hang on. To what Person object does f_name belong? Well, it depends upon
what object the function was called.

260 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 10: Toward Problem Abstraction

Structures: C++-Style

1 #include "personstruct.h" IO.ISpersonstruct.cpp
2 #include <string.h>
3
4 char HairColorStrings[][7] = {{"Black"}, {"Red"}, {"Auburn"}, {"Brown"},
5 {"Blond"}, {"Silver"}, {"Grey"}};
6
7 char EyeColorStrings [][7] = {{"Black"}, {"Hazel"}, {"Blue"}, {"Brown"}};
8
9 void Person::setFirstName (char* _f name) {
10 strcpy (f_name, _f name);
11 }
12
13 void Person::setLastName (char* _1 name) {
14 strcpy (1l _name, _1 name);
15 }
16
17 void Person::setHairColor (HairColor::HairColor _hair color) {
18 hair color = _hair_color;
19 }
20 void Person::setEyeColor (EyeColor::EyeColor _eye color) {
21 eye_color = _eye_ color;
22 }
23
24 char* Person::getFirstName () {
25 return f name;
26) B
27
28 char* Person::getLastName () {
29 return 1 name;
30 N
31
32 char* Person::getHairColor () {
33 char* h_color = NULL;
34 switch (hair color) {
35 case HairColor::Black h_color = HairColorStrings[HairColor::Black];
36 break;
37 case HairColor::Red h_color = HairColorStrings[HairColor::Red];
38 break;
39 case HairColor::Auburn h_color = HairColorStrings[HairColor::Auburn];
40 break;
41 case HairColor::Brown h_color = HairColorStrings[HairColor::Brown];
42 break;
43 case HairColor::Blond h_color = HairColorStrings[HairColor::Blond];
44 break;
45 case HairColor::Silver h_color = HairColorStrings[HairColor::Silver];
46 break;
47 case HairColor::Grey h _color = HairColorStrings[HairColor::Grey];
48 break;
49 default h color = HairColorStrings[HairColor::Blond];
50) N
51 return h color;
52 N
53
54 char* Person::getEyeColor () {
55 char* e color = NULL;
56 switch (eye color) {
57 case EyeColor::Black e_color = EyeColorStrings[EyeColor::Black];
58 break;
59 case EyeColor::Hazel e color = EyeColorStrings[EyeColor::Hazel];
60 break;
61 case EyeColor::Blue e_color = EyeColorStrings[EyeColor::Bluel;
62 break;
63 case EyeColor::Brown e_color = EyeColorStrings[EyeColor::Brown];
64 break;
65 default e color = EyeColorStrings|[EyeColor::Blue];
66 } N
67 return e color;
68) N
C++ For Artists ©2003 Rick Miller — All Rights Reserved 261

Structures: C++-Style Chapter 10: Toward Problem Abstraction

A structure name is a Do not forget the scope resolution operator!

namespace...

return_type struct_name::function_name(parameters, if any){
//Function Body

Figure 10-3: Format of Structure Function Definition
Observe the following code:

Person Bob, Bill;
Bob.setFirstName (“Bob”); //called on the Bob object
Bill.setFirstName (“Bill”); //called on the Bill object

Here, two Person objects are declared, Bob and Bill. Next, setFirstName() is called on the Bob object, and Bob’s
f_name array is initialized to the string “Bob”. Then, the same function is called on the Bill object and the same oper-
ation is performed, only on Bill’s f_name array instead of Bob’s.

The Deep Secrer: The this Pointer

Well, it is not really a secret but I got your attention didn’t I? When objects are created from structures there is a
different set of data elements for each object but only one set of functions. The name of the object upon which a func-
tion is called directs the function’s actions to a specific set of data elements pointed to by the object name. You can
differentiate between structure member data elements and function parameters having the same name by prefixing the
keyword “this” to a data element as shown in the following code:

void Person::setFirstName (char* £ name) {
strcpy (this.f name, f name);

Notice in this example the underscore was removed from the parameter _f_name to yield f_name. However, to
distinguish between the two identical identifiers the this keyword must be added to the one that belongs to the object.
You will see many good uses for the this pointer before you reach the end of this book! A thorough treatment of the
this pointer is offered in chapter 11, so for now, just be aware of its existence. Example 10.16 shows a main() function
using the new Person struct with its built-in functions:

Quick Summary

The C++-style of using structures is decidedly object-oriented. Both structural data elements and the functions
that manipulate those data elements are combined into one structure to form a new data type. New data types created
by you the programmer, be they structures done C-style or C++-style, enums, or classes, are collectively referred to as
user-defined types. You will also see and hear the term abstract data type used to describe new data types created by
programmers in an effort to abstract the problem being solved.

Structure data and function members have public accessibility by default. You can control which members have
what level of accessibility by using access specifiers. Two different access specifiers were discussed above: public and
private. Declaring the member functions of a structure public while keeping its data members private is called data
encapsulation. As a rule, and it is a good rule, only the member functions of a structure need have direct access to a
structure’s data members. The rest of this book is largely devoted to showing you why this is a good object-oriented
design policy.

262 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 10: Toward Problem Abstraction Classes: A Gentle Introduction

10.16 main.cpp testing

1 #include <iostream>

2 #include "personstruct.h" Person siruct
3 using namespace std;

4

5 int main () {

6 Person Bob;

7

8 Bob.setFirstName ("Bob") ;

9 Bob.setLastName ("Smith") ;
10 Bob.setHairColor (HairColor: :Black);
11 Bob.setEyeColor (EyeColor: :Blue);
12
13 cout<<"First Name: "<<Bob.getFirstName () <<endl
14 <<" Last Name: "<<Bob.getLastName ()<<endl
15 <<"Hair Color: "<<Bob.getHairColor ()<<endl
16 <<" Eye Color: "<<Bob.getEyeColor ()<<endl;
17
18 cout<<endl<<endl;
19 return 0;
20 1}

Classes: A Gentle INTRoducTion

Everything you learned above concerning C++ structures can be directly applied to classes. The only change
required to convert the Person struct to a class is to change the keyword struct to the keyword class. Observe the fol-
lowing new header file now named personclass.h:

1 #ifndef PERSON CLASS H 10.17 personclass.h
2 #define _ PERSON_CLASS_H

3

4 namespace HairColor{

5 enum HairColor {Black, Red, Auburn, Brown, Blond, Silver, Grey};

6 }

7

8 namespace EyeColor{

9 enum EyeColor {Black, Hazel, Blue, Brown};
10
11 } Change the keyword

12 const int NAMESIZE = 26; from struct to class...
13

14 class Person {

15 public:

16 void setFirstName (char* _f name);

17 void setLastName (char* _1 name);

18 void setHairColor (HairColor::HairColor _hair color);
19 void setEyeColor (EyeColor::EyeColor _eye color);
20 char* getFirstName () ;

21 char* getLastName () ;

22 char* getHairColor();

23 char* getEyeColor();

24

25 private:

26 char f name[NAMESIZE];

27 char 1 _name [NAMESIZE];

28 HairColor::HairColor hair color;

29 EyeColor::EyeColor eye color;

30 };

31 #endif

Two additional changes were made on lines 1 and 2 to reflect the fact that this header file now includes a class
declaration instead of struct declaration. Example 10.18 gives the implementation code for this class declaration. The
only changes made to it were to the name of the file, from personstruct.cpp to personclass.cpp, and to the name of the
#include file, from personstruct.h to personclass.h.

Example 10.19 gives the main() function that uses the Person class to create a Person object named Bob and per-

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 263

Classes: A Gentle Introduction Chapter 10: Toward Problem Abstraction

1 #include "personclass.h" 10.18 personclass.cpp
2 #include <string.h>

3

4 char HairColorStrings[][7] = {{"Black"}, {"Red"}, {"Auburn"}, {"Brown"}, {"Blond"},
5 {"Silver"}, {"Grey"}};

6

7 char EyeColorStrings [][7] = {{"Black"}, {"Hazel"}, {"Blue"}, {"Brown"}};

8

9

10 void Person::setFirstName (char* _f name) {

11 strcpy (f_name, _f name);

12}

13

14 void Person::setLastName (char* _1 name) {

15 strcpy (1_name, _1 name);

16 }

17

18 void Person::setHairColor (HairColor::HairColor _hair_color) {

19 hair color = _hair_color;
20 '}
21
22 void Person::setEyeColor (EyeColor::EyeColor _eye color) {
23 eye_color = _eye color;
24 '}
25
26 char* Person::getFirstName () {
27 return f_ name;
28 '}
29
30 char* Person::getLastName () {
31 return 1_name;

32 '}
33
34 char* Person::getHairColor () {

35 char* h_color = NULL;
36 switch(hair_color) {
37

38 case HairColor::Black : h_color = HairColorStrings[HairColor::Black];
39 break;

40 case HairColor::Red : h color = HairColorStrings[HairColor::Red];

41 break;

42 case HairColor::Auburn : h_color = HairColorStrings[HairColor::Auburn];
43 break;

44 case HairColor::Brown : h color = HairColorStrings[HairColor::Brown];
45 break;

46 case HairColor::Blond : h_color = HairColorStrings[HairColor::Blond];
47 break;

48 case HairColor::Silver : h_color = HairColorStrings[HairColor::Silver];
49 break;

50 case HairColor::Grey : h_color = HairColorStrings[HairColor::Grey];
51 break;

52 default : h_color = HairColorStrings[HairColor::Blond];

53 }
54 return h_color;
55 }
56
57 char* Person::getEyeColor () {
58 char* e _color = NULL;
59 switch(eye color) {

60 case EyeColor::Black : e _color = EyeColorStrings[EyeColor::Black];
61 break;

62 case EyeColor::Hazel : e_color = EyeColorStrings|[EyeColor::Hazell;
63 break;

64 case EyeColor::Blue : e _color = EyeColorStrings[EyeColor::Blue];
65 break;

66 case EyeColor::Brown : e _color = EyeColorStrings[EyeColor::Brown];
67 break;

68 default : e_color = EyeColorStrings[EyeColor::Blue];

69 }

70 return e_color;

71 '}

form a few operations on the Bob object. This main() function looks exactly like the main() function used to test the
struct version of Person. The one change to the main.cpp file is the name of the include file, from personstruct.h to
personclass.h.

264 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 10: Toward Problem Abstraction The Differences Between Structures & Classes

10.19 main.cpp testing

1 #include <iostream> Person class
2 #include "personclass.h"
3 using namespace std;
4
5 int main () {
6 Person Bob;
7
8 Bob.setFirstName ("Bob") ;
9 Bob.setLastName ("Smith") ;
10 Bob.setHairColor (HairColor: :Black);
11 Bob.setEyeColor (EyeColor::Blue);
12
13 cout<<"First Name: "<<Bob.getFirstName () <<endl
14 <<" Last Name: "<<Bob.getLastName ()<<endl
15 <<"Hair Color: "<<Bob.getHairColor ()<<endl
16 <<" Eye Color: "<<Bob.getEyeColor ()<<endl;
17
18 cout<<endl<<endl;
19 return O;
20 }

Quick Summary

I told you this would be a gentle introduction to classes! A struct has all the functionality of a class in C++ but
there are differences between the two. These differences are discussed in the next section. Programmatic differences
aside, the primary difference between the two forms of data types has more to do with how you think about designing
and writing programs. Starting now, unless there is a pressing need to put data elements in a struct, you can use
classes for all your abstract data type needs.

The Differences Between StrucTures & Classes

The differences between structures and classes are summarized in table 10.1.

Feature Structures Classes
Keyword struct class
Default member access public private
Used in object-oriented thinking No Yes

Table 10-1: Differences Between Structures and Classes

Pretty big table! If structures are used at all by C++ programmers it is to reinforce the notion that the type they
are creating is a simple aggregation. Using structs in this manner does not go against the grain of object-oriented pro-
gramming per se, but, as I said earlier, anything you can do with a struct can be done with a class.

Quick Summary

The syntactic and semantic differences between structures and classes lies in their keywords and default member
accessibility. How you think about programming with each makes all the difference in the world. To say more about
their differences would belabor the point!

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 265

Object-Oriented Thinking Chapter 10: Toward Problem Abstraction

Object-Oriented Thinking

Up to now, with the exception of the last two sections, all the material in this book has been presented from a pro-
cedural programming perspective. I did this deliberately, for as a C++ programmer, even though you will make the
intellectual leap to thinking in objects, you eventually have to implement your member functions, which ultimately
means putting one line of source code after another.

I took this pedagogical approach because if you are completely new to programming, or are approaching C++
with a procedural programming background, learning the syntax and the semantics of the language, while at the same
time having classes and objects forced upon you, makes for a steep learning curve. But now, all that is behind you.
You are here, reading this paragraph. You have learned the basics of the language. You know how to write procedur-
ally oriented programs in C++ and are ready for more excitement — ready to make the jump to object speed! I'm
ready if you are ready, so let us start with a whole new vocabulary. It is time for you to learn object speak!

Object Speak: A New Vocabulary

A change in thinking requires a vocabulary of new words with which you can express the wonderful new
thoughts you will soon have about the design and operation of programs. The following list will get you started. I
have used some of them in this and previous chapters in a subliminal attempt to alter your thought processes. These
words are testable:

Term Definition

Class | This word has several meanings. Primarily, the word class denotes a set of objects that share
common structure and behavior. A class declaration introduces a new user-defined data type
and specifies the structure and behavior of objects of that type.

Abstract Base Class | A class that contains one or more pure virtual functions. An abstract base class serves to publish
an interface. There can be no instance of an abstract base class.

Base Class | A class whose functionality is inherited by another class. A base class might be the most gen-
eralized class in a class inheritance hierarchy, but usually the term base class is applied to the
immediate class from which a derived class inherits its functionality. In object-oriented design,
general class functional characteristics are implemented in a base class with the intention of
making this general class functionality available for inheritance.

Superclass | Another term for base class.

Inheritance | The act of adopting the behavior of a particular class of objects by another class of objects.

Derived Class | A class that inherits functionality from one or more base classes.

Subclass | Another term for derived class.

Object | This term has several meanings. The term object fundamentally means a region of memory.
When a variable of a particular type is declared, a region of memory is set aside for the storage
of its contents. Every object created resides in a different region of memory. In the case of com-
plex user-defined class types, the memory regions occupied by class objects may be large com-
pared to fundamental data types like char, int, and float. The term object is also used when you
picture the interaction between object-oriented components in your mind. This is an example
of reducing the concept of an object to its most abstract form. An object in this sense is a com-
ponent in a complex system that interacts with other objects.

Interface | A publicly accessible set of functions intended to be the authorized way to access an object’s
functionality. In some cases, direct access to data members is provided. Doing so violates the
concept of data encapsulation.

Table 10-2: Object-Oriented Terminology

266 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 10: Toward Problem Abstraction Summary

Term Definition

Sending a message | Calling one of an object’s interface functions. When one object sends a message to another ob-

to an object | ject, the sender is simply calling one of several possible interface functions available for use in
the target object. The object sending the message is said to be the client while the object receiv-
ing the message is said to be the server.

Invoking a method | Calling one of an object’s interface functions.
on an object

Object-Oriented | The act of designing software in terms of objects and their interfaces. Ideally, all that you need
Analysis & Design | to know about an object-oriented software application to understand its operation at a concep-
tual level is the objects that comprise it and their public interfaces. The details are left to the
implementation.

Data Encapsulation | The act of shielding class data members from public access by declaring them private. A class’s
data members should not be shared horizontally or vertically, meaning they should not be made
available to objects of another class, as in a client server relationship, nor should they be shared
via inheritance.

Virtual Function A function declared in a base class that can be overridden in a derived class.

Table 10-2: Object-Oriented Terminology

This list of object-oriented vocabulary will grow as you progress through the remaining chapters of this book.

Summary

You can abstract the problem you are solving with a computer by declaring synonyms for existing data types or
designing your own. The typedef keyword lets you create a synonym for an existing data type making it better suited
to represent your problem domain. Enumerations are new types that allow integer values to be referenced by name.
Your compiler can be set to ensure you don’t try to assign an unauthorized state value to an enumerated type variable,
thus reducing the risk of making programming errors while at the same time making your source code easier to read
and manage.

Structures can be used in two ways: C-style, where only data members are contained in the structure, or C++-
style, where both data members and functions are placed in the structure. The C-style method of using structures is
based on a procedural programming mind set where data structures are defined separate from the functions that
manipulate those structures. It is a good idea to understand the C-style method in case you have to maintain legacy C
code.

Access structure data and function members using the dot “.” operator. If you have a pointer to a structure object
then use the short hand member access “->" operator. It is called the short hand operator because using it lets the com-
piler handle pointer dereferencing operations for you. The alternative to the “->" operator is to use the “.” operator in
conjunction with the “*” operator.

C++ structures have all the functionality of classes but differ in their default member accessibility. The default
member accessibility of structures is public, whereas the default member accessibility for classes is private. The pri-
mary difference between structures and classes lies in the way you think about programming.

A new way of programming requires a new way of thinking which, in turn, requires a new vocabulary. From now
on you will speak in object speak — do I make myself clear? Right! Now, go forth and do all the exercises. I will see
you in chapter 11.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 267

Skill Building Exercises Chapter 10: Toward Problem Abstraction

Skill Building Exercises

1. typedef: Use the typedef specifier to declare synonyms for the integer or float data types better suited to model data
from the domains below. For example, if the domain is Banking, and the data to model is Currency, then you could
create a type synonym with typedef in the following manner;

typedef float Currency;

Domain Data to Model
Banking Currency, Transactions
Physics Speed, Time, Velocity, Acceleration
Computers Operand, Opcode, Instruction
Chemistry ~ Molecules
Writing Words, Paragraphs, Sentences
Census Population
Government Laws, Statutes

Plumbing Fixtures

2. enum: a. Write the declaration for an enumerated type named Direction and give it the state values North, North-
East, East, South-East, South, South-West, West, & North-West. b. Write the declaration for an enumerated type
named PenPosition and give it the state values Down and Up.

3. enum: a. Write the declaration for an enumerated type named Safety and give it the state values Safe and Armed.
Assign Safe the value 1 and Armed the value 2.

4. structures: Give the declaration for a structure named BlockType that contains the following data members: An
array of 15 characters named Model, and two floats named height and width.

5. structures: Give the declaration for an Employee structure containing the following data members: Two character
arrays of length 26 named employee_f name and employee_I_name, a float member named pay_amount, and six
functions named setEmployeeFirstName, setEmployeeLastName, getEmployeeFirstName, getEmployeeLast-
Name, setEmployeePay Amount, and getEmployeePayAmount. Declare the data members private and the member
functions public.

6. structures: Give the declaration for a structure named RobotRat containing the following data members: Two ints
named row and col, an enumerated type variable named pen_position, and another enumerated type variable
named direction. The enumerated types for these variables were declared in Skill Building Exercise 2.

7. Array of structures: Using the Employee structure declared in skill building exercise 5, write a program that
declares an array of five employees and use each function to set the data members of each employee. Use a for loop
to add up all the employee pay amounts and print the value to the screen.

8. Array of pointers to structures: Convert the array program you wrote in the previous exercise to use pointers to
Employee objects. Dynamically create six Employees and call the functions to set their attributes. Sum the total of
their pay as you did before.

268 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 10: Toward Problem Abstraction Suggested Projects

9. classes: Convert the Employee structure to a class and rebuild your program. What changes did you have to make
to get it to compile and run?

10. Array of classes: Convert the array of Employee structs program you wrote in exercise 7 to an array of Employee
classes. What changes, if any, did you have to make to the program?

Suggested Projects

1. Library Manager: Write a program to keep track of your books. Declare a structure called Book that contains the
necessary data members to describe a book. A few of these data members might be named Title, Author, and ISBN,
etc. Allow users to save and load your library information from disk. The hardest part of this project will be deter-
mining how to represent the collection of books in memory. You might choose to use an array. You could also
explore some of the Standard Template Library collection classes that may make your life easier.

2. RobotRat Structure: Convert the RobotRat project implemented in chapter 3 to use a structure to represent the
RobotRat. The structure declaration for RobotRat was given as an exercise in skill building exercise 6.

3. Computer Simulator Structure: Convert the computer simulation project from chapter 9 to use a structure to rep-
resent the computer. The computer structure might include its memory, the program counter, and the accumulator.

Possible functions for the computer might include loadProgram(), runProgram(), fetch(), decode(), execute(), and
store().

4. Linked List: A special property of structures and classes in C++ is that the name of the structure or class can
appear in the body of the declaration. Consider the following example:

struct Node{
int item;
Node* previous;
Node* next;

}i

Here, the struct name Node appears in the body of the Node declaration to declare two Node pointers named
previous and next. This method is used to declare data structures fit for use in a linked list. Use the struct declara-
tion above to write a linked list. This is as much an exercise in the use of pointers as it is the use of structures. Here
are a few hints to get you started:

« Nexy -
i 1 5 . 3 Next

" \ T /
Head : \ | —X

G Nexy| / / i

Tail

Prev

The diagram above shows three Node objects inserted into a doubly linked list. There are two Node pointer
variables named Head and Tail. The Head pointer is set to point to the first Node object inserted into the list. The
Tail pointer should always point to the last Node object inserted into the list. The Node pointers in each Node
object are set to point to the previous Node object and the next Node object as required. Examine node 1 in the dia-
gram. The previous pointer points to Tail, which it should always point to, and the next pointer points to node 2.

You are to write functions that let you insert and remove nodes at or from any position in the list, and functions

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 269

Self Test Questions Chapter 10: Toward Problem Abstraction

that let you traverse the list both forward and backward.

5. Linked List: Convert the library program described in project 1 to use a linked list data structure. After completing
the project, write a brief paragraph describing why linked lists are a more efficient use of memory than an array.

Self Test Questions

—

. (T/F) The typedef keyword lets you create a new data type that better represents your problem domain.

2. (T/F) Enumerations are new data types.

w

. What type of operator would you use to access a structure object’s data or function members?
4. What type of operator would you use to access a structure object’s data or function members via a pointer?

[T

5. Describe how to use the ““.” operator in conjunction with the “*” operator to access a structure object’s data or func-
tions members via a pointer.

6. List and discuss the three major differences between structures and classes.

7. Describe the code changes that were necessary to convert the struct version of Person to the class version.

(o]

. Why do you suppose the default access for a class is private?
9. Define the term data encapsulation.

10. What is meant by the term interface?

References

International Standard, ISO/IEC 14882, Programming Languages — C++, First Edition 1998-09-01

Brian W. Kernighan, Dennis M. Ritchie. The C Programming Language. Second Edition. Prentice Hall, Engle-
wood Clifs, New Jersey, 1988. ISBN: 0-13-110370-9

Grady Booch. Object-Oriented Analysis and Design with Applications. Second Edition. The Benjamin/Cum-
mings Publishing Company, Inc., Redwood City, California, 1994. ISBN: 0-8053-5340-2

Paul J. Lucas. The C++ Programmer’s Handbook. Prentice Hall P T R, Englewood Cliffs, New Jersey, 1992.
ISBN: 0-13-118233-1

Robert C. Martin. Designing Object-Oriented C++ Applications Using the Booch Method. Prentice Hall, Engle-
wood Cliffs, New Jersey, 1994. ISBN: 0-13-203837-4

270 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 10: Toward Problem Abstraction Notes

Nortes

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 271

Notes Chapter 10: Toward Problem Abstraction

272 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chaprer 11

Streer Scene Opus ONe

Dissecring Classes

Learning ODbijecrives

* Siare the purpose and use of the class consirucr in C++

e List and describe the parts of a class declaration

* Siare the importance of 1he terminating semicolon of a class declararion

e Exphin how 10 use access speciliers To control horizonil member access

* Stare 1he funcrion and purpose of CONsSTRUCTORS

* St 1he purpose and use of overloaded consiructors

e Exphin how 10 overload consructors

* Explain how 1o use the initializer list 10 initialize class amribures

* St the purpose and use of destructors

e Exphin how 10 overload class member funcrions

* Explain the impormance of separating The class interface from its implemeniation
e Explain low 10 call class member funcrions from within class member funcrions
e Urilize complex class constructs in your C++ prROGRAMMING PROJECTS

o Urilize initializer lists 10 initialize class ammribures

e List and define e following rerms: constructor, destructor, defaulr consmructor, overloaded consiructor, and
overloaded funcrions

C++ For Artists ©2003 Rick Miller — All Rights Reserved 273

Introduction Chapter 11: Dissecting Classes

INTROducTiON

This chapter deals exclusively with the C++ class construct. Here you will learn about data encapsulation, hori-
zontal member access, special member functions, initializer lists, member function overloading, and data member
accessor and mutator functions. I will also introduce you to the Unified Modeling Language (UML) class diagram.
All the material presented here is intended to give you a solid foundation for further study of C++ in the context of
good object-oriented design.

You caught a glimpse of data encapsulation in action in chapter 10. There, structure and class data members were
declared private to prevent unauthorized access. The material in this chapter continues that discussion and shows you
how to control the horizontal access granted to a class’s data and function members using the access specifiers public,
and private. The protected access specifier is covered in detail in chapter 13.

Something you did not see in the previous chapter were the special member functions called constructors and
destructors. Constructors are used to initialize class objects to some known state. There should be no surprises regard-
ing the state of instance data members when an object is created. Destructors are used to free any resources allocated
for an object’s use during its lifetime. An initializer list is an extremely important part of a class constructor because it
is the only place where class constants can be initialized. You will also need to know about initializer lists when you
get to chapter 13.

Just as regular functions can be overloaded, so too can class member functions including constructors. You will
learn several good reasons for doing so. You will also learn how to write class accessor and mutator functions to
access and manipulate class data members.

The Unified Modeling Language is considered the standard for object-oriented software design. In this chapter I
will introduce you to the UML class diagram. You will find it helpful to express your design ideas in pictures, espe-
cially when working with large numbers of classes. A full treatment of the UML is beyond the scope of this book, but
if you are interested in learning more I suggest starting with one of the UML references listed at the end of chapter.

The Class Construct

The class sits at the root of all object-oriented thinking. When you declare a new class you are declaring a new
data type from which objects can be created and used in a program. This is nothing new; you were exposed to structs
and classes in chapter 10, and you’ve seen fundamental data types like char, int, and float used to create variables for
use in programs as well.

What is new, however, is how you begin to think of classes and their relationship to other classes in a software
system. In a complex software system, a class type, or several class types, will be declared and used to create one or
more objects. An object in this sense is like a simple variable created from a fundamental data type; it could be
intended to be used alone, but more than likely it is designed to be used in conjunction with other class type objects.
Hence, a class type object is different from an object created from a fundamental data type because of the expanded
role it can play in a software system. A class type object can send or receive messages to itself or to other class type
objects, something ordinary objects created from fundamental data types cannot do.

Parts Of A Class Declaration

Example 11.1 shows the various parts of a typical class declaration. The class declaration introduces a new data
type. It begins with the class keyword followed by an identifier that forms the class name. I am not going to tell you
how to name your classes, however, convention suggests that typographically they begin with a capital letter, and cap-
italize the first letter of each word that appears in the name. Grammatically, they should be singular noun names. Note
the following examples:

Person

Employee
FuelPump
RotorShaftSensor

274 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 11: Dissecting Classes The Class Construct

11.1 parts of a typical

Name of the class class declaration

class ClassName ({

public:
ClassName () ; Constructor
~ClassName () ; Destructor

//place other public interface
//function declarations here

The body of the class
Acce.s y protected: declaration contains
specifiers everything between the

//place protected function

//declarations here opening and closing

braces.

private:
int itsAttribute;
//place private data members and
//private member function
//declarations here

Don’t forget the semicolon!

The body of the class is that area between the opening and closing braces. In the body will appear any and all
data member declarations and member function declarations. Convention suggests placing all public interface func-
tions at the top of the class body. Since the default access to class members is private, this requires the use of the pub-
lic access specifier. Class-wide constants can be, and usually are, given public access, and are placed along with the
public interface functions under the public access specifier.

Protected functions are placed under the protected access specifier. The protected access specifier is used prima-
rily to prevent horizontal access but allow vertical access to protected members by derived classes. In this sense it
works exactly like the private access specifier from a horizontal access perspective.

Private data members and functions are placed under the private access specifier. Often times member functions
are declared private as well as data members. I will show you why this is good design practice later in the section on
access specifiers.

Under the public access specifier appear two special purpose function declarations. A constructor and a destruc-
tor. These functions are special for several reasons, but mainly, they have the same name as the class in which they
appear. Constructors and destructors are covered in detail below.

Whatever you do, do not forget to put the semicolon after the closing brace of a class declaration. The compiler
errors you get may be cryptic and it will be by dumb luck alone that, having exhausted every possible remedy to the
problem, you decide to look to your class declaration one more time for relief. And then you notice, it is not there.
You type the semicolon and compile, and a thousand compiler errors magically disappear. You have been warned, but
the lesson will not have been learned until you make the mistake yourself.

A Minimum Class Declaration

Although example 11.1 shows a typical class declaration, the following line of code declares a complete class
although it doesn’t do very much!

class Foo{};
Given this class declaration you could now use it to create Foo objects. The compiler will create both a default

constructor and destructor, but, since there are no data members or member functions, the best you can do with Foo is
create Foo objects and destroy them.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 275

Class Member Functions Chapter 11: Dissecting Classes

Place Class Declarartions In Separate Header Files

Get into the habit of placing class declarations in header files. There should be only one class declaration per
header file. Doing so makes finding a particular declaration easier than if you had placed several declarations in one
header.

The UML Class Diagram

The UML representation for the class ClassName given in example 11.1 above is shown in figure 11-1 below:

ClassName
“-" indicates private -itsAttribute: int integer type
“+” indicates public +C|aSSName():
+~ClassName():

Figure 11-1: UML Representation for the Class ClassName

UML classes are easy to draw and require no special software to create. You could use a pencil and paper to cre-
ate them although if you plan on doing serious object-oriented analysis and design I recommend purchasing a good
UML design tool such as Object Plant , Describe , or Rational Rose .

Referring to figure 11-1, a class is drawn as a rectangle with several compartments. The upper compartment con-
tains the name of the class. The compartment below that contains the class’s attributes, and the one below that con-
tains the class’s member functions. A minus sign in from of an attribute or member function name indicates private
accessibility. A plus sign in front of an attribute or member function name indicates public accessibility.

The attribute named itsAttribute is declared to be of type integer as indicated by the keyword int following the
colon to the right of its name. The constructor and destructor are declared to return no type as indicated by the lack of
a return type to the right of their colons.

Class diagrams can be constructed from one or more UML classes. A class diagram pictorially represents the
static relationship between classes in a software application. Figure 11-2 shows a class diagram for a simple navy
fleet simulation application.

The Conceprs of State And Behavior

When designing object-oriented software you will think of objects as having state and behavior.

Objecr State

An object’s state is indicated by the value of its attributes at any given time during the object’s lifetime. Change
an attribute’s value during an object’s lifetime and you change its state. Access to object attributes should be provided
through class interface functions; object attributes should never be exposed for direct manipulation because they are
considered an implementation detail.

Objecr Behavior

An object derives its behavior through the implementation of its class interface functions so it is a good idea to
give class interface functions names that reflect the behavior they will produce when called.

Class Member Funcrions

A class declaration introduces a new user-defined data type that can contain both attributes and functions. This

276 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Class Member Functions

Classes

issecting

D

Chapter 11

uonesr[ddy uonenuwig 399 AaeN o[dwis e jo weiderd sse[) NN :¢-11 23]

100 :()snieISIUBId 10D+
pIoA :()uodeapy ~aul4+
pioA :()uodeap\"ures| +
PIoA :(Jiueld " umoaINyS+
pIoA :(iueld HOwBIT+
:()diygeorpNG~+

:(,Jeyo :aweNay} ¢ g<,uodespn >10j09A :Aeuyuodeapauy} ¢ Biueld ueiday) Jdiys eoeung+

|00q :()snieISTIUBId 1O+

pIoA :()uodeapy a4+

pIoA :(Juodeapy~ured 1 +

PIOA :()iueld " umoginys+

pioA :(iueld HowBIT+

:(Jounewgng~+

i Jeyo :aweNay} ‘ g<,uodespy >10}00A :Aeslyuodeapau} ¢ RIUB|ld [JUB|JaY} JauewWANS+

T unoo-
JByo :aweNs)-

0T junoo-
LJByO :oWENSH-

diys~aoeung

auueWQNS

100g :()snjeis el 100+

PIOA :()juBld~umoQINyS+

PIOA :()iueld " HOWBIT+

:()lueld suIqin SEO~+

:(,4BeYd :|9pOaY})iueld BUIGIN | SED+

100q :Snyejs-
TTunoo-
+1BUD :[9POINSH-

jue|ddUIqIN SBD

(1 IBYD JOPONBU) luEld NN+

100 :()snjelgTIueld 1OD+
PIOA :()iueld " UMOQINYS+
PIOA :()1ueldHJOwWBI T+
{(ueldodNN~+

|00q :snjels-
Orunoo-
LJBUD :[OPONSH-

jueid 3NN

V

pioA :(Juodeapy a4+
ploA :(Juodeapy~ures] +
:()opadio] ~+

A wursielngauy) * seyo jopojaur Jopadio+ || :(i sieingeus * ey

pioA :()uodespy—au4+
pIoA :(Juodeap~ures) +
:()uouy~anI4~+
PO})You| BAI4+

Juljunoo-
Wi ssielngsy-
IBY0 :[aPONSH-

0T 1unoo-
i spe|ngsy-

1By [opONSH-

|00q :()snjelg Iueld 10D+
PIOA :()iuBld~uMOINYS+
ploA :(JueldBOMwbIT+

jue|d

opadio] youj anl4
100 :()snjelSjueld 190+
PIoA :(Jueld~umoQinys+
PIOA :()1ueld " HOWBIT+
‘(ueld”wealg~+ =
SJaU) JIUBlqWesIS+ Eo?o:onmm& all4+
pIOA :(Juodeapy"ures 1+
|00q :shyejs- ()smio~+
T Tunoo- :(U1 :s19|ingay) * Jeyo :[apojNaY))SMIO+
1y Isdsi- < <
jurjunoo-
jue|d weals p<,uodeapn>10j00n :()Aeyuodeapien# i isje|ngsy-
BIUeld :(Jueldion# Jeyd :|apOSH-
100 :()snjejS jueld 1o+ M)
pioA :(Juodeap ~ali4+ -
ploA :(Juodeap~ures 1+
PIoA :()iueld umoainys+
plo :()iueld OB+
:()lossop~+
:(g<,uodeap) >10100 :Aelly " UodBONBY} ‘ BIUEBIH JUB|4BU))|OSSOA+
B<,uodeap>10}09A ALy uodeapsy-
— RUB|d JUB|4SH- pIoA :(Juodeapy—aud+
[ossan pioA :()Juodeap\"ures| + A_

uodeap

277

©2003 Rick Miller — All Rights Reserved

C++ For Artists

Class Member Functions Chapter 11: Dissecting Classes

section focuses on the declaration and definition of class member functions of which there are two general types: spe-
cial member functions and all the rest. The special member functions include default and copy constructor, copy
assignment operator, and destructor. All the rest include any additional functions required to give class objects their
desired behavior. Before discussing special member functions I want to touch briefly on how member functions
access class data members.

Class Member Funcrion Access 1o Class Arributes

Class member functions behave as regular functions do, so all the material you learned in chapter 9 still applies.
However, because class member functions belong to a particular class of object they will have direct access to all
class attributes. In this regard it is helpful to think of a class attribute as being globally declared to be visible to all
class member functions. And, just as with regular functions, any parameters or local function variables having the
same names as class attributes will hide those class attributes.

Obmnining Access 1o Class Arrributres From A Member Funcrion

A class attribute is a static class variable of which only one copy exists to be shared by all instances of that class.
To access a class attribute from within a member function simply use the class attribute name. If the attribute name is
masked by a local function variable prefix the class name and the scope resolution operator to the attribute name like
so:

ClassName::class_attribute name

Obmnining Access 1o Instance Artributes from A Member Funcrion

A non-static class attribute is an instance attribute and each class instance object will have its very own copy of
the attribute. To access an instance variable in a member function simply use the variable’s name. If you have
declared a local function variable with the same name as the instance attribute then you can prefix the keyword this
and the indirection operator to the instance attribute’s name as shown here...

this->instance_ attribute name
...which is the shorthand method of doing the following:
(*this) .instance attribute name

Special Member Funcrions

A class has four types of special member functions: default constructor, copy constructor, copy assignment oper-
ator, and destructor. Special member functions are used when objects are created, copied, and destroyed.

If you do not explicitly declare and define these special member functions in your classes they will be created by
the compiler, but their default behavior may or may not be what you expect. As a rule, you should implement each of
the four special member functions for all classes you write. Doing so will ensure your class objects are well-behaved.
The idea of well-behaved objects is covered in great detail in chapter 17.

CONSTRUCTOR

A constructor is a special member function that is called automatically when an object of a particular class type is
created. A constructor has exactly the same name as the class to which it belongs. There can be more than one con-
structor per class. A constructor has no return value type, not even void. A default constructor is a constructor with
either no parameters or one whose parameters all have default values, meaning it can be called with no arguments.
The default constructor is discussed in more detail below.

278 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 11: Dissecting Classes Class Member Functions

Purpose of A Construcior

The purpose of a constructor function is to initialize a class object to some known state when the object is cre-
ated. By initialization I mean all of an object’s instance attributes should set to an acceptable value; there must be no
surprises regarding the state of an object’s attributes.

Defavlr Consrucror

A default constructor is a constructor that requires no arguments. If you do not explicitly define a default con-
structor for a class, a compiler-defined default constructor will be used instead. Compiler-supplied default construc-
tors perform basic class data member initialization. Relying on compiler-supplied constructors to properly initialize
class objects is usually a big mistake.

Overloading ConstrRuCTORS

Constructors can be overloaded, just like ordinary functions, so that class objects can be initialized in different
ways.

Constructor Initializer List

A constructor initializer list provides an expedited way to initialize class attributes. A constructor initializer list is
a set of attribute initializers that appears between a colon and the opening brace of the constructor function body. The
following code shows an example:

ClassName::ClassName () :attribute_1(initializer val), attribute_ 2 (initializer_val), ...,
attribute_n(initializer val) {
//constructor body
}

If the only purpose for a particular constructor is object attribute initialization then all initializations can be per-
formed in an initializer list and the body of the constructor can remain empty.

There are three reasons for using an initializer list. First, when you simply want to initialize data members. Ini-
tializations performed in the initializer list are guaranteed to be performed before the body of the constructor exe-
cutes. Second, when you need to call a base class constructor. This use of an initializer list in this regard will be
discussed in greater detail in chapter 13. Last, when you need to initialize class or instance constants. Constants must
be initialized in an initializer list since they must be initialized when they are created.

TestClass Example

Example 11.2 shows the contents of a header file named testclass.h that declares a class named TestClass.
TestClass will be used to demonstrate constructors and will be modified later to demonstrate copy constructors, copy
assignment operators, and destructors.

. 11.2 testclass.h
1 4#ifndef TEST CLASS H

2 #define TEST CLASS H

3

4 class TestClass{

5 public:

6 TestClass (int const _val = 25, int i val = 0);
7 int getConstVal () ;

8 void setI(int i wval);
9 int getI();
10
11 private:
12 const int CONST VAL;
13 int i;
14 };
15 4#endif

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 279

Class Member Functions Chapter 11: Dissecting Classes

Referring to example 11.2, TestClass is declared to have four public interface functions and two private data
members. One data member is a constant, the other a variable.

The first public function is the constructor declared on line 6. This is an example of a default constructor in that
its two parameters have default values assigned to them. This means that if no arguments are supplied to the construc-
tor when it is called, it will use the default values to initialize the data members. Since the CONST_VAL data member
is a constant, it must be initialized in an initializer list. Notice too that the constructor has no return type.

The other three functions set or retrieve the object attributes indicated by their names.

Example 11.3 gives the source code for the testclass.cpp file.
11.3 testclass.cpp

1 #include "testclass.h" colon starts initializer list
2 finclude <iostream>
3 using namespace std;
4
5 TestClass::TestClass (int const val, int i wval) :CONST VAL (const val),
6 i(i val){
7 Cout<<"CONST_VAL = "<<CONST_VAL<<endl;
8 cout<<" i = "<<i<<endl;
9 comma separates initializers
10
11 int TestClass::getConstVal () {
12 return CONST_ VAL;
13}
14
15 wvoid TestClass::setI(int i wval) {
16 i =1 val;
17 }
18
19 int TestClass::getI() {
20 return 1i;
21 '}

Focus first on the TestClass constructor defined on line 5. The default values are not repeated in the function def-
inition. The colon marks the beginning of the initializer list. Each data member is initialized with its corresponding
parameter using constructor notation. Take for example the first initializer CONST_VAL(const_val). CONST_VAL is
the name of the data member CONST_VAL, and const_val is the name of one of the constructor parameters. The
value of const_val is used to initialize CONST_VAL. The data member i is initialized after CONST_VAL and the two
initializers are separated by a comma. i_val appears below CONST_VAL in this example only because of space limi-
tations, but this is a good example of how you should line wrap initializers to aid readability. The body of the con-
structor appears after i_val and contains two output statements. Example 11.4 shows a main() function using
TestClass to create several different TestClass objects using different forms of the constructor.

#include "testclass.h" 11.4 main.cop

using namespace std;

int main () {
TestClass tl, t2(45, 5), t3(3);
return 0;

N oYy o W N =

In this example, three TestClass objects are created. The first, t1, is created with no arguments, therefore both
instance attributes will be initialized to default values. The second object, t2, is created using two arguments. Notice
how parenthesis are used to call the constructor. The value 45 will be used to initialize CONST_VAL, and the value 5
will be used to initialize i. The third object, t3, is created with one argument. Which instance attribute will be set? The
answer is found by studying the output of the program shown in figure 11-3.

The argument value 3 used to create t3 is used to initialize the const_val parameter, which is used to initialize
CONST_VAL as can be seen above.

280 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 11: Dissecting Classes Class Member Functions

=—TesiClass.out.out =98
COMET_MAL = 25
i =@
COMST_WAL = 45
i =5

CONST_YAL = 3 "
i=a

| -

i

Figure 11-3: Results of Running Example 11.4

Copy CoNnsTRUCTOR

The copy constructor is a constructor that is used to create a new instance object using an existing instance object
as a guide. The first argument to a copy constructor must be a reference to an instance of the class for which it is
defined.

Purpose of 1he Copy Constructor

The purpose of the copy constructor is similar to a regular constructor in that it is used to create a new object,
using an existing object’s attribute values to initialize the new object’s attributes. The copy constructor is not intended
for human use, rather, it is the constructor that will be used when objects are passed to functions by value. An exam-
ple of its use is shown in example 11.7.

Overloading Copy ConstruCTORs

Copy constructors can be overloaded just like regular constructors but you rarely see this done in practice.

TestClass Example Extended

Example 11.5 shows the TestClass declaration extended to include a copy constructor.
11.5 testclass.h

1 #ifndef TEST_CLASS_H

2 #define TEST_CLASS_H

3

4 class TestClass{

5 public:

6 TestClass (int const_val = 25, int i_val = 0);
7 TestClass (TestClass& tc_obj);
8 int getConstval();

9 void setI(int i_val);

10 int getI();

11

12 private:

13 const int CONST_VAL;

14 int i;

15 };

16 #endif

The copy constructor declaration appears on line 7. The only parameter to the copy constructor in this example is
a reference to a TestClass object named tc_obj.

Example 11.6 gives the code for the revised testclass.cpp file and example 11.7 gives the code for the revised
main() function showing the copy constructor in use.

Referring to example 11.6, the copy constructor definition appears on line 11. Since TestClass functions have
direct access to TestClass data members, the attributes of the copy constructor parameter tc_obj can be directly
accessed via the dot operator and used to initialize the attributes of the new object being created.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 281

Class Member Functions Chapter 11: Dissecting Classes

11.6 testclass.cpp

1 #include "testclass.h"
2 #include <iostream>
3 using namespace std;
4
5
6 TestClass::TestClass(int const_val, int i_val) :CONST_VAL (const_val), 1i(i_val){
7 COUt<<"CONST_VAL = "<<CONST_VAL<<endl;
8 cout<<" i = "<<i<<endl;
9 }
10
11 TestClass::TestClass(TestClass& tc_obj) :CONST_VAL(tc_obj.CONST VAL), i(tc_obj.i){
12 cout<<"CONST_VAL = "<<CONST_VAL<<endl;
13 cout<<" i = "<<i<<endl;
14 '}
15
16 int TestClass::getConstVal () {
17 return CONST_VAL;
18 }
19
20 void TestClass::setI(int i _wval) {
21 i =1i_val;
22 '}
23
24 int TestClass::getI() {
25 return i;
26}
11.7 main.cpp
1 #include <iostream>
2 #include "testclass.h"
3 using namespace std;
4
5 int main () {
6 TestClass tl, t2(45, 5), t3(3);
7 TestClass td(t2);
8 return 0;
9

Referring to example 11.7, the copy constructor is exercised on line 7 by creating a new TestClass object named
t4 using t2 as an argument. The results of running this program are shown in figure 11-4.

ToctlMNlace nnt nnt =
Tegillass, out nut =
—1
CONST_WAL = 25 =l
i =@ -]
COMST_VAL = 45 |
i =5 |
COMST_WAL = 3 —
i =8 =
CONST_VAL = 45 -
i =5 é?

Figure 11-4: Results of Running Example 11.7

Copy AssiGNmenT OpeRATOR

The copy assignment operator is an overloaded assignment “="" operator. The topic of overloading operators is
formally presented in chapter 14 but because the copy assignment operator is considered a special member function I
will discuss it here.

The copy assignment operator declaration takes the following form:

ClassName& operator=(ClassName& rhs);

282 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 11: Dissecting Classes Class Member Functions

It returns a reference to an object of type ClassName, where ClassName is the name of the class in which the
function is declared. The copy assignment operator declares one parameter of type reference to ClassName. Here the
parameter is named rhs which stands for “right hand side”. Now, you could name the parameter any name you want to
but I like to name overloaded operator parameters rhs for the reasons you will see shortly.

Purpose of the Copy Assignment Operator

The purpose of the copy assignment operator is to change the values of an existing object’s attributes to those of
another existing object’s attribute values.

Using 1he Copy Assignment Operator

The copy assignment operator is used like an ordinary assignment operator. For example, when the copy assign-
ment is overloaded for TestClass objects, one object’s attributes can be set to equal another object’s attributes in the
following manner:

t3 = t4;

Let’s see a complete example of the copy assignment operator declared and implemented for TestClass.

TestClass Example Extended

Example 11.8 shows the TestClass declaration with the copy assignment operator function added on line 8.

1 #ifndef TEST_CLASS_H 11.8 testclass.h
2 #define TEST CLASS H

3 _ _

4 class TestClass({

5 public:

6 TestClass (int const_val = 25, int i val = 0);
7 TestClass (TestClass& tc_obj);

8 TestClass& operator=(TestClass& rhs);

9 int getConstVal();
10 void setI(int i_val);
11 int getI();
12
13 private:
14 const int CONST_VAL;
15 int 1i;
16 };

17 #endif

Example 11.9 shows the testclass.cpp file with the copy assignment operator function definition added. The function
declaration begins on line 16. Notice that only the value of i is altered. That’s because CONST_VAL cannot be
changed because it is a constant, and constants can only be set in a constructor initializer list.

Example 11.10 shows the code for the main() function where the copy assignment operator is used to assign the
value of t1 to t2. The assignment takes place on line 8 and two extra lines of code were added to print out the values
of t2 after the assignment.

The results of running example 11.10 are shown in figure 11-5.

DestrucTor

The last type of special member function is the destructor. The destructor function has the same name as the class
in which it is declared with the tilde “~” character prefixed to the name. Note the following example of a destructor
declaration:

~ClassName ()
The destructor takes no arguments and returns no value. A destructor is never called directly, although when a

dynamically created object is released with the delete operator its destructor is called. Otherwise, destructors are auto-
matically called when objects go out of scope like at the end of a block or when a program ends.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 283

Class Member Functions

O o U W N =

W o U W N =

#include "testclass.h"
#include <iostream>
using namespace std;

TestClass::TestClass (int const_val, int i_val) :CONST_ VAL (const_val), 1i(i_val){
cout<<"CONST_ VAL = "<<CONST_VAL<<endl;
cout<<" i = "<<i<<endl;

}

TestClass::TestClass (TestClass& tc_obj) :CONST_VAL (tc_obj.CONST_VAL), 1i(tc_obj.i)({
COUut<<"CONST_VAL = "<<CONST_VAL<<endl;
cout<<" i = "<<i<<endl;

}

TestClassé& TestClass::operator=(TestClass& rhs) {
i = rhs.i;
return *this;

}

int TestClass::getConstVal () {
return CONST_VAL;
}

void TestClass::setI(int i_val) {
i =1i_val;

}

int TestClass::getI() {
return i;

}

#include <iostream>
#include "testclass.h"
using namespace std;

int main () {
TestClass tl, t2(45, 5), t3(3);
TestClass td(t2);

t2 = tl;

cout<<"CONST VAL = "<<t2.getConstVal ()<<endl;
cout<<" i = "<<t2.getI()<<endl;

return 0;

TestClass.out.out
COMST_WAL = 25
i =@
COMST_YAL = 45
i=a
COMST_MAL = 3
i=a
COMST_WAL = 45
i =5 —
COMST_WAL = 45]
i=a]
' Z

Figure 11-5: Results of Running Example 11.10

Purpose of Destructors

Chapter 11: Dissecting Classes

11.9 testclass.cpp

11.10 main.cpp

The purpose of a destructor is to release any resources allocated for an object’s use when it was created. An

example of such a resource is dynamically allocated memory. If an object uses dynamically allocated memory during

284

©2003 Rick Miller — All Rights Reserved

C++ For Artists

Chapter 11: Dissecting Classes Class Member Functions

its lifetime then it should insure that all such memory is freed up when it is destroyed. This is the purpose of the
destructor.

TestClass Example Extended

Example 11.11 gives the source code for the TestClass declaration with the destructor function declaration

added.
11.11 testclass.h

1 #ifndef TEST CLASS H

2 #define TEST CLASS H

3

4 class TestClass/{

5 public:

6 TestClass (int const val = 25, int i val = 0);
7 TestClass (TestClass& tc_obj);

8 TestClass& operator=(TestClassé& rhs);
9 ~TestClass () ;
10 int getConstVal();
11 void setI(int i val);
12 int getI();
13
14 private:
15 const int CONST VAL;
16 int i;
17 };
18 #endif

The destructor function declaration appears on line 9. Since there is no dynamic memory or other resources to
release the destructor will be utilized to print a short message to the screen indicating that the objects were destroyed.

The modified testclass.cpp file is given in example 11.12.
11.12 testclass.cpp

1 #include "testclass.h"

2 #include <iostream>

3 using namespace std;

4

5

6 TestClass::TestClass (int const_val, int i_val) :CONST VAL (const_val), 1i(i_val){
7 COut<<"CONST_VAL = "<<CONST_VAL<<endl;

8 cout<<" i = "<<i<<endl;

9}

10

11 TestClass::TestClass(TestClass& tc_obj) :CONST_VAL(tc_obj.CONST_VAL), i(tc_obj.i){
12 COUt<<"CONST_VAL = "<<CONST_VAL<<endl;

13 cout<<" i = "<<i<<endl;

14 1}

15

16 TestClass& TestClass::operator=(TestClass& rhs) {
17 i = rhs.i;

18 return *this;

19 }

20

21 TestClass::~TestClass() {

22 cout<<"Goodbye cruel world! TestClass object destroyed."<<endl;
23}

24

25 int TestClass::getConstVal () {

26 return CONST_VAL;

27 '}

28

29 void TestClass::setI(int i_val) {

30 i =1i_val;

31 }

32

33 int TestClass::getI(){

34 return 1i;

35 }

There is no reason to modify the previous version of the main() function; the one shown in example 10.10 is still
good. Running the program now produces the results shown in figure 11-6.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 285

Class Member Functions Chapter 11: Dissecting Classes

TestClass.out.out

Tl

CORSTMAL = 23

i =8
CONSTMAL = 45

i=8
COMST VAL = 2

i =8
COMSTMAL = 45

i =5
COMST_MAL = 45

i =8
Goodbyge cruel world! TestClass object destroyed. |
Goodbue cruel world! TestClass object destroued. —
Goodbye cruel world! TestCloss object destroyed. il
Goodbye crual world! TestClass object destroyed. 2

Figure 11-6: Results of Running Example 10.10 Again

Now that the destructor is declared and defined for TestClass you can see when each object is destroyed as the
program terminates. You will see destructors used in ever-expanding roles as you progress through the text.

Behavior of Defaulr Special Funcrions

Now that you know a little something about the four special function types I’d like to show you their default
behaviors. As I said above, if you fail to implement the special functions in your classes the compiler will provide
default versions for you. Their behavior may not be what you need or expect. I will demonstrate this by showing you
a class called SimpleClass, whose declaration is given in example 11.13.

#ifndef SIMPLE CLASS H
#define SIMPLE CLASS H

11.13 simpleclass.h

[y

class SimpleClass{
public:
void setI(int i _wval);
int getI();
private:
int 1i;
}i
#endif

N O LWy W

==

The SimpleClass declaration leaves out the constructor, copy constructor, copy assignment operator, and destruc-
tor. The only two interface functions provided are a mutator function to set the value of i and an accessor function to
get the value of i.

The implementation file simpleclass.cpp is shown in example 11.14.
11.14 simpleclass.cpp
1 #include "simpleclass.h"

2
3 wvoid SimpleClass::setI(int i val){ i = i val;}
4 int SimpleClass::getI () {return ij;}

Example 11.15 gives a main() function showing each of the special functions being tested, and the results of run-
ning the program are shown in figure 11-7.

Referring to example 11.15, when the SimpleClass object s1 is created on line 6 the compiler-supplied construc-
tor is utilized to initialize s1’s instance attribute i. But, what value will i be initialized to? The answer is found in fig-
ure 11-7. It is not initialized to anything; s1’s i attribute contains the garbage value found in memory when it was
created. This is the default initialization behavior.

On line 8 the mutator function setl() is used to set the value of s1’s i attribute. The accessor function is used on
line 9 to see if the change was successful, and it was.

286 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 11: Dissecting Classes Class Member Functions

11.15 main.cpp

1 #include <iostream>

2 #include "simpleclass.h"

3 using namespace std;

4

5 int main () {

6 SimpleClass sl;

7 cout<<"sl = "<<sl.getI()<<endl;

8 sl.setI(5);

9 cout<<"sl = "<<sl.getI()<<endl<<endl;
10
11 SimpleClass s2(sl);
12 cout<<"s2 = "<<s2.getI()<<endl<<endl;
13
14 SimpleClass s3;
15 cout<<"s3 = "<<s3.getI()<<endl;
16 s3 = sl;
17 cout<<"s3 = "<<s3.getI()<<endl;
18 return 0;
19 1}

=——— SimplelClass.out.out ==

51 = —F3423308 |
=1 =5 ‘
52 =2 |
53 = —2039835 Zl
=3 =5 -
= = —

Z

Figure 11-7: Results of Running Example 11.15

Next, a new SimpleClass object named s2 is created on line 11 using the compiler-supplied copy constructor and
the s1 object as a guide. On line 14 a new object named s3 is created and on line 16 the compiler-supplied copy
assignment operator is used to assign the value of s1 to s3. This works because SimpleClass objects contain one sim-
ple object of a fundamental data type. The type of copying performed by the default copy constructor and copy
assignment operator is referred to as a shallow copy. Shallow copy works for simple data types, but not for complex
objects with pointers to other objects.

When the program ends the compiler-supplied destructor is called for each of the SimpleClass objects but this is
not evidenced by the output shown in figure 11-7.

Quick Summary

There are four special functions: default constructor, copy constructor, copy assignment operator, and destructor.
The default constructor is a constructor that has either no parameters, or all parameters have default values so it can
be called with no arguments. The copy constructor is used to create new objects from existing objects. The copy
assignment operator sets the attributes of an existing object to the attribute values of another existing object. The
destructor is used to tear down or destroy an object when it is no longer needed by the program.

Default, compiler-supplied versions of these functions may not perform as you intend for your class objects so
you should implement each special function to ensure proper special function behavior. The objective of implement-
ing the special functions explicitly is to have well-behaved objects.

Accessor ANd Mutator Funcrions

Generally speaking, if a function is not one of the special member functions providing creation, copy, assign-
ment, or destruction services, then it is an accessor or mutator function. TestClass has three such functions already

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 287

Using Access Specifiers To Control Horizontal Member Access Chapter 11: Dissecting Classes

implemented: getConstVal(), setl(), and getl(). These functions deal exclusively with either setting or getting the
value of a particular instance attribute. In the case of TestClass, these three public functions, along with the special
functions, constitute the range of behavior expected of a TestClass object.

Accessor Funcrions

Accessor functions provide behavior while preserving the state of the object. Accessor functions may simply
return the value of an object or class attribute, or it may base its behavior on the state of one or more object or class
attributes and return something different, like a status value, or return nothing at all. The key concept is that an acces-
sor function can be called to perform some operation while not messing with things inside the object.

Accessor functions can be written in many ways to reflect the behavior they produce. If a function is to simply
return an attribute’s value the function name can either begin with the word get followed by the name of the attribute
whose value it is getting. Another way of writing the function is to leave off the word get and simply use the name of
the attribute. This method actually produces easy-to-read code. Compare the following code samples:

if (obj.i() == some value) {//do something}
if (obj.getI() == some value){//do something}

Rerurning Boolean Values

If an accessor function returns a boolean value then by convention its name can start with the word is. For exam-
ple:

if (obj.isTempHigh()){//do something}

Muraror Funcrions

Mutator functions provide behavior and change the state of the object in the process. A simple mutator function,
like the one named setl() in TestClass, may only make a change to one class or object attribute and do nothing more.
Complex mutator functions may make bold changes to an object’s state in order to provide complex behavior. Simple
mutator functions can begin with the word set, followed by the name of the attribute’s value they are changing. Com-
plex mutator functions should be named to reflect both the behavior they produce and the values they change. Here
are a few examples:

void setFirstName (char* £ name);
void changelLastName (char* 1 name);
float addFuelAndReturnLevel (float fuel to add);

Quick Summary

Accessor functions implement object behavior without changing the state of an object. Mutator functions imple-
ment object behavior while at the same time changing an object’s state.

Using Access Specifiers To Control Horizontal Member Access

There are three access specifiers: public, protected, and private. They are all used to control both horizontal and
vertical access to an object’s data and function members. This section deals exclusively with horizontal access; verti-
cal access is discussed in detail in chapter 13.

288 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 11: Dissecting Classes Using Access Specifiers To Control Horizontal Member Access

The Concepr of Horizontal Access

Horizontal access is the access an object of a particular class type has to the data members and member functions
of another object of a different class type. Figure 11-8 gives an illustration.

|
Method

Object A — Object B

Method
(Client) Tt ° (Server)

Method

Figure 11-8: Horizontal Access

Object A could actually be something other than an object. For instance, when in a main() function, an object of,
say, SimpleClass is created and one of SimpleClass’s public functions is invoked, then the main() function is horizon-
tally accessing an object of type SimpleClass. The object requesting the access is considered the client object; the
object providing the access is considered the server object.

Dara Encapsularion

Data encapsulation is the act of hiding an object’s data members from the outside world. As shown in figure 11-
8, access to the functionality of an object should be through a set of functions or methods, such as accessor functions,
mutator functions, or one of the special functions. At no time should a client object be allowed to muck around with a
server object’s private parts. The only information a client object needs to know about a server object to use it effec-
tively is its public interface. A set of public interface functions is referred to as an Application Programming Interface
(APD).
Access Specifiers

The three access specifiers are briefly discussed below in the context of horizontal access.

The Public Access Specifier

Public accessibility enables horizontal access. Any data member or member function declared as being public is
horizontally accessible by client objects. Generally speaking, the only parts of an object that should have public
accessibility are its authorized public interface functions.

The Protecred Access Specifier

Protected accessibility prevents horizontal access. Horizontally speaking, protected access is the same as private

access.

The Private Access Specifier

Private accessibility prevents horizontal access.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 289

Overloading Class Member Functions Chapter 11: Dissecting Classes

Overloading Class Member Funcrions

Class member functions can be overloaded just like ordinary functions. Three of the four special member func-
tions can be overloaded with the only exception being the destructor. In this section I will introduce you to member
function overloading and show you a few examples of how you do it and, more importantly, demonstrate to you why
you would want to overload a member function.

Funcrion SigNATURES

Class member functions have function signatures just like ordinary functions. A function’s signature is deter-
mined by the number and type of its parameters. An overloaded member function is a function having the same name
as another member function but a different function signature. The following functions are overloaded:

float computeSum(float a, float Db);

float computeSum(float arrayl[]);

Both functions have the same name, computeSum(), but the first function takes two floats as arguments while the
second function takes an array of floats. You can overload a function name as many times as required, which leads to
the obvious question.

Why would you want 10 overload member funcrions?

There are several good reasons to overload class member functions. The primary reason to overload is to obtain
different functionality via one function name. Take for example a class constructor function. By overloading a class
constructor you allow the creation of class objects in different ways. An alternative to overloading the constructor is
to provide default values for all constructor parameters. This creates a default constructor that can be called with no
arguments or with as many arguments as required. You saw an example of this in the constructor section above. The
presence of a properly done default constructor generally eliminates the need to overload the constructor for the pur-
pose of initializing objects in different ways.

Another reason to overload member functions is to provide one set of class public interface functions and another
set of functions having the same names as a private interface. These private interface functions would be available
only to other member functions within the class.

Let us take a look at an example of a class with overloaded member functions. Example 11.16 gives the header
file for a class named Foo.

The Foo class does not do much but it does a nice job of illustrating some important concepts. A Foo object will
have two attributes: an integer i and a float f. There is a class-wide static variable named foo_count which will be used
to keep track of how many Foo objects exist. In addition to the private attributes there are two private member func-
tions named printl() and printF(). Because these functions are declared private they, like the private attributes, are
only accessible by other member functions. In other words, they are not horizontally accessible.

Two public functions incrementl() and incrementF() are overloaded. Calling either with no parameters will result
in the associated attribute being incremented by one. Calling either function with an argument will result in the asso-
ciated attribute being incremented by the argument’s value.

Example 11.17 gives the Foo class implementation file. The two private member functions printl() and printF()
are called by the printAttributes() function located on line 38. The foo_count static variable is used to keep track of
the number of Foo objects there are in existence. Notice how it is used in the constructor, copy constructor and
destructor. Keeping track of the number of objects comes in handy in many ways.

Example 11.18 shows Foo class objects being used in a main() function. Figure 11-9 shows the output obtained
by running example 11.18.

290 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 11: Dissecting Classes

C++ For Artists

[SSIEN N NN, BTN CURE R

Overloading Class Member Functions

#ifndef FOO H 11.16 foo
#define FOO H
class Foo{
public:
Foo(int ival = 0, float fval = 0.0);
Foo (Foo& f object);
Foo& operator=(Foo& rhs);
~Foo ();
voild printAttributes();
void setI(int ival);
void setF (float fval);
void incrementF () ;
void incrementF (float increment value);
void incrementI () ;
void incrementI (int increment value);
private:
static int foo_ count;
int 1i;
float £;
void printI();
void printF();
bi
fendif
1 #include "foo.h" 11.18 main.cpp
2
3 int main () {
4 Foo f1(1, 2.5), f2(f1), £3;
5 f3 = f1;
6
7 fl.printAttributes();
8 f2.printAttributes();
9 f3.printAttributes();
10
11 fl.incrementI ();
12 fl.incrementF ();
13 fl.printAttributes();
14
15 fl.incrementI (5);
16 fl.incrementF (5.5);
17 fl.printAttributes();
18
19 return O;
20 }

©2003 Rick Miller — All Rights Reserved 291

Overloading Class Member Functions

1 #include "foo.h"
2 #include <iostream>
3 using namespace std;
4
5 int Foo::foo_count = 0;
6
7 Foo::Foo(int ival, float fval): i(ival), f(fval){
8
9 if ((++foo_count) == 1)
10 cout<<"There is "<<foo_count<<" foo object."<<endl;
11 else
12 cout<<"There are "<<foo_count<<" foo objects."<<endl;
13 }
14
15 Foo::Foo(Foo& f_ object) {
16 i = f _object.i;
17 f = f _object.f;
18
19 if ((++foo_count) == 1)
20 cout<<"There is "<<foo_count<<" foo object."<<endl;
21 else
22 cout<<"There are "<<foo_count<<" foo objects."<<endl;
23 }
24
25 Foo& Foo::operator=(Foo& rhs) {
26 i = rhs.i;
27 f = rhs.f;
28 return *this;
29 }
30
31 Foo::~Foo () {
32 if ((-—foo_count) == 1)
33 cout<<"There is "<<foo_count<<" foo object."<<endl;
34 else
35 cout<<"There are "<<foo_count<<" foo objects."<<endl;
36 }
37
38 void Foo::printAttributes () {
39 printI();
40 printF () ;
41 }
42
43 void Foo::setI(int ival) {
44 i = ival;
45 }
46
47 void Foo::setF (float fval) {
48 f = fval;
49 }
50
51 void Foo::incrementF () {
52 f += 1.0;
53 }
54 void Foo::incrementF (float increment value) {
55 f += increment_value;
56 }
57 void Foo::incrementI () {
58 ++1;
59 }
60
61 void Foo::incrementI (int increment_value) {
62 i += increment_value;
63 }
64
65 void Foo::printI() {
66 cout<<"The value of i = "<<i<<endl;
67 }
68
69 void Foo::printF () {
70 cout<<"The value of f = "<<f<<endl;
71 }

292

©2003 Rick Miller — All Rights Reserved

Chapter 11: Dissecting Classes

11.17 foo.cpp

C++ For Artists

Chapter 11: Dissecting Classes Separating A Class’s Interface From Its Implementation

=—— MuerloadedFunctions.out.out =H
There is 1 foo object. =
There are Z foo objects. |
There are 2 foo objects.

The walus of i =1

The walus of f = 2.5

The walue of i =1

The walue of f = 2.5

The walue of § =1

The walue of f = 2.5

The wvalue of | = 2

The walue of f = 3.5

The walue of § =7

The wvalue of £ =9 al
There are 2 foo objects. —
Thare is 1 foo cbject. Il
There are B foo objects. %

Figure 11.9: Results of Running Example 11.18

SeparaTing A Class’s INTerface From Its ImplementaTion

The public member functions declared in a class declaration form the authorized interface to a particular class.
Class declarations should be placed in separate header files, thus separating the class interface from its implementa-
tion. There are many reasons why you will want to do this and a few of them are discussed below.

Manage Physical Complexity

Class header files should be named to reflect the class declaration they contain. Take the Foo class as an example.
Its declaration appears in a file named foo.h. Its implementation appears in a file named foo.cpp. It is admittedly hard
to see the utility in doing this for small numbers of classes but when the complexity of your software project grows,
so too grows the number of classes you will have to keep track of and hunt down for additions and modifications. You
will see an example of this in the next chapter.

Allow 1he Creartion of Code Libraries

Keeping class declarations in separate header files allows you to create code libraries. These libraries can take the
form of a dynamic linked library (DLL) or static library. The benefit to creating code libraries is that you can keep
your secret algorithm to yourself while allowing others to benefit from its use. You simply create the library, keep
your implementation file to yourself, and distribute the library with the header file. Anyone wishing to use your class
library simply includes your header file and links to your library code.

A Complere Example: Class Person

Class Person is a complete example that includes most of the class functionality described in this chapter. Nota-
ble exceptions are the lack of overloaded or private member functions. Person objects use dynamic memory alloca-
tion to hold string values for a person’s name. Because a person object dynamically allocates memory a person
destructor must release the memory when a person object is destroyed. The Person class diagram is given in figure
11-10.

Example 11.19 gives the code for the person.h header file. Example 11.20 shows Person objects being created
and used in a main() function. Example 11.21 gives the code for the person.cpp file. Showing the use of Person class
objects after showing the class declaration emphasizes the fact that to use an object requires knowledge of its inter-
face only, not its implementation.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 293

A Complete Example: Class Person

1
2

34

294

Person

-f_name: char*
-I_name: char*
-m_name: char®

-sex: char

-age: int

-full_name: char*
-name_changed: bool

+Person(_f_name: char*, _m_name: char*, _|_|
+~Person():

+Person(person: Person&):
+operator=(rhs: Person&): Person&
+setFirstName(f_name: char*): void
+setMiddleName(m_name: char*): void
+setLastName(|_name: char*): void
+setAge(age: int): void

+setSex(sex: char): void
+getFullName(): char*

+getFirstName(): char*
+getMiddleName(): char*
+getLastName(): char*

+getSex(): char

+getAge(): int

|_name: char*, _sex: char, _age: int):

Figure 11-10: Person Class Diagram

#ifndef _ Person_H
#define _ Person H

class Person{

public:

Person(char* _f name = "John", char* _m name = "M",
char* _1 name = "Doe", char _sex = 'M',

~Person () ;
Person (Person& person);
Person&operator=(Person& rhs);

void setFirstName (char* f name);
void setMiddleName (char* m_ name) ;
void setLastName (char* 1 name);
void setAge (int age);
void setSex (char sex);
char* getFullName () ;
char* getFirstName () ;
char* getMiddleName () ;
char* getLastName () ;
char getSex();
int getAge () ;
private:

char* f name;
char* 1 name;
char* m_name;

char sex;

int age;

char* full name;
bool name_changed;

bi
#endif

©2003 Rick Miller — All Rights Reserved

Chapter 11: Dissecting Classes

11.19 person.h

18);

C++ For Artists

Chapter 11: Dissecting Classes A Complete Example: Class Person

1 #include"person.h" 11.21 person.cpp
2 #include"person.h"
3 #include <string.h>
4
5 Person::Person(char* _f name, char* _m name, char* _1 name, char _sex, int _age
6):sex(_sex),
7 age (_age), name_changed(true), full name (NULL) {
8 f_name new char[strlen(_f name)+1];
9 strcpy (f_name, _f name);
10
11 m_name new char[strlen(_m name)+1];
12 strcpy (m_name, _m name);
13
14 1_name new char[strlen(_ 1 name)+1];
15 strcpy (1_name, _1 name);
16
17 '}
18
19 Person::~Person () {
20 delete[] f name;
21 delete[] m_name;
22 delete[] 1_name;
23 delete[] full name;
24 '}
25
26 Person::Person(Person& person) :name_changed(true), full name (NULL) {
27 f _name = new char([strlen(person.f name)+1];
28 strcpy (f_name, person.f name);
29
30 m_name = new char[strlen(person.m_name)+1];
31 strcpy (m_name, person.m_name);
32
33 1_name = new char[strlen(person.l name)+1];
34 strcpy (1_name, person.l_name);
35
36 sex = person.sex;
37 age = person.age;
38
39 }
40
41 Person& Person::operator=(Person& rhs) {
42 delete[] f_name;
43 f name = new char[strlen(rhs.f name)+1];
44 strcpy (f_name, rhs.f name);
45
46 delete[] m_name;
47 m_name new char[strlen(rhs.m name)+1];
48 strcpy (m_name, rhs.m_name);
49
50 delete[] 1 name;
51 1_name = new char[strlen(rhs.l_name)+1];
52 strcpy (1_name, rhs.l name);
53
54 name_changed = true;
55
56 return *this;
57
58 }
59
60 void Person::setFirstName (char* f_ name) {
61 delete[] this->f name;
62 this->f name = new char[strlen(f_name)+1];
63 strcpy (this->f name, f_name);
64
65 name_changed = true;
66
67 '}
68
69 void Person::setMiddleName (char* m name) {
70 delete[] this->m name;
71 this->m name = new char[strlen(m name)+1];
72 strcpy (this->m_name, m_name);
73
74 name_changed = true;
75
76 '}

C++ For Artists ©2003 Rick Miller — All Rights Reserved 295

Summary

77 void Person::setLastName (char* 1_name) {

78 delete[] this->1 name;

79 this->1 name = new char[strlen(l_name)+1];
80 strcpy (this->1 name, 1 name);

81

82 name_changed = true;

83 }

84

85 void Person::setAge(int age) {

86 this->age = age;

87 '}

88

89

90 void Person::setSex(char sex) {

91 this->sex = sex;

92 }

93

94 char* Person::getFullName () {

95

96 1f ((full_name != NULL) &é& (!name_changed))
97 return full name;

98 else {

99

100 delete[] full name;

101 full name = new char([(strlen(f_name) + strlen(m_name)
102 + strlen(l_name) + 7)];
103

104 strcpy (full_name, f_name);
105 strcat (full_name, " ");
106 strcat (full_name, m_name);

107 strcat (full_name, " ");
108 strcat (full_name, 1 _name);
109

110 name_changed = false;
111 return full name;
112 }

113
114
115 '}

116
117 char* Person::getFirstName(){ return f name;}
118

119
120 char* Person::getMiddleName () { return m name;}
121

122
123 char* Person::getLastName () { return 1 _name;}
124

125
126 char Person::getSex(){ return sex;}
127

128

129 int Person::getAge () { return age;}

Chapter 11: Dissecting Classes

11.21 person.cpp
continued

Summary

A class declaration introduces a new data type. A class type object is different from a fundamental data type

object because of the expanded role it can play in a software system.

There are four special functions: default constructor, copy constructor, copy assignment operator, and destructor.
The default constructor is a constructor that has either no parameters, or all parameters have default values so it can
be called with no arguments. The copy constructor is used to create new objects from existing objects. The copy
assignment operator sets the attributes of an existing object to the attribute values of another existing object. The
destructor is used to tear down or destroy an object when it is no longer needed by the program. It is especially impor-
tant to use the destructor to release any system resources an object may have access during its lifetime. An example of

such a system resource is dynamic memory.

Default, compiler-supplied versions of these functions may not perform as you intend for your class objects so
you should implement each special member function to ensure proper object behavior. The objective of implementing

the special functions explicitly is to have well-behaved objects.

296 ©2003 Rick Miller — All Rights Reserved

C++ For Artists

Chapter 11: Dissecting Classes

W~y WN =

#include <iostream>
#include "person.h"
using namespace std;

int main() {

}

Person pl;

cout<<pl.getFirstName () <<endl;
cout<<pl.getFullName () <<endl;

pl.setFirstName ("Bob") ;

pl.setMiddleName ("Raymond") ;
pl.setLastName ("Basmahranian");

<"
<"
<"
<"

cout<<pl.getFullName (
cout<<pl.getFullName (
cout<<pl.getFullName (
cout<<pl.getFullName (

Person p2(pl);

cout<<pl.getFullName ()<<"
cout<<p2.getFullName () <<"
cout<<p2.getFullName () <<"

"<<pl.
"<<pl.
"<<pl.
"<<pl.

"<<pl.
"<<p2.
"<<p2.

p2.setFirstName ("Richard");
p2.setMiddleName ("Warren") ;

p2.setLastName ("Miller");

cout<<p2.getFullName () <<"
cout<<pl.getFullName ()<<"

Person p3;

pl=p3;
cout<<pl.getFullName ()<<"
cout<<p2.getFullName () <<"

cout<<p3.getFullName () <<"

return 0;

"<<p2.
"<<pl.

"<<pl.
"<<p2.
"<<p3.

<"
<"
<"
<"

getAge (
getAge (
getAge (
getAge (

getAge () <<"
getAge () <<"
getAge () <<"

getAge () <<"
getAge () <<"

getAge () <<"
getAge () <<"
getAge () <<"

"<<pl.
"<<pl.
"<<pl.
"<<pl.

"<<pl.
"<<p2.
"<<p2.

"<<p2.
"<<pl.

"<<pl.
"<<p2.
"<<p3.

getSex (
getSex (
getSex (
getSex (

<<endl;
<<endl;
<<endl;
<<endl;

getSex () <<endl;
getSex () <<endl;
getSex () <<endl;

getSex () <<endl;
getSex () <<endl;

getSex () <<endl;
getSex () <<endl;
getSex () <<endl;

Skill Building Exercises

11.20 main.cpp

Accessor functions implement object behavior without changing the state of an object. Mutator functions imple-
ment object behavior while at the same time changing an object’s state.
There are three member access specifiers: public, protected, and private. The public access specifier allows hori-
zontal access to class and instance data members and member functions. The protected access specifier allows access
vertically but blocks horizontal access. Vertical access is discussed in detail in chapter 13. The private access specifier
blocks both horizontal and vertical access.

Data encapsulation is the act of declaring data members private and supplying public interface functions to
manipulate or access those data members.

Class member functions can be overloaded, and class member functions can call other class member functions.
Sometimes it is a good idea to supply private member functions that are called by the public class interface functions.

It is good programming practice to declare classes in separate header files. Doing so affords better control of a

project’s physical complexity and enables the creation and distribution of class library code.

Skill Building Exercises

1. Create Person Project: Create a project in your IDE and test the Person class code given in examples 11.19 -
11.21. Expand on the code in the main.cpp file and create additional Person objects with different attributes. Use
the new operator to create Person objects using dynamic memory allocation.

2. Class Bar: Declare a class named Bar using the Foo class in this chapter as a guide. Declare a constructor, copy
constructor, copy assignment operator, and a destructor. Declare one or more private data members and any neces-
sary public accessor and mutator functions. Put the class declaration in a separate header file named bar.h, and the

C++ For Artists

©2003 Rick Miller — All Rights Reserved

297

Suggested Projects Chapter 11: Dissecting Classes

class function implementations in a file named bar.cpp. Write a main() function and test your Bar objects.

3. Research: Do further research on different UML diagrams. Specifically, learn about statechart diagrams, object
diagrams, sequence diagrams, and use case diagrams.

4. Obtain UML Tool: Obtain a shareware UML tool or download a commercial tool for limited use. Use the Person
class as a guide and define a class with the same name using the UML design tool. When you have finished the
design generate the source code and examine the resulting output. How does it compare with the original Person
code?

5. Object Modeling: Examine the world around you and select several candidate objects to model in software. Deter-
mine the type of attributes and behavior each object has and translate your findings into one or more class declara-
tions. Implement one or more or your classes and write a main() driver function to test your classes by creating and
using objects. Refer to the examples in this chapter as a guide. Make sure to implement all the special class func-
tions. Be sure to encapsulate data by declaring class data members private and class member functions public.

6. Array of Person Pointers: Create an array of pointers to Person objects. Dynamically allocate Person objects
using the new operator and assign their addresses to the array elements. Using the array elements and the “->”
operator, call functions on Person objects.

Suggested Projects

1. Robot Rat Redesign: Redesign the RobotRat project of chapter 3 so that several RobotRat objects can be created
and moved around on one floor at the same time.

2. Computer Simulator: Convert the computer simulator described in chapter 8, suggested project 4, to a class.

3. Research: Study your IDE documentation and convert the Person class into either a static library or dynamically
linked library. Use the library in another project to create Person objects.

Self Test QuesTions

1. What is the primary difference between primitive data type objects and class objects?

2. List the four special class member functions and describe the function of each. Which three of the four special
functions can be overloaded?

3. List the three access specifiers. Describe how each access specifier affect horizontal access.
4. In your own words define the term horizontal access.

5. What is the difference between accessor and mutator functions?

6. What is the purpose of the this pointer?

7. What is the difference between a static class-wide variable and an instance variable?

8. Describe how member functions can be overloaded.

298 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 11: Dissecting Classes References

9. List and discuss two benefits of separating class interface from class definition. Can you think of any other bene-
fits?

10. How would you access an instance variable masked by a local function variable of the same name?

References

International Standard, ISO/IEC 14882, Programming Languages — C++, First Edition 1998-09-01

Brian W. Kernighan, Dennis M. Ritchie. The C Programming Language. Second Edition. Prentice Hall, Engle-
wood Cliffs, New Jersey, 1988. ISBN: 0-13-110370-9

Grady Booch. Object-Oriented Analysis and Design with Applications. Second Edition. The Benjamin/Cum-
mings Publishing Company, Inc., Redwood City, California, 1994. ISBN: 0-8053-5340-2

Paul J. Lucas. The C++ Programmer’s Handbook. Prentice Hall P T R, Englewood Cliffs, New Jersey, 1992.
ISBN: 0-13-118233-1

Robert C. Martin. Designing Object-Oriented C++ Applications Using the Booch Method. Prentice Hall, Engle-
wood Cliffs, New Jersey, 1994. ISBN: 0-13-203837-4

Craig Larman. Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and the
Unified Process. Prentice Hall, Englewood Cliffs, New Jersey, 2002. ISBN: 0-13-092569-1

Notes

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 299

Notes Chapter 11: Dissecting Classes

300 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chaprer 12

Sailor IN The Straw Har

Compositional Design

Learning ODbijecrives

* Explain how 10 design complex classes using user-defined abstract dara Types

* Describe the concepr of aGGregation

* Siare 1he relationship between aGGregarion and objecr liferime

* Explain the difference berween conmins by value and conmins by reference

* Describe the concepr of sivple AGGregation

* Describe the concepr of composite AGGREGATION,

* Explain How 1o implement message passing benween objecrs

* Explain how 10 urilize pointers and references in the desigy of complex classes
* Explain how 10 express aGGregarion in UML noration

« Stare 1he purpose and use of A UML seguence diaGram

* Demonstrate your ability 1o use sivple and composite AGGregation 1o implement C++ pROGRAMMING PROJECTS

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 301

Introduction Chapter 12: Compositional Design

INTROducTiON

Rarely is an application comprised of just one class. In reality, applications are constructed from many classes.
This chapter introduces you to the concepts and terminology associated with building complex application behavior
from a collection of classes. This is referred to as compositional design or design by composition.

The study of compositional design is the study of aggregation and containment. You will learn the two primary
aggregation associations: simple and composite.

In this chapter you will also learn how to extend the UML class diagram to describe the static relationship
between classes in a complex application. To do this you will need to know how to express simple and composite
aggregation visually.

The study of aggregation also entails learning how the whole class accesses the services of its part classes. The
concept of message passing and sequencing will be demonstrated by introducing you to a new type of UML diagram
known as the sequence diagram.

Managing Physical Complexity

From this point forward the applications you will see as examples in this chapter will be more complex than any-
thing you have seen before. Now, more than ever, you will come to rely on the technique of separating the class inter-
face from its implementation. Placing class declarations in separate header files significantly aids your ability to
manage the physical complexity of large C++ projects.

AGGREGATION

Class behavior can be implemented by building upon the behavior provided by other classes. In other words, a
class type object can contain other class type objects. A class built upon the functionality of other classes is referred to
as an aggregate class type or aggregation. There are two types of aggregation: simple and composite. Aggregation is
also referred to as a “has-a” or a “uses-a” relationship between the whole class and its part classes where the whole or
aggregate class uses the services of its part classes.

Simple vs. Composite AGGREGATION

The aggregation relationship is expressed in terms of the whole class and the part class. Given two classes, class
B and class A, if class B contains class A then class B is referred to as the whole class and class A is referred to as the
part class.

The Relationship Berween AGGregation and Objecr Liferime

The primary difference between simple and composite aggregation lies in who controls the lifetime of the object.

Simple AGGregation

A simple aggregate object does not control the lifetimes of its part objects. Part objects involved in simple aggre-
gations can be associated with more than one aggregation.

Composite AGGREGATION

A composite aggregate object controls the lifetimes of its part objects. Part objects involved in composite aggre-
gations cannot be associated with more than one aggregation.

302 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 12: Compositional Design Aggregation

AgGregation Exavple Code

Example 12.1 gives the class declarations for class A that will be used to demonstrate the two different types of
aggregation. Class A will be the contained or part class. Example 12.2 shows the implementation code for class A
which would be in a file named a.cpp

1 #ifndef CLASS A H 12 ah
2 #define CLASS A H
3
4 class A {
5 public:
6 A();
7 ~A();
8 };
9 #endif
1 #include <iostream> 122a.cpp
2 using namespace std;
3 #include "a.h"
4
5 A::A(){
6 cout<<"An object of type A created!"<<endl;
7}
8
9 A::~A(){
10 cout<<"An object of type A destroyed!"<<endl;
11)

Class A is relatively simple. All it does is print a message to the screen when a class A object is created and
destroyed. These messages will come in handy for learning about the behavior of aggregate objects.

Composite AGGregation Example

Example 12.3 gives the class declaration for class B containing a class A object. Class B is the aggregate or
whole class and class A is the part class. Said another way, an object of type B has an object of type A.

1 #ifndef _CLASS B H 123bh
2 #define CLASS B H

3 #include "a.h"

4

5 class B{

6 public:

7 B();

8 ~B();

9 private:
10 A its_aj Object of type A declared
11 };
12 #endif

Example 12.4 shows the implementation code for class B. It looks exactly like the implementation code for class
A except the name of the class has changed.

Example 12.5 gives the code for a main() function that creates a class B object and figure 12-1 shows the results
obtained from running the program.

Let us pause here for a moment of discussion. Study figure 12-1. Notice how the A object’s constructor was

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 303

Aggregation Chapter 12: Compositional Design

124 b.cpp
1l finclude <iostream>
2 using namespace std;
3 #include "b.h"
4
5 B::B(){
6 cout<<"An object of type B created!"<<endl;
7}
8
9 B::~B(){
10 cout<<"An object of type B destroyed!"<<endl;
11 %
12.5 main.cpp

#include <iostream>
using namespace std;
#include "b.h"

int main () {
B bl;
return 0;

[SSEEN NG NG, BTN CURE\ R

A created!
Ar object of type B created!

B destroged

A destroyed

sS4 |im

Figure 12-1: Results of Running Example 12.5

called prior to the B object’s constructor. From this experiment we can deduce that ordinary part objects will be cre-
ated before the whole aggregate object is created. An important distinction to make here is that object creation is not
complete until the constructor has finished executing. The important thing to take away from this example is that the
life of a part object is controlled by the composite aggregate whole object. Notice in example 12.5 that only a B object
is created. This causes the creation of B’s part object. For an object with part members to be fully created, all of its
part members must first be created.

Another Composite AGGregation Example

The B class will be slightly modified to show another why to create aggregate objects using pointers. Example
12.6 gives the code for the modified class B declaration.

The only change made to the B class declaration appears on line 10. B’s private data member was changed from
an A object to a pointer to an A object. The name of the identifier was also changed to reflect its new role as a pointer.

Example 12.7 shows the modified class B implementation code.

Several changes were made to this file. First, the code on line 6 was added to the constructor to explicitly create
the A object and assign its address to its_a_ptr. The second change is to the destructor. The code on line 11 was added
to explicitly call the A object’s destructor by deleting the pointer.

The result of running example 12.5 again is shown in figure 12-2.

304 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 12: Compositional Design Aggregation

1 #ifndef CLASS B H 1260k
2 #define CLASS B H
3 #include "a.h"
4
5 class B{
6 public:
7 B();
8 ~B();
9 private:
10 A *its a ptr;
11 };
12 4#endif
1 4#include <iostream> 12.7 b.cpp
2 using namespace std;
3 #include "b.h"
4
5 B::B(){
6 its _a ptr = new A();
7 cout<<"An object of type B created!"<<endl;
8 }
9
10 B::~B(){
11 delete its a ptr;
12 cout<<"An object of type B destroyed!"<<endl;
13 '}

Il
i)

Containment By Reference.out.out

An object of type A created!
An cbject of type E created!
An object of type A destroyed!
An object of type B destraged!

F Y

L

7

Figure 12-2: Results of Running Example 12.5 Again

The order of the messages in figure 12-2 is of minor importance. Special code is added to the constructor and
destructor to create and destroy B’s A object. Let us now take a look at a simple composite class.

Simple Aggregation Example

To demonstrate simple aggregation the A and B class files will be once again modified. Example 12.8 gives the
source code for the revised a.h file.

The only change to the A class declaration is the addition of another public function on line 8 named sayHi(). The
modified a.cpp file is shown in example 12.9.

The sayHi() function definition begins on line 13. All it will do is print a simple message to the screen. Now, in
addition to the constructor and destructor messages, any object that contains an A object will be able to call the A
object’s sayHi() function. The modified B class declaration is given in example 12.10.

Two modifications were made to the B class declaration. A parameter is added to the B constructor function of
type pointer to A. When a B object is created it will expect to be passed the address of an A object. The second modi-

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 305

Aggregation Chapter 12: Compositional Design

1 #ifndef CLASS A H 128ah
2 #define CLASS A H
3
4 class A {
5 public:
6 AQ);
7 ~A();
8 void sayHi();
9 1}
10 #endif
1 #include <iostream> 12.9 a.cpp
2 using namespace std;
3 #include "a.h"
4
5 A::A(){
6 cout<<"An object of type A created!"<<endl;
7}
8
9 A::~A(){
10 cout<<"An object of type A destroyed!"<<endl;
11 1}
12
13 wvoid A::sayHi() {
14 cout<<"Hi!"<<endl;
15 1}
1 #ifndef CLASS B H 12.10b.h
2 #define CLASS B H
3 #include "a.h"
4
5 class B{
6 public:
7 B(A *a ptr);
8 ~B();
9 void makeContainedObjectSayHi () ;
10 private:
11 A *its a ptr;
12 }i
13 fendif

fication is the addition of one additional public function named makeContainedObjectSayHi(). This seems to be a lit-
tle long winded for a function name but it accurately reflects the purpose of the function and hints at its intended
behavior when called. The modified b.cpp implementation file is shown in example 12.11.

Several modifications were made to b.cpp. First, the code to create and destroy the A object from the constructor
and destructor was removed. Since a pointer to an A object will be passed to a B object when one is created that code
was no longer required. This emphasizes that the lifetimes of A objects are clearly not at the mercy of B objects. Next,
the constructor was modified to add an initializer list to initialize the A class pointer data member named its_a_ptr.
Lastly, the makeContainedObjectSayHi() function is implemented beginning on line 14. Notice that just a touch of
error checking was introduced. If, for some reason, a B object is fed a NULL pointer when it is created, it would be a
mistake to try and call any functions using its_a_ptr since it would be initialized to NULL. If its_a_ptr is not a NULL
value then the sayHi() function is called on the contained-by-reference object via the shorthand pointer member
access operator “->.

306 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 12: Compositional Design Extending the Class Diagram

12.11 b.cpp

1 #include <iostream>

2 using namespace std;

3 #include "b.h"

4 #include "a.h"

5

6 B::B(A *a ptr):its_a ptr(a_ptr){

7 cout<<"An object of type B created!"<<endl;
8 }

9
10 B::~B(){
11 cout<<"An object of type B destroyed!"<<endl;
12 }
13
14 void B::makeContainedObjectSayHi () {
15 if(its_a ptr != NULL)
16 its a ptr->sayHi();
17 }

All that is left now is to look an a main() function that uses the new versions of the A and B classes. Example
12.12 gives the code.
#include <iostream> 12.12 main.cpp
using namespace std;
#include "b.h"
#include "a.h"

int main () {

A al;

al.sayHi();

B bl (&al);
10 bl.makeContainedObjectSayHi () ;
11 return 0;

O 0 N oy W N =

Starting on line 7, an A object named al is created and on the next line the sayHi() function is called to demon-
strate the existence of the A object outside of the B object. Next, a B object is created and its constructor is called with
the address of the A object obtained by using the & operator. On line 10 the makeContainedObjectSayHi() function is
called on the B object. This in turn calls the sayHi() function by using the pointer to the A object as shown on line 16
of example 12.11 above.

Extending The Class Diagram

The UML class diagram can be used to show static relationships between classes in a software application. Fig-
ure 12-3 shows the UML class diagram for classes A and B as they appear in their final form in code examples 12.8
and 12.10.

The line between class B and Class A denotes an association. The open diamond placed at the class B end of the
association denotes simple aggregation. The B class is the whole aggregate comprised of an A class part.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 307

Sequence Diagrams Chapter 12: Compositional Design

A B
+A(): Ol -its_a_ptr: A*
+~A(): Part Whole B A)
S +B(a_ptr: A*):
+sayHi(): void +~B():

+makeContainedObjectSayHi(): void

Figure 12-3: UML Diagram Illustrating Simple Aggregation

Seouence Diagrams

UML sequence diagrams are a great way to show graphically the order of object messaging activity in an appli-
cation. Figure 12-4 shows a sequence diagram illustrating the messaging between the main() function, class B object
bl, and class A a object al as shown in the code example 12.12.

main() b1 ail

T
1

~AQ

Construction Message

BQ

Construction Message

makeContainedObjectSayHi()

sayHi()

= -
(— 1 1
1 1 1

Figure 12-4: UML Sequence Diagram Illustrating Message Passing Between Objects

The main() function creates an A object and by doing so calls the A constructor. This is shown as an A() message
being sent from main() to the al object. The result of the constructor call is the constructor message which is shown
in the sequence diagram as a message from al back to the main() function labeled Constructor Message. Next, the bl
object is created in similar fashion. Once the b1 object is created the main() function sends it the makeContainedOb-
jectSayHi() message. The bl object processes this message by sending the sayHi() message to the al object (via the
pointer). When the program terminates the destructors are called on the al and bl objects. This is not shown in the
diagram.

Quick Summary

There are two forms of aggregation: simple and composite. In simple aggregation the whole object does not con-
trol the lifetime of its part objects. This means that part objects could play a role in more than one aggregate relation-
ship. In composite aggregation the whole object controls the lifetime of its part objects. This means it controls their
creation and destruction. Composite aggregates can be formed from simple part objects, part objects allocated
dynamically, or from a combination of both. Composite aggregates control the lifetimes of their part objects; simple
aggregates do not.

The UML class diagram can be used to illustrate aggregate relationships. A line between classes denotes an asso-
ciation. A diamond is placed at the composite end of the association line denoting aggregation. A hollow diamond
indicates simple aggregation; a solid diamond indicates composite aggregation.

The UML sequence diagram is used to illustrate message passing between objects.

308 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 12: Compositional Design The Aircraft Engine Simulation: An Extended Aggregation Example

The Aircrafr Engine Simulation: AN Extended Aggregation Example

It is time for a more complex example of compositional design. In this section you will study a software model of
an aircraft jet engine. The name of the composite class is Engine and it contains several different part objects. Figure
12-5 shows the UML class diagram for the composite aggregate class Engine. As you can see from the diagram the
diamonds are solid, indicating composite aggregation of each of the Engine’s part objects.

The Purpose of the Engine Class

Any modeling effort requires a set of simplifying assumptions so I will define a few to apply here. First, and pri-
marily, although the Engine class and its supporting classes represent a complex set of associations between several
classes, it is by no means a literal model of an engine, so you will have to use some imagination. Its purpose is to sug-
gest how the implementation of an aggregation comprised of more than one or two classes might look in source code.
To this end all the objects respond to messages with simple text messages printed to the screen. What is important to
take away from this example is how you think of complex class design which should be in terms of objects and their
interfaces. Lastly, the number of parts comprising the Engine aggregate are kept at a manageable five. This will give
you a taste for the potential physical complexity you might encounter on larger object-oriented design projects.

AN Engine and its Parrs

The Engine class is a composite aggregate object comprised of five user-defined abstract data types: FuelPump,
OilPump, Compressor, TemperatureSensor, and OxygenSensor. An Engine’s behavior is derived from the behavior of
these parts. Let us take a closer look at the behavior of one of these parts. Figure 12-6 shows the class diagram for the
FuelPump class.

FuelPump

-status: PartStatus
-registered_engine_number: short

+FuelPump(_status: PartStatus , engine_number: short):
+~FuelPump():

+isWorkingProperly(): PartStatus

+setStatus(_status: PartStatus): void
+registerWithEngineNumber(_engine_number: short): void
+getRegisteredEngineNumber(): short

Figure 12-6: FuelPump Class

The public interface functions, indicated by the leading + sign in the class diagram, define the behavior you can
expect from a FuelPump object. The constructor takes two parameters: _status, which is of type PartStatus, and
engine_number which is of type short. The short type is a fundamental C++ data type. The PartStatus type is an enu-
meration declared for the purpose of this example. The PartStatus declaration is located in a file named aircraftutils.h
shown in example 12.13.

1 #ifndef _ ATRCRAFT UTILITIES H 12.13 aircrafiutils.h
#define _ ATRCRAFT UTILITIES H

enum PartStatus {NotWorking, Working};
enum EngineStatus {NotReady, Ready};

N oy oo W N

#endif

The PartStatus enum has two states: NotWorking and Working. When a FuelPump constructor is called the first
argument must be of type PartStatus indicating whether the part is working or not. The second constructor parameter
is the number of the engine to which the FuelPump object belongs.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 309

ign

weider sse[) uone3aIs3y oisodwo)) surduy :G-g] 2In3Ly

Hoys :()JaquinNauibugpaisisiboyiab+

pIoA :(Woys :lequinu~auiBus™)JaquinNauiBugyimeisiBas+
PIOA :(SNjeISHE SNeIS™)snjelSlas+

snyeiSued :()Apadoidbunpiopst+

ploA :(sSnjejgued :SNjelS™)snie1SI0ssaldwon)as+
PIOA :(SnIeISHEd :SNiels~)snjejslosuaguabAxQles+

C++ For Artists

Compositional Des

Chapter 12

: An Extended Aggregation Example

The Aircraft Engine Simulation

Joys :()laqunNauibugpalsysibayiebi+

pIoA :(poys :laquinu~auiBus™)JaquinNauiBugypeisiBes+
pIoA :(SnielSUEd :SNjelS™)Snjeilas+

snjeigued :()Apadoidbuniopmsi+

:()JosuaguabAxQ~+

:(Woys :uequinu—aulbus ‘ snjeiSHEed :SNjelS™)JosuaguabAxQ+

Hoys :Jaquinu~suibuspaisisifal-
snjelSHed snjejs-

pIoA :(snielSHed Sniejs”)snjejgiosuagainjesadwa | jas+
ploA :(snjeigued :snjeis~)snieigdwnd|ioles+

ploA :(snjeigued :snjelis™)snieigdwnd|en41as+

pioA :(Jauibugdois+

ploa :()auibugpelS+

sneigaulbug :()snyeigaulbugyoayo+

:(JouiBuz~+

‘(Jouibuz+

:()1osuegainyeladwa | ~+
:(Moys :Jaquinu~auibus ‘ snjeigued :shjels~)Josuagainieladuws] +

Joys :Jequinu~auibuspalaysifal-
snjejSHed :snjejs-

Josuagainjesadwa]

Josuaguabixp

Hoys :()1aquunNauibugpaisisiboyiehi+

10ss8.dWOY :10sseIdWOoIS)-

100q :Butuuni~si~auibus-

snjejgaulbug :snyejssy-

Hoys :Jaquinu—auiBuasy-

10suagUaBAXQ :10suas uabAxo sy
Josuagainjesaduwa] :10suas~ainjeladuwa)]
dwndio :dwndj10”sp-

dwndjan4 :dwnd~janj sy~

ploA :(poys Haquinu~aulbua ™)JaquinNauiBugyimeisiBal+
PIOA :(SNJEISHE SNEIS™)snielSlas+

sneiSued :()Apadoidbupopst+

()dwndo~+

:(Woys :Jequinu~suibus * snyeigued :snjeis”)dwindjio+

Hoys :uequinu~suibuspaleisiBa.-
snjelSHed ‘snjels-

dwndjio

yoys :()Jaquinnauibugpaissibayieb+

ploA :(Woys :aquinu—suibua™)iaquinnaulbugynpelsibel+
pIoA :(SnjeISUEd SNIBIS™)SnieiSlas+

snieigued :()AladoidBurpiomsi+

:()Jossaudwon~+

:(Hoys :Jequinu~auibus ‘ snjeigHed :Snjels”)Jossaidwo+

Hoys :1equinu—auibuspasssifal-
Ssnjeigued (Snjejs-

Jossaidwon

Hoys :()1aquunNauibugpalelsiboyiafi+

pioA :(Hoys :Jaquinu~auibua™)JaquinNauiBugyimeisibal+
PIOA :(SNIeISHEd :SNJEIS™)snielSlas+

snyeiSued :()Apadoidbuppopsi+

:()dwndjon4~+

:(poys :1equinu~aulbus ‘ snjejSHed :snjels”)dwindjend+

Hoys :Jequinu~auiBuspaisisifal-
snjelSHed :snjels-

dwndjeny

©2003 Rick Miller — All Rights Reserved

310

Chapter 12: Compositional Design The Aircraft Engine Simulation: An Extended Aggregation Example

The other public functions of FuelPump indicate the other behaviors FuelPump objects can exhibit. You can
determine if a fuel pump is working properly by sending it an isWorkingProperly() message; you can set a fuel
pump’s operational status by sending it a setStatus() message. You can register a fuel pump with a particular engine
by sending it a registerWithEngineNumber() message, and lastly, you can determine to what engine number a fuel
pump is registered to by sending it a getRegisteredEngineNumber() message. Essentially the public interface is a set

of accessor and mutator functions that provide some rudimentary behavior.

All the other classes used in the Engine design have the same interface and therefore the same behavior. You may

examine them more closely of you wish by studying figure 12-5.

The class declaration for the FuelPump class resides in a file named fuelpump.h and is shown in example 12.14.

1 #ifndef FUEL PUMP H

2 #define FUEL PUMP H

3 #include "aircraftutils.h"

4

5 <class FuelPump {

6 public:

7 FuelPump (PartStatus status = Working, short engine number
8 ~FuelPump () ;

9 PartStatus isWorkingProperly();
10 void setStatus (PartStatus _status);
11 void registerWithEngineNumber (short engine number);
12 short getRegisteredEngineNumber () ;
13 private:
14 PartStatus status;
15 short registered engine number;
16 };
17
18 #endif

The Engine Class

12.14 fuelpump.h

= 0);

The class diagram for the Engine class is shown in figure 12-7. It too presents a set of public interface functions

Engine

-engine count: short

-its_fuel_pump: FuelPump

-its_oil_pump: OilPump
-its_temperature_sensor: TemperatureSensor
-its_oxygen_sensor: OxygenSensor
-its_engine_number: short

-its_status: EngineStatus

-engine_is_running: bool

-its_compressor: Compressor

+Engine():

+~Engine():

+checkEngineStatus(): EngineStatus

+startEngine(): void

+stopEngine(): void

+setFuelPumpStatus(_status: PartStatus): void
+setOilPumpStatus(_status: PartStatus): void
+setTemperatureSensorStatus(_status: PartStatus): void
+setOxygenSensorStatus(_status: PartStatus): void
+setCompressorStatus(_status: PartStatus): void

Figure 12-7: Engine Class Diagram

which define the type of behavior you can expect from an Engine object. Besides creating and destroying an Engine
object, you can check its status, start, stop, and set the status of each of its parts. Since the Engine class is a composite

aggregate it controls the life of each of its parts.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved

311

The Aircraft Engine Simulation: An Extended Aggregation Example Chapter 12: Compositional Design

The Engine class contains one static class-scope data member named engine_count. Class-scope data members
appear underlined in UML class diagrams. There are two more data members to note: its_status is of type EngineSta-
tus which is an enumerated type declared in the aircraftutils.h file; engine_is_running is a boolean variable which is
used to indicate whether the engine is running or not.

Note that all the Engine class data members are private. The only authorized way to manipulate engine objects is
through the Engine class’s public interface. Example 12.15 gives the source code for the Engine class declaration.

1 #ifndef ENGINE H 12.15 engine.h
2 #define ENGINE H
3 #include "aircraftutils.h"
4 #include "fuelpump.h"
5 #include "oxygensensor.h"
6 #include "oilpump.h"
7 #include "compressor.h"
8 #include "temperaturesensor.h"
9
10
11 class Engine({
12 public:
13 Engine () ;
14 ~Engine () ;
15 EngineStatus checkEngineStatus();
16 void startEngine();
17 void stopEngine () ;
18 void setFuelPumpStatus (PartStatus status);
19 void setOilPumpStatus (PartStatus _status);
20 void setTemperatureSensorStatus (PartStatus status);
21 void setOxygenSensorStatus (PartStatus status);
22 void setCompressorStatus (PartStatus status);
23
24 private:
25 static short engine count;
26 FuelPump its fuel pump;
27 OilPump its oil pump;
28 TemperatureSensor its temperature sensor;
29 OxygenSensor its oxygen sensor;
30 Compressor its compressor;
31 short its_engine number;
32 EngineStatus its status;
33 bool engine is running;
34 i

35 #endif

If you study the Engine class diagram in figure 12-7 you will find it matches closely what you see in the Engine
class declaration above. A good UML design tool can do more than just draw pretty pictures; it can be used to flesh
out the classes and their interfaces and to generate the framework code resulting from the design. Although the code
shown above was not generated with a UML tool, it could easily have been.

Notice on lines 3 through 8 that all the required header files corresponding to each of the part classes are
included.

Before we look at the Engine class implementation code let us take a look at the main() function and how Engine
objects are created and used. Example 12.16 gives the source code for the main.cpp file used to run the aircraft engine
program.

Two Engine objects are created on line 8, el and e2. Next, the checkEngineStatus() message is sent to each
Engine object. On line 13 the stopEngine() message is sent to the el object. Since the engine has not yet been started
this should result in a message saying something to that effect. Next, both engine objects are sent the startEngine()
message.

312 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 12: Compositional Design

oy G W N

N}

#include <iostream>
using namespace std;

#include "engine.h"
int main ()
{

Engine el,e2;

el.checkEngineStatus();
e2.checkEngineStatus();

el.stopEngine () ;

el.startEngine();
e2.startEngine();

el.setCompressorStatus (NotWorking) ;
el.checkEngineStatus();

return 0;

The Aircraft Engine Simulation: An Extended Aggregation Example

12.16 main.cpp

On line 18, the el object is sent the setCompressorStatus() message with the NotWorking enumeration state
value as an argument. This should result in the status of the compressor associated with Engine object el being set to
NotWorking. The result of this message is tested by sending a checkEngineStatus() message to the el engine object.
When the program terminates all engine objects and their associated part objects are destroyed. Figure 12-8 shows the
results of running this program.

C++ For Artists

Aircraft_Engine_Components.out.out

Fuel pump 1 working
Oil pump 1 working
Temperature senszor 1 working
Oxygen senzor 1 warking
Compressor 1 woirking
Fusl pump Z working
Qil pump 2 working
Tempetrature sensor 2 working
Tuygen sansor 2 working
Compressar 2 working
ALl engine number 1 components working properly.
All engine number 2 components working properlu.
-1
Ul o!
ALl engine number components working properly.
Engine rumber 1 started.
All engirne number 2 components waorking properly.
Engine rnumber Z started.
Engine rumber 1 mal function!
Engine rumber 1 stopped.
Compressor 2 destroyed
Oxugen senzor 2 destroged
Temperature sensor 2 destroyed
Oil pump Z destroyged
Fuel pump 2 destroyged
Comprassor 1 destroyed
Oxygen sensor 1 destroyad
Temperature sensor | destroged
Oil pump 1 destroyed
Fuel pump 1 destroged

Comimea 1 mad wmg s
celngine 1 onot Uy

i} mm

s[4]

Figure 12-8: Results of Running Example 12-16

©2003 Rick Miller — All Rights Reserved

313

The Entire Aircraft Engine Simulation Project Chapter 12: Compositional Design

Notice that the creation of each Engine object causes each part object to be created, as is indicated by the mes-
sage each part object’s constructor prints to the screen. You can trace each message produced in figure 12-8 as a result
of sending messages to each Engine object in the main() function.

The Entire Aircrafr Engine Simulation Project

The best way to study the workings of this project is to see all the code laid out before you. The Aircraft Engine
simulation project contains a total of fourteen source files. First the header files: aircraftutils.h, fuelpump.h,
oilpump .h, tempraturesensor.h, oxygensensor.h, compressor.h, and engine.h. Then, the class implementation files:
Sfuelpump .cpp, oilpump .cpp, temperaturesensor.cpp, oxygensensor.cpp, compressor.cpp, and engine.cpp. Lastly, the
main.cpp file contains the main() functions needed to get everything running. The source files will be presented in this
order with no line numbering.

Aircrafrurils.h

aircraftutils.h

#ifndef ATRCRAFT UTILITIES H
#define AIRCRAFT UTILITIES H

enum PartStatus {NotWorking, Working};
enum EngineStatus {NotReady, Ready};

#endif

fuelpump.h
Sfuelpump.h

#ifndef FUEL PUMP H
#define FUEL PUMP H
#include "aircraftutils.h"

class FuelPump {
public:
FuelPump (PartStatus status = Working, short engine number = 0);
~FuelPump () ;
PartStatus isWorkingProperly () ;
void setStatus (PartStatus _status);
void registerWithEngineNumber (short engine number);
short getRegisteredEngineNumber () ;
private:
PartStatus status;
short registered engine number;
bi
#endif

314 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 12: Compositional Design The Entire Aircraft Engine Simulation Project

oilpump.h
oilpump .h
#ifndef OIL PUMP H
#define OIL PUMP H
#include "aircraftutils.h"
class OilPump {
public:
OilPump (PartStatus _status = Working, short engine number = 0);
~0ilPump () ;
PartStatus isWorkingProperly () ;
void setStatus (PartStatus status);
void registerWithEngineNumber (short engine number);
short getRegisteredEngineNumber () ;
private:
PartStatus status;
short registered engine number;
bi
#endif
TEMPERATURESENSOR.I-I
temperaturesensor.h
#ifndef TEMP SENSOR H
#define TEMP_ SENSOR _H
#include "aircraftutils.h"
class TemperatureSensor {
public:
TemperatureSensor (PartStatus status = Working, short engine number = 0);
~TemperatureSensor () ;
PartStatus isWorkingProperly () ;
void setStatus (PartStatus status);
void registerWithEngineNumber (short engine number);
short getRegisteredEngineNumber () ;
private:
PartStatus status;
short registered engine number;
bi
#endif
OXYGENSENSOR.h
oxygensensor.h

#ifndef OXYGEN_SENSOR H
#define OXYGEN_SENSOR H
#include "aircraftutils.h"

class OxygenSensor {
public:

OxygenSensor (PartStatus status = Working, short engine number = 0);
~OxygenSensor () ;

PartStatus isWorkingProperly () ;

void setStatus (PartStatus _status);

void registerWithEngineNumber (short engine number);

short getRegisteredEngineNumber () ;

C++ For Artists ©2003 Rick Miller — All Rights Reserved 315

The Entire Aircraft Engine Simulation Project Chapter 12: Compositional Design

private:
PartStatus status;
short registered engine number;
i
#endif

COMPRESSOR.h

compressor.h
#ifndef COMPRESSOR H
#define COMPRESSOR_H
#include "aircraftutils.h"
class Compressor {
public:
Compressor (PartStatus status = Working, short engine number = 0);
~Compressor () ;
PartStatus isWorkingProperly () ;
void setStatus (PartStatus status);
void registerWithEngineNumber (short engine number);
short getRegisteredEngineNumber () ;
private:
PartStatus status;
short registered engine number;
bi
#endif
ENGINE.H
engine.h

#ifndef ENGINE H

#define ENGINE H

#include "aircraftutils.h"
#include "fuelpump.h"

#include "oxygensensor.h"
#include "oilpump.h"

#include "compressor.h"
#include "temperaturesensor.h"

class Engine{
public:
Engine () ;
~Engine () ;
EngineStatus checkEngineStatus();
void startEngine();
void stopEngine () ;
void setFuelPumpStatus (PartStatus status);
void setOilPumpStatus (PartStatus _status);
void setTemperatureSensorStatus (PartStatus status);
void setOxygenSensorStatus (PartStatus _status);
void setCompressorStatus (PartStatus status);

private:
static short engine count;
FuelPump its fuel pump;
OilPump its oil pump;

TemperatureSensor its temperature sensor;

316 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 12: Compositional Design The Entire Aircraft Engine Simulation Project

OxygenSensor its oxygen sensor;
Compressor 1its compressor;
short its_engine number;
EngineStatus 1its status;
bool engine is running;

bi
#endif

fuelpump.cpp

Sfuelpump .cpp

#include "aircraftutils.h"
#include "fuelpump.h"
#include <iostream>

using namespace std;

FuelPump: :FuelPump (PartStatus status, short engine number) :status(status),
registered engine number (engine number) {
switch (status) {
case NotWorking: cout<<"Fuel pump "<<registered engine number
<<" malfunction"<<endl;
break;

case Working : cout<<"Fuel pump "<<registered engine number<<" working"<<endl;
break;
default H

FuelPump: :~FuelPump () {
cout<<"Fuel pump "<<registered engine number<<" destroyed"<<endl;

PartStatus FuelPump::isWorkingProperly(){ return status;}
void FuelPump::setStatus (PartStatus status){ status = status;}

void FuelPump::registerWithEngineNumber (short _engine number) {
registered engine number = engine number;

short FuelPump::getRegisteredEngineNumber () {return registered engine number; }

oilpump.cpp

oilpump .cpp

#include "aircraftutils.h"
#include "oilpump.h"
#include <iostream>
using namespace std;

OilPump: :0ilPump (PartStatus status, short engine number) :status(status),
registered engine number (engine number) {
switch (status) {
case NotWorking: cout<<"Oil pump "<<registered engine number<<" malfunction"<<endl;
break;
case Working : cout<<"Oil pump "<<registered engine number<<" working"<<endl;
break;

C++ For Artists ©2003 Rick Miller — All Rights Reserved 317

The Entire Aircraft Engine Simulation Project Chapter 12: Compositional Design

default HE

OilPump: :~OilPump () {
cout<<"0Oil pump "<<registered engine number<<" destroyed"<<endl;

PartStatus OilPump::isWorkingProperly (){ return status;}
void OilPump::setStatus (PartStatus status){ status = status;}

void OilPump::registerWithEngineNumber (short engine number) {
registered engine number = engine number;

short OilPump::getRegisteredEngineNumber () {return registered engine number; }

TEMPERATURESENSOR.CPp

temperaturesensor.cpp

#include "aircraftutils.h"
#include "temperaturesensor.h"
#include <iostream>

using namespace std;

TemperatureSensor: :TemperatureSensor (PartStatus status, short engine number)
:status(_status), registered engine number (engine number) {
switch (status) {
case NotWorking: cout<<"Temperature sensor "<<registered_engine_number
<<" malfunction"<<endl;

break;

case Working : cout<<"Temperature sensor "<<registered engine number
<<" working"<<endl;

break;
default H
}
}
TemperatureSensor: :~TemperatureSensor () {

cout<<"Temperature sensor "<<registered engine number<<" destroyed"<<endl;

PartStatus TemperatureSensor::isWorkingProperly () { return status;}
vold TemperatureSensor::setStatus(PartStatus status){ status = status;}

void TemperatureSensor::registerWithEngineNumber (short engine number) {
registered engine number = engine number;

short TemperatureSensor::getRegisteredEngineNumber () {return registered engine number;}

OXYGENSENSOR.CPP

oxygensensor.cpp

#include "aircraftutils.h"

318 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 12: Compositional Design The Entire Aircraft Engine Simulation Project

#include "oxygensensor.h"
#include <iostream>
using namespace std;

OxygenSensor: :0xygenSensor (PartStatus status, short engine number)
:status (status), registered engine number (engine number) {
switch (status) {
case NotWorking: cout<<"Oxygen sensor "<<registered engine number
<<" malfunction"<<endl;

break;
case Working : cout<<"Oxygen sensor "<<registered engine number
<<" working"<<endl;
break;
default -

OxygenSensor: :~OxygenSensor () {
cout<<"Oxygen sensor "<<registered engine number<<" destroyed"<<endl;

PartStatus OxygenSensor::isWorkingProperly () { return status;}
void OxygenSensor::setStatus (PartStatus status){ status = status;}

void OxygenSensor::registerWithEngineNumber (short engine number) {
registered engine number = engine number;

short OxygenSensor::getRegisteredEngineNumber () {return registered engine number;}

COMPRESSOR.CPp
compressor.cpp

#include "aircraftutils.h"
#include "compressor.h"
#include <iostream>

using namespace std;

Compressor::Compressor (PartStatus status, short engine number)
:status(status), registered engine number (engine number) {
switch (status) {
case NotWorking: cout<<"Compressor "<<registered engine number
<<" malfunction"<<endl;

break;
case Working : cout<<"Compressor "<<registered_ engine_number
<<" working"<<endl;
break;
default -

Compressor: :~Compressor () {
cout<<"Compressor "<<registered engine number<<" destroyed"<<endl;

PartStatus Compressor::isWorkingProperly () { return status;}

C++ For Artists ©2003 Rick Miller — All Rights Reserved 319

The Entire Aircraft Engine Simulation Project Chapter 12: Compositional Design

void Compressor::setStatus (PartStatus status){ status = status;}

void Compressor::registerWithEngineNumber (short engine number) {
registered engine number = engine number;

short Compressor::getRegisteredEngineNumber () {return registered engine number;}

ENGINE.CPP
engine.cpp

#include "aircraftutils.h"
#include "fuelpump.h"

#include "oxygensensor.h"
#include "oilpump.h"

#include "compressor.h"
#include "temperaturesensor.h"
#include "engine.h"

#include <iostream>

using namespace std;

short Engine::engine count = 1;

Engine::Engine () :its_engine number (engine count++), engine is running(false),
its fuel pump (Working, engine count),
its o0il pump (Working, engine count),
its_temperature_sensor (Working, engine_count),
its oxygen sensor (Working, engine count),
its compressor (Working, engine count) {}

Engine::~Engine () {
engine count-—;

EngineStatus Engine::checkEngineStatus () {
if (its_fuel pump.isWorkingProperly ()
&& its o0il pump.isWorkingProperly ()
&& its temperature sensor.isWorkingProperly ()
&& its oxygen sensor.isWorkingProperly ()
&& its compressor.isWorkingProperly ()) {
its_status = Ready;
cout<<"All engine number "<<its engine number
<<" components working properly."<<endl;
}
else{
its status = NotReady;
cout<<"Engine number "<<its_engine number<<" malfunction!"<<endl;
stopEngine () ;

return its_ status;

void Engine::startEngine () {
if(!engine is running && checkEngineStatus()) {

320 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 12: Compositional Design The Entire Aircraft Engine Simulation Project

cout<<"Engine number "<<its engine number<<" started."<<endl;
engine is running = true;
}

else cout<<"Engine number "<<its engine number<<" cannot start."<<endl;

void Engine::stopEngine () {
if (engine is running) {
engine is running = false;
cout<<"Engine number "<<its engine number<<" stopped."<<endl;
}

else cout<<"Engine "<<its engine number<<" not running!"<<endl;

void Engine::setFuelPumpStatus (PartStatus status) {
its fuel pump.setStatus(status);

void Engine::setOilPumpStatus (PartStatus status) {
its oil pump.setStatus(_status);

void Engine::setTemperatureSensorStatus (PartStatus status) {
its temperature sensor.setStatus(status);

void Engine::setOxygenSensorStatus (PartStatus status) {
its oxygen sensor.setStatus(status);

voild Engine::setCompressorStatus (PartStatus status) {
its compressor.setStatus(status);

MAIN.Cpp
main.cpp

#include <iostream>
using namespace std;

#include "engine.h"

int main () {
Engine el,e2;

el.checkEngineStatus () ;
e2.checkEngineStatus () ;
el.stopEngine () ;

el.startEngine();

e2.startEngine () ;
el.setCompressorStatus (NotWorking) ;
el.checkEngineStatus () ;

return 0;

C++ For Artists ©2003 Rick Miller — All Rights Reserved 321

Summary Chapter 12: Compositional Design

Summary

Class behavior can be implemented by building upon the behavior of other classes. A class built from other user-
defined classes is called an aggregate class or aggregation. There are two forms of aggregation: simple and composite.
In simple aggregation the whole object does not control the lifetime of its part objects. This means that part objects
could play a role in more than one aggregate relationship. In composite aggregation the whole object controls the life-
time of its part objects. This means it controls their creation and destruction. Composite aggregates can be formed
from simple part objects, part objects allocated dynamically, or from a combination of both. Composite aggregates
control the lifetimes of their part objects; simple aggregates do not.

The UML class diagram can be used to illustrate aggregate relationships. A line between classes denotes an asso-
ciation. A diamond is placed at one end of the association line denoting aggregation. A hollow diamond indicates sim-
ple aggregation; a solid diamond indicates composite aggregation.

The UML sequence diagram is used to illustrate message passing between objects. Whereas the class diagram
shows the static relationship between classes in an object-oriented application, a sequence diagram shows the
dynamic interaction between objects in the application.

Skill Building Exercises

1. Procure UML Design Tool: Procure a UML design tool. The features you’re looking for in addition to diagram-
ming are reverse engineering and code generation. Many good shareware tools exist but it may be a good idea to
download a commercial tool with a limited demo license.

2. Obtain UML Reference: Procure a good UML reference and/or tutorial. Many good UML tutorials exist on the
Internet so I recommend starting your search there. UML has evolved since it was first introduced so it is a good
idea to get a recent reference.

3. Simple Aggregate Class: Write a program that uses three simple classes named Whole, PartA, and PartB. Tailor
the constructors and destructors of PartA and PartB to print out messages specific to those class types indicating
their construction and destruction. In addition to a constructor and destructor provide one additional public inter-
face function for each part class named showBehavior(). Tailor the behavior of the showBehavior() function to
print out a different message to the screen for each part class. Create a simple aggregate version of Whole class
where the Whole class has two private attributes; one of type pointer to PartA and the other of type pointer to
PartB. Write a main() function to test your aggregate class. Create instances of PartA and PartB and test their inter-
face functions. Then, using the code of example 12.12 as a guide, create an object of type Whole using the
addresses of the part objects. Hint: The Whole class constructor should take two parameters: one that is a pointer to
a PartA object and the other that is a pointer to a PartB object.

4. Reverse Engineer: Use the UML design tool you procured in exercise 1 above to reverse engineer the code you
wrote for Exercise 3.

5. Composite Aggregate Class: Revise skill building exercise 3 to make the Whole class a composite aggregate.
Leave the data members as pointer types but create each of the part objects in the Whole class constructor. Hint:
Use the code in examples 12.6 and 12.7 as a guide.

6. Composite Aggregate Class: Revise skill building exercise 3 again to make the Whole class a composite aggre-
gate without using pointers.

7. Simple/Composite Class: Revise skill building exercise 3 again to make the Whole class a combination simple
and composite aggregation.

322 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 12: Compositional Design Suggested Projects

8. Reverse Engineer: Use your UML tool to reverse engineer the code resulting from skill building exercise 7. How
is it different from the diagram generated in skill building exercise 47

9. Design Simulation: Use your UML tool to design a simple simulation like the aircraft engine simulator from
scratch. Perhaps a tank comprised of an engine and a gun. Both the engine and the gun are themselves comprised
of several parts. Think of the interface the tank would need and how a message sent to a tank object would call a
message on its engine object or gun object. When you think your design is complete generate the source code and
study the results. Compare them to the aircraft engine simulation code. Evaluate the performance of your UML
tool with regards to how close it comes to generating good header files and relatively complete class function
implementation stubs. (see chapter 20)

10. Implement Simulation: Write the code required to get the code generated in the previous exercise working.

Suggested Projects

1. Aircraft Simulation: Expand on the aircraft engine simulation project. Add a class named EngineComputer that
allows you to periodically monitor engine status and set the status of engine components. The EngineComputer
might display a text-based user interface that allows the user to interactively monitor engine status. The Engi-
neComputer class should be able to control as many Engine objects as required.

2. Aircraft Simulation: Expand on the aircraft engine simulation project. Create a class named Aircraft that contains
one EngineComputer and four Engine objects. Make Aircraft a composite aggregation. Write a small program to
test the functionality of your Aircraft class.

3. Computer Simulator: Rewrite the computer simulator presented in chapter 8, suggested project 4, as an aggregate
class. Implement the following components as separate classes: Memory, Processor, ComputerSystem. The Mem-
ory class will encapsulate the memory array and provide a set of functions to read from and write to specific mem-
ory locations. The Processor will encapsulate the accumulator and implement the instructions that manipulate the
accumulator. The ComputerSystem will be comprised of a Memory and a Processor and contain any code neces-
sary to get the two objects to work together. The ComputerSystem class is also responsible for the presentation of a
user interface.

4. Research: Do some research on the Hubble space telescope. Design a simple application that lets you control and
aim the telescope and check its operational status. There should be two primary composite classes: Telescope and
GroundStation. A GroundStation object should be able to control as many Telescope objects as necessary. Identify
several key component Telescope parts and several GroundStation parts and implement them as classes. The Tele-
scope should be a composite aggregation and the GroundStation perhaps a combination simple/composite aggre-
gate. Layout the design of your Hubble space telescope control system using your UML modeling tool.

5. Generate Code: Generate the source files for the Hubble space telescope control system and implement the
remaining code. Test and run your program.

Self Test Questions

1. A class built from other class types is referred to as an

2. List the two types of aggregation.

3. Discuss each of the types of aggregation you listed above in terms of what role part objects play in each.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 323

References Chapter 12: Compositional Design
4. In this type of aggregation, part objects belong solely to the whole or containing class. Name the type of aggrega-
tion.

5. In this type of aggregation, part object lifetimes are not controlled by the whole or containing class. Name the type
of aggregation.

6. What does the line drawn between classes in a UML class diagram denote?

7. What type of aggregation does a solid diamond indicate when attached to one end of an association line?
8. What type of aggregation does a hollow diamond indicate when attached to one end of an association line?
9.In a UML class diagram, the aggregation diamond is drawn closest to which class, the whole or the part?

10. What is the purpose of a UML sequence diagram?

References

International Standard, ISO/IEC 14882, Programming Languages — C++, First Edition 1998-09-01

Grady Booch. Object-Oriented Analysis and Design with Applications. Second Edition. The Benjamin/Cum-
mings Publishing Company, Inc., Redwood City, California, 1994. ISBN: 0-8053-5340-2

Robert C. Martin. Designing Object-Oriented C++ Applications Using the Booch Method. Prentice Hall, Engle-
wood Cliffs, New Jersey, 1994. ISBN: 0-13-203837-4

Grady Booch, et. al. The Unified Modeling Language User Guide. Addison-Wesley, Reading, Massachusetts,
1998. ISBN: 0-201-57168-4

Notes

324 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 12: Compositional Design Notes

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 325

Notes Chapter 12: Compositional Design

326 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chaprer 17

Colorful Porr

Exrending Class Funcrionality

Through INHeRITANCE
Learning ODbjecrives

* St 1he purpose and use of inkeritance iv C++ class design

o Explain how 10 Apply 1he three access specifiers, public, protecied, and privare

e Exphin how 10 hide base class funcrions with derived class funcrions

* Explain low 10 call A base class consmructor from A derived class initializer list

* Explain the use of the virtual key word as it relares 10 destructors and class member funcrions
* Explain how 10 override virtual base class funcrions

o Exphin how 10 implement pure virtual funcrions

o Exphin how 10 declare and use abstracr base classes

e Exphin how 10 substitue derived class objects where base class objects are specified

¢ Explain how 10 implement mulriple inbieritance

o Sare 1he purpose and use of A virtual base class

* Explain how 10 safely use inbieritance in your application desigy

* Explain how 10 extend the UML class diagram 10 illustrate class inkeritance hierarchies

* Demonstrate your ability 1o express inkheritance with A UML class diagram

* Demonsirate your ability 1o urilize inkieritance in the design of complex C++ proGramming projecrs

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 327

Introduction Chapter 13: Extending Class Functionality Through Inheritance

INTROducTiON

In this chapter you will learn how to create new class types that derive some or all of their behavior by inheriting
that behavior from one or more pre-existing class types. A class that inherits the functionality of another class is
referred to as a subclass or derived class; the class whose behavior is inherited is referred to as the superclass or base
class. Inheritance is a powerful tool that, when combined with compositional design, opens seemingly endless design
possibilities.

We have a lot to talk about in this chapter. The three access specifiers public, protected, and private will now be
used to specify how base class members are to be accessed from derived class objects. You use the access specifiers to
specify public, protected, or private inheritance.

You will learn how to call a base class constructor from a derived class initializer list, how to apply the virtual
keyword to functions, and how to implement virtual functions that can be overridden in derived classes. You will learn
how to create abstract base classes that contain pure virtual functions. Once you learn how to create abstract base
classes I will show you how to inherit and implement these abstract base class interfaces in derived classes and use
pointers to abstract base classes to call functions on derived class objects. You will learn the difference between func-
tion overloading and function overriding. And just when you think you have had enough I will show you how to
inherit from more than one class!

In support of the material presented here I will show you how to extend the UML class diagram to express inher-
itance relationships.

Purpose And Use OF INheritance

Inheritance allows you to adopt or extend the behavior of an existing class or set of classes. Creating new classes
via inheritance offers many benefits. First, and perhaps primarily, any class that inherits the behavior of another class
is said to implement an “is a...” relationship. For instance, if class B inherits behavior from class A then a class B
object is also a class A object.

Another benefit of inheritance is code reuse. When designing with inheritance, base classes should declare or
define behavior common to all subclasses. If you find yourself repeating code in a set of subclasses that share a com-
mon base class you should migrate that code up the inheritance hierarchy and put it in the base class in which it
belongs.

The most powerful benefit you gain from using inheritance is the ability to define abstract base classes and defer
implementation of their pure virtual functions to their subclasses. Designing with abstract base classes allows you to
define a stable application architecture in terms of class interfaces and the behavior they declare. Given a well-
designed application architecture, new application features can be added by extending the architecture through inher-
itance rather than modifying the architecture itself. This is the idea behind an advanced object-oriented design princi-
ple known as the open-closed principle (OCP). (open for extension, closed for modification)

Understanding how to implement and use inheritance prepares you for learning two other advanced object-ori-
ented design principles: Liskov substitution principle (LSP) and dependency inversion principle (DIP). Chapter 19
formally presents all three of these design principles.

Expressing INheritance With A UML Class Diagram

The UML class diagram can be extended to show class generalization. An association line tipped with an open
arrowhead is drawn from the subclass to the base class. Figure 13-1 shows a class diagram for two classes named
BaseClass and DerivedClassOne. These classes will be used in the next several sections to demonstrate some of the
features associated with inheritance.

BaseClass is referred to as the base class and DerivedClassOne is referred to as the derived class or subclass.
Since DerivedClassOne directly inherits from BaseClass, BaseClass can also be referred to as a direct base class.

328 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 13: Extending Class Functionality Through Inheritance Implementing BaseClass and DerivedClassOne

BaseClass

-count: int
-its_number: int

base class or

+BaseClass|(): direct base class

+~BaseClass():
+getBaseNumber(): int
+getBaseCount(): int
#b(): void

DerivedClassOne derived class or

subclass

-count: int
-its_number: int

+DerivedClassOne():
+~DerivedClassOne():
+getDerivedOneCount(): int
+getDerivedOneNumber(): int

Figure 13-1: UML Class Diagram Showing Generalization

BaseClass contains two private attributes. One is a static, class-wide variable named count, and the other is an
integer variable named its_count. BaseClass contains four public functions and one protected function. You will soon
see how protected members are treated in an inheritance relationship. DerivedClassOne has its own set of private
attributes with the same names as the ones found in BaseClass. DerivedClassOne has four public interface functions

that provide basic functionality.

Implementing BaseClass and DerivedClassOne

Examples 13.1 through 13.4 give the source code for BaseClass and DerivedClassOne contained in four files
named baseclass.h, derivedclassone.h, baseclass.cpp, and derivedclassone.cpp.

1

N oy s W N

9
10
11
12
13
14
15
16
17
18

#ifndef BASE CLASS H 131 baseclass.h

#define BASE CLASS H

class BaseClass{

public:
BaseClass () ;
virtual ~BaseClass();
int getBaseNumber () ;
int getBaseCount () ;

protected:
void b ();

private:
static int count;
int its number;
}i
#endif

The behavior of BaseClass is declared by the limited set of public interface functions. All you can do with a
BaseClass object is create it, destroy it, get the base number, and get the base count. The protected BaseClass::b()

C++ For Artists

©2003 Rick Miller — All Rights Reserved 329

Implementing BaseClass and DerivedClassOne Chapter 13: Extending Class Functionality Through Inheritance

1 #ifndef DERIVED CLASS H 13.2 derivedclassone.h
2 #define DERIVED CLASS H
3 #include "baseclass.h"
4
5 class DerivedClassOne : public BaseClass{
6 public:
7 DerivedClassOne () ;
8 virtual ~DerivedClassOne () ;
9 int getDerivedOneCount () ;
10 int getDerivedOneNumber () ;
11
12 private:
13 static int count;
14 int its_ number;
5 };
16 #endif
1 #include "baseclass.h" 13.3 baseclass.cpp
2 #include <iostream>
3 using namespace std;
4
5 int BaseClass::count = 0;
6
7 BaseClass::BaseClass () :its number (++count) {
8 cout<<"BaseClass object number "<<its number<<" created."<<endl;
9 cout<<"There are "<<count<<" BaseClass objects."<<endl;
10 }
11
12 BaseClass::~BaseClass () {
13 cout<<"BaseClass object number "<<its number<<" destroyed."<<endl;
14 cout<<"There are "<<--count<<" BaseClass objects remaining."<<endl;
15 1}
16
17 int BaseClass::getBaseNumber () { return its number;}
18
19 1int BaseClass::getBaseCount () {return count;}
20
21 wvoid BaseClass::b () {
22 cout<<"BaseClass protected function called!"<<endl;
23}

method can only be called from within the class itself or from within the code of a derived class. The BaseClass::b()
method simply prints a message to the screen.

It should be noted that the private attributes of BaseClass remain private to BaseClass. They are not available for
horizontal access or for access by derived classes. The protected function BaseClass::b() is also closed to horizontal
access but is available for inheritance by derived classes.

The keyword virtual is used in front of the destructor. This is done to ensure derived class destructors get called
when necessary.

Refer to the declaration for DerivedClassOne shown in example 13.2 above. The class declaration includes a
colon followed by the keyword public followed by the name of the class to be used as a base class. In this case the
name of the base class is BaseClass. The rest of the DerivedClassOne class declaration is what you have seen in pre-
vious chapters. The keyword virtual is applied to the DerivedClassOne destructor although according to the C++ stan-
dard doing so is redundant.

Study examples 13.3 through 13 .4 to get a feel for what type of behavior these two simple classes will exhibit.
When objects of each type are created the constructors will print simple messages to the screen. The same holds true
when objects are destroyed. The static data members named count in each class will be used to keep track of how

330 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Chapter 13: Extending Class Functionality Through Inheritance Implementing BaseClass and DerivedClassOne

1 #include "derivedclassone.h" 134 derivedclassone.cpp
2 #include "baseclass.h"
3 #include <iostream>
4 using namespace std;
5
6 int DerivedClassOne::count = 0;
7
8 DerivedClassOne::DerivedClassOne () :its number (++count) {
9 cout<<"DerivedClassOne object number "<<its number<<" created."<<endl;
10 cout<<"There are "<<count<<" DerivedClassOne objects."<<endl;
11 '}
12
13 DerivedClassOne: :~DerivedClassOne () {
14 cout<<"DerivedClassOne object number "<<its number<<" destroyed."<<endl;
15 cout<<"There are "<<--count<<" DerivedClassOne objects remaining."<<endl;
16 }
17
18 1int DerivedClassOne::getDerivedOneCount () {return count; }
19

20 1int DerivedClassOne::getDerivedOneNumber () {return its number;}

many objects of each type exist. Each class has several accessor functions to get the values of both the static and local
data members. The BaseClass::b() function just prints a message to the screen saying that a protected function was
called.

Although these two classes do not do much, the simple messages contained in the constructors and destructors
will teach us a lot about inheritance. Let us take a look at how these classes would be used in a main() function and
examine the results obtained from running such a program. Example 13.5 gives the code showing BaseClass and
DerivedClassOne objects being created used in a main() function. Figure 13-2 shows the output when the program is
run.

Compare the code shown in example 13.5 with the output shown in figure 13-2. On line 8 in example 13.5 a
BaseClass object named b1 is created. This causes the constructor message to be printed to the console. On the next
several lines the two BaseClass functions named getBaseCount() and getBaseNumber() are called on the b1 object. A
DerivedClassOne object is created on line 15. Because it inherits the public functions of BaseClass those functions
call be called through the DerivedClassOne object which is done on lines 17 and 19. On line 24 a BaseClass pointer
named base_ptr is declared and assigned the address of a dynamically allocated DerivedClassOne object. Because the
pointer is of a BaseClass type, only the functions declared in BaseClass can be called. On line 33 a DerivedClassOne
pointer named derived_ptr is declared and initialized to the address of a dynamically allocated DerivedClassOne
object. Since the pointer is of a derived class type it can be used to call both base class and derived class functions.
The pointers are deleted on lines 41 and 42 before the program exits. The statically allocated objects will be deleted
when the program terminates.

Quick Review

A class type can exhibit the behavior of another class type through the mechanism of inheritance. The class
whose behavior is inherited is called the base class; the class inheriting the behavior is called the derived class. A pub-
lic base class function can be called via a derived class object. A base class pointer can be assigned the addresses of a
derived class object, however, since the pointer is of a base class type, only the public functions declared in the base
class can be called via the pointer. (True for now until you learn how to override base class functions in a later sec-
tion.) A derived class pointer holding a derived class object address can call both base class and derived class public
functions. The previous section presented a quick overview of inheritance but left out a lot of cool stuff. The follow-
ing sections explore the topic in greater detail.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 331

Access Specifiers And Vertical Access

Chapter 13: Extending Class Functionality Through Inheritance

Simplelnheritance.out.out

BaseClass object number 1 created.
There are 1 BaseClaoss objects.

Base count is
Thiz ohjact's rumber iz 1

BaseClass object number 2 created.

There are Z EaseClass objects,

Der ivedC lasslne object number 1 created.
There are 1 DerivedClassine cbjects.

BaseClass object numbar 3 created.
There are 3 BaseClass objects.

DerivedC lass0ne object number 2 created.
There are 2 DerivedClasslne objects.

2

e

BaseClass object number 4 created.
There are 4 BoseClass objects.
DeriwvedClassine object number 3 created.
There are 3 DerivedClassOne objects.

PN AR

DerivedClass0ne object number 2 destroged.
There are 2 DerivedClassOne objects remaining.
BaseClass object number 3 destroged.

There are 3 BaseClass objects remaining.

Der iwedC lassine object number 3 destroged.
There are 1 DerivedClasslne objects remaining.
BaseClass object number 4 destroyged.

There are 2 BoseClass objects remaining.
DerivedClassine object number 1 destroyed.
There are B DerivedClass0ne objects remaining.
Bazellass object number 2 destroyed.

There are 1 BazeClass objects remaining.
BaseClass object number 1 destroged.

TWere are O BaseClaszs ocbjects remaining.

"

Calling bazse class function getBazeCount() from derived class object. 2
Calling base class function getBaseNumber{} from derived class object. 2

BaseClass object created

BaseClass functions called

DerivedClassOne object created,
which causes a BaseClass object to
be created. BaseClass functions
called.

DerivedClassOne object dynami-
cally created and assigned to a
BaseClass pointer. BaseClass func-
tions called.

DerivedClassOne object dynami-
cally created and assigned to a
DerivedClassOne pointer. Both
BaseClass and DerivedClassOne
functions called.

Begin calling the destructors.

SEID

Figure 13-2: Results of Running Example 13.5

Access Specifiers And Vertical Access

The three access specifiers public, protected, and private are used to specify what type of access base class mem-
bers will have from the derived class when those members are inherited.
Figure 13-3 shows how each access specifier affects the inheritance mechanism.

Inheritance base class derived class
public public:e----------- --->public:
protected:e--------- --->protected:
private: private:
public: ®---___ public:
protected protected: e -------1===> protected:
private: private:
. public: e public:
private protected:e--->>-._| protected:
private: | ==» private:

Figure 13-3: Effects of Using Different Inheritance Specifiers

332

©2003 Rick Miller — All Rights Reserved

C++ For Artists

Chapter 13: Extending Class Functionality Through Inheritance Access Specifiers And Vertical Access

1 #include "baseclass.h" 13.5 main.cpp
2 #include "derivedclassone.h"
3 #include <iostream>
4 using namespace std;
5
6 int main ()
7 { /* create a base class object and call some functions */
8 BaseClass bl;
9 cout<<M————————m "<<endl;
10 cout<<"Base count is "<<bl.getBaseCount ()<<endl;
11 cout<<"This object's number is "<<bl.getBaseNumber ()<<endl;
12 cout<<M————————— e "<<endl;
13
14 /* create a derived class object and call some base class functions */
15 DerivedClassOne dl;
16 cout<<"Calling base class function getBaseCount () "
17 <<"from derived class object. "<< dl.getBaseCount ()<<endl;
18 cout<<"Calling base class function getBaseNumber () "
19 <<"from derived class object. "<<dl.getBaseNumber ()<<endl;
20 cout<<M—mmm "<<endl;
21
22 /* create a base class pointer and assign
23 derived class object address */
24 BaseClass *base_ptr = new DerivedClassOne;
25
26 /* call some base class functions */
27 cout<<base_ptr->getBaseCount () <<endl;
28 cout<<base_ ptr->getBaseNumber () <<endl;
29 cout<<M—mmm "<<endl;
30
31 /* now create derived class pointer and call some
32 derived class functions and some base class functions */
33 DerivedClassOne *derived_ptr = new DerivedClassOne;
34 cout<<derived ptr->getDerivedOneCount ()<<endl;
35 cout<<derived ptr->getDerivedOneNumber ()<<endl;
36 cout<<derived ptr->getBaseCount ()<<endl;
37 cout<<derived ptr->getBaseNumber ()<<endl;
38 cout<<M—mmm "<<endl;
39
40 /* destroy the pointers before exiting program */
41 delete base ptr;
42 delete derived ptr;
43 return 0;
44)}

Public INkeriTance

Use the public access specifier to specify public inheritance. Referring to figure 13-3 above and figure 13-4
below, if the public access specifier is used in the derived class, public data members and functions in the base class
are inherited by the derived class and remain public. Protected data members and functions are also inherited by the
derived class and remain protected.

Public inheritance is used to implement “is a” relationships between base and derived classes. The use of public
inheritance ensures base class interface functions will continue to be inherited if the inheritance hierarchy is extended.
Protecied Inheritance

Use the protected access specifier to specify protected inheritance. If protected access is specified, the public and
protected data members and functions inherited by the derived class become protected.

Privare INHERITANCE

Use the private access specifier to specify private inheritance. If private access is specified then the public and
protected data members and functions of the base class will become private to the derived class. This effectively pre-
vents any further inheritance of base class data members and functions since private members and functions are not
inherited.

C++ For Atrtists ©2003 Rick Miller — All Rights Reserved 333

Access Specifiers And Vertical Access

Chapter 13: Extending Class Functionality Through Inheritance

Figure 13-4: Public, Protected, & Private Inheritance

Figure 13-5 shows the effects of public inheritance from a horizontal access perspective.

client

Base Class Object

public:

protected:

private:

[

Derived Class Object

public:

protected:

private:

BaseClass BaseClass BaseClass
public: b public: 4 public: b
protected: by protected: o protected: Y
private: private: private: \
blic protected) i \
Lrin I:-m:;ue ! inheritance | ergenrr;l:m \
Derived Class Derived Class Denived Class |
public: »1 /'j public: public: ;]
v
protected: » protected: protected: /
/
private: private: private: 5

Figure 13-5: Public Inheritance from a Horizontal Access Perspective

The client cannot horizontally access the protected or private members of either the base class or derived class

objects.

Quick Review

The access specifiers public, protected, and private are used to control vertical access between base and derived
classes and to specify the type of access base class members will have from the derived class. Public inheritance is
achieved with the public access specifier. Public inheritance is used to implement an “is a” relationship between a
base and derived class. The protected access specifier is used to specify protected inheritance. Protected inheritance is
seldom used in practice. Use the private access specifier to specify private inheritance. Private inheritance is used to
prevent further implementation of “is a” relationships.

334

©2003 Rick Miller — All Rights Reserved

C++ For Artists

Chapter 13: Extending Class Functionality Through Inheritance Calling Base Class Constructors

Calling Base Class CoNsTRUCTORS

When a derived class object is created it must call its base class constructor to ensure its base class object is prop-
erly instantiated. Base class constructors are called in the constructor initializer list. Let us take a look at some exam-
ple code to see how this is done. This example will also illustrate how code can be reused and extended in an object-
oriented design. Figure 13-6 is a class diagram showing the class Person, originally presented in chapter 11, being
extend by a derived class named Student.

Person

-f_name: char*
-I_name: char*
-m_name: char*

-sex: char

-age: int

-full_name: char*
-name_changed: bool

+Person(_f_name: char* , _m_name: char*, _|_name: char* , _sex: char, _age: int):
+~Person():

+Person(person: Person&):
+operator=(rhs: Person&): Person&
+setFirstName(f_name: char*): void
+setMiddleName(m_name: char*): void
+setLastName(|_name: char*): void
+setAge(age: int): void

+setSex(sex: char): void
+getFullName(): char*

+getFirstName(): char*
+getMiddleName(): char*
+getLastName(): char*

+getSex(): char

+getAge(): int

Student
-student count: int
-student_number: int
+Student(_f_name: char* , _m_name: char*, _|_name: char* , _sex: char, _age:int):

+~Student():

+setStudentNumber(_student_number: int): void
+getStudentNumber(): int

+getStudentCount(): int

Figure 13-6: Person/Student Class Diagram

By extending Person, a Student will have all the behavior of Person, plus any additional behavior specific to a
Student. Examination of figure 13-6 reveals the addition of a student_count static variable and an instance variable
named student_number. Accessor and mutator functions were added to manipulate these variables. Other than that, a

Student is a Person. (of course!)

The source code for Person is given in its entirety in chapter 11 so I will not repeat it here with the exception of
the person.h file. This is really all we need in that a programmer tasked with writing the Student class may only have
access to the Person