

C# For Artists

C# For Artists
The Art, Philosophy, and Science of Object-Oriented Programming

Pulp Free Press
Falls Church, Virginia

RicK Miller

Pulp Free Press, Falls Church, Virginia 22042

www.pulpfreepress.com

 info@pulpfreepress.com

©2008 Richard Warren Miller & Pulp Free Press — All Rights Reserved

No part of this book may be reproduced in any form without prior written permission from the publisher.

First edition published 2008 - Regenerated 2010 with corrections

16 14 12 10 10 9 8 7 6 5 4 3

Pulp Free Press offers discounts on this book when ordered in bulk quantities. For more information regarding

sales contact sales@pulpfreepress.com.

The eBook/PDF edition of this book may be licensed for bulk distribution. For whole or partial content licensing

information contact licensing@pulpfreepress.com.

Publisher Cataloging-in-Publication Data: Prepared by Pulp Free Press

Miller, Rick, 1961 -
C# For Artists: The Art, Philosophy, and Science of Object-Oriented
Programming/Rick Miller
p. cm.
Includes bibliographical references and index.
ISBN-13: 9781932504071 ISBN-10: 1-932504-07-9 (pbk)
1. C#(computer program language) II. Title.
2. Object-Oriented Programming (Computer Science)
QA76.73.C154 M555 2008
005.13’3--dc21 Library of Congress Control Number: 2006901642

CIP

The source code provided in this book is intended for instructional purposes only. Although every possible mea-

sure was made by the author to ensure the programming examples contain error-free source code, no warranty is

offered, expressed, or implied regarding the quality of the code.

All product names mentioned in this book are trademark names of their respective owners.

C# For Artists was meticulously crafted on a Macintosh PowerMac G4 and G5 using Adobe FrameMaker, Adobe

Illustrator, Macromedia Freehand, Adobe Photoshop, Adobe Acrobat, Microsoft Word, and Maple. C# source code

examples were prepared using TextPad, NotePad++, and Microsoft Visual Studio. Photographs appearing at the

beginning of each chapter were made with a variety of cameras and film as noted in the vertical captions.

Printed in the United States of America.

ISBN-10: 1-932504-07-9; ISBN-13: 9781932504071 — First Paperback Edition

To all friends who make life agreeable.
Rick

Detailed Contents
Preface
Welcome — And Thank You! ... xliii
Target Audience ... xliii
Approach(es) ... xliii
Pedagogy — I Mean, How This Book’s Arranged ..xliv

Learning Objectives ... xliv
Introduction .. xliv
Content .. xliv
Quick Reviews .. xliv
Summary ... xliv
Skill-Building Exercises .. xliv
Suggested Projects ... xlv
Self-Test Questions ... xlv
References ... xlv
Notes .. xlv

Typographical Formats ... xlv
This Is An Example Of A First Level Subheading ... xlv

This Is An Example Of A Second Level Subheading... xlv
Source Code Formatting ... xlv

SupportSite™ Website ...xlvi
Problem Reporting ...xlvi
About The Author ..xlvi
Acknowledgments ..xlvi

1 An Approach To The Art Of Programming
Introduction ... 4

The Difficulties You Will Encounter Learning C# ..4
Required Skills ..4
The Planets Will Come Into Alignment...4

How This Chapter Will Help You ...5
Personality Traits Found In Great Programmers .. 5

Creative ..5
Tenacious ..5
Resilient ..5
Methodical ...5
Meticulous ... 6
Honest .. 6
Proactive .. 6
Humble .. 6
Be a Generalist and a Just-in-Time Specialist .. 6
C# For Artists © 2008 Rick Miller — All Rights Reserved i

Detailed Contents
Project Management .. 6
Three Software Development Roles ... 6

Analyst ... 6
Architect...7
Programmer ...7

A Project-Approach Strategy ..7
You Have Been Handed A Project — Now What? ...7
Strategy Areas of Concern ... 8
Think Abstractly... 9

The Strategy In A Nutshell ... 10
Applicability To The Real World ... 10

The Art Of Programming ...10
Don’t Start At The Computer ... 10
Inspiration Strikes At The Weirdest Time ... 10
Own Your Own Computer .. 11

You Either Have Time and No Money, or Money and No Time ... 11
The Family Computer Is Not Going To Cut It! ... 11

Set The Mood ... 11
Location, Location, Location ... 11

Concept Of The Flow ... 11
The Stages of Flow ... 12

Be Extreme ... 12
The Programming Cycle ... 12
The Programming Cycle Summarized.. 13

A Helpful Trick: Stubbing .. 13
Fix The First Compiler Error First ...14

Managing Project Complexity ...14
Conceptual Complexity ..14

Managing Conceptual Complexity ...14
The Unified Modeling Language (UML) .. 15

Physical Complexity ... 15
Managing Physical Complexity... 15

The Relationship Between Physical and Conceptual Complexity .. 15
Maximize Cohesion — Minimize Coupling .. 15

Summary ...16
Skill-Building Exercises ..16
Suggested Projects ...16
Self-Test Questions ...17
References ...17
Notes ...17

2 Small Victories: Creating C# Projects
Introduction ...20
Creating Projects With Microsoft C#.NET Command-Line Tools ...20

Downloading And Installing The .NET Framework .. 20
Downloading And Installing Notepad++ .. 22
Configuring Your Development Environment .. 22

Environment Variables ... 22
Creating A Project Folder ... 25
Setting Folder Options... 25
Creating A Shortcut To The Command Console And Setting Its Properties ... 26

Testing The Configuration ... 29
Creating The Source File .. 29
Compiling The Source File.. 29
ii © 2008 Rick Miller — All Rights Reserved C# For Artists

Detailed Contents
Executing The Application ...30
Quick Review ... 31

Creating Projects With Microsoft Visual C# Express ..32
Download and Install Visual C# Express ... 32
Quick Tour Of Visual C# Express ..33

Select Project Type ..33
Saving The Project .. 36
Build The Project .. 36
Locating The Project Executable File .. 36
Execute The Project... 38

Where To Go For More Information About Visual C# Express ... 38
Quick Review .. 38

Summary ...38
Skill-Building Exercises ..39
Suggested Projects ...39
Self-Test Questions ...39
References ...40
Notes ...40

3 Project Walkthrough
Introduction ...42
The Project-Approach Strategy Summarized ...42
Development Cycle ..43
Project Specification ..44

Analyzing The Project Specification ..45
Application Requirements Strategy Area.. 45
Problem-Domain Strategy Area ...46
Language-Features Strategy Area..48
Design Strategy Area...50

Development Cycle: First Iteration ..51
Plan (First Iteration) .. 51
Code (First Iteration) ... 52
Test (First Iteration) .. 52
Integrate/Test (First Iteration) ... 52

Development Cycle: Second Iteration ..52
Plan (Second Iteration) ...53
Code (Second Iteration) ...53
Test (Second Iteration) ..53
Integrate/Test (Second Iteration) .. 54

Development Cycle: Third Iteration ...54
Plan (Third Iteration) .. 54
Code (Third Iteration) ...55
Integrate/Test (Third Iteration) ...57
A Bug In The Program ..57

Development Cycle: Fourth Iteration ...59
Plan (Fourth Iteration) ... 59

Implementing State Transition Diagrams.. 60
Implementing The PrintFloor() Method .. 60

Code (Fourth Iteration) .. 61
Test (Fourth Iteration) ... 62
Integrate/Test (Fourth Iteration) ... 63

Development Cycle: Fifth Iteration ..63
Plan (Fifth Iteration) ... 63
C# For Artists © 2008 Rick Miller — All Rights Reserved iii

Detailed Contents
Code (Fifth Iteration) ...64
Test (Fifth Iteration) ... 65
Integrate/Test (Fifth Iteration) ... 65

Final Considerations ...66
Complete RobotRat.cs Source Code Listing ...67
Summary ...73
Skill-Building Exercises ..73
Suggested Projects ...73
Self-Test Questions ...73
References ...74
Notes ...74

4 Computers, Programs, And Algorithms
Introduction ...76
What Is A Computer? ...76

Computer vs. Computer System ... 76
Computer System... 76
Processor ... 78

Three Aspects of Processor Architecture ... 79
Feature Set... 79
Feature Set Implementation... 79
Feature Set Accessibility .. 79

Memory Organization ..79
Memory Basics ... 80

Memory Hierarchy ... 80
Bits, Bytes, Words ... 80

Alignment and Addressability .. 81
What Is A Program? ..82

Two Views of a Program ..82
The Human Perspective .. 82
The Computer Perspective... 82

The Processing Cycle ..82
Fetch ... 83
Decode ... 83
Execute .. 83
Store ... 83

Why A Program Crashes .. 83
Algorithms ...83

Good vs. Bad Algorithms ... 83
Don’t Reinvent The Wheel! ..86

Virtual Machines And The Common Language Infrastructure ...86
Virtual Machines ... 87
The Common Language Infrastructure (CLI) ... 87

Four Parts Of The Common Language Infrastructure .. 87
The Cross Platform Promise ... 89

Summary ...90
Skill-Building Exercises ..90
Suggested Projects ...91
Self-Test Questions ...91
References ...92
Notes ...92
iv © 2008 Rick Miller — All Rights Reserved C# For Artists

Detailed Contents
5. Navigating .NET Framework Documentation
Introduction ...94
MSDN: The Definitive Source For API Information ...94
Discovering Information About Classes ...96

General Overview Page .. 96
Class Member Page ... 97
Getting Information On Other Class Members ..98
Quick Review ..100

The Base Class Libraries (BCL) ... 100
Quick Review ... 101

Navigating An Inheritance Hierarchy .. 101
Quick Review .. 102

Beware Obsolete APIs ... 102
Summary .. 103
Skill-Building Exercises ... 103
Suggested Projects .. 104
Self-Test Questions .. 104
References .. 104
Notes .. 105

6 Simple C# Programs
Introduction .. 110
What Is A C# Program? ... 110
A Simple Console Application .. 111

Definition Of Terms: Application, Assembly, Module, and Entry Point ... 111
Structure Of A Simple Application .. 111
Purpose Of The Main() Method ... 112
Main() Method Signatures .. 112
Quick Review .. 113

Identifiers And Reserved Keywords .. 113
Identifier Naming Rules ..114
Quick Review .. 115

Types .. 115
Value Type Variables vs. Reference Type Variables ... 116

Value Type Variables .. 116
Reference Type Variables ... 116
Maybe Some Pictures Will Help .. 117
Mapping Predefined Types To System Structures.. 118

Quick Review .. 119
Statements, Expressions, and Operators .. 119

Statement Types ... 119
Operators And Their Use ... 120

Operator Precedence and Associativity.. 121
Forcing Operator Precedence and Associativity Order With Parentheses.. 121
Operators and Operands ... 121

Operator Usage Examples .. 122
Primary Expression Operators .. 122
Unary Expression Operators ... 122
Multiplicative Expression Operators.. 123
Additive Expression Operators ..124
Shift Expression Operators ...124
Relational, Type-Testing, and Equality Expression Operators ... 125
C# For Artists © 2008 Rick Miller — All Rights Reserved v

Detailed Contents
Logical AND, OR, and XOR Expression Operators .. 126
Conditional AND and OR Expression Operators .. 129
Conditional (Ternary) Expression Operator ... 129
Assignment Expression Operators..130

Quick Review .. 131
Summary .. 131
Skill-Building Exercises ... 131
Suggested Projects .. 132
Self-Test Questions .. 132
References .. 133
Notes .. 133

7 Controlling The Flow Of Program Execution
Introduction .. 136
Selection Statements .. 136

If Statement ... 136
Handling Program Error Conditions ..137
Executing Code Blocks In If Statements... 139
Executing Consecutive If Statements ... 139

If/Else Statement .. 140
Chained If/Else Statements ...141

Switch Statement ..142
Implicit Case Fall-Through .. 143
Nested Switch Statement.. 144

Quick Review ... 145
Iteration Statements ... 145

While Statement .. 145
Personality Of The While Statement.. 145

Do/While Statement ...146
Personality Of The Do/While Statement... 147

For Statement .. 148
How The For Statement Is Related To The While Statement ..148
Personality Of The For Statement ..148

Nesting Iteration Statements ...149
Mixing Selection And Iteration Statements: A Powerful Combination ...150
Quick Review .. 151

Break, Continue, And Goto ... 151
Break Statement ... 152
Continue Statement .. 152
Goto Statement ...153
Quick Review ..153

Selection And Iteration Statement Selection Table .. 154
Summary .. 155
Skill-Building Exercises ... 155
Suggested Projects .. 157
Self-Test Questions .. 158
References .. 159
Notes .. 159

8 Arrays
Introduction .. 162
What Is An Array? .. 162
vi © 2008 Rick Miller — All Rights Reserved C# For Artists

Detailed Contents
Specifying Array Types ... 163
Quick Review ...164

Functionality Provided By C# Array Types ... 164
Array-Type Inheritance Hierarchy ..164
Special Properties Of C# Arrays ... 165
Quick Review ... 165

Creating And Using Single-Dimensional Arrays ... 166
Arrays Of Value Types .. 166
How Value-Type Array Objects Are Arranged In Memory ... 166
Finding An Array’s Type, Rank, And Total Number of Elements .. 167
Creating Single-Dimensional Arrays Using Array Literal Values ..168
Differences Between Arrays Of Value Types And Arrays Of Reference Types .. 169
Single-dimensional Arrays In Action .. 171

Message Array ... 171
Calculating Averages ...173
Histogram: Letter Frequency Counter ..173

Quick Review ..175
Creating And Using Multidimensional Arrays ... 176

Rectangular Arrays .. 176
Initializing Rectangular Arrays With Array Literals... 178

Ragged Arrays ... 178
Multidimensional Arrays In Action ... 179

Weighted Grade Tool... 179
Quick Review .. 181

The Main() Method’s String Array ... 181
Purpose And Use Of The Main() Method’s String Array ... 181

Manipulating Arrays With The System.Array Class .. 182
Numeric Formatting ... 183
Summary .. 183
Skill-Building Exercises ... 184
Suggested Projects .. 184
Self-Test Questions .. 187
References .. 188
Notes .. 188

9 Toward Problem Abstraction: Creating New Data Types
Introduction .. 190
Abstraction: Amplify The Essential, Eliminate The Irrelevant ... 190

Abstraction Is The Art Of Programming .. 190
Where Problem Abstraction Fits Into The Development Cycle ... 191
Creating Your Own Data Types ... 191
Case-Study Project: Write A People Manager Program .. 191
Quick Review ... 193

The UML Class Diagram .. 193
Quick Review ...194

Overview Of The Class Construct ... 194
Eleven Categories Of Class Members ..194

Fields .. 195
Constants ... 197
The Difference Between const and readonly; Compile-Time vs. Runtime Constants .. 197
Properties .. 198
Methods ... 199
Instance Constructors ... 199
C# For Artists © 2008 Rick Miller — All Rights Reserved vii

Detailed Contents
Static Constructors ...200
Events ...200
Operators ..200
Indexers ..200
Nested Type Declarations ...200
Finalizers...200

Access Modifiers ... 201
Public .. 201
Private ... 201
Protected .. 201
Internal .. 201
Protected Internal ... 201

The Concepts Of Horizontal Access, Interface, and Encapsulation ... 201
Quick Review ... 202

Methods .. 202
Method Naming: Use Action Words That Indicate The Method’s Purpose ..203
Maximize Method Cohesion ..203
Structure Of A Method Definition ...203

Method Modifiers (optional) ..203
Return Type Or Void (optional) ..204
Method Name (mandatory) ..205
Parameter List (optional) ...205
Method Body (optional for abstract or external methods)..205

Method Definition Examples ...205
Method Signatures ... 206
Overloading Methods .. 206
Constructor Methods ... 206
Quick Review ... 206

Building And Testing The Person Class ... 207
Start By Creating The Source File And Class Definition Shell ..207
Defining Person Instance Fields ..207
Defining Person Properties And Constructor Method ... 208

Adding Properties.. 208
Adding A Constructor Method... 208

Testing The Person Class: A Miniature Test Plan ... 209
Use The PeopleManagerApplication Class As A Test Driver .. 209

Adding Features To The Person Class: Calculating Age ... 210
Adding Features To The Person Class: Convenience Properties ..211
Adding Features To The Person Class: Finishing Touches ... 213
Quick Review ...214

Building and Testing The PeopleManager Class .. 215
Defining The PeopleManager Class Shell ... 215
Defining PeopleManager Fields ... 215
Defining PeopleManager Constructor Methods ... 215
Defining Additional PeopleManager Methods ...216
Testing The PeopleManager Class .. 217
Adding Features To The PeopleManager Class .. 217
Quick Review ...219

More About Methods .. 219
Value Parameters And Reference Parameters ..219

Value Parameters: The Default Parameter Passing Mode ..219
Reference Parameters: Using The ref Parameter Modifier... 220

The out Parameter Modifier .. 223
Parameter Arrays: Using The params Modifier .. 223
Local Variable Scoping ... 224
viii © 2008 Rick Miller — All Rights Reserved C# For Artists

Detailed Contents
Anywhere An Object Of <type> Is Required, A Method That Returns <type> Can Be Used ... 224
Quick Review .. 225

Structures vs. Classes ... 225
Value Semantics vs. Reference Semantics ... 225
Ten Authorized Members vs. Eleven ...226
Default Variable Field Values ...226
Behavior During Assignment ..226
this Behaves Differently ...226
Inheritance Not Allowed ...226
Boxing And Unboxing ..226
When To Use Structures ... 227

Summary .. 227
Skill-Building Exercises ... 228
Suggested Projects .. 229
Self-Test Questions .. 231
References .. 232
Notes .. 232

10 Compositional Design
Introduction .. 234
Managing Conceptual And Physical Complexity .. 234

Compiling Multiple Source Files Simultaneously With csc ...234
Quick Review .. 235

Dependency vs. Association .. 235
Aggregation .. 235

Simple vs. Composite Aggregation ... 236
The Relationship Between Aggregation And Object Lifetime.. 236

Quick Review .. 236
Expressing Aggregation In A UML Class Diagram ... 236

Simple Aggregation Expressed In UML ..237
Composite Aggregation Expressed In UML ...237

Aggregation Example Code .. 237
Simple Aggregation Example ... 238
Composite Aggregation Example .. 239
Quick Review ...240

Sequence Diagrams ... 240
Magic Draw ...241
Quick Review ...241

The Engine Simulation: An Extended Example ... 242
The Purpose Of The Engine Class ...243
Engine Class Attributes And Methods ... 244
Engine Simulation Sequence Diagrams ... 244
Running The Engine Simulation Program .. 244
Quick Review ... 246

Complete Engine Simulation Code Listing ... 246
Summary .. 250
Skill-Building Exercises ... 250
Suggested Projects .. 252
Self-Test Questions .. 252
References .. 253
Notes .. 253
C# For Artists © 2008 Rick Miller — All Rights Reserved ix

Detailed Contents
11 Inheritance and Interfaces
Introduction .. 256
Three Purposes Of Inheritance ... 256

Implementing The “is a” Relationship ... 257
The Relationship Between The Terms Type, Interface, and Class .. 257

Meaning Of The Term Interface...257
Meaning Of The Term Class..257

Quick Review .. 258
Expressing Generalization And Specialization In The UML .. 258
A Simple Inheritance Example .. 259

The UML Diagram ... 259
BaseClass Source Code ... 259
DerivedClass Source Code ... 260
DriverApplication Program .. 260
Quick Review ...261

Another Inheritance Example: Person - Student .. 261
The Person - Student UML Class Diagram ..261
Person - Student Source Code ..262
Casting ... 264

Use Casting Sparingly... 265
Quick Review .. 265

Overriding Base Class Methods ... 266
Quick Review .. 267

Abstract Methods and Abstract Base Classes ... 267
The Primary Purpose Of An Abstract Base Class ...268
Expressing Abstract Base Classes In UML ..268
Quick Review ..270

Interfaces ... 270
The Purpose Of Interfaces ..270
Authorized Interface Members ...270
The Differences Between An Interface And An Abstract Class ... 271
Expressing Interfaces In UML .. 271
Expressing Realization In A UML Class Diagram ... 271
An Interface Example ... 272
Quick Review ..274

Controlling Horizontal And Vertical Access ... 274
Quick Review ..274

Sealed Classes And Methods .. 274
Quick Review ..274

Polymorphic Behavior .. 275
Quick Review .. 275

Inheritance Example: Employee .. 275
Inheritance Example: Engine Simulation .. 278

Engine Simulation UML Diagram .. 278
Simulation Operational Description ... 278
Compiling The Engine Simulation Code .. 280

Complete Engine Simulation Code Listing ... 280
Summary .. 284
Skill-Building Exercises ... 285
Suggested Projects .. 285
Self-Test Questions .. 287
References .. 287
Notes .. 288
x © 2008 Rick Miller — All Rights Reserved C# For Artists

Detailed Contents
12 Windows Forms Programming
Introduction .. 292
The Form Class .. 292

Form Class Inheritance Hierarchy ..292
A Simple Form Program ... 293
Quick Review ... 294

Application Messages, Message Pump, Events, And Event Loop .. 294
Message Categories .. 295
Messages In Action: Trapping Messages With IMessageFilter ...296
Final Thoughts On Messages ...296
Quick Review .. 297

Screen And Window (Client) Coordinate System .. 297
Quick Review ..299

Manipulating Form Properties ... 299
Quick Review ...301

Adding Components To Windows: Button, TextBox, And Label ... 301
Quick Review ..302

Registering Event Handlers With GUI Components .. 303
Delegates And Events .. 303
Quick Review ..305

Handling GUI Component Events In Separate Objects .. 305
Quick Review .. 307

Layout Managers .. 307
FlowLayoutPanel ...308
TableLayoutPanel ..310
Quick Review .. 311

Menus .. 312
Quick Review ..315

A Little More About TextBoxes ... 315
Quick Review ... 316

The Rhythm Of Coding GUIs ... 317
Summary .. 317
Skill-Building Exercises ... 318
Suggested Projects .. 319
Self-Test Questions .. 319
References .. 320
Notes .. 320

13 Custom Events
Introduction .. 322
C# Event Processing Model: An Overview ... 322

Quick Review ...323
Custom Events Example: Minute Tick .. 323
Custom Events Example: Automated Water Tank System ... 326
Naming Conventions ... 331
Final Thoughts On Extending The EventArgs Class .. 332
Summary .. 332
Skill-Building Exercises ... 333
Suggested Projects .. 333
Self-Test Questions .. 333
References .. 334
C# For Artists © 2008 Rick Miller — All Rights Reserved xi

Detailed Contents
Notes .. 334

14 Collections
Introduction .. 338
Case Study: Building A Dynamic Array .. 338

Evaluating DynamicArray ... 340
The ArrayList Class To The Rescue ... 340
A Quick Peek At Generics ...341
Quick Review ...341

Data Structure Performance Characteristics .. 342
Array Performance Characteristics ..342
Linked List Performance Characteristics .. 343
Hash Table Performance Characteristics .. 345

Chained Hash Table vs. Open-Address Hash Table .. 345
Red-Black Tree Performance Characteristics ..346
Stacks And Queues ... 347
Quick Review .. 347

Navigating The .NET Collections API .. 348
System.Collections ..348
System.Collections.Generic ..348
System.Collections.ObjectModel ..349
System.Collections.Specialized ..349
Mapping Non-Generic To Generic Collections ...349
Quick Review ..350

Using Non-Generic Collection Classes - Pre .NET 2.0 ... 350
Objects In — Objects Out: Casting 101 ..351
Extending ArrayList To Create A Strongly-Typed Collection ... 352

Using Generic Collection Classes — .NET 2.0 and Beyond ... 354
List<T>: Look Ma, No More Casting! ... 354
Implementing KeyedCollection<TKey, TItem> ..355
Quick Review ...356

Special Operations On Collections .. 357
Sorting A List ..357

Implementing System.IComparable<T>... 357
Extending Comparer<T> ..359

Converting A Collection Into An Array ... 361
Quick Review ... 361

Summary .. 362
Skill-Building Exercises ... 362
Suggested Projects .. 363
Self-Test Questions .. 363
References .. 364
Notes .. 364

15 Exceptions: Writing Fault-Tolerant Software
Introduction .. 366
What Is An Exception .. 366
.NET CLR Exception Handling Mechanism .. 366

Unhandled Exceptions ... 366
The Exception Information Table ..367
Quick Review ...367
xii © 2008 Rick Miller — All Rights Reserved C# For Artists

Detailed Contents
Exception Class Hierarchy ... 367
Application vs. Runtime Exceptions .. 368
Runtime Exception Listing ... 368
Determining What Exceptions A .NET Framework Method Throws ... 369
Quick Review .. 369

Exception Class Properties .. 370
Quick Review .. 370

Creating Exception Handlers: Using Try/Catch/Finally Blocks .. 371
Using A Try/Catch Block ...371

First Line of Defense: Use Defensive Coding ...372
Using Multiple Catch Blocks ...372
Using A Finally Block .. 373
Quick Review .. 374

Creating Custom Exceptions .. 374
Extending The Exception Class ... 374
Manually Throwing An Exception With The throw Keyword ..375
Translating Low-Level Exceptions Into High-Level Exceptions ..375
Quick Review ...376

Documenting Exceptions ... 376
Summary .. 377
Skill-Building Exercises ... 377
Suggested Projects .. 378
Self-Test Questions .. 378
References .. 378
Notes .. 379

16 Multithreaded Programming
Introduction .. 382
Multithreading Overview: The Tale Of Two Vacations .. 382

Single-Threaded Vacation .. 382
Multithreaded Vacation ... 382
The Relationship Between A Process And Its Threads ..383
Vacation Gone Bad ..384
Quick Review .. 385

Creating Managed Threads With The Thread Class .. 385
Single-Threaded Vacation Example ... 386
Multithreaded Vacation Example ... 386
Thread States ... 389
Creating And Starting Managed Threads ... 389

ThreadStart Delegate ... 389
ParameterizedThreadStart Delegate: Passing Arguments To Threads..390

Blocking A Thread With Thread.Sleep() .. 391
Blocking A Thread With Thread.Join() ... 392
Foreground vs. Background Threads ..394
Quick Review ...395

Creating Threads With The BackgroundWorker Class .. 396
Quick Review .. 399

Thread Pools ... 399
Quick Review .. 400

Asynchronous Method Calls .. 400
Obtaining Results From An Asynchronous Method Call ..402
Providing A CallBack Method To BeginInvoke() ..402
C# For Artists © 2008 Rick Miller — All Rights Reserved xiii

Detailed Contents
Quick Review ... 403
Summary .. 404
Skill-Building Exercises ... 405
Suggested Projects .. 405
Self-Test Questions .. 406
References .. 406
Notes .. 407

17 File I/O
Introduction .. 410
Manipulating Directories And Files .. 410

Files, Directories, And Paths ..411
Manipulating Directories And Files ..411
Verbatim String Literals ...412
Quick Review ...413

Serializing Objects To Disk ... 413
Serializable Attribute ..413
Serializing Objects With BinaryFormatter .. 414
Serializing Objects With XMLSerializer ...416
Quick Review .. 418

Working With Text Files .. 418
Some Issues You Must Consider .. 418
Saving Dog Data To A Text File ... 418
Quick Review ...420

Working With Binary Data .. 420
Quick Review ... 422

Random Access File I/O ... 422
Towards An Approach To The Adapter Project .. 422

Start Small And Take Baby Steps...423
Other Project Considerations .. 424

Locking A Record For Updates And Deletes .. 424
Monitor.Enter()/Monitor.Exit() vs. The lock Keyword ..425
Translating Low-Level Exceptions Into Higher-Level Exception Abstractions...425

Where To Go From Here ...425
Complete RandomAccessFile Legacy Datafile Adapter Source Code Listing ..425
Quick Review .. 437

Working With Log Files .. 438
Quick Review ...440

Using FileDialogs ... 440
Quick Review ... 442

Summary .. 443
Skill-Building Exercises ... 444
Suggested Projects .. 444
Self-Test Questions .. 444
References .. 445
Notes .. 445

18 Network Programming Fundamentals
Introduction .. 450
What Is A Computer Network? ... 450

Purpose Of A Network ... 450
xiv © 2008 Rick Miller — All Rights Reserved C# For Artists

Detailed Contents
The Role Of Network Protocols ..451
Homogeneous Vs. Heterogeneous Networks ...451
The Unifying Network Protocols: TCP/IP ..451

What’s So Special About The Internet? ..452
Quick Review ..452

Servers & Clients ... 453
Server Hardware And Software ... 453
Client Hardware And Software .. 453
Quick Review ... 454

Application Distribution .. 454
Physical Distribution On One Computer ... 454

Running Multiple Clients On The Same Computer..454
Addressing The Local Machine.. 455

Physical Distribution Across Multiple Computers ... 455
Quick Review .. 455

Multitiered Applications .. 456
Logical Application Tiers ..456
Physical Tier Distribution ...456
Quick Review ..456

Internet Networking Protocols: Nuts & Bolts .. 457
The Internet Protocols: TCP, UDP, And IP .. 457

The Application Layer ..458
Transport layer..458
Network Layer...459
Data Link And Physical Layers ..459
Putting It All Together...459

What You Need To Know ..460
Quick Review ...460

Summary .. 460
Skill-Building Exercises ... 461
Suggested Projects .. 462
Self-Test Questions .. 462
References .. 462
Notes .. 463

19 Networked Client -Server Applications
Introduction .. 466
Building Client-Server Applications With .NET Remoting ... 466

The Three Required Components of A .NET Remoting Application ... 466
A Simple .NET Remoting Application ..467
SingleCall vs. Singleton ... 469
Accessing A Remote Object Via An Interface ... 470
Using Configuration Files ...472
Passing Objects Between Client And Server ..474
Quick Review .. 477

Client-Server Applications With TcpListener And TcpClient .. 478
TCP/IP Client-Server Overview ..478
A Simple Client-Server Application ...479
Building A Multithreaded Server ...480
Listening On Multiple IP Addresses ... 482
Sending Objects Between Client And Server .. 484
Quick Review ... 488

Summary .. 489
C# For Artists © 2008 Rick Miller — All Rights Reserved xv

Detailed Contents
Skill-Building Exercises ... 490
Suggested Projects .. 491
Self-Test Questions .. 491
References .. 492
Notes .. 492

20 Database Access & Multitiered Applications
Introduction .. 494
What You Are Going To Build .. 494
Preliminaries .. 495

Installing SQL Server Express Edition ...495
Installing Microsoft SQL Server Management Studio Express .. 496
Installing Microsoft Enterprise Library ... 498
A Simple Test Application ... 499

Introduction To Relational Databases And SQL .. 500
Terminology ...501
Structured Query Language (SQL) ..502
Data Definition Language (DDL) ..502

Creating The EmployeeTraining Database ..502
Creating A Database With A Script.. 503
Creating Tables... 504
SQL Server Database Types .. 505

Data Manipulation Language (DML) ...506
Using The Insert Command.. 507
Using The Select Command ... 507
Using The Update Command ...509
Using The Delete Command ..510

Quick Review .. 511
Complex SQL Queries .. 511

Creating A Related Table With A Foreign Key .. 511
Inserting Test Data Into The tbl_employee_training Table .. 512
Selecting Data From Multiple Tables ..514

Join Operations ... 514
Testing The Cascade Delete Constraint .. 515
Quick Review ... 515

The Server Application .. 516
Project Folder Organization ... 516
Using Microsoft Build To Manage And Build the Project ...517
First Iteration ... 519

Coding The EmployeeVO And EmployeeDAO ..520
Application Configuration File.. 528
Creating Test Application.. 528

Second Iteration ...531
Testing The Code - Second Iteration... 543
Reality Check...551

Third Iteration .. 551
The Client Application ... 556

Third Iteration (continued) ... 556
Fourth Iteration .. 558
Fifth Iteration ..564
Sixth Iteration ... 569
Compiling And Running The Modified EmployeeTrainingClient Project ... 580
Where To Go From Here ... 582
xvi © 2008 Rick Miller — All Rights Reserved C# For Artists

Detailed Contents
Summary .. 583
Skill-Building Exercises ... 583
Suggested Projects .. 584
Self-Test Questions .. 584
References .. 585
Notes .. 585

21 Operator Overloading
Introduction .. 590
Operator Overloading ... 590

Overloadable Operators ..590
Quick Review ... 591

Overloading Unary Operators ... 591
+,- Operators .. 591
! Operator .. 592
true, false Operators ...593
++ --, Operators ... 595
Quick Review ...597

Overloading Binary Operators .. 597
+, - Operators ...597
*, / Operators .. 599
&, | Operators .. 601
Quick Review ..603

Overloading Comparison Operators .. 603
==, !=,<,>,<=,>= Operators ...604
Quick Review ..607

Creating Implicit And Explicit Cast Operators ... 607
Implicit vs. Explicit Cast ..607
Overloaded Cast Operators Example ...607
Quick Review .. 610

The Assignment Operators: Things You Get For Free .. 610
Quick Review .. 610

Summary .. 610
Skill-Building Exercises ... 611
Suggested Projects .. 611
Self-Test Questions .. 611
References .. 612
Notes .. 612

22 Well-Behaved Objects
Introduction .. 614
Object Behavior Defined .. 614

Fundamental Behavior ..614
Copy/Assignment Behavior ..614
Equality Behavior ... 615
Comparison/Ordering Behavior .. 615
Seven Object Usage Scenarios .. 615

Fundamental Behavior ... 616
Object Creation — Constructors ..616

Default Constructor ..616
Private Constructors ...616
C# For Artists © 2008 Rick Miller — All Rights Reserved xvii

Detailed Contents
Overloaded Constructors ...616
Member Accessibility ..616

Horizontal Member Access ..616
Vertical Member Access ... 617

Overriding Object.ToString() ... 617
Static vs. Instance Members ... 617
Serialization ..618

Custom Serialization Example ...618
Quick Review .. 623

Copy/Assignment Behavior .. 623
Value Object vs. Reference Object Assignment .. 624

Rule Of Thumb — Favor The Class Construct For Complex Types ...624
Shallow Copy vs. Deep Copy ... 624
Copy Constructors ... 625
System.ICloneable vs. Object.MemberwiseClone() .. 627
Quick Review ..629

Equality Behavior ... 629
Reference Equality vs. Value Equality ..629
Rules For Overriding The Object.Equals() Method ...630
Overriding The Object.GetHashCode() Method ..630

Bloch’s hash Code Generation Algorithm... 631
Ashmore’s Hash Code Generation Algorithm .. 631

Overridng Object.Equals() and Object.GetHashCode() Methods In The PersonVO Class .. 632
Quick Review ..634

Comparison/Ordering Behavior ... 634
Implementing System.IComparable<T> ...634

Rules For Implementing The CompareTo(T other) Method...635
Extending The Comparer<T> Class .. 636
Quick Review .. 638

Summary .. 638
Skill-Building Exercises ... 638
Suggested Projects .. 638
Self-Test Questions .. 639
References .. 639
Notes .. 640

23 Three Design Principles
Introduction .. 642
The Preferred Characteristics Of An Object-Oriented Architecture .. 642

Easy To Understand: How does this thing work? ... 642
Easy To Reason About: What are the effects of change? ... 642
Easy To Extend: Where do I add functionality? ... 642

The Liskov Substitution Principle & Design by Contract ... 643
Reasoning About The Behavior Of Supertypes And Subtypes ..643

Relationship Between The LSP And DbC..643
The Common Goal Of The LSP And DbC ...643
C# Support For The LSP And DbC ...643

Designing With The LSP/DbC In Mind .. 644
Class Declarations Viewed As Behavior Specifications.. 644

Quick Review ... 644
Preconditions, Postconditions, And Class Invariants ... 644

Class Invariant ... 644
Precondition ... 644
xviii © 2008 Rick Miller — All Rights Reserved C# For Artists

Detailed Contents
Postcondition ...645
An Example ..645

A Note On Using The Debug.Assert() Method To Enforce Pre- and Postconditions ..646
Using Incrementer As A Base Class .. 646

Changing The Preconditions Of Derived Class Methods ..648
Changing The Postconditions Of Derived Class Methods .. 652
Special Cases Of Preconditions And Postconditions ... 652

Method Argument Types ...653
Method Return Types ..654

Three Rules Of The Substitution Principle ..654
Signature Rule ..655
Methods Rule ...655
Properties Rule ..655

Quick Review .. 655
The Open-Closed Principle ... 656

Achieving The Open-Closed Principle .. 656
An OCP Example .. 656
Quick Review ...661

The Dependency Inversion Principle .. 661
Characteristics Of Bad Software Architecture ...661
Characteristics Of Good Software Architecture ...662
Selecting The Right Abstractions Takes Experience ...662
Quick Review ..662

Terms and Definitions ... 663
Summary .. 663
Skill-Building Exercises ... 664
Suggested Projects .. 664
Self-Test Questions .. 664
References .. 665
Notes .. 666

24 Inheritance, Composition, Interfaces, Polymorphism
Introduction .. 668
Inheritance Vs. Composition: The Great Debate ... 668

What’s The End Game? ...669
Flexible Application Architectures ...669
Modularity And Reliability ...669
Architectural Stability Via Managed Dependencies ...669

Knowing When To Accept A Design That’s Good Enough ..670
Quick Review ..670

Inheritance-Based Design .. 670
Three Good Reasons To Use Inheritance ..670

As A Means To Reason About Code Behavior..670
To Gain A Measure Of Code Reuse..670
To Facilitate Incremental Development ...670

Forms Of Inheritance: Meyer’s Inheritance Taxonomy ... 671
Coad’s Inheritance Criteria .. 672
Person - Employee Example Revisited ...673
Quick Review ...673

The Role Of Interfaces ... 674
Reducing Or Limiting Intermodule Dependencies ...674
Modeling Dominant, Collateral, and Dynamic Roles ...674

Dominant Roles ...674
C# For Artists © 2008 Rick Miller — All Rights Reserved xix

Detailed Contents
Collateral Roles..675
Dynamic Roles ..675

Quick Review ...675
Applied Polymorphism ... 675

Quick Review .. 676
Composition-Based Design As A Force Multiplier .. 676

Two Types Of Aggregation ... 676
Polymorphic Containment .. 676

An Extended Example .. 677
Quick Review ..682

Summary .. 682
Skill-Building Exercises ... 683
Suggested Projects .. 684
Self-Test Questions .. 685
References .. 685
Notes .. 686

25 Helpful Design Patterns
Introduction .. 688
Software Design Patterns And How They Came To Be .. 688

What Exactly Is A Software Design Pattern? ..688
Origins ...688
Pattern Specification ..689
Applying Software Design Patterns ..689
Quick Review ..689

The Singleton Pattern .. 690
Quick Review .. 693

The Factory Pattern .. 693
The Dynamic Factory .. 693
Advantages Of The Dynamic Factory Pattern ... 695
Quick Review .. 695

The Model-View-Controller Pattern ... 695
Quick Review .. 697

The Command Pattern .. 697
Quick Review ..702

A Comprehensive Pattern-Based Example .. 702
Complete Code Listing ...702

Com.PulpFreePress.Exceptions ...702
Com.PulpFreePress.Common..702
Com.PulpFreePress.Utils ... 707
Com.PulpFreePress.Commands..710
Com.PulpFreePress.Model..713
Com.PulpFreePress.View.. 714
Com.PulpFreePress.Controller ..720

Running The Application .. 721
Summary .. 721
Skill-Building Exercises ... 722
Suggested Projects .. 723
Self-Test Questions .. 723
References .. 723
Notes .. 724
xx © 2008 Rick Miller — All Rights Reserved C# For Artists

Detailed Contents
Appendix A: Helpful Checklists And Tables
Project-Approach Strategy Check-off List ... 727
Development Cycle ... 728
Final Project Review Checklist ... 728

Appendix B: ASCII Table
ASCII Table ... 729

Appendix C: Identifier Naming: Writing Self-Commenting Code
Identifier Naming: Writing Self-Commenting Code ... 733

Benefits of Self-Commenting Code ...733
Coding Convention ..733

Class Names .. 733
Constant Names... 734
Variable Names... 734
Method Names... 734
Property Names.. 735
xxi © 2008 Rick Miller — All Rights Reserved C# For Artists

Detailed Contents
xxii © 2008 Rick Miller — All Rights Reserved C# For Artists

List of Tables
Table 3-1: Project Approach Strategy . 42
Table 3-2: Development Cycle . 43
Table 3-3: Project Specification . 44
Table 3-4: Robot Rat Nouns and Verbs. 46
Table 3-5: Language Feature Study Check-Off List For Robot Rat Project . 48
Table 3-6: First Iteration Design Considerations .51
Table 3-7: Second Iteration Design Considerations . 53
Table 3-8: Third Iteration Design Considerations . 54
Table 3-9: Fourth Iteration Design Considerations . 59
Table 3-10: Fifth Iteration Design Considerations . 63
Table 3-11: Final Project Review Checklist. 66
Table 5-1: Base Class Library (BCL) Namespaces . 100
Table 5-2: Additional .NET Libraries Used Heavily In This Book. 100
Table 6-1: C# Reserved Keywords . 113
Table 6-2: Predefined Type Mappings, Default Values, and Value Ranges . 118
Table 6-3: C# Statement Types . 120
Table 6-4: Operator Categories by Precedence . 120
Table 6-5: Comparison Operator Behavior . 125
Table 6-6: Logical Operator Behavior .126
Table 7-1: C# Selection And Iteration Statement Selection Guide .154
Table 8-1: C# Array Properties . 165
Table 8-2: Numeric Formatting. 183
Table 8-3: EISCS Machine Instructions . 185
Table 9-1: People Manager Program Class Responsibilities .192
Table 9-2: Method Modifiers . 203
Table 11-1: Differences Between Abstract Classes and Interfaces .271
Table 12-1: System Message Categories and their Prefixes . 295
Table 12-2: Partial Listing of Control Events . 303
Table 14-1: Mapping Non-Generic Collections to Their Generic Counterparts . 349
Table 14-2: Rules For Implementing IComparable<T>.CompareTo(T other) Method. 358
Table 15-1: Runtime Exceptions — Partial Listing . 368
Table 15-2: Exception Class Public Properties . 370
Table 20-1: SQL Server Data Types . 505
Table 20-2: Project Folder Descriptions .516
Table 20-3: Employee Training Server Application — First Iteration Design Considerations & Decisions .519
Table 20-4: .NET to DbType to SQL Server Type to IDataReader Method Mapping . 527
Table 20-5: Employee Training Server Application — Second Iteration Design Considerations And Decisions . 532
Table 20-6: Employee Training Server Application — Third Iteration Design Considerations And Decisions . 551
Table 20-7: Employee Training Client Application — Third Iteration Design Considerations And Decisions (Continued). 556
Table 20-8: Employee Training Client Application — Fourth Iteration Design Considerations And Decisions . 559
Table 20-9: Employee Training Client Application — Fifth Iteration Design Considerations And Decisions . 564
Table 20-10: Employee Training Client Application — Sixth Iteration Design Considerations And Decisions . 569
Table 21-1: Overloadable Operators . 590
Table 22-1: Object Usage Scenario Evaluation Checklist. .615
Table 22-2: Rules for Overriding Object.Equals() method . 630
Table 22-3: The GetHashCode() General Contract . 630
Table 22-4: Rules For Implementing IComparable<T>.CompareTo(T other) Method . 635
Table 23-1: Terms and Definitions Used in this Chapter. 663
Table 24-1: Inheritance Form Descriptions. .671
Table 25-1: Pattern Specification Template. 689
Table 26-1: Project Approach Strategy . 727
Table 26-2: Development Cycle . 728
C# For Artists © 2008 Rick Miller — All Rights Reserved xxxiii

List of Tables
Table 26-3: Final Project Review Checklist. 728
Table Appendix B-1: ASCII Table . 729
Table 26-1: Class Naming Examples .733
Table 26-2: Constant Naming Examples . 734
Table 26-3: Variable Naming Examples . 734
Table 26-4: Method Naming Examples . 734
Table 26-5: Property Naming Examples .735
xxxiv © 2008 Rick Miller — All Rights Reserved C# For Artists

List of Figures
Figure 1-1: Isomorphic Mapping Between Problem Domain and Design Domain . 9
Figure 2-1: Microsoft.NET Framework Installation Directory . 21
Figure 2-2: Partial Directory Listing of the v3.5 Folder . 21
Figure 2-3: Creating an Environment Variable . 23
Figure 2-4: Editing the Path User Environment Variable . 24
Figure 2-5: Command Console Window . 24
Figure 2-6: Testing the DOT_NET_FRAMEWORK_HOME Environment Variable . 24
Figure 2-7: Testing the Path Environment Variable by Running the C# Compiler . 25
Figure 2-8: Creating a New Folder . 25
Figure 2-9: Projects Folder Before Setting Folder Options . 26
Figure 2-10: Folder Options Dialog Window . 26
Figure 2-11: Projects Folder After Setting Folder Options . 27
Figure 2-12: Default Command Console Window . 27
Figure 2-13: Command Console Properties Dialog . 28
Figure 2-14: Setting the Start in Property . 28
Figure 2-15: Setting Command Console Layout Properties . 29
Figure 2-16: Directory Listing of the Chapter2 Directory Showing the HelloWorld.cs File . 30
Figure 2-17: Compiling HelloWorld.cs Using the csc C# Compiler Command . 30
Figure 2-18: Running the HelloWorld Program . 30
Figure 2-19: Compiler Output Showing Compiler Error on Line 6 at Position 39 .31
Figure 2-20: C# Language Compiler Errors .31
Figure 2-21: C# Compiler Error CS1002 “; expected” . 32
Figure 2-22: Visual C# Express Installation Window . 33
Figure 2-23: Visual C# Express Initial Start-Up Screen . 34
Figure 2-24: New Project Dialog Showing Console Application Selected . 34
Figure 2-25: HelloWorld Project View . 35
Figure 2-26: IntelliSense Pop-Up Window Showing Available Console Object Methods and Properties . 35
Figure 2-27: Updated HelloWorld Visual C# Project . 36
Figure 2-28: Saving the HelloWorld Project . 36
Figure 2-29: Building HelloWorld Project . 37
Figure 2-30: Results of Running the tree /f Command from the Command Prompt . 37
Figure 3-1: Tight-Spiral Development Cycle Deployment . 43
Figure 3-2: Robot Rat Viewed as a Collection of Attributes . 47
Figure 3-3: Robot Rat Floor Sketch . 47
Figure 3-4: Complete Robot Rat Attributes . 48
Figure 3-5: RobotRat UML Class Diagram . 50
Figure 3-6: Compiling and Testing RobotRat — First Iteration . 52
Figure 3-7: Compiling & Testing RobotRat - Second Iteration . 54
Figure 3-8: Testing Menu Commands . 57
Figure 3-9: A Disturbing Error Message . 58
Figure 3-10: Unhandled IndexOutOfRangeException Error Message . 58
Figure 3-11: pen_position State Transition Diagram . 60
Figure 3-12: State Transition Diagram for the direction Variable . 60
Figure 3-13: Testing the PrintFloor() Method . 62
Figure 3-14: Testing Robot Rat Movement in All Directions . 66
Figure 3-15: Robot Rat HTML Documentation Generated with Doxygen . 72
Figure 4-1: Typical Apple Mac Pro Computer System . 76
Figure 4-2: System Unit Components . 77
Figure 4-3: Main Logic Board Block Diagram . 77
Figure 4-4: Intel Xeon 5100 Dual core Processor . 78
Figure 4-5: Intel Xeon 5100 Dual-Core Microprocessor Block Diagrams . 78
Figure 4-6: Memory Hierarchy . 80
C# For Artists © 2008 Rick Miller — All Rights Reserved xxxv

List of Figures
Figure 4-7: Simplified Memory Subsystem Diagram . 80
Figure 4-8: Simplified Main Memory Diagram . 81
Figure 4-9: Processing Cycle . 83
Figure 4-10: Dumb Sort Results 1 . 85
Figure 4-11: Dumb Sort Results 2 . 85
Figure 4-12: Dumb Sort Results 3 . 85
Figure 4-13: Algorithmic Growth Rates . 85
Figure 4-14: The C# Compile and Execution Process Overview . 86
Figure 4-15: MSIL Disassembler Session Showing Main() Method IL Instructions . 87
Figure 4-16: The Common Language Infrastructure Architecture . 88
Figure 4-17: Managed Assemblies can be Executed on any System that Implements the Common Language Infrastructure 89
Figure 4-18: Chapter 3’s Robot Rat Program Running in the Mono Environment on Apple OS X . 89
Figure 4-19: Microsoft .NET Architecture . 90
Figure 5-1: .NET Framework Class Library Reference Page . 94
Figure 5-2: .NET Development Link Expanded and Class Library Link Highlighted . 95
Figure 5-3: Class Library Link Expanded and System Namespace Highlighted . 95
Figure 5-4: String Class API Reference Overview Page . 96
Figure 5-5: String Members Page . 97
Figure 5-6: String Class’s Public Constructors Partial Listing . 98
Figure 5-7: String Class’s Methods Page Partial Listing . 98
Figure 5-8: String.SubString Method Page . 99
Figure 5-9: String.SubString Page with Collapsed Subheadings . 99
Figure 5-10: String.SubString Example Section Expanded Showing Example Code . 99
Figure 5-11: String Class Inheritance Hierarchy . 101
Figure 5-12: Obsolete .NET Framework Version 2.0 API Partial Listing by Namespace . 102
Figure 6-1: Results of Running Example 6.1 . 112
Figure 6-2: Results of Compiling Example 6.3 with Improper Main() Method Signature . 113
Figure 6-3: Errors Produced when Attempting to Reintroduce a Reserved Keyword . 114
Figure 6-4: C# Type Hierarchy . 115
Figure 6-5: Results of Running Example 6.6 . 116
Figure 6-6: The Results of Running Example 6.7 . 117
Figure 6-7: Value Type Memory Allocation . 117
Figure 6-8: Reference Type Memory Allocation . 117
Figure 6-9: Results of Calling the Append() Method via the sb1 Variable . 117
Figure 6-10: Results of Running Example 6.9 .122
Figure 6-11: Results of Running Example 6.10 . 123
Figure 6-12: Results of Running Example 6.11 . 124
Figure 6-13: Results of Running Example 6.12 . 124
Figure 6-14: Results of Running Example 6.13 .126
Figure 6-15: Logical AND, OR, and XOR Truth Tables . 127
Figure 6-16: Results of Running Example 6.14 . 127
Figure 6-17: Results of Running Example 6.15 .128
Figure 6-18: Results of Running Example 6.16 .129
Figure 6-19: Results of Running Example 6.17 .129
Figure 6-20: Compiler Warning due to Unreachable Code . 130
Figure 6-21: Results of Running Example 6.18 . 130
Figure 6-22: Results of Running Example 6.19 . 131
Figure 7-1: if Statement Execution Diagram . 136
Figure 7-2: Results of Running Example 7.1 . 137
Figure 7-3: Typical .NET Error Message Dialog Window . 137
Figure 7-4: Unhandled IndexOutOfRangeException Message . 137
Figure 7-5: FormatException Error Message . 138
Figure 7-6: Results of Running Example 7.2 . 138
Figure 7-7: Results of Running Example 7.3 . 139
Figure 7-8: Results of Running Example 7.4 . 140
Figure 7-9: if/else Statement Execution Diagram . 140
Figure 7-10: Results of Running Example 7.5 . 141
Figure 7-11: Results of Running Example 7.6 . 142
Figure 7-12: switch Statement Execution Diagram . 142
xxxvi © 2008 Rick Miller — All Rights Reserved C# For Artists

List of Figures
Figure 7-13: Results of Running Example 7.7 .143
Figure 7-14: Results of Running Example 7.8 . 144
Figure 7-15: Results of Running Example 7.9 .145
Figure 7-16: while Statement Execution Diagram . 146
Figure 7-17: Results of Running Example 7.10 . 146
Figure 7-18: do/while Statement Execution Diagram .147
Figure 7-19: Results of Running Example 7-11 .147
Figure 7-20: for Statement Execution Diagram . 148
Figure 7-21: Results of Running Example 7.12 . 149
Figure 7-22: Results of Running Example 7.13 . 150
Figure 7-23: Results of Running CheckBookBalancer . 151
Figure 7-24: Results of Running Example 7.15 . 152
Figure 7-25: Results of Running Example 7.16 . 153
Figure 7-26: Results of Running Example 7.17 . 153
Figure 8-1: Array Elements are Contiguous and Homogeneous .162
Figure 8-2: Declaring a Single-Dimensional Array . 163
Figure 8-3: Array-Type Inheritance Hierarchy . 164
Figure 8-4: Results of Running Example 8.1 .166
Figure 8-5: Memory Representation of Value Type Array int_array Showing Default Initialization . 167
Figure 8-6: Results of Running Example 8.2 . 167
Figure 8-7: Element Values of int_array After Initialization Performed by Second for Loop .168
Figure 8-8: Results of Running Example 8.3 .168
Figure 8-9: Results of Running Example 8.4 .169
Figure 8-10: Results of Running Example 8.5 . 170
Figure 8-11: State of Affairs After Line 5 of Example 8.5 Executes . 170
Figure 8-12: State of Affairs After Line 10 of Example 8.5 Executes. 171
Figure 8-13: State of Affairs After Line 14 of Example 8.5 Executes . 171
Figure 8-14: Final State of Affairs: All object_array Elements Point to an Object object . 172
Figure 8-15: Results of Running Example 8.6 . 173
Figure 8-16: Results of Running Example 8.7 .174
Figure 8-17: Results of Running Example 8.8 . 175
Figure 8-18: Rectangular Array Declaration Syntax . 176
Figure 8-19: Accessing Two-Dimensional Array Elements . 177
Figure 8-20: Results of Running Example 8.9 . 177
Figure 8-21: Results of Running Example 8.10 . 178
Figure 8-22: Array Declaration Syntax for a Two-Dimensional Ragged Array . 179
Figure 8-23: Results of Running Example 8.11 . 179
Figure 8-24: Results of Running Example 8.12 . 181
Figure 8-25: Results of Running Example 8.13 .182
Figure 8-26: Results of Running Example 8.14 . 183
Figure 9-1: People Management Program Project Specification . 191
Figure 9-2: Class Diagram for People Manager Classes . 193
Figure 9-3: Static and Non-Static Fields . 195
Figure 9-4: Results of Running Example 9.1 .196
Figure 9-5: Error Resulting from an Attempt to Assign to a Readonly Field .196
Figure 9-6: Results of Running Example 9.3 . 197
Figure 9-7: Results of Running Example 9,4 . 197
Figure 9-8: Results of Running Example 9.5 .199
Figure 9-9: Horizontal Access Controlled via Access Modifiers public and private . 202
Figure 9-10: Method Definition Structure . 203
Figure 9-11: Results of Running Example 9.10 . 210
Figure 9-12: Results of Running Example 9.12 . 211
Figure 9-13: Results of Running Example 9.14 .213
Figure 9-14: Results of Running Example 9.16 . 214
Figure 9-15: Results of Running Example 9.21 .217
Figure 9-16: Results of Running Example 9.23 .219
Figure 9-17: Default Value Parameter Behavior . 220
Figure 9-18: Reference Parameter Behavior — Using ref Modifier .221
Figure 9-19: Results of Running Example 9.24 . 222
C# For Artists © 2008 Rick Miller — All Rights Reserved xxxvii

List of Figures
Figure 9-20: Results of Running Example 9.25 . 222
Figure 9-21: Results of Running Example 9.26 . 223
Figure 9-22: Results of Running Example 9.27 . 224
Figure 9-23: Structures vs. Value Types . 225
Figure 9-24: Results of Running Example 9.28 . 227
Figure 9-25: Circular Linked List with Three Nodes . 230
Figure 10-1: UML Diagram Showing Simple Aggregation . 237
Figure 10-2: Part Class Shared Between Simple Aggregate Classes . 237
Figure 10-3: UML Diagram Showing Composite Aggregation . 237
Figure 10-4: Simple Aggregation Example . 238
Figure 10-5: Results of Running Example 10.3 . 239
Figure 10-6: Composite Aggregation Example . 239
Figure 10-7: Results of Running Example 10.6 .240
Figure 10-8: Sequence Diagram — Simple Aggregation .240
Figure 10-9: Sequence Diagram — Composite Aggregation . 241
Figure 10-10: Engine Simulation Project Specification . 242
Figure 10-11: Engine Simulation Class Diagram . 243
Figure 10-12: Engine Class Diagram . 243
Figure 10-13: Create Engine Object Sequence . 245
Figure 10-14: Result of Running Example 10.7 . 246
Figure 10-15: Simple Aggregation Class Diagram .251
Figure 10-16: Composite Aggregation Class Diagram .251
Figure 11-1: Inheritance Hierarchy Illustrating Generalized and Specialized Behavior . 256
Figure 11-2: UML Class Diagram Showing DerivedClass Inheriting from BaseClass . 258
Figure 11-3: UML Diagram of BaseClass and DerivedClass Showing Fields, Properties, and Methods . 259
Figure 11-4: Results of Running Example 11.3 .261
Figure 11-5: UML Diagram Showing Student Class Inheritance Hierarchy . 262
Figure 11-6: Results of Running Example 11.6 . 264
Figure 11-7: Results of Running Example 11.7 . 265
Figure 11-8: UML Class Diagram For BaseClass & DerivedClass . 266
Figure 11-9: Results of Running Example 11.3 with Modified Versions of BaseClass and DerivedClass . 267
Figure 11-10: Expressing an Abstract Class in the UML . 268
Figure 11-11: UML Class Diagram Showing the AbstractClass and DerivedClass Inheritance Hierarchy . 269
Figure 11-12: Results of Running Example 11.12 . 270
Figure 11-13: Two Types of UML Interface Diagrams .271
Figure 11-14: UML Diagram Showing the Simple Form of Realization . 272
Figure 11-15: UML Diagram Showing the Expanded Form of Realization . 272
Figure 11-16: UML Diagram Showing the MessagePrinter Class Implementing the IMessagePrinter Interface . 272
Figure 11-17: Results of Running Example 11.15 . 273
Figure 11-18: Employee Class Inheritance Hierarchy . 276
Figure 11-19: Results of Running Example 11.20 . 278
Figure 11-20: Engine Simulation UML Class Diagram . 279
Figure 11-21: Results of Running the EngineTestApp . 280
Figure 12-1: Form Class Inheritance Hierarchy . 292
Figure 12-2: Results of Running Example 12.1 . 293
Figure 12-3: A Standard Window can be Resized by Dragging the Lower Right Corner . 294
Figure 12-4: Windows Message Routing (Message Pump) . 295
Figure 12-5: Results of Running Example 12.2 . 296
Figure 12-6: Screen Coordinate System . 297
Figure 12-7: Window Coordinates . 298
Figure 12-8: Results of Running Example 12.3 . 299
Figure 12-9: Running Example 12.4 via the Command Line with the Name of the Image WCC_2.jpg . 300
Figure 12-10: Running Example 12.4 with no Image . 301
Figure 12-11: Results of Running Example 12.5 . 302
Figure 12-12: Results of Running Example 12.6 with Different Text in the TextBox . 305
Figure 12-13: UML Class Diagram Showing Separate GUI and Application/Event Handler Classes . 306
Figure 12-14: Results of Running Example 12.8 — GUI Events Handled in Separate Object . 308
Figure 12-15: Results of Running Example 12.10 — Buttons Adjust when Window is Resized . 310
Figure 12-16: Results of Running Example 12.12 after several Buttons have been Clicked . 311
xxxviii © 2008 Rick Miller — All Rights Reserved C# For Artists

List of Figures
Figure 12-17: Window and Menu Structure of Menu Demo Program . 312
Figure 12-18: Results of Running Example 12.14 and Adding Several Buttons and Text Boxes .314
Figure 12-19: Results of Running Example 12.16 — Double-clicking the First Line . 316
Figure 13-1: Event Publisher and Subscriber . 322
Figure 13-2: Event Publisher and Subscriber . 323
Figure 13-3: Minute Tick UML Class Diagram . 324
Figure 13-4: Results of Running Example 13.5 . 325
Figure 13-5: Water Tank System UML Class Diagram . 326
Figure 13-6: Results of Running Example 13.11 . 332
Figure 14-1: Results of Testing DynamicArray . 340
Figure 14-2: Results of Running Example 14.3 .341
Figure 14-3: Results of Running Example 14.4 .341
Figure 14-4: Array of Object References Before Insertion . 342
Figure 14-5: New Reference to be Inserted at Array Element 3 (index 2) . 342
Figure 14-6: Array After New Reference Insertion . 343
Figure 14-7: Linked List Node Organization . 343
Figure 14-8: Linked List Before New Element Insertion . 344
Figure 14-9: New Reference Being Inserted Into Second Element Position . 344
Figure 14-10: References of Previous, New, and Next List Elements must be Manipulated . 344
Figure 14-11: Linked List Insertion Complete . 345
Figure 14-12: A Hash Function Transforms a Key Value into an Array Index . 345
Figure 14-13: Hash Table Collisions are Resolved by Linking Nodes Together . 346
Figure 14-14: Red-Black Tree Node Data Elements . 346
Figure 14-15: Red-Black Tree After Inserting Integer Values 9, 3, 5, 6, 7, 8, 4, 1 . 346
Figure 14-16: A Stack After Several Push and Pop Operations . 347
Figure 14-17: A Queue After Several Enqueue and Dequeue Operations . 347
Figure 14-18: Results of Running Example 14.6 . 352
Figure 14-19: Results of Running Example 14.8 .353
Figure 14-20: Results of Running Example 14.9 .355
Figure 14-21: Results of Running Example 14.11 . 356
Figure 14-22: Results of Running Example 14.13 . 359
Figure 14-23: Results of Running Example 14.15 . 360
Figure 14-24: Results of Running Example 14.16 . 361
Figure 15-1: Exception Information Table . 367
Figure 15-2: Exception Class Hierarchy . 368
Figure 15-3: Getting Exception Information from MSDN . 369
Figure 15-4: Results of Running Example 15.1 . 371
Figure 15-5: Results of Running Example 15.2 . 372
Figure 15-6: Results of Running Example 15.3 .373
Figure 15-7: Results of Running Example 15.4 .373
Figure 15-8: Results of Running Example 15.7 . 376
Figure 16-1: List of Running Applications . 383
Figure 16-2: Partial List of Processes Running on the Same Computer . 383
Figure 16-3: Processes and their Threads Executing in a Single-Processor Environment . 384
Figure 16-4: Processes and their Threads Executing in a Multiprocessor Environment . 385
Figure 16-5: SingleThreadedVacation Program Output . 387
Figure 16-6: MultiThreadedVacation Program Output - Partial Listing . 388
Figure 16-7: Thread States and Transition Initiators . 389
Figure 16-8: Results of Running Example 16.3 . 390
Figure 16-9: Results of Running Example 16.4 . 391
Figure 16-10: Results of Running Example 16.5 . 392
Figure 16-11: Results of Running Example 16.6 . 393
Figure 16-12: Results of Running Example 16.7 . 393
Figure 16-13: Results of Running Example 16.8 . 394
Figure 16-14: Results of Running Example 16.9 . 395
Figure 16-15: One Particular Result of Running Example 16.10 . 398
Figure 16-16: Partial Result of Running Example 16.11 . 400
Figure 16-17: Results of Running Example 16.12 . 401
Figure 16-18: Results of Running Example 16.13 .402
C# For Artists © 2008 Rick Miller — All Rights Reserved xxxix

List of Figures
Figure 16-19: Results of Running Example 16.14 . 403
Figure 17-1: Simplified View of Service Layers . 410
Figure 17-2: Typical Directory Structure . 411
Figure 17-3: The Absolute Path to the Reports\East\Q2.xls File . 411
Figure 17-4: Results of Running Example 17.1 . 412
Figure 17-5: Results of Running Example 17.3 . 416
Figure 17-6: Results of Running Example 17.4 .417
Figure 17-7: Results of Running Example 17.6 .420
Figure 17-8: Results of Running Example 17.8 . 422
Figure 17-9: Legacy Datafile Adapter Project Specification . 423
Figure 17-10: Header and Record Length Analysis . 424
Figure 17-11: Monitor.Enter()/Monitor.Exit() vs. the lock Keyword . 425
Figure 17-12: Results of Running Example 17.16 Once . 437
Figure 17-13: Results of Running Example 17.19 .440
Figure 17-14: Results of Running Example 17.21 and Selecting Three Files . 442
Figure 18-1: A Simple Computer Network . 450
Figure 18-2: Local Area Network Connected to the Internet .451
Figure 18-3: The Internet — A Network of Networks Communicating via Internet Protocols . 452
Figure 18-4: Client and Server Hardware and Applications . 453
Figure 18-5: Client and Server Applications Physically Deployed to the Same Computer . 454
Figure 18-6: Running Multiple Clients on Same Hardware . 455
Figure 18-7: Client and Server Applications Deployed on Different Computers . 455
Figure 18-8: A Multitiered Application . 456
Figure 18-9: Physically Deploying Logical Application Tiers on Same Computer . 457
Figure 18-10: Logical Application Tiers Physically Deployed to Different Computers . 457
Figure 18-11: TCP/IP Protocol Stack . 458
Figure 18-12: Internet Protocol Stack Operations . 459
Figure 19-1: .NET Remoting Architecture . 466
Figure 19-2: RemotingServer Waiting for Something to do . 468
Figure 19-3: Results of Running RemotingServer and RemotingClient with a SingleCall Mode Remote Object . 469
Figure 19-4: Results of Hosting TestClass Remote Object in Singleton Mode . 470
Figure 19-5: Results of Accessing a Remote Object via an Interface . 472
Figure 19-6: Results of Running RemotingServer and RemotingClient with Configuration Files . 473
Figure 19-7: Results of Sending a Collection of Person Objects to a Remoting Client . 477
Figure 19-8: Server Application Listens on a Host and Port for Incoming TcpClient Connections . 478
Figure 19-9: TcpListener Accepts Incoming TcpClient Connection . 478
Figure 19-10: TcpClients Communicate via a NetworkStream using StreamReader and StreamWriter Objects . 479
Figure 19-11: Results of Running the EchoClient and EchoServer Applications . 481
Figure 19-12: Two Clients Connected to MultiThreadedClientServer . 482
Figure 19-13: Results of Running MultiIPEchoServer and EchoClient (Mod 1) Applications . 485
Figure 19-14: Results of Running SurrealistEchoServer and EchoClient (Mod 2) . 489
Figure 20-1: Employee Training Server Application Architecture . 494
Figure 20-2: SQL Server System Configuration Check . 496
Figure 20-3: SQL Express Feature Selection Dialog . 496
Figure 20-4: Results of Testing SQL Server Express Edition Installation . 497
Figure 20-5: Management Studio Login Dialog . 497
Figure 20-6: SQL Management Studio Main Window . 497
Figure 20-7: Enterprise Library Custom Setup Dialog . 498
Figure 20-8: Double-Click the InstallServices.bat File . 498
Figure 20-9: Enterprise Library Configuration File Creation Tool . 500
Figure 20-10: Contents of the SimpleConnection Project Directory Before Compiling . 500
Figure 20-11: Results of Running the SimpleConnection Application . 501
Figure 20-12: The Primary Key of One Table Can Serve as the Foreign Key in a Related Table . 501
Figure 20-13: SQL Server’s Default Databases . 502
Figure 20-14: Creating EmployeeTraining Database with SQL Command Utility . 503
Figure 20-15: Checking on the Existence of the EmployeeTraining Database . 503
Figure 20-16: Results of Executing the create_database.sql Script . 504
Figure 20-17: Results of Executing create_tables.sql Database Script . 505
Figure 20-18: Results of Running create_test_data.sql Database Script . 507
xl © 2008 Rick Miller — All Rights Reserved C# For Artists

List of Figures
Figure 20-19: Results of Executing a Simple Select Statement . 508
Figure 20-20: Selecting Specific Rows with select Statement . 508
Figure 20-21: Inserting More Test Data with the create_test_data.sql Database Script . 509
Figure 20-22: Results of Limiting Data Returned from select Statement with where Clause . 509
Figure 20-23: Results of Executing the Previous Query . 509
Figure 20-24: Changing Coralie Powell’s Last Name to Miller with the Update Statement . 510
Figure 20-25: Deleting all Employees whose Last Names = “Miller” . 510
Figure 20-26: Verifying the Creation of the tbl_employee_training Table .512
Figure 20-27: Selecting EmployeeIDs from tbl_employee . 513
Figure 20-28: Results of Running the Previous SQL Query .514
Figure 20-29: Results of Running the Previous SQL Query . 515
Figure 20-30: Results of Executing a Cascade Delete and Checking the Results . 515
Figure 20-31: Employee Training Project Folder Arrangement .516
Figure 20-32: EmployeeVO and EmployeeDAO Class Diagram . 520
Figure 20-33: Results of Running the CompileVO Target using the MSBuild Utility . 522
Figure 20-34: Build Warnings From Conflicting Type Declarations . 523
Figure 20-35: Initial State of the EmployeeTrainingServer Application Window . 530
Figure 20-36: Employee Picture Loaded and Create Button Enabled . 531
Figure 20-37: Testing with More Employee Pictures . 531
Figure 20-38: Testing the Insertion and Retrieval of a Large Image . 532
Figure 20-39: TrainingDAO and TrainingVO Class Diagram .533
Figure 20-40: EmployeeAdminBO UML Class Diagram .533
Figure 20-41: Collapsed Code Regions in Notepad++ . 542
Figure 20-42: Modified Test Application . 544
Figure 20-43: EmployeeTrainingRemoteObject UML Class Diagram . 552
Figure 20-44: EmployeeTrainingServer Running and Ready For Remote Connections . 556
Figure 20-45: Client Project Directory Structure .557
Figure 20-46: Running Client Application via the MSBuild Project’s Run Target . 559
Figure 20-47: EmployeeTrainingClient UML Class Diagram . 559
Figure 20-48: Mock-up Sketch of the EmployeeTrainingApplication GUI . 560
Figure 20-49: EmployeeTrainingClient Initial Display on Startup — Something’s Not Quite Right! . 562
Figure 20-50: Employee’s Related Training Shown in Training DataGridView . 563
Figure 20-51: Results of Clicking on a Employee with a Picture - a RemotingException is Thrown . 563
Figure 20-52: Bitmap Class Usage Note . 564
Figure 20-53: EmployeeTrainingClient Application with Employee’s Picture Displayed in the PictureBox . 569
Figure 20-54: Employee Form Mock-up . 570
Figure 20-55: Training Form Mock-up .573
Figure 20-56: Main Application Window with Edit Menu Open to Reveal Revised Menu Structure .581
Figure 20-57: Edit Menu Items Disabled . 582
Figure 20-58: Empty Employee Data Entry Form . 582
Figure 20-59: Employee Form Fully Populate and Submit Button Enabled . 582
Figure 20-60: Training Form Empty and Filled . 583
Figure 21-1: Method Signature for Overloaded Unary Operator .591
Figure 21-2: Method Signature for Overloaded Unary Logical Operator .591
Figure 21-3: Results of Running Example 21.2 . 592
Figure 21-4: Results of Running Example 21.4 . 593
Figure 21-5: Results of Running Example 21.6 . 594
Figure 21-6: Results of Running Example 21.9 . 596
Figure 21-7: Overloaded Binary + Operator Signature that Operates on Two Objects of Type MyType . 597
Figure 21-8: Overloaded Binary + Operator Signature that Operates on Objects of MyType and Integer . 597
Figure 21-9: Results of Running Example 21.11 . 599
Figure 21-10: Results of Running Example 21.13 . 601
Figure 21-11: Results of Running Example 21.15 . 603
Figure 21-12: Method Signature for Overloaded Equality Operator .604
Figure 21-13: Compiler Warning — == and != Operators Need Special Attention . 606
Figure 21-14: Results of Running Example 21.17 . 606
Figure 21-15: Method Signatures for Implicit and Explicit Cast Operators . 607
Figure 21-16: Results of Running Example 21.19 . 609
Figure 21-17: Results of Running Example 21.20 . 610
C# For Artists © 2008 Rick Miller — All Rights Reserved xli

List of Figures
Figure 22-1: Horizontal and Vertical Member Accessibility .617
Figure 22-2: Running Example 22.2 Several Times . 620
Figure 22-3: Running MainApp in the Read Mode . 623
Figure 22-4: Results of Running MainApp Several More Times in the Append Mode then Read Mode . 623
Figure 22-5: Concept of a Shallow Copy . 625
Figure 22-6: Concept of a Deep Copy . 625
Figure 22-7: Results of Running Example 22.6 . 627
Figure 22-8: Results of Running Example 22.8 . 629
Figure 22-9: Results of Running Example 22.10 . 633
Figure 22-10: Results of Running Example 22.12 . 636
Figure 22-11: Results of Running Example 22.14 . 637
Figure 23-1: Results of Running Example 23.2 . 646
Figure 23-2: Results of Running Example 23.4 . 648
Figure 23-3: Results of Running Example 23.6 . 650
Figure 23-4: Results of Running Example 24.8 . 652
Figure 23-5: Strong vs. Weak Types . 653
Figure 23-6: Results of Running Example 24.12 . 655
Figure 23-7: Naval Fleet Class Inheritance Hierarchy . 657
Figure 23-8: Results of Running Example 24.22 .661
Figure 23-9: Traditional Top-Down Functional Dependencies . 662
Figure 24-1: Meyer’s Inheritance Taxonomy .671
Figure 24-2: Person-Employee Inheritance Diagram . 673
Figure 24-3: Revised Person - Employee Example . 677
Figure 24-4: Results of Running Example 24.9 . 682
Figure 25-1: Results of Running Example 25.4 . 692
Figure 25-2: Results of Running Example 25.8 . 695
Figure 25-3: Model-View-Controller Pattern . 695
Figure 25-4: Results of Running Example 25.11 and Clicking the “Next Message” Button Several Times . 697
Figure 25-5: EmployeeMVC Project Directory Structure . 702
Figure 25-6: Interacting with the Employee Management Application . 722
xlii © 2008 Rick Miller — All Rights Reserved C# For Artists

Preface
Preface

Welcome — And Thank You!

Welcome to C# For Artists: The Art, Philosophy, and Science of Object-Oriented Programming. Thank you for

supporting the writing efforts of a independent author and small publisher. I spent two years of my life crafting this

book. My goal was to create a book with no spelling mistakes or typographical errors, a book whose programming

examples are complete and actually compile, a book that serves equally well both novice and practitioner, a book that

stretches your brain with in-depth material and challenging projects. Above all, I wanted to create a book that gives

you the absolute best value for your money. I hope I’ve achieved my goal. I tried my best and that’s all one can do.

Target Audience

C# For Artists targets both the undergraduate computer science or information technology student and the prac-

ticing programmer. It is both an introductory-level textbook and trade book.

As a textbook it employs learning objectives, skill-building exercises, suggested projects, and self-test questions

to reinforce the learning experience. The projects offered range from the easy to the extremely challenging. It covers

all the topics you’d expect to find in an introductory C# programming textbook and then some.

As a trade book it goes purposefully deeper into topics cut short or avoided completely in most introductory text-

books. Its coverage of GUI programming techniques, network programming, database access, and object-oriented

theory will enable you to take your skills to a higher level.

Approach(es)

The .NET Framework is so complex that any text or trade book that attempts a broad coverage of the topic must

employ a multitude of approaches. The many approaches employed in C# For Artists include the following:

Say what I’m gonna say; say it; then say what I said: This approach is supported by the copious use of chapter

learning objectives, chapter introductions, quick review sections, and comprehensive summaries.

Test to the learning objectives: The material presented in each chapter is reinforced by end-of-chapter skill-

building exercises, suggested projects, and self-test questions.

Repeat, repeat, repeat: If I think something is especially important I will present it to you several different ways

in different chapters in the book.

Illustrate, illustrate, illustrate: Pictures are worth a thousand words. To this end I illustrate difficult concepts

graphically whenever possible.

Demonstrate, demonstrate, demonstrate: The results of running almost every programming example in this

book are shown via a screen or console capture. The relationship between what you see in the code and what you see

as a result of running the code is clearly explained.

Every programming example must work as advertised: Nothing is more frustrating to a beginner than to enter a

source code example from a book and try to compile it only to find that it doesn’t work. All source code in this book
C# For Artists ©2008 Rick Miller — All Rights Reserved xliii

Pedagogy — I Mean, How This Book’s Arranged Preface
is compiled and tested repeatedly before being cut and pasted into the page layout software. Line numbers are auto-

matically added so humans don’t mess things up.

Show real world examples: The later programming examples in this book are more complex than any provided

in any competing C# text book. This approach is necessary to push you past the stage of simplistic C# programming.

Show complete examples: At the risk of having too much source code I provide complete examples to preserve

the context of the code under discussion.

Offer an advanced treatment of object-oriented design principles: Students are better prepared to tackle com-

plex projects when they’ve been introduced to advanced object-oriented programming concepts. If they try and

design without it they are shooting from the hip.

Pedagogy — I Mean, How This Book’s Arranged

Each chapter takes the following structure:

Learning Objectives

Each chapter begins with a set of learning objectives. The learning objectives specify the minimum knowledge

gained by reading the chapter material and completing the skill-building exercises, suggested projects, and self-test

questions. In almost all cases the material presented in each chapter exceeds the chapter learning objectives.

Introduction

The introduction provides a context and motivation for reading the chapter material.

Content

The chapter content represents the core material. Core material is presented in sections and sub-sections.

Quick Reviews

The main points of each primary section heading are summarized in a quick review section. A quick review may

be omitted from relatively short sections.

Summary

The summary section summarizes the chapter material.

Skill-Building Exercises

Skill-building exercises are small programming or other activities intended to strengthen your capabilities in a

particular area. They could be considered focused micro-projects.

• Learning Objectives

• Introduction

• Content

• Quick Reviews

• Summary

• Skill-Building Exercises

• Suggested Projects

• Self-Test Questions

• References

• Notes
xliv ©2008 Rick Miller
 — All Rights Reserved C# For Artists

Preface Typographical Formats
Suggested Projects

Suggested projects require the application of a combination of all knowledge and skills learned up to and includ-

ing the current chapter to complete. Suggested projects offer varying degrees of difficulty.

Self-Test Questions

Self-test questions test your comprehension on material presented in the current chapter. Self-test questions are

directly related to the chapter learning objectives.

References

All references used in preparing chapter material are listed in the references section.

Notes

Note taking space.

Typographical Formats

The preceding text is an example of a primary section heading. It is set in Peynot font 14 point normal with lines

above and below.

Ordinary paragraphs like this one are set in Roman font 10 point normal

This Is An Example Of A First Level Subheading

It is set in Peynot font 12 point normal.

This Is An Example Of A Second Level Subheading

It is set in Peynot font 10 point oblique.

This Is An Example Of A Third Level Subheading

It is set in Peynot font 9 point oblique underline indented to the right.

This Is An Example Of A Fourth Level Subheading

It is set in Peynot font at 9 point, regular, and indented a little more to the right.

Source Code Formatting

Source code and other example listings appear as line-numbered paragraphs set in Courier font 9 point. Each line

of code has a distinct number. Long lines of code are allowed to wrap as is shown in the following example:

1 // this is a line of code

2 // this is a line of code

3 // this is a really long line of code that cannot be split along a natural boundary. Lines such as these
are allowed to wrap to the next line. Long lines of code such as these have been kept to a minimum.

4 // this is another line of code
C# For Artists ©2008 Rick Miller — All Rights Reserved xlv

SupportSite™ Website Preface
SupportSite™ Website

The C# For Artists SupportSite™ is located at [http://pulpfreepress.com/content/SupportSites/CSharpForAr-

tists]. The support site includes source code arranged by chapter plus any corrections or updates to the text.

Problem Reporting

Although I made every possible effort to produce a work of superior quality, some mistakes will no doubt go

undetected. All typos, misspellings, inconsistencies or other problems found in C# For Artists are mine and mine

alone. To report a problem or issue with the text please contact me directly at rick@pulpfreepress.com or report the

problem via the C# For Artists SupportSite™. I will happily acknowledge your assistance in the improvement of this

book both online and in subsequent editions.

About The Author

Presently, I’m a senior computer scientist and web applications architect for Science Applications International

Corporation (SAIC) where I design and build enterprise web applications for the Department of Defense intelligence

community. I hold a master’s degree in computer science from California State University, Long Beach and am an

assistant professor at Northern Virginia Community College, Annandale Campus, where I teach a variety of computer

programming courses. I enjoy reading, writing, photography, and celestial navigation. You can view a small sample

of my photos at www.warrenworks.com.

Acknowledgments

A book of this size could not have been completed without the help of many people. I’d like to thank my students

for providing invaluable feedback on various portions of the text, especially Sebastian Gerke, whose insightful obser-

vations and comments prevented me from falling on my sword on several occasions. I’d especially like to praise the

efforts of Adrienne Denise Millican for patiently reviewing and editing large portions of the book. And finally, I want

to acknowledge the love and support of family and friends who always seem to understand when I can’t make an

appearance because I’m devoted to my craft.

Rick Miller

Falls Church, Virginia
xlvi ©2008 Rick Miller — All Rights Reserved C# For Artists

http://www.pulpfreepress.com/SupportSites/C++ForArtists/
http://www.pulpfreepress.com/SupportSites/C++ForArtists/
mailto:rick@pulpfreepress.com
mailto:rick@pulpfreepress.com

Part I: The C# Student Survival Guide
C# For Artists ©2008 Rick Miller — All Rights Reserved 1

2 ©2008 Rick Miller — All Rights Reserved C# For Artists

1 An Approach To The Art Of Programming

Learning Objectives
• Describe the difficulties you will encounter in your quest to become a C# programmer

• List and describe the features of an integrated development environment (IDE)

• List and describe the stages of the “flow”

• List and describe the three roles you will play as a programming student

• State the purpose of the project-approach strategy

• List and describe the steps of the project-approach strategy

• List and describe the steps of the development cycle

• List and describe two types of project complexity

• State the meaning of the phrases “maximize cohesion” and “minimize coupling”

• Describe the differences between functional decomposition and object-oriented design

• State the meaning of the term “isomorphic mapping”

Chapter 1

An Approach To The
Art Of Programming

Rosslyn, VA

V
o
ig

tl
an

d
er

 B
es

sa
-L

 /
 1

5
m

m
 S

u
p
er

 W
id

e-
H

el
ia

r
C#
 For Artists © 2008 Rick Miller — All Rights Reserved 3

Introduction Chapter 1: An Approach To The Art Of Programming
Introduction

Programming is an art; there’s no doubt about it. Good programmers are artists in every sense of the word. They

are a creative bunch, although some would believe themselves otherwise out of modesty. As with any art, you can

learn the secrets of the craft. That is what this chapter is all about.

Perhaps the most prevalent personality trait I have noticed in good programmers is a knack for problem solving.

Problem solving requires creativity, and lots of it. When you program a computer you are solving a problem with a

machine. You transfer your knowledge of a particular problem into code, transform the code into a form understand-

able by a machine, and run the result on a machine. Doing this requires lots of creativity, especially when you find

yourself stumped by a particular problem.

The material presented here is wrought from experience. Believe it or not, the hardest part about learning to pro-

gram a computer, in any programming language, is not the learning of the language itself; rather, it is learning how to

approach the art of problem solving with a computer. To this end, the material in this chapter is aimed squarely at the

beginner. However, I must issue a word of warning. If you are truly a novice, then some of what you read in this chap-

ter will make less sense to you than to someone already familiar with programming concepts. Don’t worry, it’s that

way by design. If you feel like skipping parts of this chapter now, then go right ahead. The material will be here when

you need it. In fact, you will grow to appreciate this chapter more as you gain experience as a programmer.

The Difficulties You Will Encounter Learning C#

During your studies of the C# programming language you will face many challenges and frustrations. However,

the biggest problem you will encounter is not the learning of the language itself, but the many other skills and tools

you must learn before writing programs of any significance or gaining any measure of proficiency in solving prob-

lems with C#. If you are a seasoned student or practicing computer professional returning to the classroom to upgrade

your skills, you have the advantage of experience. You can concentrate on learning the syntax and nuances of C# and

very quickly apply its powers to problems at hand. If you are an absolute beginner, however, you have much to learn.

Required Skills

In addition to the syntax and semantics of the C# language you will need to master the following skills and tools:

• A development environment, which could be as simple as a combination of a text editor and com-

piler or as complex as a commercial product that integrates editing, compiling, and project man-

agement capabilities into one suite of tools

• A computing platform of your choice (i.e., a computer running Microsoft Windows XP, or later,

operating system.)

• Problem solving skills

• Project approach techniques

• Project complexity management techniques

• The ability to put yourself in the mood to program

• The ability to stimulate your creativity

• Object-oriented analysis and design

• Object-oriented programming principles

• Microsoft .NET Framework Application Programming Interface (.NET API)

The Planets Will Come Into Alignment

I use a metaphor to describe what it takes before you can get even the simplest program to execute properly. It’s

as if the planets must come into alignment. You must learn a little of each skill and tool listed above, with the excep-

tion of object-oriented programming principles and object-oriented analysis and design, to write, compile, and run

your first C# program. But, when the planets do come into alignment, and you see your first program compile and

execute, and you begin to make sense of all the class notes, documentation, and text books you have studied up to that

point, you will spring up from your chair and do a victory dance. It’s a great feeling!
4 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 1: An Approach To The Art Of Programming Personality Traits Found In Great Programmers
How This Chapter Will Help You

This chapter gives you the information you need to bring the planets into alignment sooner rather than later. It

presents an abbreviated software development methodology that formalizes the three primary roles you play as a pro-

gramming student: analyst, architect, and programmer. It offers tips on how you can tap into the “flow”, a transcen-

dental state often experienced by artists when they are completely absorbed in and focused on their work. It also

offers several strategies to help you manage project complexity, something you will not need to do for very small

projects, but should still get into the habit of doing as soon as possible.

I recommend you read this chapter at least once in its entirety and refer back to it as necessary as you progress

through the text.

Personality Traits Found In Great Programmers

Software engineers come in all shapes, sizes, and temperaments. I’ve worked with many over the years. Here I’d

like to discuss what I believe are a few of the most important personality traits shared by the best. I’m not trying to

describe the perfect person; we all have our strengths and weaknesses. But by observing some really smart people in

action, I have formulated a definite opinion regarding the traits they possess that enable them to work well by them-

selves while at the same time permitting them to perform well in a team environment.

Creative

Like I said at the beginning of the chapter, the most prevalent personality trait great programmers possess is that

of creativity. Solving problems in such a manner that allows them to be executed by a machine takes truck loads of

creativity.

If you say to yourself, “But I’m not creative!” My advice to you is not to sell yourself short. A large part of being

creative is simply having an open mind. You must be receptive to alternative solutions and not limit yourself to a “this

way or the highway” way of thinking.

Tenacious

Great programmers never give up! As computers, operating systems, and programming languages grow increas-

ingly complex, so too grows the complexity of their associated development environments and the range of issues

and problems you will encounter when developing solutions for these machines. If you are the type of person who

likes to bite into a problem like a pit bull and keep at it until you’ve licked it, then you’ll do well as a programmer.

Resilient

Great programmers bounce back! When a particular problem has given you a thorough trouncing you must come

back strong the next day and fight the battle again. Programming is one continuous stream of problem solving. This

you must be willing to repeat ad-infinitum. To paraphrase an old Timex® watch advertisement campaign slogan, you

must be able to “...take a licking and keep on ticking!”

Methodical

Great programmers approach everything they do in a methodical way. This holds true regardless of if you pro-

gram alone or as part of a team or if a formal methodology does or does not exist. You must be able to formulate prob-

lem attack plans and execute those plans.
C# For Artists © 2008 Rick Miller — All Rights Reserved 5

Project Management Chapter 1: An Approach To The Art Of Programming
Meticulous

Great programmers are meticulous. Close attention to detail is paramount in the programming profession. One

identifier misspelled, one token out of place, can break entire systems.

Honest

Great programmers can be trusted to do the right thing in the code when no one is looking. They must be honest

with themselves but especially towards other programmers. Honest programmers put in an honest day’s work and

give realistic estimates regarding task completion.

Proactive

Great programmers recognize and capitalize upon opportunity. They get up out of their chair and go out and talk

to their fellow programmers. When they see problems in the code or areas for improvement they bring it to the atten-

tion of the team.

Humble

Great programmers know when to seek guidance or help. They don’t let their ego stand in the way of the greater

good. They get up off their duff and talk to their fellow programmers. They share their knowledge and wisdom so that

someday they can take a vacation. Most importantly, admitting that they don’t know something early on can save

hundreds of wasted work hours down the line.

Be a Generalist and a Just-in-Time Specialist

Great programmers are well-versed in all aspects of computing. Rarely have I ever met any who referred to

themselves as only a this type of programmer or a that type of programmer. I’d rather hire generalists with solid edu-

cational backgrounds and the proven ability to teach themselves new tricks, than to bank on a specialist who refuses

to grow professionally. In other words, great programmers have a broad range of skills they can apply to the problem.

Great programmers can gather requirements, design a solution, write the code, conduct testing, write supporting doc-

umentation, deploy the application if necessary, and carry on intelligent conversations with the customer to boot.

Project Management

Three Software Development Roles

You will find yourself assuming the duties and responsibilities of three software development roles: analyst,

architect, and programmer.

Analyst

The first software development role you will play as a programming student is that of analyst. When you are first

handed a class programming project you may not understand what, exactly, the instructor is asking you to do. Hey, it

happens! Regardless, you, as the student, must read the assignment and design and implement a solution.

Programming project assignments come in several flavors. Some instructors go into painful detail about how

they want the student to execute the project. Others prefer to generally describe the type of program they want, thus

leaving the details, and the creativity, up to you. There is no one correct method of writing a project assignment; each

has its benefits and limitations.
6 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 1: An Approach To The Art Of Programming Project Management
A detailed assignment takes a lot of the guesswork out of what outcome the instructor expects. On the other

hand, having every design decision made for you may prevent you from solving the problem in a unique, creative

way.

A general project assignment delegates a lot of decision making to the student while also adding the responsibil-

ity of determining what project features will satisfy the assignment.

Both types of assignments model the real world to some extent. Sometimes, software requirements are well

defined leaving little doubt what shape the final product will take and how it must perform. More often than not, how-

ever, requirements are ill-defined and vaguely worded. As an analyst, you must clarify what is being asked of you. In

an academic setting, do this by talking to your instructor and asking them to clarify the assignment. A clear under-

standing of the assignment will yield valuable insight into possible approaches to a solution.

Architect

The second software development role you will play is that of architect. Once you understand the assignment

you must design a solution. If your project is extremely small, you could perhaps skip this step with no problem.

However, if your project contains several objects that interact with each other, then your design, and the foundation it

lays, could make the difference between success and failure. A well-designed project reflects a sublime quality that

poorly designed projects do not. (See the discussion of the Quality without a Name (QWAN) in Chapter 25 — Helpful

Design Patterns)

Two objectives of good software design are the abilities to accommodate change and tame complexity. Accom-

modating change, in this context, means the ability to incrementally add features to your project as it grows without

breaking the code you have already written. Several important object-oriented principles have been formulated to

help tame complexity and will be discussed later in the book. For starters though, begin by imposing good organiza-

tion upon your source code files. For simple projects you can group source code files together in one directory. For

more complex projects you will want to organize source code files into subfolders and group related type definitions

into namespaces. (See Chapter 20 — Database Access)

Programmer

The third software development role you will play is that of programmer. As the programmer, you will execute

your design. The important thing to note here is that if you do a poor job in the roles of analyst and architect, your life

as a programmer will be miserable. That doesn’t mean the design has to be perfect. I will show you how to incremen-

tally develop and make improvements to your design as you code.

Now that you know what roles you will play as a student, let’s discuss how you might approach a project.

A Project-Approach Strategy

Most students have difficulty implementing their first significant programming assignment, not because they lack

brains or talent, but because they lack experience. If you are a novice and feel overwhelmed by your first program-

ming project, rest assured you are not alone. The good news is that with practice, and some small victories, you will

quickly gain proficiency at formulating approach strategies to your programming projects.

Even experienced programmers may not immediately know how to solve a problem or write a particular piece of

code when tasked to do so. What they do know, however, is how to formulate a strategy to solve the problem.

You Have Been Handed A Project — Now What?

Until you gain experience and confidence in your programming abilities, the biggest problem you will face when

given a large programming assignment is where to begin. What you need to help you in this situation is a project-

approach strategy. The strategy is presented below and discussed in detail. I have also summarized the strategy in a

checklist located in Appendix A. Feel free to reproduce the checklist to use as required.

The project-approach strategy is a collection of areas of concern to take into consideration when you begin a pro-

gramming project. It’s not a hard, fast list of steps you must take. It’s intended to put you in control, to point you in

the right direction, and give you food for thought. It is flexible. You will not have to consider every area of concern
C# For Artists © 2008 Rick Miller — All Rights Reserved 7

Project Management Chapter 1: An Approach To The Art Of Programming
for every project. After you have used it a few times to get started, you may never use it explicitly again. As your pro-

gramming experience grows, feel free to tailor the project-approach strategy to suit your needs.

Strategy Areas of Concern

The project-approach strategy consists of several programming project areas of concern. These areas of concern

include application requirements, problem domain, language features, and application design. When you use the

strategy to help you solve a programming problem, your efforts become focused and organized rather than ad hoc and

confused. You will feel like you are making real progress rather than drowning in a sea of confusion.

Application Requirements

An application requirement is an assertion about a particular aspect of expected application behavior. A project’s

application requirements are contained in a project specification or programming assignment. Before you proceed

with the project you must ensure that you completely understand the project specification. Seek clarification if you do

not know or if you are not sure what problem the project specification is asking you to solve. In my academic career,

I have seen projects so badly written that I thought I had a comprehension problem. I’d read the thing over and over

again until struck by a sudden flash of inspiration. But more often than not, I would verify what I believed an instruc-

tor required by asking them to clarify any points I did not understand.

Problem Domain

The problem domain is the body of knowledge necessary to implement a software solution apart and distinct

from the knowledge of programming itself. For example, consider the following application requirement: “Write a

program to simulate elevator usage in a skyscraper.” You may understand what is being asked of you (requirements

understanding) but not know anything about elevators, skyscrapers, or simulations (problem domain). You need to

become enough of an expert in the problem domain for what you are solving such that you understand the issues

involved. In the real world, subject matter experts (SMEs) augment development teams, when necessary, to help

developers understand complex problem domains.

Programming Language Features

One source of great frustration to novice programming students at the opening stages of the project is knowing

what solution to design without knowing enough of the programming language features to start the design process.

This is when panic sets in and students begin to buy extra books in hopes of discovering the Holy Grail of project

wisdom.

To save yourself from panic, make a list of the language features you need to understand. Study each one, mark-

ing it off your list as you go. This provides focus and a sense of progress. As you read about each feature, take notes

on its usage. Then refer to your notes when you sit down to formulate your program’s design.

High-Level Design & Implementation Strategy

When you are ready to design a solution, you will usually be forced to think along two completely different lines

of thought: procedural vs. object-oriented.

Procedural-based Design Approach

A procedural-based design approach identifies and implements program data structures separately from the pro-

gram code that manipulates those data structures. When taking a procedural-based approach to a solution you gener-

ally break the problem into small, easily solvable pieces called functions, implement the solution to each function

separately, and then combine the functions into a complete solution. This methodology is also known as functional

decomposition.
8 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 1: An Approach To The Art Of Programming Project Management
Although C# does not support standalone functions (C# has methods and a method must belong to a class), you

can still use a procedural-based design approach to create a working C# program. However, taking such an approach

usually results in a sub-optimal design.

Object-Oriented Design Approach

Object-oriented design entails thinking of an application in terms of objects and the interactions between these

objects. This approach no longer considers data structures and the methods that manipulate those data structures to be

separate. The data an object needs to do its work is contained within the object itself and resides behind a set of public

interface methods. (Encapsulation) Data structures and the methods that manipulate them combine to form classes

from which objects can then be created.

To solve a programming problem with an object-oriented approach, decompose it into a set of objects and their

associated behavior. You can use design tools such as the Unified Modeling Language (UML) to help with this task.

Once you’ve identified system objects, you then define object interface methods. From here you declare classes or

structures and implement those interface methods. Finally, you combine these classes or structures together to form

the final program. (This usually takes place in an iterative fashion over a period of time according to a well-defined

development process.) Note that when using the object-oriented approach, you are still breaking a problem into solv-

able pieces, only now the solvable pieces are objects that represent the interrelated parts of a system.

The primary reason the object-oriented approach is superior to functional decomposition is due to the isomorphic

mapping between the problem domain and the design domain as Figure 1-1 illustrates.

Referring to Figure 1-1 — real world objects such as weapon systems, sensors, propulsion systems, and vessels

can have a corresponding representation in the software system design. The correlation between real world objects

and software components fuels the power of the object-oriented approach.

Once you get the hang of object-oriented design, you will never return to functional decomposition again. How-

ever, after having identified the objects in your program and the interfaces they should have, you must still implement

your design. This means writing class member methods one line of code at a time.

Think Abstractly

One mistake students often make is to think too literally. It is very important to remember that the act of solving

a real world problem with a computer requires abstraction. The real world is too complex to model sufficiently with a

computer program. One day, perhaps, the human race will produce a genius who will show us how it’s done. Until

Figure 1-1: Isomorphic Mapping Between Problem Domain and Design Domain
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 9

The Art Of Programming Chapter 1: An Approach To The Art Of Programming
then, analysts must focus on the essence of a problem and distill unnecessary details into a tractable solution that can

then be modeled effectively in software.

The Strategy In A Nutshell

The project-approach strategy can be summarized as follows: Identify the problem, understand the problem,

make a list of language features you need to study, and check them off as you go. Once you formulate a solution to the

problem, break the problem into manageable pieces, solve each piece of the problem, and then combine the solved

pieces to form a total solution.

Applicability To The Real World

The project-approach strategy presented previously is not intended to replace a formal course on software engi-

neering, but it will help you when you enter the real world as a paid programmer. In that world, you will soon dis-

cover that all companies and projects are not created equal. Different companies have different software development

methodologies. Some companies have no software development methodology. If you find yourself working for such

a company, you will probably be the software engineering expert. Good luck!

The Art Of Programming

Programming is an art. Any programmer will agree — it takes a lot of creativity to solve problems with a com-

puter. Creative people have an advantage in that they are not afraid to explore new avenues of design. Their open-

mindedness and readiness to accept new ideas gives them the ability to see problems differently from people who

tend towards the “cut and dry”. This section offers a few suggestions on how you can stimulate your creativity.

Don’t Start At The Computer

Unless you have a good idea about what source code to write, sitting down at the computer without first thinking

through some design issues is the worst mistake you can make. If you have ever suffered from writer’s block when

writing a paper for class, then you can begin to understand what you will experience if you begin your project at the

computer.

I recommend you forget the computer, go someplace quiet and relaxing with pen and paper, and draft a design

document. It doesn’t have to be big or too detailed. Entire system designs can be sketched on the back of a napkin.

The important thing is that you give some prior thought regarding your program’s design and structure before you

start coding.

Your choice of relaxing locations is important. It should be someplace where you feel really comfortable. If you

like quiet spaces, then seek quiet spaces; if you like to watch people walk by and observe the world, then an outdoor

cafe may be the place for you. Inside, outside, at the beach, on the ski slope, wherever you prefer.

What you seek is the ability to let your mind grind away on the solution. Let your mind do the work. Writing

code at the computer is a mechanical process. Formulating the solution is where real creativity is required, and is the

part of the process that requires the most brainpower. Typing code is more like an exercise in paying attention to

detail.

Inspiration Strikes At The Weirdest Time

If you let your mind work on the problem, it will offer its solution to you at the weirdest times. I solve most of

my programming problems in my sleep. As a student, I kept computers in the bedroom and would get up at all hours

of the night to work on ideas that had popped into my head in a dream.

Try to have something to write on close at hand at all times. A pad of paper and pen next to the bed or next to the

toilet can come in handy! You can also use a small tape recorder, digital memo recorder, or your personal digital

assistant. Whatever means suit your style. Just be prepared. There’s nothing worse than the sinking feeling of having
10 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 1: An Approach To The Art Of Programming The Art Of Programming
had the solution come to you in the middle of the night, in the shower, or on the drive home from work or school, only

to forget it later. You’ll be surprised at how many times you’ll say to yourself, “Hey, that will work!” only to forget it

and have no clue what you were thinking when you finally get hold of a pen.

Own Your Own Computer

Do not rely on the computer lab! I repeat, do not rely on the computer lab! The computer lab is the worst possible

place for inspiration and cranking out code. If at all possible, own your own computer. It should be one sufficiently

powerful to use for C# software development.

You Either Have Time and No Money, or Money and No Time

The one good reason for not having your own personal computer is severe economic hardship. Full-time students

sometimes fall into this category. If you are a full-time student, what you usually have instead of a job or money is

gobs of time. So much time that you can afford to spend your entire day at school and complain to your friends about

not having a social life. But you can stay in the computer lab all day long, even when it is relatively quiet.

On the other hand, you may work full-time and be a part-time student. If this describes you, then you don’t have

time to screw around driving to school to use the computer lab. You will gladly pay for any book or software package

that makes your life easier and saves you time.

The Family Computer Is Not Going To Cut It!

If you are a family person working full-time and attending school part-time, then your time is a precious com-

modity. If you have a family computer that everyone shares, adults as well as children, then get another computer, put

it off limits to everyone but yourself, and password-protect it. This will ensure that your loving family does not acci-

dentally wipe out your project the night before it is due. Don’t kid yourself, it happens. Ensure your peace of mind by

having your own computer in your own little space with a sign on it that reads, “Touch This Computer And Die!”

Set The Mood

When you have a good idea on how to proceed with entering source code, you will want to set the proper pro-

gramming mood.

Location, Location, Location

Locate your computer work area someplace that’s free from distraction. If you are single, this may be easier than

if you are married with children. If you live in a dorm or frat house, good luck! Perhaps the computer lab is an alter-

native for you after all.

Have your own room, if possible, or at least your own corner of a larger room that is recognized as a quiet zone.

Noise-canceling headphones might help if you find yourself in this situation.

Set rules. Let your friends and family know that it’s not cool to bother you when you are programming. I know it

sounds rude, but when you get into the flow, which is discussed in the following section, you will become agitated

when someone interrupts your train of thought to ask you about school lunch tomorrow or the location of the car

keys. Establish the ground rules up front that say when it is a good time to disturb you when you are programming.

The best rule is never!

Concept Of The Flow

Artists tend to become absorbed in their work, not eating and ignoring personal hygiene for days, even weeks, at

a time. Those who have experienced such periods of intense concentration and work describe it as a transcendental

state where they have complete clarity of the idea of the finished product. They tune out the world around them, living

inside a cocoon of thought and energy.
C# For Artists © 2008 Rick Miller — All Rights Reserved 11

The Art Of Programming Chapter 1: An Approach To The Art Of Programming
Programmers can get into the flow. I have achieved the flow. You too can achieve the flow. When you do, you

will crave the feeling of the flow again. It is a good feeling, one of complete and utter understanding of what you are

doing and where you are going with your source code. You can do amazing amounts of programming while in the

flow.

The Stages of Flow

As with sleep, there are stages to the flow.

Getting Situated

The first stage: You sit down at the computer and adjust your keyboard and stuff around you. Take a few deep

breaths to help you relax. By now, you should have a good idea of how to proceed with your coding. If not, you

shouldn’t be sitting at the computer.

Restlessness

The second stage. You may find it difficult to clear your mind of the everyday thoughts that block your creativity

and energy. Maybe you had a bad day at work, or even a great day. Perhaps your spouse or significant other is being a

complete jerk! Perhaps he or she is being especially nice and you’re wondering why.

Close your eyes, breathe deeply and regularly. Clear your mind and think of nothing. It is hard to do at first, but

with practice it becomes easy. When you can clear your mind and free yourself from distracting thoughts, you will

find yourself ready to begin coding.

Settling In

The third stage: Now your mind is clear. Non-productive thoughts are tucked neatly away. You begin to program.

Line by line, your program takes shape. You settle in. The clarity of your purpose takes hold and propels you forward.

Calm and Complete Focus

The fourth stage: You don’t notice it at first, but at some point between this stage and the previous stage, you

have slipped into a deeply relaxed state. You are utterly focused on the task at hand. It is like becoming completely

absorbed in a good book. Someone can call your name, but you will not notice. You will not respond until someone

either shouts at you or does something to break your concentration.

You know you were in the flow, if only to a small degree, when being interrupted brings you out of this focused

state, leaving you feeling agitated and eager to settle in once again. If you avoid getting up from your chair for fear of

breaking your concentration or losing your thought process, then you are in the flow!

Be Extreme

Kent Beck, in his book Extreme Programming Explained, describes the joy of doing really good programming.

The following programming cycle is synthesized from his extreme programming philosophy.

The Programming Cycle

Plan

Plan a little. Your project design should serve as a guide in your programming efforts. Your design should also be

flexible and accommodate change. This means that as you program, you may make changes to the design.

Essentially, you will want to design to the point where you have enough of the design to allow you to begin cod-

ing. The act of coding will either soon reinforce your design decisions, or uncover fatal flaws that you must correct if

you hope to have a polished, finished project.
12 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 1: An Approach To The Art Of Programming The Art Of Programming
Code

Code a little. Write code in small, cohesive modules. A class or method at a time usually works well.

Test

Test a lot. Test each class, module, or method both separately and in whatever grouping makes sense. You will

find yourself writing little programs on the side called test cases to test the code you have written. This is a good prac-

tice to get into. A test case is nothing more than a little program you write and execute in order to test the functionality

of some component or feature before integrating that component or feature into your project. The objective of testing

is to break your code and correct its flaws before it has a chance to break your project in ways that are hard to detect.

Integrate/Test

Integrate often, and perform regression testing. Once you have a tested module of code, be it either a method or

complete set of related classes, integrate the tested component(s) into your project regularly. The objective of regular

integration and regression testing is to see if the newly integrated component or newly developed functionality breaks

any previously tested and integrated component(s) or integrated functionality. If it does, then remove it from the

project and fix the problem. If a newly integrated component breaks something, you may have discovered a design

flaw or a previously undocumented dependency between components. If this is the case, then the next step in the pro-

gramming cycle should be performed.

Refactor

Refactor the design whenever possible. If you discover design flaws or ways to improve the design of your

project, you must revise and improve the design to accommodate further development. An example of design refac-

toring is the migration of common elements from derived classes into the base class to take better advantage of code

reuse.

Repeat

Apply the programming cycle in an iterative fashion. You will quickly reach a point in your project where it all

starts to come together, and very quickly so.

The Programming Cycle Summarized

Plan a little, code a little, test a lot, integrate often, refactor the design when possible. Don’t Wait Until You

Think You Are Finished Coding The Entire Project To Compile! Trying to write the entire program before com-

piling a single line of code is the most frequent mistake new programmers tend to make. The best advice I can offer is

this: don’t do it! Use the iterative programming cycle previously outlined. Nothing will depress you more than seeing

a million compiler errors scroll up the screen after waiting until the bitter end to compile your project.

A Helpful Trick: Stubbing

Use stubbing to both speed development and avoid writing a ton of code just to get something useful to compile.

Stubbing is a programming trick that is best illustrated by example.

Suppose your project requires you to display a text-based menu of program features on the screen. The user

would then choose one of the menu items and press ENTER, thereby invoking that menu command. What you would

really like to do first is write and test the menu’s display and selection methods before worrying about having it actu-

ally perform the indicated action. You can do exactly that with stubbing.

A stubbed method, in its simplest form, is a method with an empty body. It’s also common to have a stubbed

method display a simple message to the screen saying in effect, “Yep, the program works great up to this point. If it

were actually implemented, you’d be using this feature right now!”

Stubbing is a great way to incrementally develop your project. Stubbing will change your life!
C# For Artists © 2008 Rick Miller — All Rights Reserved 13

Managing Project Complexity Chapter 1: An Approach To The Art Of Programming
Fix The First Compiler Error First

OK. You compile some source code, and it results in a slew of compiler errors. What should you do? I recom-

mend you stay calm, take a deep breath, and fix the first compiler error first. Not the easiest compiler error, but the

first compiler error. The reason for this is that the first compiler error, if fatal, will generate other compiler errors. Fix

the first one first, and you will generally find a lot of the other errors will also be resolved. If you pick an error from

the middle of the pack and fix it, you may introduce more errors into your source code. Fix the first compiler error

first!

Managing Project Complexity

Software engineers generally encounter two types of project complexity: conceptual and physical. All program-

ming projects exhibit both types of complexity to a certain degree, but the approach and technique used to manage

small-project complexity will prove woefully inadequate when applied to medium, large, or extremely large pro-

gramming projects. This section discusses both types of complexity, and suggests an approach for the management of

each.

Conceptual Complexity

Conceptual complexity is that aspect of a software system that is manifested in, dictated by, and controlled by its

architectural design. A software architectural design is a specification of how each software module or component

will interact with other software components. A project’s architectural design directly results from the solution

approach conceived by one or more software engineers to implement a software solution for a particular problem

domain. In formulating this solution, the software engineers are influenced by their education and experience, avail-

able technology, and project constraints.

An engineer versed in procedural programming and functional decomposition techniques will approach the solu-

tion to a programming problem differently from an engineer versed in object-oriented analysis and design techniques.

The former will think in terms of modules and sub-modules, while the latter will draw a direct correlation to real

world objects and their derived software components. The functional decomposition approach will almost always

yield software modules that are difficult to use out of context. Modules are so tightly integrated with each other that

extracting one for reuse in another system may be impossible. Software architectures based on functional decomposi-

tion tend to be brittle and change resistant. By brittle, I mean that a change in one module will have negative effects

on other, seemingly unrelated modules. Software based on such change resistant architectures is hard to maintain,

modify, or extend.

An understanding of software design patterns will give the object-oriented engineer a double advantage. Such

patterns capture the knowledge and experience of many talented software engineers. Their use can significantly

increase the flexibility, maintainability, and extensibility of the applications upon which they are based.

However, writing a program in C#, or in any other object-oriented programming language does not automatically

result in a good object-oriented architecture. It takes lots of training and practice to develop good, robust, change-

receptive and resilient software architectures.

Managing Conceptual Complexity

Conceptual complexity can either be tamed by a good software architecture, or it can be aggravated by a poor

one. Software architectures that seem to work well for small to medium-sized projects will be difficult to implement

and maintain when applied to large or extremely large projects.

Tame conceptual complexity by applying sound object-oriented analysis and design principles and techniques to

formulate robust software architectures that are well-suited to accommodate change. Well-formulated object-oriented

software architectures are much easier to maintain compared to procedural-based architectures of similar or smaller

size. That’s right — large, well-designed object-oriented software architectures are easier to maintain and extend than

small, well-designed procedural-based architectures. It’s easier for object-oriented programmers to “get their heads
14 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 1: An Approach To The Art Of Programming Managing Project Complexity
around” an object-oriented design than it is for programmers of any school of thought to get their heads around a pro-

cedural-based design.

The Unified Modeling Language (UML)

The Unified Modeling Language (UML) is the de facto standard modeling language of object-oriented software

engineers. UML provides several types of diagrams to employ during various phases of the software development

process such as use-case, component, class, and sequence diagrams. However, UML is more than just pretty pictures.

UML is a modeling meta-language implemented by software-design tools like Embarcadero Technologies’ Describe

and Sybase’s PowerDesigner. Software engineers can use these design tools to control the complete object-oriented

software engineering process. C# For Artists uses UML diagrams to illustrate program designs.

Physical Complexity

Physical complexity is that aspect of a software system determined by the number of design and production doc-

uments and other artifacts produced by software engineers during the project lifecycle. A small project will generally

have fewer, if any, design documents than a large project. A small project will also have fewer source-code files than

a large project. As with conceptual complexity, the steps taken to manage the physical complexity of small projects

will prove inadequate for larger projects. However, there are some techniques you can learn and apply to small pro-

gramming projects that you can in turn use to help manage the physical complexity of large projects as well.

Managing Physical Complexity

You can manage physical complexity in a variety of ways. Selecting appropriate class names and package struc-

tures are two basic techniques that will prove useful not only for small projects, but for large projects as well. How-

ever, large projects usually need some sort of configuration-management tool to enable teams of programmers to

work together on large source-code repositories. CVS and Subversion are two examples of configuration-manage-

ment tools. The projects in this book do not require a configuration-management tool. However, the lessons you will

learn regarding class naming and namespace structure can be applied to large projects as well.

The Relationship Between Physical and Conceptual Complexity

Physical complexity is related to conceptual complexity in that the organization of a software system’s architec-

ture plays a direct role in the organization of a project’s physical source-code files. A simple programming project

consisting of a handful of classes might be grouped together in one directory. It might be easy to compile every class

in the directory at the same time. However, the same one-directory organization will simply not work on a large

project with teams of programmers creating and maintaining hundreds or thousands of source files.

Maximize Cohesion — Minimize Coupling

An important way to manage both conceptual and physical complexity is to maximize software module cohesion

and minimize software module coupling.

Cohesion is the degree to which a software module focuses on its intended purpose. A high degree of cohesion is

desirable. For example, a method intended to display an image on the screen would have high cohesion if that’s all it

did, and poor cohesion if it did some things unrelated to image display.

Coupling is the degree to which one software module depends on external software modules. A low degree of

coupling is desirable. Coupling can be controlled in object-oriented software by depending upon interfaces or

abstract classes rather than upon concrete implementation classes. These concepts are explained in detail later in the

book.
C# For Artists © 2008 Rick Miller — All Rights Reserved 15

Summary Chapter 1: An Approach To The Art Of Programming
Summary

The source of a student’s difficulty with learning a programming language lies not with the language itself, but

with the many other skills that must be mastered almost simultaneously along the way. You will find it helpful to

know the development roles you must play and to have a project-approach strategy.

Great programmers are creative, tenacious, resilient, methodical, meticulous, honest, proactive, and humble.

Great programmers cultivate a broad range of skills and focus on a particular technology when necessary.

The three development roles you will play as a student are those of analyst, architect, and programmer. As the

analyst, strive to understand the project’s requirements and what must be done to satisfy those requirements. As the

architect, you are responsible for the design of your project. As the programmer, you will implement your project’s

design in the C# programming language.

The project-approach strategy helps both novice and experienced students systematically formulate solutions to

programming projects. The strategy deals with the following areas of concern: application requirements, problem

domain, language features, and application design. By approaching projects in a systematic way, you can put yourself

in control and can maintain a sense of forward momentum during the execution of your projects. The project-

approach strategy can also be tailored to suit individual needs.

Programming is an art. Formulating solutions to complex projects requires lots of creativity. There are certain

steps you can take to stimulate your creative energy. Sketch the project design before sitting at the computer. Reserve

quiet space in which to work and, if possible, have a computer dedicated to school and programming projects.

There are five steps to the programming cycle: plan, code, test, integrate, and refactor.

Use method stubbing to test sections of source code without having to code the entire method.

There are two types of complexity: conceptual and physical. Object-oriented programming and design tech-

niques help manage conceptual complexity. Physical complexity is managed with smart project file-management

techniques, by splitting projects into multiple files, and using packages to organize source code.

Skill-Building Exercises

None

Suggested Projects

1. Feng Shui: If you haven’t already done so, stake your claim to your own quiet, private space where you will work

on your programming projects. If you are planning on using the school’s programming lab, stop by and familiarize

yourself with the surroundings.

2. Procure and Install IDE: If you are doing your programming on your own computer make sure you have pro-

cured and loaded an integrated development environment (IDE) that will meet your programming requirements. If

in doubt, check with your instructor.

3. Project-Approach Strategy Checklist: Familiarize yourself with the project-approach strategy checklist in

Appendix A.

4. Obtain Reference Books: Seek your instructor’s or a friend’s recommendation of any C# reference books that

might be helpful to you during this course. There are also many good computer book-review sites available on the

Internet. Also, there are many excellent C# reference books listed in the reference section of each chapter in this

book.

5. Web Search: Conduct a web search for C# and object-oriented programming sites. Bookmark any site you feel
16 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 1: An Approach To The Art Of Programming Self-Test Questions
might be helpful to you as you master the C# language. Microsoft’s site should be first on your list!

Self-Test Questions

1. List at least seven skills you must master in your studies of the C# programming language.

2. What three development roles will you play as a student?

3. What is the purpose of the project-approach strategy?

4. List and describe the four areas of concern addressed in the project-approach strategy.

5. List and describe the five steps of the programming cycle.

6. What are the two types of complexity?

7. What is meant by the term isomorphic mapping?

8. Why do you think it would be helpful to write self-commenting source code?

9. What can you do in your source code to maximize cohesion?

10. What can you do in your source code to minimize coupling?

References

Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley, Reading, Massachusetts,

2000. ISBN 201-61641-6

Daniel Goleman. Emotional Intelligence: Why it can matter more than IQ. Bantam Books, New York, NY. ISBN:

0-553-37506-7

Notes
C# For Artists © 2008 Rick Miller — All Rights Reserved 17

Notes Chapter 1: An Approach To The Art Of Programming
18 © 2008 Rick Miller — All Rights Reserved C# For Artists

2 Small Victories: Creating C# Projects

Learning Objectives
• List and describe the minimum development tools required to create C# programs
• State the purpose and use of operating system environment variables
• List and describe the steps required to create operating system environment variables
• State the purpose of the Path environment variable
• List and describe the steps required to add the .NET runtime folder path to the Path environment

variable
• List and describe the steps required to create C# programs using Microsoft's free command-line

tools
• List and describe the development tools found in the Microsoft Windows Software Development Kit

(SDK)
• Describe the functions and features generally found in an IDE
• List and describe the steps required to create C# programs using Microsoft Visual C# Express
• Demonstrate your ability to create C# projects using Microsoft’s free command-line tools
• Demonstrate your ability to create C# projects using Microsoft’s free Visual C# Express

Chapter 2

Small Victories
Creating C# Projects

Artifacts

N
ik

o
n
 F

3
H

P.
 K

o
d
ak

 T
ri

-X
C#
For Artists © 2008 Rick Miller — All Rights Reserved 19

Introduction Chapter 2: Small Victories: Creating C# Projects
Introduction

I call this chapter Small Victories because selecting development tools and properly configuring your develop-

ment environment easily accounts for seventy-five percent of the headaches you’ll get when starting down the road of

C# .NET software development. Creating, compiling, and running your first project represents the biggest hurdle

novice programmers face. The information in this chapter is designed to help you easily jump that hurdle and do a

victory dance.

Here you will learn several critical software development skills. First, I explain exactly what you need to write,

compile, and run C# programs. The good news is that you don’t need a fortune to start programming with C# and the

.NET Framework. Microsoft offers powerful and flexible software development tools absolutely free. Next, I will

explain the purpose and use of environment variables and show you how to configure the PATH environment variable

so you can compile and run C# programs from the command console. And, since you may not be familiar with the

command console, I will explain its purpose and use and show you how to use several important commands.

Later, once you understand how to use Microsoft’s C# .NET command-line tools, I’ll show you how to create

programs using Microsoft Visual C# Express. Visual C# Express is Microsoft’s free integrated development environ-

ment (IDE). An IDE increases programmer productivity by providing, under a common user interface, several impor-

tant software development tools including source code editing, compiling, debugging, and execution.

Creating Projects With Microsoft C#.NET Command-Line Tools

You need only two things to create professional, robust, C# .NET projects: the Microsoft .NET Framework, and

a suitable text editor. Both can be obtained free of charge, although you will most likely want to buy a good text edi-

tor.

The .NET Framework supplies you with the C# command-line compiler. The C# command-line compiler is a

program that is run in a console window and is used to transform programs written in C# into byte-code modules that

can be executed by the .NET Common Language Runtime (a.k.a. the .NET virtual machine).

The question most students ask when I teach them how to use these tools is, “Why?”. “Why, if Microsoft offers

Visual C# Express (or Visual Studio), do I need to know how to create programs using command-line tools?” That’s a

good question with several answers, and they go something like this: Visual C# Express is a powerful program. In

fact, it’s so powerful that you can spend a lot of time just learning what it does and how to use it. So, in order to let

students focus on learning the C# language, I recommend they learn how to use the command-line tools and postpone

their involvement with Visual C# Express until they get some programming experience.

My second answer to the question has a more practical side. Nowadays, most novice programming students have

little or no experience using the command console. They are familiar with the Microsoft Windows interface and

pointing and clicking with a mouse, but issuing DOS commands from the command line is something completely

alien to them.

I consider the ability to compile programs with the C# command-line tool, issuing DOS commands, and setting

and using operating system environment variables to be fundamental skills that all programmers need to have in their

tool belt. Also, mastering these fundamental skills will let you better understand what Visual C# Express is doing

“under the hood”. You may find it necessary one day to dive into the code generated “automagically” by Visual C#

Express to make a few adjustments. The only way you’ll be able to do that is to take complete control of your devel-

opment environment and understand how to use the command-line tools to compile and run C# programs.

Downloading And Installing The .NET Framework

The first thing you need to do is to download and install the .NET Framework. Microsoft offers the .NET Frame-

work Redistributable Package as a free download from their Microsoft Developer Network website (MSDN)

[www.msdn.com]. You can optionally order the .NET Framework on DVD for a nominal charge.
20 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 2: Small Victories: Creating C# Projects Creating Projects With Microsoft C#.NET Command-Line Tools
You will find the .NET Framework 3.5 by going to MSDN and under the Server Development heading click on

.NET Framework. On the .NET Framework page under the Get the Framework heading click on the .NET Frame-

work 3.5 link. This takes you to the Microsoft .NET Framework 3.5 download page.

At a minimum, you only need to download the .NET Framework 3.5. It provides the .NET runtime environment

and the C# command-line compiler. It also includes the .NET Framework 3.0 Service Pack 1, the .NET Framework

3.0 Redistributable Package, and the .NET Framework 2.0 Service Pack 1. You can optionally download and install

the Microsoft Windows Software Development Kit (SDK) for .NET Framework 3.5. The Microsoft Windows SDK

provides additional development tools. However, before you can install the SDK, you must download and install the

.NET Framework.

Installation of the .NET Framework is straightforward. The important thing to note during the installation pro-

cess is where on your hard drive the .NET Framework is installed. The path to the .NET Framework installation

directory will be [c:\Windows\Microsoft.NET\Framework\]. Figure 2-1 shows the .NET Framework

directory structure as it appears on my computer.

Notice in Figure 2-1 the five folders that begin with the letter ‘v’. These are the five versions of the .NET Frame-

work installed on my computer. For the purpose of this book we’ll only be interested in the most recent version (i.e.,

the highest numbered folder). Figure 2-2 shows a partial directory listing of the v3.5 folder. In there you’ll find the C#

compiler command-line tool.

Now that you’ve installed the .NET Framework you have everything you need to compile and run C# programs.

What you need now is a way to create C# source files. For that you’ll need a good text editor. This is the topic of the

next section.

Figure 2-1: Microsoft.NET Framework Installation Directory

Figure 2-2: Partial Directory Listing of the v3.5 Folder

The C# command-line

compiler tool.
C# For Artists
 © 2008 Rick Miller — All Rights Reserved
 21

Creating Projects With Microsoft C#.NET Command-Line Tools Chapter 2: Small Victories: Creating C# Projects
Downloading And Installing Notepad++

If you really wanted to rough-it you could use Notepad, the text editor that ships with Microsoft Windows. Note-

pad is perfectly suitable for small source files and lite editing jobs, but for bigger projects, I recommend getting your-

self a copy of Notepad++ from SourceForge.net [http://notepad-plus.sourceforge.net/].

Installation of Notepad++ is quick and straightforward. After you complete the installation a shortcut is automat-

ically installed on your desktop. Although Notepad++ is free to download, install, and use, I recommend that if you

like the product and use it often, and if you have the means, that you make a small donation via the website to support

its further development.

Armed now with the .NET Framework and a suitable text editor, you have everything you need to create C# pro-

grams. But before you get started you’ll need to properly configure your development environment.

Configuring Your Development Environment

A properly configured development environment is critical to the software creation process. In this section I will

show you how to create and use operating system environment variables, how to create a project folder, how to set

folder options so you can see filename suffixes, and how to set-up and configure shortcuts to the command console.

The skills you learn in this section will prove time and again to be absolutely invaluable.

Environment Variables

An environment variable is a named location in memory used by Microsoft Windows to store data about the

operating system environment. There are generally two types of environment variables: system and user.

System environment variables store data that pertains to and affects the operating system environment for all

users. User environment variables store data that pertains to and affects the operating system environment for a par-

ticular user. Some system and user environment variables are automatically created and initialized by the operating

system when it is installed and when users are created.

Several important environment variables must be created or edited before you can use the command-line tools to

compile and run C# programs. These include: 1) a variable named DOT_NET_FRAMEWORK_HOME that contains

the path to the folder location of the most current .NET Framework, and 2) the PATH variable that includes a refer-

ence to the DOT_NET_FRAMEWORK_HOME variable so the operating system will know where to find .NET-

related executable files like the C# command-line compiler.

Creating Environment Variables

The first environment variable you will set will be the location of the home directory of the .NET Framework.

Navigate to that folder now so that you can copy the path to the .NET Framework directory; later, you can paste this

value into the environment variable value’s text field. (Doing this prevents you from making mistakes when typing

long path names) The path to this folder should be [c:\Windows\Microsoft.NET\Framework\v3.5].

(Refer to Figure 2-2) When you open the folder, select the path that shows in the Address box and copy it using

CTRL-C.

Next, we’ll create the user environment variable named DOT_NET_FRAMEWORK_HOME. See Figure 2-3 for

an illustration of the complete environment variable creation process.

Right click the My Computer icon located on your desktop. If this icon is not located on your desktop, click the

Start icon located in the lower left part of your screen along the toolbar. Find My Computer and right click it. Click

Properties to open the System Properties dialog window. In the System Properties dialog click the Advanced tab, then

click the Environment Variables button to open the Environment Variables dialog window. Underneath the User vari-

ables section, click the New button to create a new environment variable. This will open the New User Variable dia-

log window. Enter DOT_NET_FRAMEWORK_HOME into the Variable name textbox. Paste the path to the .NET

Framework home directory you copied earlier into the Variable value textbox. After entering both values, your New

User Variable dialog window will look similar to the completed example shown in Figure 2-3. Check your work for

accuracy, then click the OK button to close the New User Variable dialog window. Click the OK button for each of

the remaining open dialog windows to accept the changes. Congratulations! You just created an environment vari-

able.
22 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 2: Small Victories: Creating C# Projects Creating Projects With Microsoft C#.NET Command-Line Tools
Creating or Editing the Path Environment Variable

Now that you have created the DOT_NET_FRAMEWORK_HOME environment variable, you can use it to cre-

ate or edit other environment variables. The next environment variable that you must either create or edit is the Path

variable. The operating system uses the Path environment variable to locate executable files. An instance of the Path

variable most likely already exists in the System Environment Variables section. I recommend leaving that version

alone and creating another Path environment variable in the User Environment Variables section. To create a new

User Path environment variable, follow the process illustrated in Figure 2-3. Enter “Path” into the Variable name text

Figure 2-3: Creating an Environment Variable

Right click MyComputer and

click Properties.

Click the Advanced tab,

then click the Environ-

ment Variables button.

Click the New button under the

User variables section.

Enter the environment variable name in the upper text

field and its value in the lower text field, then click

OK. Click the OK button to close each dialog box

and accept the changes.

1

2

3

4

5

6

C# For Artists
 © 2008 Ric
k Miller — All Rights Reserved 23

Creating Projects With Microsoft C#.NET Command-Line Tools Chapter 2: Small Victories: Creating C# Projects
field. Enter the following into the Variable value text field: %DOT_NET_FRAMEWORK_HOME%. Click the OK

buttons to accept the changes. (Note: To access an environment variable’s value, add a “%” to the beginning and end

of the variable name.)

If a Path environment variable already exists, you’ll need to select it and click the Edit button. Place your cursor

in the Variable value text field and move to the far end of the value that’s entered in the text field. If that value is not

terminated with a semicolon, you’ll need to add one before adding the following:

%DOT_NET_FRAMEWORK_HOME%;

Figure 2-4 shows the Path user environment variable being edited on my machine.

Testing The Newly Created Environment Variables

Check that you have set your environment variables correctly by running a couple of tests. The first test entails

opening a command console and using the DOT_NET_FRAMEWORK_HOME variable in a command. The second

test will be running the C# command-line compiler.

First, open the command console. Do this by clicking on Start->All Programs->Accessories->Command Prompt.

This will open a command console window like that shown in Figure 2-5. Next, enter the following command at the

command prompt: cd %DOT_NET_FRAMEWORK_HOME% The cd command stands for “Change Directory”. If you

have set the DOT_NET_FRAMEWORK_HOME environment variable correctly, entering this command should

open the .NET Framework v3.5 directory as Figure 2-6 illustrates.

Now test the Path environment variable. Execute the following command in a command console window: csc

This should run the C# compiler which will produce a result similar to that shown in Figure 2-7. If your results look

like those shown in Figure 2-7, then all is set properly. Great job! If not, recheck your environment variable settings

and try again until you have things set just right.

Figure 2-4: Editing the Path User Environment Variable

Figure 2-5: Command Console Window

Command prompt

Figure 2-6: Testing the DOT_NET_FRAMEWORK_HOME Environment Variable
24
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 2: Small Victories: Creating C# Projects Creating Projects With Microsoft C#.NET Command-Line Tools
Creating A Project Folder

The next thing you must do is create a folder in which to store your C# project files. Create a folder named

Projects on your C drive or some other acceptable location. This folder will serve as the root folder for any individual

projects you create later. You will store each project in its own folder under the Projects folder.

A good place to create the Projects folder is right on your desktop. To do this, right-click your desktop and select

New->Folder from the right-click menu as Figure 2-8 illustrates.

Name the new folder “Projects”. Note that when you create a folder on your desktop, you are actually creating it

in the [C:\Documents and Settings\username\Desktop] folder, where “username” is the username of

the account you used to log on to the computer. On my machine, the full path to the Projects folder created on the

desktop is this: [C:\Documents and Settings\rick\Desktop\Projects]

Setting Folder Options

Now that you have created your Projects folder, you’ll need to change its folder options so you can see file-type

extensions. Novice and experienced programmers sometimes have difficulty trying to compile a C# file because the

file they thought was saved with an extension of “.cs” was in fact saved with an extension of “.cs.txt”, where the

“.txt” extension was automatically added by a text editor, unbeknownst by the programmer. When this happens, the

C# compiler will fail to recognize the file as a C# source file. To help prevent such headaches, it’s a great idea to

change the folder options of all your folders to show file extensions.

To do this, open the Projects folder and in it create a new text file. The easiest way to create the text file is to sim-

ply right click in the open folder and select New->Text Document from the right-click menu. Save the text document

with the default name provided. Your Projects folder should now look like Figure 2-9. Notice that the name of the

document you just created simply shows as “New Text Document”. The “.txt” extension is hidden by default. So let’s

unhide the file extensions. Click the Tools->Folder Options... menu to bring up the Folder Options dialog window.

Click the View tab and scroll down until you see the check box that says, “Hide extensions for known file types”. This

box is checked by default. Uncheck the box as is shown in Figure 2-10.

Figure 2-7: Testing the Path Environment Variable by Running the C# Compiler

Figure 2-8: Creating a New Folder
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 25

Creating Projects With Microsoft C#.NET Command-Line Tools Chapter 2: Small Victories: Creating C# Projects
Click the Apply to All Folders button in the Folder views section, then click the Apply button and lastly the OK

button to dismiss the dialog. Your Projects folder should now look like Figure 2-11. Notice now you can see the “.txt”

file extension.

Creating A Shortcut To The Command Console And Setting Its Properties

Since you’ll be using the command console to compile C# programs you’ll find it convenient to place a com-

mand console shortcut on your desktop. To do this, click Start->All Programs->Accessories. Navigate to Command

Prompt and right click it. Select Create Shortcut. This will create a new item in the Accessories menu named “Com-

mand Prompt (2)”. Select the Command Prompt (2) icon and drag it to your desktop. Test the shortcut by double

clicking it to open the command console. By default, it should open to the directory [C:\Documents and
Settings\username], where “username” is the account you used to log on to the computer. Figure 2-12 shows

how the command console window looks with its default settings on my machine.

Figure 2-9: Projects Folder Before Setting Folder Options

Figure 2-10: Folder Options Dialog Window

Uncheck this box to show

file extensions.
26
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 2: Small Victories: Creating C# Projects Creating Projects With Microsoft C#.NET Command-Line Tools
Change The Name Of The Command Console Shortcut

The first bit of command console shortcut customization you’ll want to do is to change its name. Do this by

clicking twice on the shortcut icon’s name, pausing between clicks longer than a standard double-click. If you click

too fast, you’ll simply open the console window. If this happens simply close the window and try again. Rename the

shortcut to anything you want, but I recommend changing it to “Projects”, or “C# Projects”.

Change The Startup Folder Settings

Now that you’ve changed the command shortcut’s name, let’s make a more meaningful change. It would be nice

if the console window opened automatically in the Projects directory. To make this happen, right click the command

console shortcut icon located on your desktop and select Properties. This opens the properties dialog window for that

shortcut. For example, if you renamed your shortcut to “Projects”, the name of the properties dialog will be “Projects

Properties”. If you left the name of the shortcut with its default value, the name will be “Command Prompt (2) Prop-

erties” as Figure 2-13 illustrates. Note: The Shortcut tab is selected by default.

To make the command console automatically start in the Projects directory, change the Start in property by

replacing its default contents with the full path to the Projects folder. This will be [C:\Documents and
Settings\username\Desktop\Projects\], where “username” is the account name you used to log on to

the computer. Figure 2-14 shows the command console Start in property after I set it on my machine.

Click the OK button to accept the changes. Test the configuration by double clicking the command console short-

cut icon. It should open either in the Projects folder, or the folder you designated. If not, recheck your settings and try

again until everything works as expected.

Figure 2-11: Projects Folder After Setting Folder Options

Figure 2-12: Default Command Console Window
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 27

Creating Projects With Microsoft C#.NET Command-Line Tools Chapter 2: Small Victories: Creating C# Projects
Change The Layout Properties

The last adjustment left to make to the command console shortcut is to change its default screen buffer size. This

will allow you to increase the length and width of the screen to see more information without the lines wrapping.

Once again, right click the command console icon and click the Properties item to open the Properties dialog window.

Click the Layout tab and set the screen buffer size Width property to 120, and change the Height property to 3000, as

Figure 2-15 illustrates.

Figure 2-13: Command Console Properties Dialog

You’re going to change the

Start in property.

Start in property set to

the path of your Projects

folder. Notice the path is

enclosed in quotes.

Figure 2-14: Setting the Start in Property
28
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 2: Small Victories: Creating C# Projects Creating Projects With Microsoft C#.NET Command-Line Tools
Click the OK button to accept the new changes. Now, double click the command console shortcut to open the

console window. Change its height and width by dragging the lower right-hand corner. You’ll find this to be a big help

when troubleshooting and debugging your programs.

Testing The Configuration

As a final test of the configuration, let’s create and run a short C# program. To do this, you’ll need to create the

C# source file with the text editor, compile the source file using the C# command-line compiler, and then run the pro-

gram.

Creating The Source File

Using either Notepad++ or another text editor create a new file named “HelloWorld.cs” and save it in your

Projects folder. Enter the code shown in Example 2.1 into your source file and save the file.
2.1 HelloWorld.cs

1 using System;
2
3 public class HelloWorld {
4
5 public static void Main(){
6
7 Console.WriteLine("Hello World!");
8 }
9 }

Compiling The Source File

To compile the HelloWorld.cs file, open the command console and change to the directory where you saved the

file. If you saved it in the Projects folder, then you’re already there. If you created a sub folder then change to that

directory by using the cd command. For example, I saved the file in a folder named “Chapter2” located in the

Projects folder. To change to the Chapter2 directory from the Projects directory I entered cd chapter2, then

pressed the Return or Enter key. Figure 2-16 shows how the console looks on my machine when I use the dir com-

mand to list the directory contents.

Figure 2-15: Setting Command Console Layout Properties

Change the Width and

Height properties to see

more information.
C# For Artists
 © 2008 Rick Miller — All Rights Reserved
 29

Creating Projects With Microsoft C#.NET Command-Line Tools Chapter 2: Small Victories: Creating C# Projects
To compile the HelloWorld.cs file, enter csc followed by the name of the source file at the command prompt. If

you entered the source code correctly, you should see results similar to those shown in Figure 2-17.

If you execute another dir command to display the directory contents, you’ll see a new file named “Hel-

loWorld.exe”. This is the executable program file.

Executing The Application

To run the executable file, simply enter its name at the command prompt. Figure 2-18 shows the results of run-

ning the Hello World program.

Fixing Compilation Errors

No matter how careful you try to be, you’re bound to make a mistake or two (or more) when writing programs.

Most of these mistakes will be simple typos like forgetting to terminate a statement with a semicolon. When you

compile a program that contains a compiler error, you will see something similar to the output shown in Figure 2-19.

When the compiler encounters a problem it will output one or more warning or error messages. Warnings are

usually non-fatal in that your program will still run if the compiler signals only a warning message. Error messages,

on the other hand, must be addressed before your program will compile completely.

The error message will contain the name of the source file, the line number and character position of the problem,

and the compiler error code. The C# compiler error codes can be found on the Microsoft C# language reference site,

but searching for them on Microsoft’s website does you little good. The best way to find detailed information about a

particular C# compiler error is to enter the following search query into Google: “C# compiler error CSNNNN”,

Figure 2-16: Directory Listing of the Chapter2 Directory Showing the HelloWorld.cs File

Figure 2-17: Compiling HelloWorld.cs Using the csc C# Compiler Command

Figure 2-18: Running the HelloWorld Program

Program output:
30
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 2: Small Victories: Creating C# Projects Creating Projects With Microsoft C#.NET Command-Line Tools
where “NNNN” is the compiler error number. The first result from this query will usually lead straight to the

Microsoft C# compiler error page for that compiler error number. As you can see from Figure 2-20, the C# compiler’s

error message information is located in the Visual C# language reference area. The detailed information for compiler

error number CS1002 is shown in Figure 2-21.

Fix The First Compiler Error First

The best advice I can offer when dealing with compiler errors is to always fix the first compiler error first. The

reason for this is that some compiler errors trigger other errors. Fixing the first error generally eliminates many other

errors on the list.

Quick Review

All you need to create robust Microsoft C# applications is a good text editor and the free Microsoft C# com-

mand-line compiler that’s included with the .NET Framework Redistributable Package.

You must configure your development environment before using the C# command-line compiler. This includes

creating or editing one or more operating system environment variables. An environment variable is a named location

Figure 2-19: Compiler Output Showing Compiler Error on Line 6 at Position 39

Figure 2-20: C# Language Compiler Errors
C# Fo
r A
rtists © 2008 Rick Miller — All Rights Reserved 31

Creating Projects With Microsoft Visual C# Express Chapter 2: Small Victories: Creating C# Projects
in memory used by Microsoft Windows to store data about the operating system environment. There are generally

two types of environment variables: system and user. System environment variables store data that pertains to and

affects the operating system environment for all users; user environment variables store data that pertains to and

affects the operating system environment for a particular user.

Environment variable values can be accessed by enclosing the variable name in ‘%’ characters.

The operating system uses the Path environment variable to help it find executable files. You must create or edit

the Path environment variable to include the full path to the C# compiler (csc.exe).

It’s helpful to create a project folder and a shortcut to the command console on your desktop. Set the command

console shortcut’s Start in property so it will automatically open in your designated project folder. Increase the com-

mand console shortcut’s screen buffer height and width properties to see more information in the console window.

It’s also a good idea to set your folder options to display file type extensions. This will prevent headaches associ-

ated with accidently saving source files with a “.txt” extension.

To create a C# program with the command-line compiler, you must create the source file, compile the source file

with the csc command-line compiler tool, and then execute the program by typing its name at the command prompt

and pressing the Return or Enter key.

You’re bound to get a few compiler errors when you start writing your own programs. Go to Microsoft’s website

to look up the error code. Remember to always fix the first compiler error first!

Creating Projects With Microsoft Visual C# Express

Microsoft Visual C# Express Edition is an IDE that combines text editing, debugging, project management, and

a host of other features. Visual C# Express is a trimmed-down, lightweight version of Microsoft’s flagship develop-

ment environment Visual Studio. With Visual C# Express, you can create C# console and Windows forms applica-

tions. Visual C# Express also comes bundled with Microsoft SQL Server Compact Edition. This allows you to create

applications that access and store data to a relational database.

The convenience and power of Microsoft’s Visual Studio products come at a price. Although conceptually they

are “easy” to learn, in reality, their multitude of features do present a significant learning curve to those who are abso-

lutely new to programming. The benefit Visual Studio brings to the programmer is its seamless integration of

Microsoft’s powerful arsenal of developer tools. Your productivity will exponentially increase when you do make the

move from command-line tools to the Visual Studio environment — that is, after you’ve figured out how to properly

use the tool.

Download and Install Visual C# Express

I’ll make the assumption in this section that you have a high-speed internet connection. If not, I recommend you

order the Visual C# Express DVD from Microsoft.

Figure 2-21: C# Compiler Error CS1002 “; expected”
32
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 2: Small Victories: Creating C# Projects Creating Projects With Microsoft Visual C# Express
The download and installation of Visual C# Express is straightforward. Open a web browser and go to MSDN

[www.msdn.com]. Under the Developer Tools and Languages heading click on Visual C#. This will take you to the

Visual C# Developer Center home page. Under the Get Visual Studio heading click the Free Download: Visual C#

2008 Express link. Click the Download Now! link and select Visual C# 2008 Express Edition.

When you start the install, you’ll eventually be presented with the installation screen shown in Figure 2-22.

Note that the installation also includes Microsoft SQL Server Compact 3.5 and its associated design tools. After

installation is complete you will need to restart your computer. Having done this, you should be able to start Visual

C# by selecting Start->All Programs->Microsoft Visual C# 2008 Express Edition. You will get a screen that looks

similar to Figure 2-23.

Quick Tour Of Visual C# Express

The best way to get a feel for how Visual C# Express works is to create the HelloWorld project. If you haven’t

already done so, launch Visual Studio Express.

Select Project Type

Start by selecting File->New Project from the main menu. This opens the New Project dialog window shown in

Figure 2-24. Click the OK button to create a project. Your Visual C# Express window will now look similar to Figure

2-25. Notice in Figure 2-25 that Visual C# Express automatically generated a lot of source code when it created the

new project. But, if you look closely, it added a few more lines of code than what I provided in Example 2.1, and also

left one out. Additionally, the name of the class is not HelloWorld. It’s “Program”! Also, it did not add the keyword

public to the beginning of the class declaration, and it used a different version of the Main() method. There is

also a critical piece of code missing, namely, the Console.WriteLine(“Hello World!”); statement that

goes in the Main() method. Let’s make a few changes to the automatically generated code and then run the project.

First, in the Solution Explorer -HelloWorld pane, find the Program.cs file and right-click it to rename it to “Hel-

loWord.cs”. When you do this all references to Program will be automatically updated to HelloWorld. Next, in front

of the words class and static add the keyword public. Finally, add the statement

Console.WriteLine(“Hello World!”); between the opening and closing brackets of the Main()

method.

Notice that as you type, Visual C# Express tries to lend a hand with its IntelliSense technology, as is shown in

Figure 2-26. Referring to Figure 2-26, IntelliSense is offering a list of the Console object’s available public methods

Figure 2-22: Visual C# Express Installation Window
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 33

Creating Projects With Microsoft Visual C# Express Chapter 2: Small Victories: Creating C# Projects
and properties. IntelliSense can potentially save you a lot of time looking up .NET Framework class information, but

it won’t do all the work for you.

When you have finished making the changes to the automatically generated code, the project should look similar

to Figure 2-27.

Figure 2-23: Visual C# Express Initial Start-Up Screen

Figure 2-24: New Project Dialog Showing Console Application Selected

Name the project

HelloWorld.
34
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 2: Small Victories: Creating C# Projects Creating Projects With Microsoft Visual C# Express
Figure 2-25: HelloWorld Project View

Figure 2-26: IntelliSense Pop-Up Window Showing Available Console Object Methods and Properties
C# Fo
r A
rtists © 2008 Rick Miller — All Rights Reserved 35

Creating Projects With Microsoft Visual C# Express Chapter 2: Small Victories: Creating C# Projects
Saving The Project

Next, save the HelloWorld project by selecting File->Save All from the main menu to open the Save Project dia-

log. You can create a new folder in your Projects folder and save it there.

Build The Project

Before you can run the project you must build it. Building the project compiles the source files and generates an

executable file (i.e., a .exe file). Select Build->Build Solution from the main menu or press the F6 key as is shown in

Figure 2-29.

Locating The Project Executable File

To run the HelloWorld project, navigate to the folder in which Visual C# saved the executable file. You could run

the project directly from Visual C# Express. But, because HelloWorld simply prints a short message to the screen and

then immediately exits, you’ll have to be quick to catch the program’s output. This type of short console application

is best run from the command line.

Find the HelloWorld.exe file by opening a command console window, changing to the directory in which you

saved the project, and then executing the tree /f command at the command prompt. This will give you a directory

and file listing similar to that shown in Figure 2-30.

Notice that Visual C# Express automatically creates many subdirectories and files in the project’s directory.

Some of this data is used to maintain project state information, like the number and types of files it contains, along

with debugging information.

Figure 2-27: Updated HelloWorld Visual C# Project

Figure 2-28: Saving the HelloWorld Project
36
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 2: Small Victories: Creating C# Projects Creating Projects With Microsoft Visual C# Express
Figure 2-29: Building HelloWorld Project

Figure 2-30: Results of Running the tree /f Command from the Command Prompt

These are the original files created in the

command-line tools section.

Use the executable file located in the

..\bin\Release directory.
C# F
or Art
ists © 2008 Rick Miller — All Rights Reserved
 37

Summary Chapter 2: Small Victories: Creating C# Projects
As you can see from figures 2-28 and 2-30, I have saved my version of the Visual C# Express HelloWorld project

in a directory named “VisualStudio” located in the Chapter2 directory of the Projects directory.

Note to Students: One good reason you need to know where to find the executable file is so you can turn in exe-

cutables from programming assignments to your instructor!

Execute The Project

Execute the HelloWorld program generated by Visual C# Express by opening the command console and navigat-

ing to the ..bin\Release directory using the cd command. Enter “HelloWorld” at the command prompt and

press Return or Enter. If you want to avoid typing long path names at the command prompt, open the Projects folder

and navigate to the ..\Chapter2\VisualStudio\HelloWorld\HelloWorld\bin\Release folder

using Windows Explorer. When you get there, copy the path from the Address bar and paste it into the console win-

dow after the cd command by right-clicking the console window and clicking paste. (In this case, using the keyboard

shortcut ctrl-v key combination will only paste in the characters “^V”, which is not going to help you much.)

Note: Programs, such as a console application that displays a text menu or a Windows Forms GUI application,

that do not exit immediately can be executed successfully from the Visual C# environment.

Where To Go For More Information About Visual C# Express

For more information about Visual C# Express visit the MSDN website or refer to the documentation that came

with the application.

Quick Review

Visual C# Express Edition is a lightweight version of Microsoft’s flagship IDE Visual Studio. Visual C# Express

comes bundled with SQL Server Compact Edition, which allows you to create relational database applications.

Visual C# Express will automatically generate a lot of source code for your project. However, it will not generate

all the code your application needs. It’s imperative you know how to modify the code that Visual C# generates in

order to take control of your projects.

When you save your Visual C# Express project, it generates many different files and subdirectories. You can find

the project’s executable file in the ..\bin\Release directory.

Summary

All you need to create robust Microsoft C# applications is a good text editor and the free Microsoft C# com-

mand-line compiler that’s included with the .NET Framework Redistributable Package.

Before using the C# command-line compiler you must configure your development environment. This includes

creating or editing one or more operating system environment variables. An environment variable is a named location

in memory used by Microsoft Windows to store data about the operating system environment. There are generally

two types of environment variables: system and user. System environment variables store data that pertains to and

affects the operating system environment for all users; user environment variables store data that pertains to and

affects the operating system environment for a particular user.

Environment variable values can be accessed by enclosing the variable name in ‘%’ characters.

The Path environment variable is used by the operating system to help it locate executable files. You must create

or edit the Path environment variable to include the full path to the C# compiler. (csc.exe)

It’s helpful to create a project folder and a shortcut to the command console on your desktop. Set the command

console shortcut’s Start in property so it will automatically open in your designated project folder. Increase the com-

mand console shortcut’s screen buffer height and width properties to see more information in the console window.

It’s also a good idea to set your folder options to display file type extensions. This will prevent headaches associ-

ated with accidently saving source files with a “.txt” extension.
38 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 2: Small Victories: Creating C# Projects Skill-Building Exercises
To create a C# program with the command-line compiler you must create the source file, compile the source file

with the csc command-line compiler tool, and then execute the program by typing its name at the command prompt

and pressing the Return or Enter key.

You’re bound to get a few compiler errors when you start writing your own programs. Go to Microsoft’s website

to look up the error code and always remember to fix the first compiler error first!

Visual C# Express Edition is a lightweight version of Microsoft’s flagship integrated development environment

(IDE) Visual Studio. Visual C# Express comes bundled with SQL Server Compact Edition which allows you to create

relational database applications.

Visual C# Express automatically generates a lot of source code for your project. However, it will not generate all

the code your application needs. It’s imperative you know how to modify the code that Visual C# generates in order

to take control of your projects.

When you save your Visual C# Express project it generates many different files and sub directories. You can find

the project’s executable file in the ..\bin\Release directory.

Skill-Building Exercises

1. Creating and Using Environment Variables: Create an environment variable named “PROJECTS_HOME”. For

its value use the path to your projects folder.

2. Setting Up Your Development Environment: Set up your development environment following the steps outlined

in this chapter. Test your development environment by compiling and running the program given in Example 2.1.

3. Web Research: Visit the MSDN website and familiarize yourself with the information it contains. Locate the C#

compiler errors page and bookmark the page in your web browser.

4. .NET Software Development Kit (SDK): Download and install the .NET SDK. List and provide a brief descrip-

tion of the purpose of each component.

Suggested Projects

1. Alternative .NET Development Environments - If you are interested in doing C#.NET development on alterna-

tive computing platforms, the Mono development environment may help. Visit the Mono Project website

[www.mono-project.com] to learn more.

Self-Test Questions

1. What two things, at minimum, do you need to do C#.NET development?

2. What is an operating system environment variable?

3. What is the difference between a user vs. a system environment variable?

4. How do you create an environment variable in Microsoft Windows XP?

5. What characters must you use before and after an environment variable to get its value?
C# For Artists © 2008 Rick Miller — All Rights Reserved 39

References Chapter 2: Small Victories: Creating C# Projects
6. What is the purpose of the Path environment variable?

7. What should you do if you get more than one compiler error?

8. What’s the advantage of using an IDE like Visual C# Express?

9. What are the general steps required to create, compile, and execute a C# program?

10. What’s the recommended way to run a C# program that runs briefly and exits immediately after executing?

References

Microsoft Developer’s Network website, [www.msdn.com]

Mono Project website, [http://www.mono-project.com/Main_Page]

Notes
40 © 2008 Rick Miller — All Rights Reserved C# For Artists

3 Project Walkthrough

Learning Objectives
• Apply the project-approach strategy to implement a C# programming assignment

• Apply the development cycle to implement a C# programming assignment

• State the actions performed by the development roles of analyst, designer, and programmer

• Translate a project specification into a software design that can be implemented in C#

• State the purpose and use of method stubbing

• State the purpose and use of state transition diagrams

• Explain the concept of data abstraction and the role it plays in the design of user-defined data types

• Use the csc command-line tool to compile C# source files

• Execute C# programs

• State the importance of compiling and testing early in the development process

Chapter 3

Project Walkthrough
My Backyard

P
en

ta
x
 6

7
 /

 5
0
m

m
 L

en
s

/
K

o
d
ak

 T
ri

-X
 P

ro
fe

ss
io

n
al
C#
For Artists © 2008 Rick Miller — All Rights Reserved 41

Introduction Chapter 3: Project Walkthrough
Introduction

This chapter presents a complete example of the analysis, design, and implementation of a typical classroom pro-

gramming project. The objective of this chapter is to demonstrate to you how to approach a project and, with the help

of the project-approach strategy and the development cycle, formulate and execute a successful project implementa-

tion plan.

The approach I take to the problem solution is procedure based. I do this because I find that trying simulta-

neously to teach problem-solving skills, the C# command-line tools, how to employ the development cycle, and

object-oriented design and programming concepts is simply too overwhelming for most students to bear. However,

try as I may to defer the discussion of object-oriented concepts, C# forces the issue by requiring that all methods

belong to a class. I mitigate this by presenting a solution that results in one user-defined class. As you pursue your

studies of C# and progress through the remaining chapters of this book, you will quickly realize that there are many

possible solutions to this particular programming project, some of which require advanced knowledge of object-ori-

ented programming theory and techniques.

You may not be familiar with some of the concepts discussed here. Don’t panic! I wrote this material with the

intention that you revisit it when necessary. As you start writing your own projects examine these pages for clues on

how to approach your particular problem. In time, you will begin to make sense of all these confusing concepts. Prac-

tice breeds confidence. After a few small victories, you will never have to refer to this chapter again.

The Project-Approach Strategy Summarized

The project-approach strategy presented in Chapter 1 is summarized in Table 3-1. Keep the project-approach

strategy in mind as you formulate your solution. Remember, the purpose of the project-approach strategy is to kick-

start the creative process and sustain your creative momentum. Feel free to tailor the project-approach strategy to suit

your needs.

Strategy Area Explanation

Application

Requirements

Determine and clarify exactly what purpose and features the finished project must have. Clarify

your understanding of the requirements with your instructor if the project specification is not

clear.

This results in a clear problem definition and a list of required project features.

Problem Domain Study the problem until you have a clear understanding of how to solve it. Optionally, express

your understanding of the solution by writing a pseudocode algorithm that describes, step-by-

step, how you will solve the problem. You may need to do this several times on large, complex

projects.

This results in a high-level solution statement that can be translated into an application design.

Language Features Make a list of all the language features you must understand and use to draft a competent design

and later implement your design. As you study each language feature, check it off your list. Do-

ing so will give you a sense of progress.

This results in a notional understanding of the language features required to effect a good de-

sign and solve the problem.

High-Level Design &

Implementation

Strategy

Sketch out a rough application design. A design is simply a statement, expressed through words,

pictures, or both, of how you plan to implement the problem solution derived in the Problem

Domain strategy area.

This results in a plan of attack!

Table 3-1: Project Approach Strategy
42 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 3: Project Walkthrough Development Cycle
Development Cycle

When you reach the project design phase, you will begin to employ the development cycle. It is good to have a

broad, macro-level design idea to get you started, but don’t make the mistake of trying to design everything up front.

Design until you can begin coding and then test some of your design ideas. The development cycle is summarized in

Table 3-2.

Employ the development cycle in a spiral or iterative fashion as depicted in Figure 3-1. By iterative, I mean you

will begin with the plan step, followed by the code step, followed by the test step, followed by the integrate step,

optionally followed by the refactor step. When you have finished a little piece of the project in this fashion, you return

to the plan step and repeat the process. Each complete plan, code, test, integrate, and refactor sequence is referred to

as an iteration. As you iterate through the cycle, development progresses until you converge on the final solution.

Step Explanation

Plan Design to the point where you can get started on the implementation. Do not attempt to design every-

thing up front. The idea here is to keep your design flexible and open to change.

Code Implement what you have designed.

Test Thoroughly test each section or module of source code. The idea here is to try to break it before it has

a chance to break your application. Even in small projects you will find yourself writing short test-case

programs on the side to test something you have just finished coding.

Integrate/Test Add the tested piece of the application to the rest of the project and then test the whole project to ensure

it didn’t break existing functionality.

Refactor This step applies more to object-oriented programming than to procedural programming. It means to

take a comprehensive look at your overall application architecture and migrate general functionality

up into base, or even abstract, classes so the functionality can be utilized by more concrete derived

classes.

Table 3-2: Development Cycle

Figure 3-1: Tight-Spiral Development Cycle Deployment
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 43

Project Specification Chapter 3: Project Walkthrough
Project Specification

Keeping both the project-approach strategy and development cycle in mind, let’s look now at a typical project

specification given in Table 3-3.

ITP 136 - Introduction To C# Programming

Project 1

Robot Rat

Objectives:
Demonstrate your ability to utilize the following language features:
 Value types and reference types
 Two-dimensional arrays
 Program flow-control structures
 Class methods
 Class attributes
 Local method variables
 Constructor methods
 Console input and output

Task:
You are in command of a robot rat! Write a C# console application that will

allow you to control the rat’s movements around a 20 x 20 grid floor.
The robot rat is equipped with a pen. The pen has two possible positions, up

or down. When in the up position, the robot rat can move about the floor without
leaving a mark.

If the pen is down the robot rat leaves a mark as it moves through each grid
position. Moving the robot rat about the floor with the pen up or down at various
locations will result in a pattern written upon the floor.

Hints:
- The robot rat can move in four directions: north, south, east, and west.

Implement diagonal movement if you desire.
- Implement the floor as a two-dimensional array of boolean objects.
- C# provides the System.Console.ReadLine() and WriteLine() methods that make

it easy to read text from, and and write text to, the console.

At minimum, provide a text-based command menu with the following or similar
command choices:

Table 3-3: Project Specification

1. Pen Up

2. Pen Down
3. Turn Right
4. Turn Left
5. Move Forward
6. Print Floor
7. Exit
44
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 3: Project Walkthrough Project Specification
Analyzing The Project Specification

Now is a good time to step through the project-approach strategy and analyze the Robot Rat project using each

strategy area as a guide, starting with the project’s requirements.

Application Requirements Strategy Area

The Robot Rat project seems clear enough, but it omits a few details. It begins with a set of formally stated

project objectives. It then states the task you are to execute: namely, to write a program that lets you control a robot

rat. But what, exactly, is a robot rat? That’s a fair question whose answer requires a bit of abstract thinking. To clarify

your understanding of the project’s requirements, you decide to ask me a few questions. Your first question is, “Does

the robot rat exist?”

If I answered the question by saying, “Well, obviously, the robot rat does not really exist!”, I would be insulting

you. Why? Because if you are wondering just what a robot rat is, then you are having difficulty abstracting the con-

cept of a robot rat. I would be doing you a better service by saying, “The robot rat exists, but only as a collection of

attributes that provide a limited description of the robot rat.” I would also add that by writing a program to control the

robot rat’s movements around the floor, you are actually modeling the concept of a robot rat. And since a model of

something usually leaves out some level of detail or contains some simplifying assumptions, I will also tell you that

the robot rat does not have legs, fur, or a cute little nose.

When menu choice 6 is selected to print the floor, the result might look some-
thing like this, assuming you chose ‘-’ to represent a marked area of the floor
and ‘0’ to represent an unmarked area. You may use other pattern characters if
desired.

.

In this example, the robot rat moved from the upper left-hand corner of the floor
five spaces to the east with the pen down.

ITP 136 - Introduction To C# Programming

Project 1

Robot Rat

Table 3-3: Project Specification

-----000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 45

Project Specification Chapter 3: Project Walkthrough
Another valid requirements question might focus on exactly what is meant by the term C# console application.

That too is a good question. A C# console application is a program that interacts with the command console using the

System.Console.WriteLine() and ReadLine() methods, and optionally can utilize command-line parameters. A C#

console program does not usually have a graphical user interface (GUI), although nothing stops you from writing one

that does.

What about error checking? Again, good question. In the real world, making sure an application behaves well

under extreme user conditions and recovers gracefully in the event of some catastrophe consumes the majority of pro-

gramming effort. One area in particular that requires extra measures to ensure everything goes well is array process-

ing. As the robot rat is moved around the floor, care must be taken to prevent the program from letting it go beyond

the bounds of the floor array.

Something else to consider is how to process menu commands. Since the project only calls for simple console

input and output, I recommend treating all input as a text string. If you need to convert a text string into another data

type, you can use the methods provided by the System.Convert class. Otherwise, I want you to concentrate on learn-

ing how to use the fundamental language features listed in the project’s objectives section. So, I promise not to try to

break your program when I run it.

You may safely assume that for the purpose of this project the user is perfect. Yet note for the record that this is

absolutely not the case in the real world!

To summarize the requirements thus far:

• Write a program that models the concept of a robot rat and its movement upon a floor.

• Think of the robot rat as an abstraction represented by a collection of attributes. (I discuss these

attributes in greater detail in the problem domain section that follows.)

• Represent the floor in the program as a two-dimensional array of boolean objects.

• Use just enough error checking, focusing on staying within the array boundaries.

• Assume the user is perfect.

• Read user command input as a text string.

• Put all program functionality into one user-defined class. This class will be a C# console applica-

tion and it will contain a Main() method.

When you are sure you fully understand the project specification, you can proceed to the problem domain strat-

egy area.

Problem-Domain Strategy Area

In this strategy area, your objective is to learn as much as possible about what a robot rat is and how it works in

order to gain insight into how to proceed with the project design. A good technique to help jump-start your creativity

is to read through the project specification looking for relevant nouns and verbs or verb phrases. A first pass at this

activity yields two lists. The list of nouns suggests possible application objects, data types, and object attributes.

Nouns also suggest possible names for class and instance fields (variables and constants) and method variables. The

list of verbs suggests possible object interactions and method names.

Nouns & Verbs

A first pass at reviewing the project specification yields the list of nouns and verbs shown in Table 3-4.

Nouns Verbs

robot rat

floor

pen

pen position (up, down)

mark

program

pattern

direction (north, south, east, west)

menu

move

set pen up

set pen down

mark

turn right

turn left

print floor

exit

Table 3-4: Robot Rat Nouns and Verbs
46 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 3: Project Walkthrough Project Specification
This list of nouns and verbs is a good starting point. Now that you have it, what should you do with it? Good

question. As I mentioned previously, each noun is a possible candidate for either a variable, a constant, or some other

data type, data structure, object, or object attribute within the application. A few of the nouns will not be used. Others

have a direct relationship to a particular application element. Some nouns look like they could be very useful, but

may not easily convert or map to any application element. Also, the noun list may not be complete. You may discover

additional application objects and object interactions as the project’s analysis moves forward.

The verb list for this project example derives mostly from the suggested menu. Verbs normally map directly to

potential method names. You will need to create these methods as you write your program. Each method you identify

will belong to a particular object, and may utilize some or all of the other objects, variables, constants, and data struc-

tures identified with the help of the noun list.

The noun list gleaned so far suggests that the Robot Rat project needs further analysis both to expand your under-

standing of the project’s requirements and to reveal additional attribute candidates. How do you proceed? I recom-

mend taking a closer look at several nouns that are currently on the list, starting with robot rat. Just what is a robot rat

from the attribute perspective? Since pictures are always helpful, I suggest drawing a few. Figure 3-2 has one for your

consideration.

Referring to Figure 3-2 — this picture suggests that a robot rat, as defined by the current noun list, consists of a

pen that has two possible positions, and the rat’s direction. As described in the project specification and illustrated in

Figure 3-2, the pen can be either up or down. Regarding the robot rat’s direction, it can face one of four ways: north,

south, east, or west. Can more attributes be derived? Perhaps another picture will yield more information. I recom-

mend drawing a picture of the floor and run through several robot rat movement scenarios as illustrated in Figure 3-3.

Figure 3-2: Robot Rat Viewed as a Collection of Attributes

Figure 3-3: Robot Rat Floor Sketch

Rat’s Position

Row

Column

NORTH

SOUTH

EASTWEST
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 47

Project Specification Chapter 3: Project Walkthrough
Figure 3-3 offers a lot of great information about the workings of a robot rat. The floor is represented by a collec-

tion of cells arranged by rows and columns. As the robot rat moves about the floor, its position can be determined by

keeping track of its current row and column. These two nouns are good candidates to add to the list of relevant nouns

and to the set of attributes that can be used to describe a robot rat. Before the robot rat can move, its current position

on the floor must be determined. Upon completion of each robot rat movement, its current position must be updated.

Armed with this information, you should now have a better understanding of what attributes are required to represent

a robot rat, as Figure 3-4 illustrates.

This seems to be a sufficient analysis of the problem at this point. You can return to this strategy area at any time

should further analysis be required. It is now time to take a look at what language features you must understand to

implement the solution.

Language-Features Strategy Area

The purpose of the language features strategy area is two-fold: First, to derive a good design to a programming

problem you must know what features the programming language supports and how it provides them. Second, you

may be forced by a particular programming project to use language features you’ve never used before. It can be

daunting to have lots of requirements thrown at you in one project. The complexities associated with learning the C#

language, learning how to create C# projects, learning an integrated development environment (IDE), and learning

the process of solving a problem with a computer can induce panic. Use the language-features strategy area to over-

come this problem and maintain a sense of forward momentum.

Apply this strategy area by making a list of all the language features you need to study before starting your

design. As you study each language feature, mark it off your list. Take notes about each language feature and how it

can be applied to your particular problem.

Table 3-5 presents an example check-off list for the language features used in the Robot Rat project.

Check-Off Feature Considerations

C# applications How do you write a C# application? What’s the purpose of the Main() method.

What is the meaning of the keywords public, static, and void? What code should go

into the Main() method? How do you run a C# application?

Classes How do you declare and implement a class? What’s the structure of a class. How

do you create and compile a C# source file?

Table 3-5: Language Feature Study Check-Off List For Robot Rat Project

Figure 3-4: Complete Robot Rat Attributes
48
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 3: Project Walkthrough Project Specification
Armed with your list of language features, you can now study each one, marking it off as you go. When you

come across a good code example that shows you how to use a particular language feature, copy it down or print it

out and save it in a notebook for future reference.

Learning to program is a lot like learning to play a musical instrument. It takes observation and practice. You

must put your trust in the masters and mimic their style. You may not at first fully understand why a particular piece

of code works the way it does, or why they wrote it the way they did. But copy their style until you start to understand

the underlying principles. Doing this builds confidence — slowly but surely. Soon you will have the skills required to

set out on your own and write code with no help at all. In time, your programming skills will surpass those of your

teachers.

After you have compiled and studied your list of language features, you should have a sense of what you can do

with each feature and how to start the design process. More importantly, you will now know where to refer to when

you need to study a particular language feature in more depth. However, by no means will you have mastered the use

of these features. So don’t feel discouraged if, having arrived at this point, you still feel a bit overwhelmed by all that

you must know. I must emphasize here that to master the art of programming takes practice, practice, practice!

Once you have studied each required language feature, you are ready to move on to the design strategy area of

the project-approach strategy.

Value data types What is a value data type? How many are there? What is each one used for? How

do you use them in a program? What range of values can each data type contain?

How do you declare and use value data type variables or constants in a program?

Reference data types What is a reference data type? How do you declare and use reference data types in

a program? What’s the purpose of the new operator? What pre-existing C# classes

can be used to help create the program?

Arrays What’s the purpose and use of an array? How do you declare an array reference and

use it in a program? What special functionality do array objects have?

Two-dimensional arrays What is the difference between a one-dimensional array and a two-dimensional ar-

ray? How do you declare and initialize a two-dimensional array? How do you ac-

cess each element in a two-dimensional array?

Fields What is a field? How do you declare class and instance fields? What’s the differ-

ence between class fields and instance fields? What is the scope of a field?

Properties What is a property? How do you implement a property? What’s the difference be-

tween a read-only property and a read-write property?

Methods What is a method? What are they good for? How do you declare and call a method?

What’s the difference between a static method and a non-static method? What are

method parameters? How do you pass arguments to methods? How do you return

values from methods?

Local variables What is a local variable? How does their use affect class or instance fields? How

long does a local variable exist? What is the scope of a local variable?

Constructor methods What is the purpose of a constructor method? Can there be more than one construc-

tor method? What makes constructor methods different from ordinary methods?

Flow-control statements What is a flow-control statement? How do you use if, if/else, while, do, for, and

switch statements in a program? What’s the difference between for, while, and do?

What’s the difference between if, if/else, and switch?

Console I/O What is console input and output? How do you print text to the console? How do

you read text from the console and use it in your program?

Check-Off Feature Considerations

Table 3-5: Language Feature Study Check-Off List For Robot Rat Project
C# For Artists © 2008 Rick Miller — All Rights Reserved 49

Project Specification Chapter 3: Project Walkthrough
Design Strategy Area

You must derive a plan of attack before you can solve the robot rat problem! Your plan will consist of two essen-

tial elements: a high-level software architecture diagram and an implementation approach.

High-Level Software-Architecture Diagram

A high-level software-architecture diagram is a picture of both the software components needed to implement

the solution and their relationship to each other. Creating the high-level software-architecture diagram for the Robot

Rat project is easy, as the application will contain only one class. On the other hand, complex projects usually require

many different classes, and each of these classes may interact with the others in some way. For these types of projects

software-architecture diagrams play a key role in helping software engineers understand how the application works.

The Unified Modeling Language (UML) is used industry-wide to model software architectures. The UML class

diagram for the RobotRat class at this early stage of your project’s design will look similar to Figure 3-5.

As Figure 3-5 illustrates, the RobotRat class extends (inherits) the functionality provided by the System.Object

class. This is indicated by the hollow-pointed arrow pointing from RobotRat to Object. In C#, all user-defined classes

implicitly extend Object so you don’t have to do anything special to achieve this functionality. The RobotRat class

will have attributes (properties and fields) and methods. Attributes are listed in the attribute box and methods are

listed in the method box. The Main() method is shown. The plus sign to the left of the Main() method indicates that it

is a public method.

Implementation Approach

Before you begin coding, you must have some idea of how you are going to translate the design into a finished

project. Essentially, you must answer the following question: “Where do I start?” Getting started is easily 90% per-

cent of the battle!

When formulating an implementation approach, you can proceed macro-to-micro, micro-to-macro, or a combi-

nation of both. I realize this sounds like unorthodox terminology, but bear with me.

If you use the macro-to-micro approach, you build and test a code framework to which you incrementally add

functionality that ultimately results in a finished project. If you use the micro-to-macro approach, you build and test

small pieces of functionality first and then, bit-by-bit, combine them into a finished project.

More often than not, you will use a combination of these approaches. Object-oriented design begs for macro-to-

micro as a guiding approach. But both approaches play well with each other, as you will soon see. C# forces the issue

somewhat by requiring that all methods and attributes belong to a class.

There will be many unknowns when you start your design. For instance, you could attempt to specify all the

methods required for the RobotRat class up front. But as you progress through development, you will surely see the

need for a method you didn’t initially envision.

RobotRat

+Main(String[] args):void

//methods here

//attributes here

Object

Figure 3-5: RobotRat UML Class Diagram

Attribute box

Method box
50
 © 2008 Rick Miller — All Rights Reserved
 C# For Artists

Chapter 3: Project Walkthrough Development Cycle: First Iteration
The following general steps outline a viable implementation approach to the Robot Rat project:

• Proceed from macro-to-micro by first creating and testing the RobotRat application class, devoid

of any real functionality.

• Add and test a menu display capability.

• Add and test a menu-command processing framework by creating several empty methods that will

serve as placeholders for future functionality. These methods are known as method stubs.

(Method stubbing is a great programming trick!)

• Once you have tested the menu-command processing framework, you must implement each menu

item’s functionality. This means that you must implement and test the stub methods created in the

previous step. The Robot Rat project is complete when all required functionality has been imple-

mented and successfully tested.

• Develop the project iteratively. This means that you will repeatedly execute the plan-code-test-

integrate cycle many times on small pieces of the project until the project is complete.

Now that you have an overall implementation strategy, you can proceed to the development cycle. The following

sections walk you step-by-step through the iterative application of the development cycle.

Development Cycle: First Iteration

Armed with an understanding of the project requirements, problem domain, language features, and an implemen-

tation approach, you are ready to begin development. To complete the project, apply the development cycle itera-

tively. That is, apply each of the development cycle phases —plan, code, test, and integrate —to a small, selected

piece of the overall problem. When you’ve finished that piece of the project, select another piece and repeat the pro-

cess. The following sections step through the iterative application of the Robot Rat project’s development cycle.

Plan (First Iteration)

A good way to start each iteration of the development cycle is to list those pieces of the programming problem

you are going to solve this time around. The list should have two columns: one that lists each piece of the program

design or feature under consideration, and another that notes you design decisions regarding that feature. Again, the

purpose of the list is to help you maintain a sense of forward momentum. You may find, after you make the list, that

you need more study in a particular language feature before proceeding to the coding step. That’s normal. Even sea-

soned programmers occasionally need to brush-up on unfamiliar or forgotten language features or application pro-

gramming interfaces (APIs). (i.e., .NET Framework classes or third-party APIs)

The list of the first pieces of the Robot Rat project that should be solved based on the previously discussed imple-

mentation approach is shown in Table 3- 6.

This is good for now. Although it doesn’t look like much, creating the RobotRat application class and writing a

constructor that prints a short text message to the console are huge steps. You can now take this list and move on to

the code phase.

Check-Off Design Consideration Design Decision

Program structure One class will contain all the functionality.

Creating the C# application class The class name will be RobotRat. It will contain a “public static void

Main(String[] args){ } method.

Constructor method Write a constructor that will print a short message to the screen when

a RobotRat object is created.

Table 3-6: First Iteration Design Considerations
C# For Artists © 2008 Rick Miller — All Rights Reserved 51

Development Cycle: Second Iteration Chapter 3: Project Walkthrough
Code (First Iteration)

Create the Robot Rat project using your development environment. Create a C# source file named RobotRat.cs

and in it create the RobotRat class definition. Add to this class the Main() method and the RobotRat constructor

method. When complete, your RobotRat.cs source file should look similar to Example 3.1.

3.1 RobotRat.cs

(1st Iteration)

1 using System;

2

3 public class RobotRat {

4 public RobotRat(){

5 Console.WriteLine("RobotRat lives!");

6 }

7

8 public static void Main(String[] args){

9 RobotRat rr = new RobotRat();

10 }

11 }

After you have created the source file, you can move to the test phase.

Test (First Iteration)

The test phase of the first iteration involves compiling the RobotRat.cs file and running the resulting

RobotRat.exe file. If the compilation results in errors, return to the code phase, edit the file to make the necessary cor-

rection, and then attempt to compile and test again. Repeat the cycle until you are successful. When you have suc-

cessfully compiled and tested the first iteration of the RobotRat program, move on to the next step of the development

cycle. Figure 3-6 shows the results of running Example 3.1.

Integrate/Test (First Iteration)

There’s not a whole lot to integrate at this point, so you are essentially done with the first development cycle iter-

ation. Since this version of the Robot rat project is contained in one class named RobotRat, any changes you make

directly to the source file are immediately integrated into the project. However, for larger projects, you will code and

test a piece of functionality, usually at the class level, before adding the class to the larger project.

You are now ready to move to the second iteration of the development cycle.

Development Cycle: Second Iteration

With the RobotRat application class structure in place and tested, it is time to add another piece of functionality

to the program.

Figure 3-6: Compiling and Testing RobotRat — First Iteration
52
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 3: Project Walkthrough Development Cycle: Second Iteration
Plan (Second Iteration)

A good piece of functionality to add to the RobotRat class at this time would be the text menu that displays the

list of available robot rat control options. Refer to the project specification to see a suggested menu example. Table 3-

7 lists the features that will be added to RobotRat during this iteration.

This looks like enough work to do for one iteration. You can now move to the code phase.

Code (Second Iteration)

Edit the RobotRat.cs source file to add a method named PrintMenu(). Example 3.2 shows the RobotRat.cs file

with the PrintMenu() method added.
3.2 RobotRat.cs

(2nd Iteration)

1 using System;
2
3 public class RobotRat {
4
5 public RobotRat(){
6 PrintMenu();
7 }
8
9 public void PrintMenu(){
10 Console.WriteLine("\n\n");
11 Console.WriteLine(" RobotRat Control Menu");
12 Console.WriteLine();
13 Console.WriteLine(" 1. Pen Up");
14 Console.WriteLine(" 2. Pen Down");
15 Console.WriteLine(" 3. Turn Right");
16 Console.WriteLine(" 4. Turn Left");
17 Console.WriteLine(" 5. Move Forward");
18 Console.WriteLine(" 6. Print Floor");
19 Console.WriteLine(" 7. Exit");
20 Console.WriteLine("\n\n");
21 }
22
23 public static void Main(String[] args){
24 RobotRat rr = new RobotRat();
25 }
26 }

Referring to Example 3.2 — the PrintMenu() method begins on line 9. Notice how it’s using the Console.Write-

Line() method to write menu text to the console. The “\n” is the escape sequence for the newline character. Several of

these are used to add line spacing as an aid to menu readability.

Notice also that the code in the constructor method has changed. I removed the line printing the “RobotRat

Lives!” message and replaced it with a call to the PrintMenu() method on line 6.

When you’ve finished making the edits to RobotRat.cs, you are ready to compile and test.

Test (Second Iteration)

Figure 3-7 shows the results of testing RobotRat at this stage of development. The menu seems to print well

enough.

Check-Off Design Consideration Design Decision

Display control menu to the console Create a RobotRat method named PrintMenu() that prints the menu to

the console. Test the PrintMenu() method by calling it from the con-

structor. The PrintMenu() method will return void and take no argu-

ments. It will use the Console.WriteLine() method to write the menu

text to the console.

Table 3-7: Second Iteration Design Considerations
C# For Artists © 2008 Rick Miller — All Rights Reserved 53

Development Cycle: Third Iteration Chapter 3: Project Walkthrough
Integrate/Test (Second Iteration)

Again, there is not much to integrate or test. If you are happy with the way the menu looks on the console, you

can move on to the third iteration of the development cycle.

Development Cycle: Third Iteration

OK. The class structure is in place and the menu is printing to the screen. The next piece of the project to work on

should be the processing of menu commands. Here’s where you can employ the technique of method stubbing so that

you can worry about the details later.

Plan (Third Iteration)

Table 3.8 lists the design considerations for this iteration.

Check-Off Design Consideration Design Decision

Read the user’s desired menu com-

mand from the console

 Use the Console.Readline() method to read a string of characters

from the console.

 Once you get the text string from the console, you will only want to

use the first letter of the string. Individual string elements can be ac-

cessed using array notation. The first character of a string resides at

the 0th element. If you use a variable named “input” to hold the string,

the first character can be obtained by using “input[0]”.

Execute the user’s selected menu

command

 This will be accomplished with a user-defined method named Pro-

cessMenuChoice(). This method will return void and take no argu-

ments.

 The body of the ProcessMenuChoice() method will utilize a

switch statement that acts on the menu command entered by the us-

er. Each case of the switch statement will call a user-defined meth-

od to execute the required functionality. These methods will be

named as follows: SetPenUp(), SetPenDown(), TurnLeft(), Turn-

Right(), MoveForward(), and PrintFloor().

 To repeatedly print the control menu and process user commands

you will need to create another method that calls the PrintMenu() and

ProcessMenuChoice() methods in a continuous loop until the user ex-

its the application. The name of this method could be called Run().

Table 3-8: Third Iteration Design Considerations

Figure 3-7: Compiling & Testing RobotRat - Second Iteration
54
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 3: Project Walkthrough Development Cycle: Third Iteration
This list of items will keep you busy for a while. You will actually move between the code and test phase repeat-

edly in this iteration, almost as if it were a mini development spiral in and of itself. The best place to start is at the top

of the list.

Don’t try to implement everything on the list completely and then compile. Instead, try to get one or two menu

options working with the stubbed methods, then compile and test. When you’re happy with the results, add the capa-

bility to process another menu option, and so on, and so on, until you’ve got it licked!

Code (Third Iteration)

Example 3.3 gives the code for the RobotRat.cs file with all the new features implemented. I’ll discuss the new

code sections following the example.
3.3 RobotRat.cs

(3rd Iteration)

1 using System;
2
3 public class RobotRat {
4
5 private bool keep_going = true;
6
7 private const char PEN_UP = '1';
8 private const char PEN_DOWN = '2';
9 private const char TURN_RIGHT = '3';
10 private const char TURN_LEFT = '4';
11 private const char MOVE_FORWARD = '5';
12 private const char PRINT_FLOOR = '6';
13 private const char EXIT = '7';
14
15 public RobotRat(){
16 Console.WriteLine("RobotRat Lives!");
17 }
18
19 public void PrintMenu(){
20 Console.WriteLine("\n\n");
21 Console.WriteLine(" RobotRat Control Menu");
22 Console.WriteLine();
23 Console.WriteLine(" 1. Pen Up");
24 Console.WriteLine(" 2. Pen Down");
25 Console.WriteLine(" 3. Turn Right");
26 Console.WriteLine(" 4. Turn Left");
27 Console.WriteLine(" 5. Move Forward");
28 Console.WriteLine(" 6. Print Floor");
29 Console.WriteLine(" 7. Exit");

Use method stubbing to test the Pro-

cessMenuChoice() method

 This means that the user-defined methods mentioned above will be

stubbed out. The only functionality they will provide during this iter-

ation will be to print a short test message to the console.

Exiting the application. Use a boolean sentinel variable to exit the application. The name of

this variable could be called “keep_going”, and initially can be set to

true. When the user selects the exit menu item, the program will set

the value of keep_going to false.

Program readability Use character constants to represent the possible menu values and

use them in the body of the switch statement. For example, if the user

selects the Pen Up menu option he will enter the character ‘1’. You

could use ‘1’ in the switch statement, but, will you remember that ‘1’

represents Pen Up? Instead of embedding the character ‘1’ in the

switch statement, you can declare a character constant named

“PEN_UP” and set its value to ‘1’. In the body of the switch statement

you can then use the constant and know exactly what menu choice

you’re talking about. Using constants in this fashion significantly im-

proves program readability.

Check-Off Design Consideration Design Decision

Table 3-8: Third Iteration Design Considerations
C# For Artists © 2008 Rick Miller — All Rights Reserved 55

Development Cycle: Third Iteration Chapter 3: Project Walkthrough
30 Console.WriteLine("\n\n");
31 }
32
33 public void ProcessMenuChoice(){
34 String input = Console.ReadLine();
35
36 switch(input[0]){
37 case PEN_UP : SetPenUp();
38 break;
39 case PEN_DOWN : SetPenDown();
40 break;
41 case TURN_RIGHT : TurnRight();
42 break;
43 case TURN_LEFT : TurnLeft();
44 break;
45 case MOVE_FORWARD : MoveForward();
46 break;
47 case PRINT_FLOOR : PrintFloor();
48 break;
49 case EXIT : keep_going = false;
50 break;
51 default : PrintErrorMessage();
52 break;
53 }
54 }
55
56
57 public void SetPenUp(){
58 Console.WriteLine("SetPenUp method called.");
59 }
60
61 public void SetPenDown(){
62 Console.WriteLine("SetPenDown method called.");
63 }
64
65 public void TurnRight(){
66 Console.WriteLine("TurnRight method called.");
67 }
68
69 public void TurnLeft(){
70 Console.WriteLine("TurnLeft method called.");
71 }
72
73 public void MoveForward(){
74 Console.WriteLine("MoveForward method called.");
75 }
76
77 public void PrintFloor(){
78 Console.WriteLine("PrintFloor method called.");
79 }
80
81 public void PrintErrorMessage(){
82 Console.WriteLine("Please enter a valid RobotRat control option!");
83 }
84
85 public void Run(){
86 while(keep_going){
87 PrintMenu();
88 ProcessMenuChoice();
89 }
90 }
91
92 public static void Main(String[] args){
93 RobotRat rr = new RobotRat();
94 rr.Run();
95 }
96
97 }

Referring to Example 3.3 — notice that the boolean (bool) variable keep_going has been added to the program

along with character (char) constants that represent the range of possible menu choices.
56 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 3: Project Walkthrough Development Cycle: Third Iteration
The ProcessMenuChoice() method begins on line 33. The first thing it does is

declare a local String variable named “input” and assigns to it the character string

read from the console with the help of the Console.ReadLine() method. The first

character of the input string (input[0]) is then evaluated by the switch statement

and compared to the values of each of the character constants. Further processing is

passed to the appropriate method. For example, in the case of the user selecting

menu option ‘1’ for Pen Up, the switch statement compares the ‘1’ character to

the constant value contained in the PEN_UP constant. This results in a call to the

SetPenUp() method. The break keyword exists the body of the switch state-

ment.

Notice that the switch statement contains a default case. If the input char-

acter fails to match any of the valid menu options, the default case executes.

This calls the PrintErrorMessage() method, which writes a short message to the

console prompting the user to enter a valid menu option.

Let’s now look at how the Run() method works. The Run() method begins on

line 85. It contains a while loop that is controlled by the value of the keep_going

variable. As you can see at the top of the code listing, the value of keep_going is ini-

tialized to true. While keep_going is true, the while loop will endlessly call the

PrintMenu() method followed by the ProcessMenuChoice() method. This will go on

until the user enters ‘7’ at the console, which means he wants to exit the program.

This causes the value of keep_going to be set to false, at which time the while

loop in the Run() method exits and the program halts.

Look now at the Main() method on line 92. It creates an instance of RobotRat

and calls the Run() method to start the menu display and menu processing cycle.

Incremental Testing

Although you could have tried to make all the required modifications to the

RobotRat class at one stroke, you most likely would make small changes or addi-

tions to the code and then immediately compile and test the results.

Another area where proceeding in small steps is a good idea would be in coding

the body of the ProcessMenuChoice() method. You can write the switch state-

ment one case at a time. Then, once you gain confidence that your code works as

planned, you can code up the remaining cases in short order.

Integrate/Test (Third Iteration)

Now that you are accepting and processing user menu commands, you can

examine the effect this has on the menu display. If you look at Figure 3-8, it appears as if there might be too many

spaces between the last menu item and the menu entry prompt. Note that the addition of one feature affects another

program feature. You can adjust the space issue in the next development cycle iteration.

A Bug In The Program

If, while testing, you accidentally pressed the Enter key without typing a menu option, you would have seen the

rather disturbing error message shown in Figure 3-9. This message gives you no indication of what went wrong. But

if you managed to stay calm and close this window without sending the error report, and looked closely at the com-

mand console window in which the Robot Rat program was running, you would see another error message as shown

in Figure 3-10. This error message offers a little more information. It says that because you pressed the Enter key with

no string to be read in, there was no string from which to access the first character, therefore the attempt to access

input[0] resulted in an IndexOutOfRangeException. To fix this problem, you must revisit the ProcessMenuChoice()

method and provide some means of either catching the exception and doing something about it, or add some code that

prevents the exception from happening in the first place. This latter route is the one I will take in the next example.

Figure 3-8: Testing Menu

Commands
C# For Artists © 2008 Rick Miller — All Rights Reserved
 57

Development Cycle: Third Iteration Chapter 3: Project Walkthrough
Example 3.4 shows the slightly modified ProcessMenuChoice() method with some error prevention code added

for good measure.
3.4 Modified ProcessMenuChoice() Method

1 public void ProcessMenuChoice(){
2 String input = Console.ReadLine();
3
4 if(input == String.Empty){
5 input = "0";
6 }
7
8 switch(input[0]){
9 case PEN_UP : SetPenUp();
10 break;
11 case PEN_DOWN : SetPenDown();
12 break;
13 case TURN_RIGHT : TurnRight();
14 break;
15 case TURN_LEFT : TurnLeft();
16 break;
17 case MOVE_FORWARD : MoveForward();
18 break;
19 case PRINT_FLOOR : PrintFloor();
20 break;
21 case EXIT : keep_going = false;
22 break;
23 default : PrintErrorMessage();
24 break;
25 }
26 }

Referring to Example 3.4 — notice on line 4 that if the input string is empty, I give it the value “0”. This means

that if the user fails to enter a valid input string, the switch statement’s default case will execute and display an

error message prompting the user to enter a valid command. Anytime you make a change like this, you must retest

your code to make sure everything works fine. This is what is meant by the term regression testing.

Figure 3-9: A Disturbing Error Message

Figure 3-10: Unhandled IndexOutOfRangeException Error Message
58
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 3: Project Walkthrough Development Cycle: Fourth Iteration
Development Cycle: Fourth Iteration

The RobotRat code framework is now in place. You can run the program, select menu choices, and see the results

of your actions via stub method console messages. It’s now time to start adding detailed functionality to the RobotRat

class.

Plan (Fourth Iteration)

You now need to both add more attributes to the RobotRat class and begin manipulating those attributes. Two

good attributes to start with are the robot rat’s direction and pen_position. Another good piece of functionality to

implement is the floor. A good goal would be to create, initialize, and print the floor. It would also be nice to load the

floor with one or more test patterns.

Table 3-9 lists the design considerations for this development cycle iteration. As you will soon see, more detailed

analysis is required to implement the selected Robot Rat program features. This analysis may require the use of

design drawings such as flow charts, state transition diagrams, and class diagrams in addition to pseudocode and

other design techniques.

This will keep you busy for a while. You may need to spend more time analyzing the issues regarding the setting

of the robot rat’s direction and its pen_position. It is often helpful to draw state transition diagrams to graphically

illustrate object state changes. Figure 3-11 shows the state transition diagram for pen_position.

As Figure 3-11 illustrates, the pen_position variable is set to the UP state upon program startup. It will remain

UP until the SetPenDown() method is called, at which time it will be set to the DOWN state. A similar state transition

diagram is shown for the direction variable in Figure 3-12.

As is illustrated in Figure 3-12, the robot rat’s direction is initialized to EAST upon program startup. Each call to

the TurnLeft() or TurnRight() methods will change the state (value) of the direction variable.

Check-Off Design Consideration Design Decision

Implement robot rat’s direction The direction can be an integer (int) variable or a variable of an enu-

merated type. It will have four possible states or values: NORTH,

SOUTH, EAST, and WEST. You can implement these as class con-

stants or as an enumeration. This will make the source code easier to

read and maintain.

 The robot rat’s direction will change when either the TurnLeft() or

TurnRight() methods are called.

 The initial direction upon program startup will be EAST.

Implement robot rat’s pen_position The pen_position will be an integer variable or a variable of some

enumerated type. It will have two valid states or values: UP and

DOWN. These can be implemented as class constants or enumera-

tions as well. The robot rat’s pen_position will change when either the

SetPenUp() or the SetPenDown() methods are called.

 The initial pen_position value upon program startup will be UP.

floor The floor will be a two-dimensional array of boolean variables. If

an element of the floor array is set to true it will result in the ‘-’

character being printed to the console. If an element is false the ‘0’

character will be printed to the console.

 The floor array elements upon program startup will be initialized to

false.

Table 3-9: Fourth Iteration Design Considerations
C# For Artists © 2008 Rick Miller — All Rights Reserved 59

Development Cycle: Fourth Iteration Chapter 3: Project Walkthrough
Implementing State Transition Diagrams

State transition diagrams of this nature are easily implemented using a switch statement. You could use an if/
else statement but the switch works well in this case. Example 3.5 gives a pseudocode description for the Turn-

Left() method:
3.5 Pseudocode for TurnLeft() Method

1 check the value of the direction variable
2 if direction equals EAST then set the value of direction to NORTH
3 else if direction equals NORTH then set the value of direction to WEST
4 else if direction equals WEST then set the value of direction to SOUTH
5 else if direction equals SOUTH then set the value of direction to EAST
6 else if direction equals an invalid state set the value of direction to EAST.

You could construct a pseudocode description for the TurnRight(), SetPenUp(), and SetPenDown() methods as

well using the state transition diagrams as a guide.

Implementing The PrintFloor() Method

Example 3.6 gives the pseudocode for the PrintFloor() method.
3.6 Pseudocode for PrintFloor() Method

1 for each row in the floor do the following
2 for each column in each row do the following
3 check the value of the floor element
4 if the value is true print the '*' character to the console
5 else if the value is false print the '0' character to the console
6 print a newline character at the end of each row

When you feel you have done enough analysis of the current set of robot rat features, you can move on to the

code phase of the development cycle.

Program Startup
SetPenDown()

SetPenUp()

UP DOWN

Figure 3-11: pen_position State Transition Diagram

Program
Startup

EAST SOUTH WEST NORTH

TurnRight() TurnRight() TurnRight()

TurnLeft() TurnLeft() TurnLeft()

TurnLeft()

TurnRight()

Figure 3-12: State Transition Diagram for the direction Variable
60
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 3: Project Walkthrough Development Cycle: Fourth Iteration
Code (Fourth Iteration)

The PrintFloor(), TurnLeft(), TurnRight(), SetPenUp(), and SetPenDown() methods already exist as stub meth-

ods. In this phase, you will proceed to add the required code to each of these methods, then compile and test the

results. Just like the previous iteration, this code phase comprises multiple code, compile, and test cycles.

To proceed, first add the required variable and enum declarations to the top of the class. Any fields declared here

could be initialized either by the constructor method or at the point of declaration. Example 3.7 shows a partial code

listing for this section of the RobotRat.cs source file, along with a constructor method that initializes the floor.
3.7 RobotRat.cs

(4th Iteration Partial Listing)

1 using System;
2
3 public class RobotRat {
4
5 private bool keep_going = true;
6
7 private const char PEN_UP = '1';
8 private const char PEN_DOWN = '2';
9 private const char TURN_RIGHT = '3';
10 private const char TURN_LEFT = '4';
11 private const char MOVE_FORWARD = '5';
12 private const char PRINT_FLOOR = '6';
13 private const char EXIT = '7';
14
15 private enum PenPositions { UP, DOWN };
16 private enum Directions { NORTH, SOUTH, EAST, WEST };
17
18 private PenPositions pen_position = PenPositions.UP;
19 private Directions direction = Directions.EAST;
20
21 private bool[,] floor;
22
23
24 public RobotRat(int rows, int cols){
25 Console.WriteLine("RobotRat Lives!");
26 floor = new bool[rows,cols];
27 }

Referring to Example 3.7 — the enumerations PenPositions and Directions have been declared on lines 15 and

16. Variables of the enum types named pen_position and direction have been declared and initialized on lines 18 and

19. The floor array is declared on line 21. It is initialized in the constructor method with the help of two constructor

parameters named rows and cols, which represent the number of rows and columns the floor should have when the

RobotRat object is created.

Let’s look now at the SetPenUp(), SetPenDown(), TurnLeft(), and TurnRight() methods. Example 3.8 shows the

source code for the SetPenUp() method.
3.8 SetPenUp() method

1 public void SetPenUp(){
2 pen_position = PenPositions.UP;
3 Console.WriteLine("The pen is " + pen_position);
4 }

As you can see, it’s fairly straightforward. The SetPenUp() method just sets the pen_position attribute to the UP

state, and then prints a short message to the console showing the user the current state of the pen_position variable.

Example 3.9 gives the code for the SetPenDown() method.
3.9 SetPenDown() method

1 public void SetPenDown(){
2 pen_position = PenPositions.DOWN;
3 Console.WriteLine("The pen is " + pen_position);
4 }

The SetPenDown() method is similar to the previous method, only it’s setting the pen_position to the opposite

state. Let’s look now at the TurnLeft() method as shown in Example 3.10.
3.10 TurnLeft() method

1 public void TurnLeft(){
2 switch(direction){
3 case Directions.NORTH : direction = Directions.WEST;
4 break;
5 case Directions.WEST : direction = Directions.SOUTH;
C# For Artists © 2008 Rick Miller — All Rights Reserved 61

Development Cycle: Fourth Iteration Chapter 3: Project Walkthrough
6 break;

7 case Directions.SOUTH : direction = Directions.EAST;

8 break;

9 case Directions.EAST : direction = Directions.NORTH;

10 break;

11 }

12

13 Console.WriteLine("Direction is " + direction);

14 }

Notice that in the TurnLeft() method the switch statement checks the value of the direction field and then exe-

cutes the appropriate case statement. The TurnRight() method is coded in similar fashion using the state transition

diagram as a guide.

The PrintFloor() method is all that’s left for this iteration, and is shown in Example 3.11.

3.11 PrintFloor() method

1 public void PrintFloor(){

2 for(int i = 0; i<floor.GetLength(0); i++){

3 for(int j = 0; j<floor.GetLength(1); j++){

4 if(floor[i,j]){

5 Console.Write('-');

6 }else{

7 Console.Write('0');

8 }

9 }

10 Console.WriteLine();

11 }

12 }

Test (Fourth Iteration)

There’s a lot to test for this iteration. You’ll need to test all the methods that were modified. You’ll be especially

anxious to test the PrintFloor() method since now you’ll see the floor pattern print to the console. Figure 3-13 shows

the PrintFloor() method being tested. As you can see, it just prints the ‘0’ characters to the screen. You might find it

helpful to load the floor array with a test pattern to test the ‘-’ characters as well.

Figure 3-13: Testing the PrintFloor() Method
62
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 3: Project Walkthrough Development Cycle: Fifth Iteration
Integrate/Test (Fourth Iteration)

Check to see how all the new functionality you added has affected any previously working functionality. It would

also be a good idea to see how the floor looks using different floor array dimensions. The changes to the RobotRat

constructor method make it easy to create RobotRat objects with different floor sizes. When you are happy with all

the work done in this iteration, it’s time to move on to the next development cycle iteration.

Development Cycle: Fifth Iteration

All that remains to code at this point is the MoveForward() method. All the other supporting pieces are now in

place. You can change the robot rat’s direction by turning left or right, and change its pen position to up or down. The

MoveForward() method will use all this functionality to model the movement of the robot rat across the floor.

As you get into the planning phase of this iteration, you may discover you need more than just the MoveFor-

ward() method to properly move the robot rat. For instance, you’ll need some way to get the number of spaces from

the user to move the robot rat.

Plan (Fifth Iteration)

Table 3-10 lists the design considerations for this iteration of the development cycle.

The first feature from the list to be coded and tested should be the GetSpacesToMove() method. This method will

read a string from the console and convert it into an integer value with the help of the System.Convert class.

The MoveForward() method requires you to do some intense study of the mechanics of a robot rat move. A pic-

ture like Figure 3.3 is very helpful in this particular case because it enables you to work out the moves of a robot rat

upon the floor. You should work out the moves along the NORTH, SOUTH, EAST, and WEST directions and note

how to execute a move in terms of the robot rat’s current_row, current_col, and direction fields. You also need to

manipulate the floor array element values when moving with the pen in the DOWN position, setting each element to

true when the robot rat moves through that position on the floor.

It’s a good idea to place the robot rat in a starting position. A good starting position to use is current_row = 0,

current_col = 0, and direction = EAST. These attributes can either be initialized to the required values or states in the

RobotRat constructor method or at their point of declaration.

Check-Off Design Consideration Design Decision

Coding the MoveForward() method Write the code for the MoveForward() method. The MoveFor-

ward() method will use the direction and pen_position fields to make

move decisions. The MoveForward() method will need a way to get

the number of spaces to move from the user.

 You will have to add the current_row and current_col fields to the

RobotRat class. These fields will be used to preserve the robot rat’s

floor position information between moves.

Getting the number of spaces

to move from the user

 When the user moves the robot rat they will need to enter the num-

ber of spaces so the move can be executed. This can be handled by

writing a new method called GetSpacesToMove(). The GetSpacesTo-

Move() method will read a text string from the console and convert it

into an integer. The GetSpacesToMove() method will return an inte-

ger value and take no parameters.

Add current_row &

current_col fields

 The current_row and current_col fields will be declared with the rest

of the RobotRat fields and initialized in the constructor or at their

point of declaration.

Table 3-10: Fifth Iteration Design Considerations
C# For Artists © 2008 Rick Miller — All Rights Reserved 63

Development Cycle: Fifth Iteration Chapter 3: Project Walkthrough
Once you get the move mechanics worked out you can write a pseudocode description of the MoveForward()

method like the one presented in Example 3.12.
3.12 MoveForward() method pseudocode

1 get spaces to move from user
2 if pen_position is UP do the following
3 if direction is NORTH move RobotRat NORTH -- do not mark floor
4 if direction is SOUTH move RobotRat SOUTH -- do not mark floor
5 if direction is EAST move RobotRat EAST -- do not mark floor
6 if direction is WEST move RobotRat WEST -- do not mark floor
7 if pen_position is DOWN
8 if direction is NORTH move RobotRat NORTH -- mark floor
9 if direction is SOUTH move RobotRat SOUTH -- mark floor
10 if direction is EAST move RobotRat EAST -- mark floor
11 if direction is WEST move RobotRat WEST -- mark floor

With your feature planning complete, you can now move to the code phase.

Code (Fifth Iteration)

Example 3.13 gives the source code for the GetSpacesToMove() method.
3.13 GetSpacesToMove() method

1 public int GetSpacesToMove(){
2 int spaces = 0;
3 String input;
4
5 Console.WriteLine("Please enter number of spaces to move: ");
6 input = Console.ReadLine();
7
8 if(input == String.Empty){
9 spaces = 0;
10 }else{
11 try{
12 spaces = Convert.ToInt32(input);
13
14 }catch(Exception){
15 spaces = 0;
16 }
17 }
18
19 return spaces;
20 }

Referring to Example 3.13 — two local variables are declared, one of type int named spaces, and the other of

type String named input. The Console.ReadLine() method on line 6 reads a string from the console after the user has

been prompted to enter the number of spaces to move. On line 8, the value of the input variable is compared to

String.Empty. If it’s empty, spaces is set to 0. If it’s not empty, the code tries to convert the string into an integer.

Notice that the statement that actually performs the conversion, line 12, is enclosed in a try/catch block. This is neces-

sary because although the input string may not be empty, it may contain a string that does not properly convert into an

integer. If an exception is thrown, the spaces variable is set to 0. Finally, the method returns the value of spaces.

The GetSpacesToMove() method can now be used in the MoveForward() method as is shown in Example 3.14.
3.14 MoveForward() method

1 public void MoveForward(){
2 int spaces_to_move = GetSpacesToMove();
3
4 switch(pen_position){
5 case PenPositions.UP :
6 switch(direction){
7 case Directions.NORTH :
8 if((current_row - spaces_to_move) < 0){
9 current_row = 0;
10 }else{
11 current_row = current_row - spaces_to_move;
12 }
13 break;
14 case Directions.SOUTH :
15 if((current_row + spaces_to_move) > (floor.GetLength(1) - 1)){
16 current_row = (floor.GetLength(1) - 1);
17 }else{
18 current_row = current_row + spaces_to_move;
19 }
20 break;
64 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 3: Project Walkthrough Development Cycle: Fifth Iteration
21 case Directions.EAST :

22 if((current_col + spaces_to_move) > (floor.GetLength(0) - 1)){

23 current_col = (floor.GetLength(0) - 1);

24 }else{

25 current_col = current_col + spaces_to_move;

26 }

27 break;

28 case Directions.WEST :

29 if((current_col - spaces_to_move) < 0){

30 current_col = 0;

31 }else{

32 current_col = current_col - spaces_to_move;

33 }

34 break;

35 }

36 break;

37 case PenPositions.DOWN :

38 switch(direction){

39 case Directions.NORTH :

40 while((current_row > 0) && (spaces_to_move-- > 0)){

41 floor[current_row--, current_col] = true;

42 }

43 break;

44 case Directions.SOUTH :

45 while((current_row < floor.GetLength(0) - 1) && (spaces_to_move-- > 0)){

46 floor[current_row++, current_col] = true;

47 }

48 break;

49 case Directions.EAST :

50 while((current_col < floor.GetLength(1) - 1) && (spaces_to_move-- > 0)){

51 floor[current_row, current_col++] = true;

52 }

53 break;

54 case Directions.WEST :

55 while((current_col > 0) && (spaces_to_move-- > 0)){

56 floor[current_row, current_col--] = true;

57 }

58 break;

59 }

60 break;

61 }

62 }

Referring to Example 3.14 — the MoveForward() method contains nested switch statements. The outer

switch statement evaluates the value of the robot rat’s pen_position field. The inner switch statements evaluate

the value of the robot rat’s direction field. Thus, the code performs the appropriate form of movement processing by

controlling the value of these two variables by changing the position of the pen (UP or DOWN) and the robot rat’s

direction (NORTH, SOUTH, EAST, or WEST).

Test (Fifth Iteration)

This will be the most extensive test session of the RobotRat project yet. You must test the MoveForward()

method in all directions and ensure you are properly handling move requests that attempt to go beyond the bounds of

the floor array. Figure 3-14 shows a screen shot of the floor after completing a series of moves.

Integrate/Test (Fifth Iteration)

At this point in the development cycle, you will want to test the entire integrated RobotRat project. Move the

robot rat with the pen up and pen down. Move in all directions and try making and printing different floor patterns.

The emphasis in this phase is to test all RobotRat functionality, noting the effects of the latest features on existing

functionality.
C# For Artists © 2008 Rick Miller — All Rights Reserved 65

Final Considerations Chapter 3: Project Walkthrough
Final Considerations

You have now completed the core development efforts, but I would hesitate calling the Robot Rat project fin-

ished just yet. After you have finished the last integration and testing cycle, you will want to revisit and edit the code

for neatness and clarity. Perhaps you can do a better job of formatting the code so it’s easier to read. Maybe you

thought of a few cool features to add to the project to get extra credit.

When you have reached the point where you feel you are done with the project, you will want to give it one last

review. Table 3-11 lists a few things to review before submitting your project to your instructor.

Check-Off Review What To Check For

Source code formatting Ensure it is neat, consistently aligned, and indented to aid read-

ability.

Comments Make sure they’re used to explain critical parts of your code and

that they are consistently formatted.

File comment header Add a file comment header at the top of all project source files.

Make sure it has your name, class, instructor, and the name of

the project. The file comment header format may be dictated by

your instructor or by coding guidelines established at work.

Printed copies of source code files Make sure that it fits on a page in a way that preserves format-

ting and readability. Adjust the font size or paper orientation if

required to ensure your project looks professional.

Class files on floppy disk, CD-ROM, or

USB memory stick (i.e., removable me-

dia)

Ensure all the required source and executable files are present.

Try running your project from the removable medium to make

sure you have included all the required files.

Table 3-11: Final Project Review Checklist

Figure 3-14: Testing Robot Rat Movement in All Directions
66
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 3: Project Walkthrough Complete RobotRat.cs Source Code Listing
Complete RobotRat.cs Source Code Listing

3.15 RobotRat.cs

(Complete Listing)

1 using System;
2
3 /// <summary>
4 /// RobotRat class lets a user control the movements
5 /// of a robot rat around a floor represented by
6 /// a 2-dimensional array.
7 /// </summary>
8 public class RobotRat
9 {
10
11 private bool keep_going = true;
12 private const char PEN_UP = '1';
13 private const char PEN_DOWN = '2';
14 private const char TURN_RIGHT = '3';
15 private const char TURN_LEFT = '4';
16 private const char MOVE_FORWARD = '5';
17 private const char PRINT_FLOOR = '6';
18 private const char EXIT = '7';
19 private enum PenPositions { UP, DOWN };
20 private enum Directions { NORTH, SOUTH, EAST, WEST };
21 private PenPositions pen_position = PenPositions.UP;
22 private Directions direction = Directions.EAST;
23 private bool[,] floor;
24 private int current_row = 0;
25 private int current_col = 0;
26
27 /// <summary>
28 /// Constructor method.
29 /// </summary>
30 /// <param name="rows">Integer value representing number of floor rows</param>
31 /// <param name="cols">Integer value representing number of floor columns</param>
32 public RobotRat(int rows, int cols)
33 {
34 Console.WriteLine("RobotRat Lives!");
35 floor = new bool[rows, cols];
36 }
37
38 /// <summary>
39 /// Prints the menu to the screen.
40 /// </summary>
41 public void PrintMenu()
42 {
43 Console.WriteLine("\n\n");
44 Console.WriteLine(" RobotRat Control Menu");
45 Console.WriteLine();
46 Console.WriteLine(" 1. Pen Up");
47 Console.WriteLine(" 2. Pen Down");
48 Console.WriteLine(" 3. Turn Right");
49 Console.WriteLine(" 4. Turn Left");
50 Console.WriteLine(" 5. Move Forward");
51 Console.WriteLine(" 6. Print Floor");
52 Console.WriteLine(" 7. Exit");
53 Console.WriteLine("\n\n");
54 }
55
56 /// <summary>
57 /// Processes user's menu selection.
58 /// </summary>
59 public void ProcessMenuChoice()
60 {
61 String input = Console.ReadLine();
62
63 if (input == String.Empty)
64 {
65 input = "0";
66 }
67
68 switch (input[0])
69 {
70 case PEN_UP: SetPenUp();
71 break;
72 case PEN_DOWN: SetPenDown();
73 break;
C# For Artists © 2008 Rick Miller — All Rights Reserved 67

Complete RobotRat.cs Source Code Listing Chapter 3: Project Walkthrough
74 case TURN_RIGHT: TurnRight();
75 break;
76 case TURN_LEFT: TurnLeft();
77 break;
78 case MOVE_FORWARD: MoveForward();
79 break;
80 case PRINT_FLOOR: PrintFloor();
81 break;
82 case EXIT: keep_going = false;
83 break;
84 default: PrintErrorMessage();
85 break;
86 }
87 }
88
89 /// <summary>
90 /// Sets the pen to the UP state.
91 /// </summary>
92 public void SetPenUp()
93 {
94 pen_position = PenPositions.UP;
95 Console.WriteLine("The pen is " + pen_position);
96 }
97
98 /// <summary>
99 /// Sets the pen to the DOWN state.
100 /// </summary>
101 public void SetPenDown()
102 {
103 pen_position = PenPositions.DOWN;
104 Console.WriteLine("The pen is " + pen_position);
105 }
106
107
108 /// <summary>
109 /// Turns the robot rat right.
110 /// </summary>
111 public void TurnRight()
112 {
113 switch (direction)
114 {
115 case Directions.NORTH: direction = Directions.EAST;
116 break;
117 case Directions.EAST: direction = Directions.SOUTH;
118 break;
119 case Directions.SOUTH: direction = Directions.WEST;
120 break;
121 case Directions.WEST: direction = Directions.NORTH;
122 break;
123 }
124
125 Console.WriteLine("Direction is " + direction);
126 }
127
128
129
130 /// <summary>
131 /// Turns the robot rat left.
132 /// </summary>
133 public void TurnLeft()
134 {
135 switch (direction)
136 {
137 case Directions.NORTH: direction = Directions.WEST;
138 break;
139 case Directions.WEST: direction = Directions.SOUTH;
140 break;
141 case Directions.SOUTH: direction = Directions.EAST;
142 break;
143 case Directions.EAST: direction = Directions.NORTH;
144 break;
145 }
146
147 Console.WriteLine("Direction is " + direction);
148 }
149
150
151 /// <summary>
152 /// Prints the floor pattern to the console.
153 /// </summary>
154 public void PrintFloor()
68 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 3: Project Walkthrough Complete RobotRat.cs Source Code Listing
155 {
156 for (int i = 0; i < floor.GetLength(0); i++)
157 {
158 for (int j = 0; j < floor.GetLength(1); j++)
159 {
160 if (floor[i, j])
161 {
162 Console.Write('-');
163 }
164 else
165 {
166 Console.Write('0');
167 }
168 }
169 Console.WriteLine();
170 }
171 }
172
173 /// <summary>
174 /// Prints an error message. Called if a user enters an invalid
175 /// menu choice.
176 /// </summary>
177 public void PrintErrorMessage()
178 {
179 Console.WriteLine("Please enter a valid RobotRat control option!");
180 }
181
182
183 /// <summary>
184 /// This method continuously displays the menu
185 /// and processes user menu choices.
186 /// </summary>
187 public void Run()
188 {
189 while (keep_going)
190 {
191 PrintMenu();
192 ProcessMenuChoice();
193 }
194 }
195
196 /// <summary>
197 /// Called to move the robot rat forward.
198 /// </summary>
199 public void MoveForward()
200 {
201 int spaces_to_move = GetSpacesToMove();
202
203 switch (pen_position)
204 {
205 case PenPositions.UP: switch (direction)
206 {
207 case Directions.NORTH:
208 if ((current_row - spaces_to_move) < 0)
209 {
210 current_row = 0;
211 }
212 else
213 {
214 current_row = current_row - spaces_to_move;
215 }
216 break;
217 case Directions.SOUTH:
218 if ((current_row + spaces_to_move) > (floor.GetLength(0) - 1))
219 {
220 current_row = (floor.GetLength(1) - 1);
221 }
222 else
223 {
224 current_row = current_row + spaces_to_move;
225 }
226 break;
227 case Directions.EAST:
228 if ((current_col + spaces_to_move) > (floor.GetLength(1) - 1))
229 {
230 current_col = (floor.GetLength(0) - 1);
231 }
232 else
233 {
234 current_col = current_col + spaces_to_move;
235 }
C# For Artists © 2008 Rick Miller — All Rights Reserved 69

Complete RobotRat.cs Source Code Listing Chapter 3: Project Walkthrough
236 break;
237 case Directions.WEST:
238 if ((current_col - spaces_to_move) < 0)
239 {
240 current_col = 0;
241 }
242 else
243 {
244 current_col = current_col - spaces_to_move;
245 }
246 break;
247 }
248 break;
249 case PenPositions.DOWN: switch (direction)
250 {
251 case Directions.NORTH:
252 while ((current_row > 0) && (spaces_to_move-- > 0))
253 {
254 floor[current_row--, current_col] = true;
255 }
256 break;
257 case Directions.SOUTH:
258 while ((current_row < floor.GetLength(0) - 1) && (spaces_to_move-- > 0))
259 {
260 floor[current_row++, current_col] = true;
261 }
262 break;
263 case Directions.EAST:
264 while ((current_col < floor.GetLength(1) - 1) && (spaces_to_move-- > 0))
265 {
266 floor[current_row, current_col++] = true;
267 }
268 break;
269 case Directions.WEST:
270 while ((current_col > 0) && (spaces_to_move-- > 0))
271 {
272 floor[current_row, current_col--] = true;
273 }
274 break;
275 }
276 break;
277
278
279 }
280 }
281
282 /// <summary>
283 /// Gets the number of spaces to move from the user.
284 /// </summary>
285 /// <returns></returns>
286 public int GetSpacesToMove()
287 {
288 int spaces = 0;
289 String input;
290
291 Console.WriteLine("Please enter number of spaces to move: ");
292 input = Console.ReadLine();
293
294 if (input == String.Empty)
295 {
296 spaces = 0;
297 }
298 else
299 {
300 try
301 {
302 spaces = Convert.ToInt32(input);
303
304 }
305 catch (Exception)
306 {
307 spaces = 0;
308 }
309 }
310
311 return spaces;
312 }
313
314
315 /// <summary>
316 /// The RobotRat's Main method.
70 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 3: Project Walkthrough Complete RobotRat.cs Source Code Listing
317 /// </summary>
318 /// <param name="args"></param>
319 public static void Main(String[] args)
320 {
321 RobotRat rr = new RobotRat(20, 20);
322 rr.Run();
323 }
324
325 }

This listing was automatically formatted with Microsoft C# Express Edition. Comments were added to describe

the function of each method. You can automatically generate Extensible Markup Language (XML) documentation for

this class file by compiling the RobotRat.cs file with the /doc:[documentation output filename] option. For example,

to generate an XML documentation file named robotrat_docs.xml compile the robotrat.cs file by entering the follow-

ing at the command line:

csc robotrat.cs /doc:robotrat_docs.xml

Example 3.16 shows the results.
3.16 robotrat_docs.xml

1 <?xml version="1.0"?>
2 <doc>
3 <assembly>
4 <name>RobotRat</name>
5 </assembly>
6 <members>
7 <member name="T:RobotRat">
8 <summary>
9 RobotRat class lets a user control the movements
10 of a robot rat around a floor represented by
11 a 2-dimensional array.
12 </summary>
13 </member>
14 <member name="M:RobotRat.#ctor(System.Int32,System.Int32)">
15 <summary>
16 Constructor method.
17 </summary>
18 <param name="rows">Integer value representing number of floor rows</param>
19 <param name="cols">Integer value representing number of floor columns</param>
20 </member>
21 <member name="M:RobotRat.PrintMenu">
22 <summary>
23 Prints the floor pattern to the screen.
24 </summary>
25 </member>
26 <member name="M:RobotRat.ProcessMenuChoice">
27 <summary>
28 Processes user's menu selection.
29 </summary>
30 </member>
31 <member name="M:RobotRat.SetPenUp">
32 <summary>
33 Sets the pen to the UP state.
34 </summary>
35 </member>
36 <member name="M:RobotRat.SetPenDown">
37 <summary>
38 Sets the pen to the DOWN state.
39 </summary>
40 </member>
41 <member name="M:RobotRat.TurnRight">
42 <summary>
43 Turns the robot rat right.
44 </summary>
45 </member>
46 <member name="M:RobotRat.TurnLeft">
47 <summary>
48 Turns the robot rat left.
49 </summary>
50 </member>
51 <member name="M:RobotRat.PrintFloor">
52 <summary>
53 Prints the floor pattern to the console.
54 </summary>
55 </member>
56 <member name="M:RobotRat.PrintErrorMessage">
57 <summary>
C# For Artists © 2008 Rick Miller — All Rights Reserved 71

Complete RobotRat.cs Source Code Listing Chapter 3: Project Walkthrough
58 Prints an error message. Called if a user enters an invalid
59 menu choice.
60 </summary>
61 </member>
62 <member name="M:RobotRat.Run">
63 <summary>
64 This method continuously displays the menu
65 and processes user menu choices.
66 </summary>
67 </member>
68 <member name="M:RobotRat.MoveForward">
69 <summary>
70 Called to move the robot rat forward.
71 </summary>
72 </member>
73 <member name="M:RobotRat.GetSpacesToMove">
74 <summary>
75 Gets the number of spaces to move from the user.
76 </summary>
77 <returns></returns>
78 </member>
79 <member name="M:RobotRat.Main(System.String[])">
80 <summary>
81 The RobotRat's Main method.
82 </summary>
83 <param name="args"></param>
84 </member>
85 </members>
86 </doc>

Now, XML isn’t pretty to look at and is not at all easily readable by humans. If you want to create professional

grade documentation in HTML or another format, you can use an open-source documentation generator like NDoc

[http://ndoc.sourceforge.net] or Doxygen [http://www.stack.nl/~dimitri/doxygen/]. Note: At the time of this writing

NDoc does not work with .NET Framework version 2.0 or greater. These tools generate documentation from com-

mented source files. Figure 3-15 shows a partial screen capture from the documentation generated from the final ver-

sion of the RobotRat.cs file using Doxygen on a Macintosh running OSX 10.3.

Figure 3-15: Robot Rat HTML Documentation Generated with Doxygen
72
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 3: Project Walkthrough Summary
Summary

Use the project-approach strategy to systematically produce a solution to a programming problem. The purpose

of the project-approach strategy is to help novice programmers maintain a sense of forward momentum during their

project-development activities. The project-approach strategy comprises four strategy areas: application require-

ments, problem domain, language features, and high-level design and implementation strategy. The project approach

strategy can be tailored to suit your needs.

Use the development cycle to methodically implement your projects. Apply the plan, code, test, and integrate

steps iteratively in a tight-spiral fashion.

When you’ve completed your project, review it to ensure it meets all submission requirements related to com-

ment headers, formatting, neatness, and the way it appears when printed. If you submit your project on a floppy disk

or another type of removable medium, double-check to ensure you’ve included all the files necessary to run the

project.

Skill-Building Exercises

1. Project-Approach Strategy: Review the four project-approach strategy areas. Write a brief explanation of the

purpose of each strategy area.

2. Project-Approach Strategy: Tailor the project-approach strategy to better suit your needs. What strategy areas

would you add, delete, or modify? Explain your rationale.

3. Development Cycle: Review the phases of the development cycle. Write a brief description of each phase.

4. UML Tool: Obtain a UML tool. Explore it capabilities. Use it to create class and state transition diagrams.

5. Documentation Generator: Download and install one of the documentation generators mentioned in this chapter.

Try generating HTML documentation from the final version of the RobotRat.cs file given in Example 3.15.

6. Microsoft’s Documentation Generator: Microsoft removed documentation generating capabilities from Visual

Studio 2005. However, they made their internal documentation generator, Sandcastle, available for public down-

load from their website. Download Sandcastle and try to use it to generate RobotRat class documentation.

Suggested Projects

1. Project-Approach Strategy and Development Cycle: Apply the project-approach strategy and development

cycle to your programming projects.

Self-Test Questions

1. List and describe the four project-approach strategy areas.

2. What is the purpose of the project-approach strategy?

3. List and describe the four phases of the development cycle demonstrated in this chapter.
C# For Artists © 2008 Rick Miller — All Rights Reserved 73

References Chapter 3: Project Walkthrough
4. How should the development cycle be applied to a programming project?

5. What is method stubbing?

6. What is the purpose of method stubbing?

7. When should you first compile and test your programming project?

8. List at least three aspects of your project you should double-check before your turn it in to your instructor.

10. What is the purpose of a state transition diagram?

References

Microsoft Developer Network (MSDN) [www.msdn.com]

Doxygen website [http://www.stack.nl/~dimitri/doxygen/]

NDoc SourceForge project website: [http://ndoc.sourceforge.net]

Notes
74 © 2008 Rick Miller — All Rights Reserved C# For Artists

4 Computers, Programs, And Algorithms

Learning Objectives
• State the purpose and use of a computer
• State the primary characteristic that makes the computer a unique device
• List and describe the four stages of the program execution cycle
• Explain how a computer stores and retrieves programs for execution
• State the difference between a computer and a computer system
• Define the concept of a program from both the human and computer perspective
• State the purpose and use of main, auxiliary, and cache memory
• Describe how programs are loaded into main memory and executed by a computer
• State the purpose and use of the Microsoft .NET Common Language Runtime (CLR)
• List the similarities between a virtual machine and a real computer
• Explain the purpose of Microsoft Intermediate Language (MIL)
• Define the concept of an algorithm

Chapter 4

Computers, Programs
And Algorithms

Big Snow

C
o
n
ta

x
 T

3
 /

 K
o
d
ak

 T
ri

-X
C#
For Artists © 2008 Rick Miller — All Rights Reserved 75

Introduction Chapter 4: Computers, Programs, And Algorithms
Introduction

Computers, programs, and algorithms are three closely related topics that deserve special attention before you

start learning about C# proper. Why? Simply put, computers execute programs, and programs implement algorithms.

As a programmer, you will live your life in the world of computers, programs, and algorithms.

As you progress through your studies, you will find it extremely helpful to understand what makes a computer a

computer, what particular feature makes a computer a truly remarkable device, and how one functions from a pro-

grammer’s point of view. You will also find it helpful to know how humans view programs, and how human-readable

program instructions are translated into a computer-executable form.

Next, it will be imperative for you to thoroughly understand the concept of an algorithm and to understand how

good and bad algorithms ultimately affect program performance.

Finally, I will show you how C# programs are transformed into intermediate language and executed by the .NET

Common Language Runtime (CLR). Armed with a fundamental understanding of computers, programs, and algo-

rithms, you will be better prepared to understand the concepts of a virtual machine, as well as its execution perfor-

mance and security ramifications.

What Is A Computer?

A computer is a device whose function, purpose, and behavior is prescribed, controlled, or changed via a set of

stored instructions. A computer can also be described as a general-purpose machine. One minute a computer may

execute instructions making it function as a word processor or page-layout machine. The next minute it might be

functioning as a digital canvas for an artist. Again, this functionality is implemented as a series of instructions.

Indeed, in each case the only difference between the computer functioning as a word processor and the same com-

puter functioning as a digital canvas is in the set of instructions the computer is executing. This is what makes a com-

puter a truly amazing device — it is a changeable machine.

Computer vs. Computer System

Due to the ever-shrinking size of the modern computer, it is often difficult for students to separate the concept of

the computer from the computer system in which it resides. As a programmer, you will be concerned with both. You

will need to understand issues related to the particular processor that powers a computer system in addition to issues

related to the computer system as a whole. Luckily though, as a C# programmer, you can be extremely productive

armed with only a high-level understanding of each. Ultimately, I highly recommend spending the time required to

get intimately familiar with how your computer operates. In this chapter I use the Apple Mac Pro® as an example, but

the concepts are the same for any computer or computer system.

Computer System

A typical Apple Mac Pro computer system is pictured in Figure 4-1.

Figure 4-1: Typical Apple Mac Pro Computer System
Images courtesy Apple Computer, Inc.

System Unit

Wireless Mouse

Wireless Keyboard

Flat Panel Monitor
76
 © 2008 Rick Miller — All Rights Reserved
 C# For Artists

Chapter 4: Computers, Programs, And Algorithms What Is A Computer?
Referring to Figure 4-1 — the computer system comprises the system unit, monitor, wireless keyboard, mouse,

and any other peripheral devices. The computer system also includes any operating system or utility software

required to make all the components work together.

 The system unit houses dual microprocessors, the power supply, internal hard disk drives, memory, and other

system components required to interface the computer to the outside world. These interface components consume the

majority of available space within the system unit, as shown in Figure 4-2.

The dual microprocessors, or simply processors, are connected to the system unit’s main logic board with the

help of a set of specialized chips referred to as a chipset. Different types of microprocessors require different chipsets

to help integrate them into the computer system. Electronic pathways called buses connect the processor to the vari-

ous interface components. Other miscellaneous electronic components located on the main logic board control the

flow of communication between the processors and the outside world. Figure 4-3 shows a block diagram of a Mac

Pro main logic board.

Figure 4-2: System Unit ComponentsImages courtesy Apple Computer, Inc.

Power Supply

Hard Drives

Dual Microprocessors

Expansion Slots

Figure 4-3: Main Logic Board Block Diagram

Image courtesy Apple Computer, Inc.
C# For Artists
 © 2008 Rick Miller — All Rights Reserved
 77

What Is A Computer? Chapter 4: Computers, Programs, And Algorithms
Figure 4-3 does a good job of highlighting the number of computer system support components required to help

the processors do their job. The main logic board supports the addition of main memory, auxiliary storage devices,

communication devices such as a modem, a wireless local area network card as well as high-speed Ethernet ports,

keyboard, mouse, speakers, microphones, FireWire devices, and third-party system expansion cards. The heart of the

system, however, consists of two Intel Xeon™ 5100 dual-core microprocessors. Let’s take a closer look.

Processor

The Intel Xeon 5100 dual-core microprocessor pictured in

Figure 4-4 is a 64-bit computer that contains two execution

cores in one physical package. Furthermore, the Xeon 5100’s

design provides two logical processors for each execution core.

The logical processors are utilized by Intel’s Hyper-Threading

Technology (HTT) to increase overall instruction processing

throughput in multithreaded software applications.

Figure 4-5 shows a simplified block diagram of the Xeon

5100 dual-core processor architecture. As you can see in Figure

4-5, a computer system containing two Xeon 5100 processors

actually has four execution units and eight logical processors.

Note: The acronym APIC stands for Advanced Programmable

Interrupt Controller. Figure 4-4: Intel Xeon 5100 Dual core Processor

Image courtesy

of Intel Corp.

Architectural StateArchitectural State

Execution Engine

Local APIC Local APIC

Caches

Bus Interface

Architectural StateArchitectural State

Execution Engine

Local APIC Local APIC

Caches

Bus Interface

System Bus

Architectural StateArchitectural State

Execution Engine

Local APIC Local APIC

Caches

Bus Interface

Architectural StateArchitectural State

Execution Engine

Local APIC Local APIC

Caches

Bus Interface

System Bus

Architectural StateArchitectural State

Execution Engine

Local APIC Local APIC

Caches

Bus Interface

Architectural StateArchitectural State

Execution Engine

Local APIC Local APIC

Caches

Bus Interface

System Bus

Figure 4-5: Intel Xeon 5100 Dual-Core Microprocessor Block Diagrams
78 © 2008 Rick Miller — All R
ights Reserved C# For Artists

Chapter 4: Computers, Programs, And Algorithms Memory Organization
Three Aspects of Processor Architecture

There are three aspects of processor architecture programmers should be aware of: feature set, feature set imple-

mentation, and feature set accessibility.

Feature Set

A processor's feature set derives from its design. Can floating point arithmetic be executed in hardware or must it

be emulated in software? Must all data pass through the processor, or can input/output be handled off-chip while the

processor goes about its business? How much memory can the processor access? How fast can it run? How much

data can it process per unit time? A processor’s design addresses these and other feature-set issues.

Feature Set Implementation

Feature set implementation primarily determines how a processor’s functionality is arranged and executed in

hardware. How does the processor implement the feature set? Is it a Reduced Instruction Set Computer (RISC) or a

Complex Instruction Set Computer (CISC)? Is it superscalar and pipelined? Does it have a vector execution unit? Is

the floating-point unit on the chip with the processor, or does it sit off to the side? Is the super fast cache memory part

of the processor, or is it located on another chip? These questions all deal with how processor functionality is

achieved or how its design is executed.

Feature Set Accessibility

Feature set accessibility is the aspect of a processor's architecture you are most concerned with as a programmer.

Processor designers make a processor's feature set available to programmers via the processor's instruction set. A

valid instruction in a processor's raw instruction set is a set of voltage levels that, when decoded by the processor,

have special meaning. A high voltage is usually translated as “on” or “1”, and a low voltage is usually translated as

“off” or “0”. A set of on-and-off voltages is conveniently represented to humans as a string of ones and zeros. Instruc-

tions in this format are generally referred to as machine instructions or machine code. As processor power increases,

the size of machine instructions grows as well, making it extremely difficult for programmers to deal directly with

machine code.

From Machine Code To Assembly Language

To make a processor's instruction set easier for humans to understand and work with, each machine instruction is

represented symbolically in a set of instructions referred to as assembly language. To the programmer, assembly lan-

guage represents an abstraction or a layer between programmer and machine intended to make the act of program-

ming more efficient. Programs written in assembly language must be translated into machine instructions before

being executed by the processor. A program called an assembler translates assembly language into machine code.

Although assembly language is easier to work with than machine code, it requires a lot of effort to crank out a

program in assembly code. Assembly language programmers must busy themselves with issues like register usage

and stack conventions.

High-level programming languages like C# add yet another layer of abstraction. C#, with its object-oriented lan-

guage features, lets programmers think in terms of solving the problem at hand, not in terms of the processor or the

machine code that it’s ultimately executing.

Memory Organization

Modern computer systems have similar memory organizations. As a programmer, you should be aware of how

computer memory is organized and accessed. The best way to get a good feel for how your computer works is to poke

around in memory and see what’s in there for yourself. This section provides a brief introduction to computer mem-

ory concepts to help get you started.
C# For Artists © 2008 Rick Miller — All Rights Reserved 79

Memory Organization Chapter 4: Computers, Programs, And Algorithms
Memory Basics

A computer’s memory stores information in the form of electronic voltages. There are two general types of mem-

ory: volatile and non-volatile. Volatile memory will lose stored information if power is removed for any length of

time. Main memory and cache memory, two forms of random access memory (RAM), are examples of volatile mem-

ory. Read-only memory (ROM) and auxiliary storage devices such as CD-ROMs, DVDs, hard disk drives, USB flash

drives, floppy disks, and tapes are examples of non-volatile memory.

Memory Hierarchy

Computer systems contain several different types of memory. These memory types range from slow and cheap to

fast and expensive. The proportion of slow cheap memory to fast expensive memory can be viewed in the shape of a

pyramid commonly referred to as the memory hierarchy, as shown in Figure 4-6.

The job of a computer system designer with regards to memory subsystems is to make them perform as if all the

memory they contained were fast and expensive. Utilizing cache memory to store frequently used data and instruc-

tions and buffering disk reads into memory give the appearance of faster disk access. Figure 4-7 shows a block dia-

gram of the different types of memory used in a typical computer system.

During program execution, the faster cache memory

is searched first by the processor for any requested data or

instruction. If it’s not there, a performance penalty occurs

in the form of longer overall access times required to

retrieve the information from a slower memory source. As

chip densities grow, more cache memory will be located

on the processor, thus improving overall processing times.

Bits, Bytes, Words

Program code and data are stored in main memory as

electronic voltages. Since I’m talking about digital com-

puters, the voltage levels represent two discrete states

depending on the level. Usually, low voltages represent no

value, off, or 0, while a high voltage represents on, or 1.

When data is stored on auxiliary memory devices,

electronic voltages are translated into either electromag-

netic fields (tape drives, floppy and hard disks) or bumps

that can be detected by laser beam (CDs, DVDs, etc.)

Figure 4-6: Memory Hierarchy

Figure 4-7: Simplified Memory Subsystem Diagram
80
 © 2008 Rick Miller —
All Rights Reserved C# For Artists

Chapter 4: Computers, Programs, And Algorithms Memory Organization
Bit

The bit represents one discrete piece of information stored in a computer. On most modern computer systems bits

cannot be individually accessed from memory. However, after the byte to which a bit belongs is loaded into the pro-

cessor, the byte can be manipulated to access a particular bit.

Byte

A byte contains 8 bits. Most computer memory is byte addressable, although as processors become increasingly

powerful and can manipulate wider memory words, loading bytes by themselves into the processor becomes increas-

ingly inefficient. This is the case with the Xeon processor. For that reason, the fastest memory reads can be done a

word at a time.

Word

A word is a collection of bytes. The number of bytes that comprise a word is computer-system dependent. If a

computer’s data bus is 64 bits wide and its processor’s registers are 64-bits wide, then the word size would be 8 bytes

long (64 bits / 8 bits = 8 bytes). Bigger computers will have larger word sizes. This means they can manipulate more

information per unit time than a computer with a smaller word size.

Alignment and Addressability

You can expect to find your computer system’s memory to be byte addressable and word aligned. Figure 4-8

shows a simplified diagram of a main memory divided into bytes and the different buses connecting it to the proces-

sor. In this diagram, the word size is 64 bits wide.

The memory is byte addressable in that each byte can be individually accessed although the entire word that con-

tains the byte is read into the processor. Data in memory can be aligned for efficient manipulation. Alignment can be

to either a natural boundary or other type of boundary. For example, on a Xeon system, the contents of memory

assigned to instances of structures are aligned to natural boundaries, meaning a one-byte data element will be aligned

to a one-byte boundary. A two-byte element would be aligned to a two-byte boundary, and so on. Individual data ele-

ments not belonging to structures are usually aligned to eight-byte boundaries.

byte bytebytebytebytebytebytebyte
byte bytebytebytebytebytebytebyte

byte bytebytebytebytebytebytebyte
byte bytebytebytebytebytebytebyte

byte bytebytebytebytebytebytebyte
byte bytebytebytebytebytebytebyte

byte bytebytebytebytebytebytebyte
byte bytebytebytebytebytebytebyte

byte bytebytebytebytebytebytebyte
byte bytebytebytebytebytebytebyte

byte bytebytebytebytebytebytebyte
byte bytebytebytebytebytebytebyte

byte bytebytebytebytebytebytebyte
byte bytebytebytebytebytebytebyte

byte bytebytebytebytebytebytebyte
byte bytebytebytebytebytebytebyte

byte bytebytebytebytebytebytebyte
byte bytebytebytebytebytebytebyte

byte bytebytebytebytebytebytebyte
byte bytebytebytebytebytebytebyte

byte bytebytebytebytebytebytebyte
byte bytebytebytebytebytebytebyte

byte bytebytebytebytebytebytebyte
byte bytebytebytebytebytebytebyte

byte bytebytebytebytebytebytebyte
byte bytebytebytebytebytebytebyte

byte bytebytebytebytebytebytebyte
byte bytebytebytebytebytebytebyte

byte bytebytebytebytebytebytebyte
byte bytebytebytebytebytebytebyte

byte bytebytebytebytebytebytebyte
byte bytebytebytebytebytebytebyte

Xeon
int le ®

processor
TM

Xeon
int le ®

processor
TM

Memory
Controller

Hub
Frontside Bus

Data
Address
Control

Data

Address

Control

Figure 4-8: Simplified Main Memory Diagram

.

.
.

C# For Artists
 © 2008 Rick Miller — All Rights Reserved 81

What Is A Program? Chapter 4: Computers, Programs, And Algorithms
What Is A Program?

Intuitively you already know the answer to this question. A program is something that runs on a computer. This

simple definition works well enough for most purposes, but as a programmer you will need to arm yourself with a

better understanding of exactly what makes a program a program. In this section I discuss programs from two

aspects: the computer and the human. You will find this information extremely helpful, and it will tide you over until

you take a formal course on computer architecture.

Two Views of a Program

A program is a set of programming language instructions plus any data the instructions act upon or manipulate.

This is a reasonable definition if you are a human, but if you are a processor, it will just not fly. That’s because

humans are great abstract thinkers and computers are not, so it is helpful to view the definition of a program from two

points of view.

The Human Perspective

Humans are the masters of abstract thought; it is the hallmark of our intelligence. High-level, object-oriented lan-

guages like C# give us the ability to analyze a problem abstractly and symbolically express its solution in a form that

is both understandable by humans and readable by other programs. By other programs, I mean that the C# code a pro-

grammer writes must be translated from source code into machine instructions recognizable by a particular processor.

This translation is effected by running a compiler that converts the C# code into an intermediate language that is then

executed by the C# Common Language Runtime (CLR) Environment.

To a C# programmer, a program is a collection of classes that model the behavior of objects in a particular prob-

lem domain. These classes model object behavior by defining object attributes (data) and methods to manipulate

these object attributes. On an even higher level, a program can be viewed as an interaction between objects. This view

of a program is convenient for humans.

The Computer Perspective

From the computer’s perspective, a program is simply machine instructions and data. Usually both the instruc-

tions and data reside in the same memory space. This is referred to as a Von Neumann architecture. In order for a pro-

gram to run, it must first be loaded into main memory. The processor must then fetch the address of its first

instruction, at which point execution begins. In the early days of computing, programs were coded into computers by

hand and then executed. Nowadays, all of the nasty details of loading programs from auxiliary memory into main

memory are handled by an operating system — which, by the way, is a program.

Since both instructions and data reside in main memory, how does a computer know when it is dealing with an

instruction or with data? The answer to this question will be discussed in detail shortly, but here’s a quick answer: it

depends on what the computer is expecting. If a computer reads a memory location expecting to find an instruction

and it does, everything runs fine. The instruction is decoded and executed. If it reads a memory location expecting to

find an instruction but instead finds garbage, then the decode fails and the computer might lock up!

The Processing Cycle

Computers are powerful because they can do repetitive things really fast. When a computer executes or runs a

program, it constantly repeats a series of processing steps commonly referred to as the processing cycle. The process-

ing cycle consists of four primary steps: Instruction Fetch, Instruction Decode, Instruction Execution, and Result

Store. The step names can be shortened to simply Fetch, Decode, Execute, and Store. Different types of processors

implement the processing cycle differently, but generally all processors carry out these four processing steps in some

form or another. The processing cycle is depicted in Figure 4-9.
82 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 4: Computers, Programs, And Algorithms Algorithms
Fetch

In the Fetch step, the processor reads an instruction

from memory and presents it to its decode section. If

cache memory is present, it is checked first. If the

requested memory address contents resides in the cache,

the read operation executes quickly. Otherwise, the pro-

cessor must wait while the data is loaded from the slower

main memory.

Decode

In the Decode step, the instruction fetched from

memory is translated into voltages. If the computer thinks

it is getting an instruction but instead gets garbage, there

will be problems. A computer system’s ability to recover

from such situations is generally the function of a robust

operating system.

Execute

If the fetched instruction is successfully decoded as a valid instruction in the processor’s instruction set, it is exe-

cuted. A computer is a bunch of electronic switches. Executing an instruction means the computer’s electronic

switches are turned either on or off to carry out the actions required by a particular instruction. Different instructions

cause different sets of switches to be turned on or off.

Store

When an instruction executes, the results, if any, must be stored somewhere. Most arithmetic instructions leave

the result in one of the processor’s onboard registers. Memory-write instructions would then be used to transfer these

results to main memory. Keep in mind that there is only so much storage space inside a processor. At any given time,

almost all data and instructions reside in main memory, and are only loaded into the processor when needed.

Why A Program Crashes

Notwithstanding catastrophic hardware failure, a computer crashes or locks up because what it was told was an

instruction was not! The faulty instruction loaded from memory turns out to be an unrecognizable string of ones and

zeros. When it fails to decode into a proper instruction, the computer halts.

Algorithms

Computers run programs; programs implement algorithms. A good working definition of an algorithm for the

purpose of this book is that an algorithm is a recipe for getting something done on a computer. Pretty much every line

of source code you write is considered part of an algorithm. What I’d like to do in this brief section is bring to your

attention the concept of good vs. bad algorithms.

Good vs. Bad Algorithms

There are good ways to do something in source code and there are bad ways to do the same exact thing. A good

example of this can be found in the act of sorting. Suppose you want to sort in ascending order the following list of

integers:

Figure 4-9: Processing Cycle
C# For Artists © 2008 Rick Miller —
 All Rights Reserved 83

Algorithms Chapter 4: Computers, Programs, And Algorithms
1, 10, 7, 3, 9, 2, 4, 6, 5, 8, 0, 11

One algorithm for doing the sort might go something like this:

Step 1: Select the first integer position in the list

Step 2: Compare the selected integer with its immediate neighbor

Step 2.2: If the selected integer is greater than its neighbor, swap the two integers

Step 2.3: Else, leave it where it is

Step 3: Continue comparing selected integer position with all other integers repeating steps 2.2 - 2.3

Step 4: Select the second integer position on the list and repeat the procedure beginning at step 2

Continue in this fashion until all integers have been compared to all other integers in the list and have been

placed in their proper position.

This algorithm is simple and straightforward. It also runs pretty fast for small lists of integers, but it is really slow

given large lists of integers to sort. Another sorting algorithm to sort the same list of integers goes as follows:

Step 1: Split the list into two equal sublists

Step 2: Repeat step 1 if any sublist contains more than two integers

Step 3: Sort each sublist of two integers

Step 4: Combine sorted sublists until all sorted sublists have been combined

This algorithm runs a little slow on small lists because of all the list splitting going on, but sorts large lists of inte-

gers way faster than the first algorithm. The first algorithm lists the steps for a routine I call “dumb sort”. Example 4.1

gives the source code for a short program that implements the dumb sort algorithm.
4.1 DumbSort.cs

1 using System;
2
3 public class DumbSort{
4 public static void Main(String[] args){
5 int[] a = {1,10,7,3,9,2,4,6,5,8,0,11};
6
7 int innerloop = 0;
8 int outerloop = 0;
9 int swaps = 0;
10
11 for(int i=0; i<12; i++){
12 outerloop++;
13 for(int j=1; j<12; j++){
14 innerloop++;
15 if(a[j-1] > a[j]){
16 int temp = a[j-1];
17 a[j-1] = a[j];
18 a[j] = temp;
19 swaps++;
20 }
21 }
22 }
23
24 for(int i=0; i<12; i++){
25 Console.Write(a[i] + " ");
26 }
27
28 Console.WriteLine();
29 Console.WriteLine("Outer loop executed " + outerloop + " times.");
30 Console.WriteLine("Inner loop executed " + innerloop + " times.");
31 Console.WriteLine(swaps + " swaps completed.");
32
33 }
34 }

Included in the dumb sort test source code are a few variables intended to help collect statistics during execution.

These are innerloop, outerloop, and swaps, declared on lines 7, 8, and 9, respectively. Figure 4-10 gives the

results from running the dumb sort test program.
84 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 4: Computers, Programs, And Algorithms Algorithms
Notice that the inner loop executed 132 times and that 30 swaps

were conducted. Can the algorithm run any better? One way to check is

to rearrange the order of the integers in the array. What if the list of inte-

gers is already sorted? Figure 4-11 gives the results of running dumb

sort on an ordered list of integers:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

It appears that both the outer loop and inner loop execute the same

number of times in each case, which is of course the way the source

code is written. But it did run a little faster this time, because fewer swaps were necessary.

Can the algorithm run any worse? What if the list of integers is completely

unsorted? Figure 4-12 gives the results of running dumb sort on a com-

pletely unsorted list:

11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0

The outer loop and inner loop executed the same number of times, but 66

swaps were necessary to put everything in ascending order. So it did run a

little slower this time.

In dumb sort, because we’re sorting a list of 12 integers, the inner loop

executes 12 times for every time the outer loop executes. If dumb sort

needed to sort 10,000 integers, then the inner loop would need to execute

10,000 times for every time the outer loop executed. To generalize the per-

formance of dumb sort, you could say that for some number n integers to

sort, dumb sort executes the inner loop roughly n x n times. There is some

other stuff going on besides loop iterations, but when n gets really large, the

loop iteration becomes the overwhelming measure of dumb sort’s perfor-

mance as a sorting algorithm. Computer scientists would say that dumb sort has order n2 performance. That is, for a

really large list of integers to sort, the time it takes dumb sort to do its job is approximately the square of the number

n of integers that need to be sorted.

When an algorithm’s running time is a function of the size of its input, the term used to describe the growth in

time to perform its job vs. the size of the input is called the growth rate. Figure 4-13 shows a plot of algorithms with

the following growth rates: log n, n, n log n, n2, n3, nn.

Figure 4-10: Dumb Sort Results 1

Figure 4-11: Dumb Sort Results 2

Figure 4-12: Dumb Sort Results 3

Figure 4-13: Algorithmic Growth Rates

log n

n

n log n

n2

n3

nn

Time

Number of elements to sort
C# For Artists © 2008 Rick Miller — All Rights Reserv
ed
 85

Virtual Machines And The Common Language Infrastructure Chapter 4: Computers, Programs, And Algorithms
As you can see from the graph, dumb sort, with a growth rate of n2, is a bad algorithm, but not as bad as some

other algorithms. The good thing about dumb sort is that no matter how big its input grows, it will eventually sort all

the integers. Sorting problems are easily solved. There are some problems, however, that defy straightforward algo-

rithmic solutions.

Don’t Reinvent The Wheel!

If you are new to programming, the best advice I can offer you is to seek the knowledge of those who have come

before you. There are many good books on algorithms, some of which are listed in the reference section. Studying

good algorithms helps you write better code.

Virtual Machines And The Common Language Infrastructure

Figure 4-14 offers an overview of the C# compile and execute process.

Referring to Figure 4-14 — the csc compiler compiles one or more C# source files into either a code module

(.netmodule), a library (.dll), or one of two types of executable files: a console application (.exe) or a windows appli-

cation (.winexe). Code modules are static IL code libraries whose code is referenced in your source file(s) and linked

(added) to your project at compile time. A library, or dynamic link library (.dll), is a code module whose code is ref-

erenced in your source file(s) and loaded into the VES at application runtime. Hence the term “dynamic”.

Executable files produced by the compiler can be loaded and executed by the VES. The VES executes and trans-

lates the IL instructions contained in the executable managed assembly. With the help of a JIT compiler, it produces

machine code that is ultimately executed by the target processor. The JIT compiler is so named because it translates

C#
Compiler

C#
Source
File(s)
(.cs)

Module(s)
(.netmodule)

Managed
Assembly
(.exe, .winexe

.dll or
.netmodule)

IL instructions
& metadata

Virtual
Execution

System
(VES)

Machine
Code

Targeted
To

Processor

Converts source code to
intermediate language
(IL) and metadata.

VES manages the execution
of translated IL.

Just-in-time (JIT) compilers
convert IL into machine code
targeted to specific processor.

Figure 4-14: The C# Compile and Execution Process Overview
86
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 4: Computers, Programs, And Algorithms Virtual Machines And The Common Language Infrastructure
IL into machine code as the IL instructions are executed by the VES. Blocks of compiled machine code are cached

and tagged within the VES to prevent recompilation and to speed execution. Figure 4-15 shows what IL instructions

look like.

Referring to Figure 4-15 — the Microsoft Intermediate Language (MSIL) Disassembler tool provided by the

Microsoft Windows Software Development Kit (SDK) is used to disassemble the HelloWorld.exe program used in

Chapter 2. The IL instructions shown in the foreground window are those of the Main() method. These instructions

are executed by the VES and translated into machine code when the HelloWorld.exe program executes.

Virtual Machines

The VES described in the previous section is a program (one or more software components acting in concert

together) that executes IL instructions. In reality, the VES does more that simply execute IL instructions. I present a

more detailed description of its responsibilities in the next section. Programs like the VES are referred to as virtual

machines. The benefit of having C# target a virtual machine instead of a specific processor and operating system is

the increased flexibility in the range of hardware and operating system environments on which C# programs can run.

A program written in any language whose compiler targets a specific processor must be recompiled for each dif-

ferent target processor on which the program must run. Not so with C#. Because the C# compiler targets a virtual

machine, it can run on any computer platform that has on it an implementation of the VES. This cross-platform capa-

bility is made possible by an international standard known as ECMA - 335 Common Language Infrastructure (CLI)

Partitions I to VI. So just what is this CLI and why should you care?

The Common Language Infrastructure (CLI)

ECMA - 335 specifies a CLI. As its name implies, the CLI specifies or lays down a set of rules that language

makers, compiler makers, and virtual machine makers must follow if they want their languages and tools to run on

different implementations of the CLI.

Four Parts Of The Common Language Infrastructure

The CLI provides architectural specifications for four areas: the Common Type System (CTS), metadata, the

Common Language Specification (CLS), and the VES). Figure 14-16 graphically illustrates the relationship between

these pieces of the CLI.

Figure 4-15: MSIL Disassembler Session Showing Main() Method IL Instructions
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 87

Virtual Machines And The Common Language Infrastructure Chapter 4: Computers, Programs, And Algorithms
The Common Type System (CTS)

The CTS is the heart of the CLI. The CTS specifies a large set of types and operations common to many pro-

gramming languages.

Metadata

The CLI uses metadata to describe and reference types defined by the CTS. Metadata can be thought of as data

about data. Metadata is used by CLI tools and the Virtual Execution System (VES) to manipulate and manage IL code

modules. Metadata is added to managed assemblies during the compilation process.

The Common Language Specification (CLS)

The CLS provides a set of rules that language and compiler implementors must follow to make their language

interoperable with other CLI languages. Since languages share a CTS, modules generated by one language can be

C#
C++ J#

Basic Other
Languages

C# Compiler C++ Compiler J# Compiler Basic Compiler Compilers

Managed Assembly

Intermediate Language & Metadata

Common Language Infrastructure (CLI)

Runtime Environment

Framework
Class Libraries

Virtual Execution System

Security - Garbage Collection - JIT Compiler

Operating System

Loads and executes managed assembly...

Converted to native machine code...

Common Language Specification

The Common Type System

(CLS)

(CTS)

(.exe, .winexe, .dll, or .netmodule)

Figure 4-16: The Common Language Infrastructure Architecture
88
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 4: Computers, Programs, And Algorithms Virtual Machines And The Common Language Infrastructure
used or referenced by programs written in another language. For example, Visual Basic.NET modules can be linked

into and used by a program written in C#. This language interoperability is made possible by the CLS.

The Virtual Execution System (VES)

The VES executes managed code modules with the help of embedded metadata. Note: You can also write pro-

grams in C# that include what are referred to as unmanaged code segments. Unmanaged code segments allow direct

access to the underlying operating system and hardware and thus tie a program to a specific platform.

The Cross Platform Promise

As long as you avoid unmanaged code, you can achieve some degree of cross-platform independence as Figure

4-17 illustrates, although in reality, Microsoft’s implementation of the CLI (Microsoft .NET and the growing family

of .NET compatible languages) will always, in my opinion, be well ahead of the competition.

Referring to Figure 4-17 — as I write these words, the best attempt at a third party implementation of the CLI is

the Novell’s open-source Mono Project [http://mono-project.org]. As is shown in the diagram, the Mono project pro-

vides CLI implementations for Apple’s OS X, various Linux platforms, Sun Solaris, and a few others not shown,

including Microsoft Windows. Figure 4-18 shows the Robot Rat project of Chapter 3 executing in the Mono environ-

ment on a Macintosh G4 running Apple’s OS X.

Microsoft’s CLI Implementation

Microsoft Windows

Novell’s Mono CLI Implementation

Apple OS X, Linux, Sun Solaris

C#
C++ J#

Basic Other
Languages

C# Compiler C++ Compiler J# Compiler Basic Compiler Compilers

Managed Assembly

Intermediate Language & Metadata

Common Language Infrastructure (CLI)

Runtime Environment

Framework
Class Libraries

Virtual Execution System

Security - Garbage Collection - JIT Compiler

Operating System

Loads and executes managed assembly...

Converted to native machine code...

Common Language Specification

The Common Type System

(CLS)

(CTS)

(.exe, .winexe, .dll, or .netmodule)

C# Other
Languages

C# Compiler
Compilers

Managed Assembly
(.exe, .winexe, .dll, or .netmodule)

Intermediate Language & Metadata

Common Language Infrastructure (CLI)

Runtime Environment

Framework
Class Libraries

Virtual Execution System

Security - Garbage Collection - JIT Compiler

Operating System

Loads and executes managed assembly...

Converted to native machine code...

Common Language Specification

The Common Type System

(CLS)

(CTS)

MCS & GMCS

Figure 4-17: Managed Assemblies can be Executed on any System that Implements the Common Language Infrastructure

Figure 4-18: Chapter 3’s Robot Rat Program Running in the Mono Environment on Apple OS X
C# For Artist
s © 2008 Rick Miller — All Rights Reserved 89

Summary Chapter 4: Computers, Programs, And Algorithms
Figure 4-19 gives a simple diagram of Microsoft’s .NET architecture. Compare this diagram with that of Figure

4-16. Applications created with .NET languages consisting entirely of managed code segments are referred to as

managed applications. Applications that combine managed and unmanaged code segments are referred to as hybrid

applications. Microsoft’s implementation of the VES is called the Common Language Runtime (CLR). The CLR and

the .NET class libraries are included with the .NET Framework.

Summary

Computers run programs; programs implement algorithms. As a programmer you need to be aware of develop-

ment issues regarding your computer system and the processor it is based on.

A computer system contains a processor, I/O devices, and supporting operating system software. The processor

is the heart of the computer system.

Programs can be viewed from two perspectives: human and computer. From the human perspective, programs,

are a high-level solution statement to a particular problem. Object-oriented languages like C# help humans model

extremely complex problems algorithmically. C# programs can also be viewed as the interaction between objects in a

problem domain.

To a computer, programs are a sequence of machine instructions and data located in main memory. Processors

run programs by rapidly executing the processing cycle of fetch, decode, execute, and store. If a processor expects an

instruction but instead gets garbage, it is likely to lock up. Robust operating systems can mitigate this problem to a

certain degree.

There are bad algorithms and good algorithms. Study from the pros to improve your code-writing skills.

Microsoft.NET is Microsoft’s implementation of the Common Language Infrastructure (CLI) specification.

Managed assemblies produced by the C# compiler contain descriptive metadata and execute within a Virtual Execu-

tion System (VES). The benefit of targeting a virtual machine is cross-platform execution.

C# is compiled into intermediate language (IL) instructions. The VES translates IL instructions into target pro-

cessor machine code with the help of just-in-time (JIT) compilers.

If an assembly contains unmanaged code segments, then its cross-platform capabilities are limited.

Skill-Building Exercises

1. Research Sorting Algorithms: The second sorting algorithm listed on page 84 gives the steps for a Merge Sort.

Obtain a book on algorithms, look for C# code that implements the Merge Sort algorithm, and compare it to Dumb

Sort. What’s the growth rate for a Merge Sort algorithm? How does it compare to Dumb Sort’s growth rate?

Operating System/Hardware

Common Language Runtime

Managed Applications

.Net Class Libraries

Custom Class Libraries
Unmanaged
Applications

Hybrid Applications

Figure 4-19: Microsoft .NET Architecture
90
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 4: Computers, Programs, And Algorithms Suggested Projects
2. Research Sorting Algorithms: Look for an example of a Bubble Sort algorithm. How does the Bubble Sort algo-

rithm compare to Dumb Sort? What small changes can be made to Dumb Sort to improve its performance to that of

Bubble Sort? What percentage of improvement is obtained by making the code changes? Will it make a difference

for large lists of integers?

3. Research The CLI: Visit the ECMA website, download a copy of the CLI specification, and study the relation-

ships between the CTS, metadata, the CLS, and the VES. [http://www.ecma-international.org/publications/stan-

dards/Ecma-335.htm]

Suggested Projects

1. Research Computer Systems: Research your computer system. List all of its components including the type of

processor. Go to the processor manufacturer’s website and download developer information for your systems pro-

cessor. Look for a block diagram of the processor and determine how many registers it has and their sizes. How

does it get instructions and data from memory? How does it decode the instructions and process data?

2. Compare Different Processors: Select two different microprocessors and compare them to each other. List the

feature set of each and determine how the architecture of each implements the feature set.

3. Disassemble a Managed Assembly: The Microsoft Windows SDK is separate from the .NET Framework Run-

time that you may have downloaded in Chapter 2. Download and install the SDK, and use the MSIL Disassembler

to disassemble one of your C# project’s executable file and inspect its intermediate language instructions.

Self-Test Questions

1. List at least five components of a typical computer system.

2. What device do the peripheral components of a computer system exist to support?

3. From what two perspectives can programs be viewed? How does each perspective differ from the other?

4. What are the four steps of the processing cycle?

5. What, in your own words, does the term algorithm mean?

6. How does a processor’s architecture serve to implement its feature set?

7. How can programmers access a processor’s feature set?

8. What are the advantages of targeting a virtual machine vs. a physical processor? Can you think of any disadvan-

tages?

9. What, if any, are the disadvantages of having unmanaged code segments in a C# program?

10. What is meant by the term just-in-time compiler?
C# For Artists © 2008 Rick Miller — All Rights Reserved 91

References Chapter 4: Computers, Programs, And Algorithms
References

ECMA-335 Common Language Infrastructure (CLI), 4th Edition, June 2006 [http://www.ecma-international.org/

publications/standards/Ecma-335.htm]

ECMA-334 C# Language Specification, 4th Edition, June 2006 [http://www.ecma-international.org/publications/

standards/Ecma-334.htm]

Intel Corporation Design Documentation, IA-32 Intel Architecture Optimization Reference Manual, Order Num-

ber: 248966-013US, April 2006

Intel Corporation Design Documentation, Intel Xeon Processor with 512kb L2 Cache at 1.8 GHZ to 3 GHZ

Datasheet

Microsoft Developer Network (MSDN) [http://www.msdn.com]

Apple Computer, Incorporated website [http://www.apple.com]

Notes
92 © 2008 Rick Miller — All Rights Reserved C# For Artists

5. Navigating .NET Framework Documentation

Learning Objectives
• Use Microsoft Developer Network (MSDN) to search for .NET Framework Documentation

• State the definition of the term “Application Programming Interface” (API)

• List and describe the Base Class Libraries of the .NET Framework API

• Demonstrate your ability to navigate a class inheritance hierarchy

Chapter 5

Navigating .NET FrameworkBranches

C
o
n
ta

x
 T

3
 /

 K
o
d
ak

 T
ri

-X

Documentation
C#
For Artists © 2008 Rick Miller — All Rights Reserved 93

Introduction Chapter 5: Navigating .NET Framework Documentation
Introduction

When programming in C# or any .NET programming language, a lot of your work is already done for you in the

form of the .NET Framework class library. The .NET Framework class library supplies interfaces, classes, and value

types that serve as the foundation upon which all .NET applications are built, and provides advanced functionality to

help you create feature-rich applications.

The .NET class library, also referred to as the .NET Framework application programming interface (API), is both

a blessing and a curse. It’s a blessing because just about every conceivable thing you would want to do in your pro-

grams, from creating and managing collections of objects to writing complex client-server networked database appli-

cations, is available for immediate use in the form of pre-existing interfaces and classes. It’s a curse in that you must

expend considerable effort in learning how to use these interfaces and classes in your programs.

The purpose of this chapter is to help you jumpstart your usage of .NET API classes by showing you how to look

up API information on Microsoft’s MSDN website and navigate class inheritance hierarchies. The successful and

quick navigation of the .NET API reference material is a fundamental programming skill employed everyday by pro-

grammers around the world.

In fact, you will spend much more time learning how to use the .NET API than you will learning C# language

fundamentals. This is due largely to the shear number of classes the API contains and partly because the API continu-

ously evolves. But don’t panic. You can get started programming complex, professional-looking C# applications with

the help of only a small handful of API classes.

MSDN: The Definitive Source For API Information

The definitive source for .NET API information is the Microsoft Developer Network (MSDN) website

[www.msdn.com]. If you don’t have an internet connection but did buy Microsoft Visual Studio.NET or get the

C#.NET Express Edition CD, then you can access the .NET API reference documentation that came with those prod-

ucts.

On the MSDN website, navigate to the .NET API reference section by following the links .NET Framework ->

Class Library Reference. This will bring you to a page that looks similar to that shown in Figure 5-1.

Figure 5-1: .NET Framework Class Library Reference Page
94
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 5: Navigating .NET Framework Documentation MSDN: The Definitive Source For API Information
All of the .NET Framework development information you can access from this page can be overwhelming, but

for the purposes of this book, you only need concern yourself with a very small part of the API reference. In the left

frame, click the .NET Development link to expand it as shown in Figure 5-2.

Again in the left frame, click the Class Library link to expand it, and scroll down until you find the System

namespace as shown in Figure 5-3. It is in the Class Library section of the .NET API reference that you will spend

most of your time researching and referencing the value types, interfaces, and classes found in the System namespace

and its sub namespaces.

Figure 5-2: .NET Development Link Expanded and Class Library Link Highlighted

Figure 5-3: Class Library Link Expanded and System Namespace Highlighted
C
For Art
ists © 2008 Rick Miller — All Rights Reserved 95

Discovering Information About Classes Chapter 5: Navigating .NET Framework Documentation
Discovering Information About Classes

If you look closely at Figure 5-3 you’ll see in the right frame under System Namespace a short paragraph

describing its contents. Below that you’ll see several subheadings (collapsed in the figure). The subheadings include

Classes, Interfaces, Structures, Delegates, and Enumerations. The System namespace contains a lot of stuff; indeed,

the System namespace is the primary library in the .NET Framework. To get a feel for how to navigate API informa-

tion, let’s take a look at the String class. Click the Classes subheading to reveal all the System namespace classes.

Scroll down until you find the String class. Click the String class link to open a window that looks similar to that

shown in Figure 5-4.

General Overview Page

Referring to Figure 5-4 — What you are looking at here is the class information overview page. The overview

page contains a lot of good general information arranged in subheadings or sections. I have collapsed a few of the

subheadings for the purpose of this figure, but note that the API reference pages normally load with all subheadings

fully expanded.

The Syntax section shows the class declaration. This is handy when you are trying to navigate a class’s inherit-

ance hierarchy, which I will discuss in greater detail later in this chapter.

The Remarks section contains information on how to use the class, and discusses issues you should be aware of

when using the class in your code.

The Inheritance Hierarchy section shows you what classes this particular class extends or inherits. As you can

see, the String class extends Object. Note: The Inheritance Hierarchy section does not show what interfaces the

String class implements. For that you need to examine the Syntax section.

The Thread Safety section offers some advice on using the class in multithreaded programs.

The Platforms and Version Information sections show the Microsoft Windows operating system platforms that

support this class and the different .NET Framework versions in which it appears. Not all .NET Framework classes,

interfaces, etc., are supported on all platforms.

Figure 5-4: String Class API Reference Overview Page
96
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 5: Navigating .NET Framework Documentation Discovering Information About Classes
The See Also section provides links to other elements within the .NET Framework that share a relationship with

this entry. For example, here you would find links to the numerous interfaces implemented by the String class.

Class Member Page

A class contains members. These members can include constructor methods (constructors), fields, properties, and

methods. What you’ll see on the members page is information about public members. Public members are those class

members that you have access to when you use objects of this type in your code. If a class can be extended, meaning

it’s not sealed, you’ll see its protected members as well. Figure 5-5 shows the String Members page with the subhead-

ings collapsed.

The Public Constructors section shows you the list of public constructor methods the class contains and notes on

how to use them. Figure 5-6 shows a partial listing of the String class’s Public Constructors section.

The Fields section lists any public fields the class makes available for use. The Properties section lists any public

properties the class may have. The same hold for the Methods section. A partial listing of the String class’s Methods

page is shown in Figure 5-7.

Click a particular method’s link to get more information. For example, scroll down the String Methods page, find

the SubString method, and click its link. This will take you to the String.SubString Method page, as is shown in Fig-

ure 5-8.

Referring to Figure 5-8 — notice there are two versions of the SubString method. This means the SubString

method has been overloaded to perform a similar operation in two different ways. Click one of the method links to

learn more about how to use that particular method version, as Figure 5-9 illustrates.

Referring to Figure 5-9 — notice there are several subheadings on the method details page. The Syntax section

shows how the method is declared in several different .NET programming languages. The Exceptions section lists

and describes any exceptions the method may throw if something goes wrong when it’s called. The Remarks section

provides a few words of guidance on the method’s use. The Platforms and Version sections contain the same types of

information as they do on other API pages.

The Example section is the one part of the page you will be most interested in studying. It provides examples of

how to use the method in several different programming languages. Figure 5-10 shows the Examples section

expanded to reveal the C# code section.

Figure 5-5: String Members Page
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 97

Discovering Information About Classes Chapter 5: Navigating .NET Framework Documentation
Getting Information On Other Class Members

Additional information on class fields, properties, constructors, etc., can be obtained in the same way as informa-

tion on class methods; Just follow the links. At this time, you may find it extremely helpful just to wander around the

.NET Framework documentation. Explore the System namespace and its many sub namespaces and see what types of

classes and interfaces they contain. Don’t be put off by not understanding what it is you are looking at. The important

thing to do is to simply get familiar with .NET Framework documentation. Doing so will pay huge dividends in the

very near future.

Figure 5-6: String Class’s Public Constructors Partial Listing

Figure 5-7: String Class’s Methods Page Partial Listing
98
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 5: Navigating .NET Framework Documentation Discovering Information About Classes
Figure 5-8: String.SubString Method Page

Figure 5-9: String.SubString Page with Collapsed Subheadings

Figure 5-10: String.SubString Example Section Expanded Showing Example Code
C# For Artist
s © 2008 Rick Miller — All Rights Reserved 99

The Base Class Libraries (BCL) Chapter 5: Navigating .NET Framework Documentation
Quick Review

The MSDN is the definitive source for .NET Framework API information. You’ll spend most of your time in the

Class Library section researching the many classes, interfaces, and value types that appear in the System namespace

and its many subnamespaces.

The Base Class Libraries (BCL)

Regardless of what type of C# application you build, your program will fundamentally depend upon a small core

of classes that belong to the Base Class Libraries (BCL). The Base Class Libraries include the contents of the

namespaces listed Table 5-1.

In addition to these libraries, this book will draw heavily from the namespaces shown in Table 5-2.

Namespace Description

System This is a fundamental namespace that includes all value type structures, the String class,

math functionality, the DateTime class, and much, much more.

System.CodeDom Supports the ability to dynamically create and execute code.

System.Collections Contains interfaces and classes that let you manipulate collections of objects. Includes data

structures such as lists, hashtables, and dictionaries.

System.Diagnostics Provides the ability to diagnose the performance of your application.

System.Globalization Provides the capability to internationalize your application.

System.IO Supports file, console, serial port, and interprocess input and output.

System.Resources Provides classes and interfaces that allow you to store and manipulate culture-specific ap-

plication resources.

System.Text Provides the capability to manipulates sequences of ASCII, Unicode, UTF-7, and UTF-8

character encodings.

System.Text.RegularExpressions Supports the use of regular expressions in your .NET applications.

Table 5-1: Base Class Library (BCL) Namespaces

Namespace Description

System.Collections.Generic Provides many different types of generic collection classes.

System.Data

System.Data.SQL

Provides the capability to write applications that access a relational database using

ADO.NET and Structured Query Language (SQL)

System.Drawing Provides graphics drawing and manipulation classes.

System.Net

System.Net.Sockets

Provides classes and interfaces used to write networked applications.

System.Runtime.Remoting Provides classes and interfaces necessary to write distributed applications that call meth-

ods on remote objects.

System.Runtime.Serialization Supports the serialization and deserialization of objects.

Table 5-2: Additional .NET Libraries Used Heavily In This Book
100 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 5: Navigating .NET Framework Documentation Navigating An Inheritance Hierarchy
Quick Review

The Base Class Libraries include those namespaces, and the classes they contain, that serve as the fundamental

building blocks of the .NET Framework.

Navigating An Inheritance Hierarchy

In this section, I want to show you how to navigate an inheritance hierarchy. I’ll use the String class as an exam-

ple. Figure 5-11 shows a Unified Modeling Language (UML) diagram for the String class’s inheritance hierarchy.

Referring to Figure 5-11 — the UML diagram shown is referred to as a “class” diagram. A class diagram shows

static relationships between classes, interfaces and other system artifacts. In this case, the String class inherits from

the Object class. How do we know this? By referring to the String class overview page available in the .NET Frame-

work documentation. The inheritance hierarchy is shown in the Inheritance Hierarchy section as was shown in Figure

5-4. Unfortunately, the Inheritance Hierarchy section only gives part of the picture. You need to study the Syntax sec-

tion of the class overview page to learn what interfaces a class implements and any attributes, such as SerializableAt-

tribute or simply Serializable, it supports. The String class declaration as given in the Syntax section of the String

class documentation page appears in Example 5-1.

5.1 String Class Declaration

1 [SerializableAttribute]
2 [ComVisibleAttribute(true)]
3 public sealed class String : IComparable, ICloneable, IConvertible, IComparable<string>,

 IEnumerable<string>, IEnumerable, IEquatable<string>

System.Threading Provides multithreaded application support.

System.Windows.Forms

System.Windows.Forms.Layout

Provides a large collection of classes and interfaces used to create Windows Graphical

User Interface (GUI) applications.

Namespace Description

Table 5-2: Additional .NET Libraries Used Heavily In This Book

Figure 5-11: String Class Inheritance Hierarchy

Implemented Interfaces

Base class

Derived Class
C# For Arti
sts © 2008 Rick Miller — All Rights Reserved
 101

Beware Obsolete APIs Chapter 5: Navigating .NET Framework Documentation
Referring to Example 5.1 — the String class declaration does not explicitly inherit from Object. Rather, all C#

types (i.e., reference types [classes] and value types [structures]) implicitly extend Object, although value type struc-

tures implicitly extend System.ValueType, which extends System.Object, and behave differently from reference

types.

OK. So what’s the use of tracking down the base classes and interfaces of a class? Simple: class behavior is the

sum of all behaviors inherited from base classes, from interface implementations, or applied attributes. (e.g., Serializ-

ableAttribute is an example of an attribute.) To fully understand all that a particular class can do, you must navigate

up the inheritance hierarchy, visit each base class, and in turn visit each interface to learn what it means to provide an

implementation for it.

In short, a String is an Object. Any methods declared public in the Object class can also be called on a String

object. A String object is not only serializable and comvisible, it is also comparable, cloneable, convertible, enumera-

ble, and equatable.

Do not panic if you don’t know yet what all this mumbo jumbo means. By Chapter 11 it will all start to make per-

fect sense. However, it would still be a good exercise to visit the String class now and follow the links to all its related

interfaces. Also, visit the Object class and see what it has to offer.

Quick Review

Trace a class’s inheritance hierarchy to discover its complete range of functionality.

Beware Obsolete APIs

As the .NET Framework evolves, there will be times when some of what came before will be rendered obsolete.

Though using an obsolete API component does not immediately spell disaster, it’s a good idea to avoid using them

when possible for the sake of forward compatibility. You can get a listing of obsolete API members by visiting the

MSDN home page and following these links: Common Language Runtime -> Reference -> .NET Framework V2.0

Obsolete API List. Figure 5-12 offers a partial listing of obsolete API components by Namespace.

Figure 5-12: Obsolete .NET Framework Version 2.0 API Partial Listing by Namespace
102
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 5: Navigating .NET Framework Documentation Summary
Summary

The Microsoft Developer Network (MSDN) is the definitive source for .NET Framework API information.

You’ll spend most of your time there in the Class Library section researching the many classes, interfaces, and value

types that appear in the System namespace and its many subnamespaces.

The Base Class Libraries (BCL) include those namespaces, and the classes they contain, that serve as the funda-

mental building blocks of the .NET Framework.

Trace a class’s inheritance hierarchy to discover its complete range of functionality.

Skill-Building Exercises

1. API Drill: Visit the MSDN homepage and explore the many links provided.

2. API Drill: Explore the System namespace. Write down a list of all classes, interfaces, exceptions, events, and del-

egates you find there. Research the functionality each provides and write a brief description of that functionality

using your own words.

3. API Drill: Explore the System.Text namespace. Write down a list of all classes, interfaces, exceptions, events, and

delegates you find there. Research the functionality each provides and write a brief description of that functionality

using your own words.

4. API Drill: Explore the System.Collections namespace. Write down a list of all classes, interfaces, exceptions,

events, and delegates you find there. Research the functionality each provides and write a brief description of that

functionality using your own words.

5. API Drill: Explore the System.Collections.Generic namespace. Write down a list of all classes, interfaces, excep-

tions, events, and delegates you find there. Research the functionality each provides and write a brief description of

that functionality using your own words.

6. API Drill: Explore the System.IO namespace. Write down a list of all classes, interfaces, exceptions, events, and

delegates you find there. Research the functionality each provides and write a brief description of that functionality

using your own words.

7. API Drill: Explore the System.Net namespace. Write down a list of all classes, interfaces, exceptions, events, and

delegates you find there. Research the functionality each provides and write a brief description of that functionality

using your own words.

8. API Drill: Explore the System.Threading namespace. Write down a list of all classes, interfaces, exceptions,

events, and delegates you find there. Research the functionality each provides and write a brief description of that

functionality using your own words.

9. API Drill: Explore the System.Drawing namespace. Write down a list of all classes, interfaces, exceptions, events,

and delegates you find there. Research the functionality each provides and write a brief description of that func-

tionality using your own words.

10. API Drill: Explore the System.Windows.Forms namespace. Write down a list of all classes, interfaces, excep-

tions, events, and delegates you find there. Research the functionality each provides and write a brief description of

that functionality using your own words.
C# For Artists © 2008 Rick Miller — All Rights Reserved 103

Suggested Projects Chapter 5: Navigating .NET Framework Documentation
Suggested Projects

1. Navigate Inheritance Hierarchy: Navigate the inheritance hierarchy for the System.String class. Follow the links

for its base class and all implemented interfaces. Write down the functionality provided by each interface. Make a

note of any overridden methods found in the class.

2. Navigate Inheritance Hierarchy: Navigate the inheritance hierarchy for the System.Int32 structure. Follow the

links for its base class and all implemented interfaces. Write down the functionality provided by each interface.

Make a note of any overridden methods found in the class.

3. Navigate Inheritance Hierarchy: Navigate the inheritance hierarchy for the System.DateTime structure. Follow

the links for its base class and all implemented interfaces. Write down the functionality provided by each interface.

Make a note of any overridden methods found in the class.

4. Navigate Inheritance Hierarchy: Navigate the inheritance hierarchy for the System.Windows.Forms.Button

class. Follow the links for its base classes and all implemented interfaces. Write down the functionality provided

by each interface. Make a note of any overridden methods found in the class.

5. Navigate Inheritance Hierarchy: Navigate the inheritance hierarchy for the System.Convert class. Follow the

links for its base class and all implemented interfaces. Write down the functionality provided by each interface.

Make a note of any overridden methods found in the class.

Self-Test Questions

1. Where can you find the most recent version of .NET Framework documentation?

2. What types of information can you find on a class overview page?

3. How would you find some example code showing the use of a particular class method?

4. What’s the purpose of knowing how to navigate a class inheritance hierarchy?

References

Microsoft Developer Network website [http://msdn.com]
104 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 5: Navigating .NET Framework Documentation Notes
Notes
C# For Artists © 2008 Rick Miller — All Rights Reserved 105

Notes Chapter 5: Navigating .NET Framework Documentation
106 © 2008 Rick Miller — All Rights Reserved C# For Artists

Part II: Language Fundamentals
C# For Artists ©2008 Rick Miller — All Rights Reserved 107

108 ©2008 Rick Miller — All Rights Reserved C# For Artists

6 Simple C# Programs

Learning Objectives
• State the required parts of a simple console application
• State the definition of the terms: “Application”, “Assembly”, and “Module”
• State the purpose of the Main() method
• Describe the differences between the four different versions of the Main() method
• State the purpose of the “using” directive
• Describe the differences between value types and reference types
• State the purpose of statements, expressions, and operators
• State the purpose of the “new” operator
• Apply the “new” operator to dynamically create objects in memory
• List and describe the use of the C# operators
• List and describe the use of the C# reserved keywords
• Demonstrate your ability to create simple C# programs
• Demonstrate your ability to compile C# programs using the command-line compiler

Chapter 6

Simple C# Programs
Chipotle — Rosslyn, VA

V
o
ig

tl
an

d
er

 B
es

sa
-L

 /
 1

5
m

m
 S

u
p
er

 W
id

e-
H

el
ia

r
C#
For Artists © 2008 Rick Miller — All Rights Reserved 109

Introduction Chapter 6: Simple C# Programs
Introduction

This chapter lays a solid foundation for the understanding of the material contained within the remaining chap-

ters of this book. Here you will learn the fundamental concepts crucial to building C# applications. As the old adage

goes, you must learn to crawl before you can walk. Soon you will be running. But in the meantime, you will begin to

wonder whether you will ever get off the floor!

Try as I may to make the material contained here easy to understand and free of confusing concepts, I am hin-

dered in doing so by the very nature of the C# language. For example, the simplest program you can write in C# must

be contained within a class. Thus, the concept of a class is forced upon you when it would be nice to delay its discus-

sion until later.

The primary challenge facing both students and teachers of a modern object-oriented programming language like

C# is the multitude of complexities presented by both the language itself and its accompanying collection of frame-

work classes, referred to in the case of C# as the .NET Framework Application Programming Interface (API). I will

mitigate this complexity in this chapter by keeping the example programs small and concise, and by limiting the use

of .NET Framework API classes to those required for simple console input and output.

I will focus my efforts on helping you understand the C# type structure and understanding the differences

between value types and reference types. I will explain to you the purpose of the Main() method, and show you how

to use value type and reference type objects within a Main() method. I will also show you how to use variables and

constants in simple programs. I will then discuss the C# language operators and demonstrate their use.

If you are completely new to programming, even the material I talk about in this chapter can be intimidating. Be

patient and keep at it. A keen grasp of the fundamentals pays big dividends when you start to tackle more complex

concepts.

What Is A C# Program?

When I say to you, “Write a program in C# to do this or that...,” what do I mean? There are many answers to this

question, and all of them are correct. Each depends on the complexity of the problem being solved and the particular

approach you might take towards its solution. For example, as you will soon see later in this chapter, if I ask you to

write a program that adds two numbers and displays the result on the screen, you can write this program as a console

application contained in one class. The effort spent analyzing the problem (i.e., adding two numbers and displaying

the sum) will be minimal.

Another approach to writing the simple adding program might involve the use of graphical user interface (GUI)

components so that users could enter the numbers to be added in a familiar window interface. This version of the pro-

gram could be written either as one class or as multiple classes. It depends on how you approach the design of the

program. The GUI version of the program also would use more of the .NET API classes to create the window and

handle user interactions within the interface.

The approach you take to the design of a program depends largely on how much you know about designing pro-

grams. As you progress through this book, you will learn the C# language and program design concepts hand-in-

hand. At first you will see examples of simple, one-class programs. As you are introduced gradually to object-oriented

programming concepts, your knowledge of program design will increase and you will be able to build more complex

programs.

So, when I say, “Write a program in C# to do this or that..., ” what you do might be as simple as creating one

class and adding a few lines of code to do a simple operation. This simple program will be contained in one source

file. For more complex programming projects, you may need to spend considerable time analyzing the problem at

hand and designing a suitable solution using object-oriented analysis, design, and programming techniques. The

resulting program may be spread across multiple files. But first, you must learn to crawl.
110 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 6: Simple C# Programs A Simple Console Application
A Simple Console Application

In this section you will learn how to build simple, one-class console applications. This one-class program design

will serve as the basis for demonstrating many fundamental concepts throughout this and several later chapters.

Definition Of Terms: Application, Assembly, Module, and Entry Point

An application is an assembly that has an entry point. In the words of the Common Language Infrastructure

(CLI) standard: “An assembly is a configured set of loadable code modules and other resources that together imple-

ment a unit of functionality,” and, “A module is a single file that can be executed by the virtual execution system

(VES).” (See Chapter 4 for a discussion of the VES). These are nice definitions, but are rather technical and some-

what misleading — and in dire need of explanation.

The entry point is a fancy name for where a program can begin execution. When an application is loaded into the

VES, it has to start execution at some point in the code. This point is referred to as the entry point. The entry point is

nothing more than a special method known as the Main() method. I will talk more about the Main() method shortly.

Essentially, you can compile a C# program into either an assembly or a module. If your program has one class

that contains a Main() method, then it can be compiled directly into an assembly. This is a file that has a “.exe” file-

name extension. You can execute this file by typing its name at a command prompt or by double-clicking its icon. If

your program has no Main() method, you will get the following error message when you compile:

‘[assembly file name]’ does not contain a static ‘Main’ method suitable for
an entry point

A program with no Main() method can be compiled into a module using the csc compiler’s /target:module

argument. But even if a module contains executable code, it can’t be loaded and run standalone by the virtual execu-

tion system if it doesn’t have a Main() method. The VES doesn’t know where to start execution.

Modules can be added to assemblies. In fact, modules of different languages that conform to the CLI specifica-

tion can be combined with modules written in C# to form an executable assembly. Cross-language compatibility is

one of the promises of both the .NET and the broader CLI initiative.

Structure Of A Simple Application

Example 6.1 gives the code for a simple C# application.
6.1 SimpleApp.cs

1 using System;
2
3 public class SimpleApp {
4 static void Main() {
5 Console.WriteLine("Howdy Stranger!");
6 }
7 }

Referring to Example 6.1 — SimpleApp is the name of the class that contains the Main() method. On line 1, a

using directive signals the compiler that this source file refers to classes and constructs declared within the System

namespace. (I cover namespaces in Chapter 9.) Specifically, in this short program I am using the System.Console

class to get input from and send output to the command console.

Line 3 includes the keywords public and class to declare the class SimpleApp. At the end of line 3 there appears

an opening curly brace ‘{‘. This signals the beginning of SimpleApp’s class body. Everything belonging to a class,

that is all fields, properties, methods, etc., appear in the class body between the opening and closing curly braces.

The start of the Main() method begins on line 4. The keywords static and void are used to declare the Main()

method. The Main() method, as you can see, contains an opening and closing parentheses “()”. The parentheses

denote the beginning and ending of an optional method parameter-list. A parameter represents an object that will be

passed to a method for processing when the method is called. (I’ll talk more about Main() method parameters later.)

At the end of line 4, an opening curly brace denotes the beginning of the Main() method body. Any code appear-

ing between the Main() method’s opening and closing curly braces belongs to the Main() method. In the case of

Example 6.1, the Main() method contains one line of code, line 5, which is a method call to the Console class’s Write-
C# For Artists © 2008 Rick Miller — All Rights Reserved 111

A Simple Console Application Chapter 6: Simple C# Programs
Line() method. The WriteLine() method writes different types of objects to the console. In this case, I’m writing a

string of characters (i.e., a String object) to the console. Line 6 contains the Main() method’s closing curly brace ‘}’

and line 7 contains the SimpleApp class’s closing curly brace.

To compile this program at the command prompt, you would save the source code in a file named SimpleApp.cs

and use the csc compiler tool like so:

csc SimpleApp.cs
This creates an assembly named SimpleApp.exe. Figure 6-1 shows the results of running this program.

Purpose Of The Main() Method

The purpose of the Main() method is to provide an entry point for application execution. As I stated earlier, with-

out a Main() method, the virtual execution system has no way of knowing where to start running a program.

Main() Method Signatures

The Main() method can have the following four signatures:

static void Main() { }
static void Main(string[] args) { }
static int Main() { }
static int Main(string[] args) { }

The term method signature refers to the combination of a method’s name and its parameter list. A method’s

return type is not considered part of its signature, but the Main() method can optionally return an integer value, which

yields four different versions. As these four method signatures show, the Main() method can return void (nothing) or

optionally an integer value, and take either no parameters or a string array parameter.

The purpose of the string array parameter is to enable the passing of command-line arguments to the program. I

will show you how to do this in Chapter 8 after you learn about arrays.

The SimpleApp class shown in Example 6.1 used the first version of Main(). It could have easily used the other

versions as well. Example 6.2 shows the SimpleApp class employing the second version of the Main() method.
6.2 SimpleApp (Version 2)

1 using System;
2
3 public class SimpleApp {
4 static void Main(string[] args) {
5 Console.WriteLine("Howdy Stranger!");
6 }
7 }

Referring to Example 6.2 — this version of the SimpleApp class produces the same output when executed as that

shown in Figure 6-1. In this case, the string array parameter named args is ignored.

Keep in mind that the only four versions of the Main() method authorized as entry points are those shown above.

If you tried to use a method named Main() that took a different type or number of parameters, then you would receive

a compiler warning. Let’s see what happens if we try to use a different Main() method argument type. Example 6.3

gives the code.
6.3 SimpleApp (Version 3)

1 using System;
2
3 public class SimpleApp {
4 static void Main(int i) { // will not compile!
5 Console.WriteLine("Howdy Stranger!");
6 }
7 }

Figure 6-1: Results of Running Example 6.1
112
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 6: Simple C# Programs Identifiers And Reserved Keywords
Referring to Example 6.3 — the Main() method string parameter has been replaced with an integer parameter.

When you compile this version of the program, it produces the error messages shown in Figure 6-2.

Quick Review

A simple C# application is a class that contains a Main() method. The purpose of the Main() method is to provide

an entry point for program execution. There are four authorized Main() method signatures. A class that contains a

Main() method can be compiled into an executable assembly. A class with no Main() method can be compiled into a

module. Modules can be added to assemblies. Modules created in CLI compliant languages other than C# can be

compiled with C# modules to form executable assemblies.

Identifiers And Reserved Keywords

Table 6-1 lists C# language reserved keywords.

abstract do in protected true

as double int public try

base else interface readonly typeof

bool enum internal ref uint

break event is return ulong

byte explicit lock sbyte unchecked

case extern long sealed unsafe

catch false namespace short ushort

char finally new sizeof using

checked fixed null stackalloc virtual

class float object static void

const for operator string volatile

continue foreach out struct while

decimal goto override switch

default if params this

delegate implicit private throw

Table 6-1: C# Reserved Keywords

Figure 6-2: Results of Compiling Example 6.3 with Improper Main() Method Signature
C# For
Artists © 2008 Rick Miller — All Rights Reserved 113

Identifiers And Reserved Keywords Chapter 6: Simple C# Programs
Referring to Table 6-1 — there’s no need to memorize the entire list. In time, as you write increasingly complex

programs, you will come to know most of them intimately. The important thing to note right now is that reserved key-

words have special meaning in the C# language. You can’t hijack them for your own purpose.

In the SimpleApp code shown in Example 6.1, you saw several keywords put to use. These included class, pub-

lic, static, void, string, and using. The class keyword is used to introduce a new class type name, in this case the string

of characters “SimpleApp”. The string of characters “SimpleApp” is known as an identifier. The act of programming

requires you to invent names for lots of things in your programs like variables, constants, class and method names. So

long as the names you choose for these objects are different from the reserved keywords, you’ll be fine. But what

would happen if you were to try and introduce a new name for an object within your program that has already been

reserved? Let’s see what happens. Example 6.4 gives the code for a naughty little program that tries to declare a class

named “class”.
6.4 Naughty Program

1 using System;
2
3 public class class { // <-- will cause an error when compiled
4 static void Main(){
5 Console.WriteLine("Bad, bad program...!");
6 }
7 }

Referring to Example 6.4 — on line 3 an attempt is made to introduce a new class named “class”. But since class

is a reserved keyword, this causes the compiler to pitch quite a fit, as is shown in Figure 6-3.

Identifier Naming Rules

It’s easy to avoid trouble in formulating identifier names if you take the time to give the objects in your programs

names that make sense within the context of the problem at hand. Creating valid identifiers is easy, as you’ll see.

What takes a little more skill is effectively naming objects within a program that correspond to real world objects in

the problem domain. For more information on this topic, see the discussion on isomorphic mapping in Chapter 1.

Identifiers can start with a letter or the underscore ‘_’ character. The starting letter can be uppercase or lower-

case. The starting character can be followed by any number of letters, underscores and decimal digits. Unicode char-

acter escape sequences can be used as well, but putting these in your identifiers makes them difficult to read and

understand.

Although I said earlier that reserved keywords cannot be used as identifiers, I will recant somewhat and say that

if you add the ‘@’ character in front of a keyword, you can use it as an identifier. Example 6.5 shows how this is done.
6.5 Somewhat Bad Program

1 using System;
2
3 public class @class { // <-- This will work...!
4 static void Main(){
5 Console.WriteLine("Works but not recommended...!");
6 }
7 }

Referring to Example 6.5 — the ‘@’ character is added to the beginning of the second occurrence of the class

keyword on line 3, which now forms a valid identifier. (The identifier is “@class”.) Although this works, I don’t

recommend doing this as the inevitable result will be code that’s hard to read, understand, and maintain. I leave it up

to you to compile Example 6.5 and see for yourself the results of its execution.

Figure 6-3: Errors Produced when Attempting to Reintroduce a Reserved Keyword
114
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 6: Simple C# Programs Types
Quick Review

Identifiers are sequences of characters that represent names of objects in a program. Identifiers are used to formu-

late the name of classes, structures, methods, variables, constants, properties, fields, enums, etc.

Identifiers can start with either an uppercase or lowercase letter or an underscore ‘_’ character followed by any

number of letters, digits, and underscores.

Reserved keywords are identifiers that have special meaning within the C# language. You cannot reintroduce a

reserved keyword as a name for an object within your program. You can, however, prepend the ‘@’ symbol to a

reserved keyword to formulate a valid identifier, but I discourage you from doing this as it renders code hard to read,

understand, and maintain.

Types

C# is a strongly typed programming language. The term strongly typed means that all objects in a C# program

must be associated with a particular type. An object’s type is a specification of the legal operations that can be per-

formed on that object. For example, the ‘+’ operator can be applied to integer (int) objects, and the Append() method

can be called on StringBuilder objects. Generally speaking, if you try to perform an operation on an object that its

particular type does not allow, you will get a compiler error.

There are two categories of types in the C# language: value types and reference types. Figure 6-4 gives the com-

plete C# type hierarchy.

Referring to Figure 6-4 — value types and reference types each have several type subcategories. The important

thing to note in Figure 6-4 is the existence of the C# predefined types. These are the types that are built into the lan-

guage. Notice that the predefined type names all start with lowercase letters. All but two of the predefined types are

simple value types. The types object and string are class types, which is a subcategory of reference types. Value types

behave differently from reference types. I explain these behavioral differences in the next section.

C# Types

Value
Types

Reference
Types

Simple
Types

Enumeration
Types

Structure
Types

Class
Types

Interface
Types

Delegate
Types

Array
Types

sbyte
short
int
long
byte
ushort
uint
ulong
float
double
bool
char
decimal

object
string

Predefined
Types

Figure 6-4: C# Type Hierarchy
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 115

Types Chapter 6: Simple C# Programs
Value Type Variables vs. Reference Type Variables

This section explains the differences between value type and reference type variables.

Value Type Variables

A value type variable contains its very own copy of its data. Let’s take a look at a simple example of value types

in action.
6.6 ValueTypeTest.cs

1 using System;
2
3 public class ValueTypeTest {
4 static void Main(){
5 int i = 0;
6 int j = i;
7 j = j+1;
8 Console.WriteLine("The value of i is: " + i);
9 Console.WriteLine("The value of j is: " + j);
10 }
11 }

Referring to Example 6.6 — An integer value type variable named i is declared and initialized on line 5. The

term variable means a named storage location in memory whose value can be changed during program execution. On

line 6, another integer variable named j is declared and initialized to the value of i. On line 7, a simple addition oper-

ation is performed on the variable j adding 1 to its value. Adding 1 to the variable j does not affect the value of the

variable i. The code on lines 8 and 9 print the values of i and j to the console. Figure 6-5 shows the results of running

this program.

Reference Type Variables

A reference type variable contains the memory address of a reference type object. Two different reference type

variables can point to the same reference type object in memory. The following program offers an example.
6.7 ReferenceTypeTest.cs

1 using System;
2 using System.Text;
3
4 public class ReferenceTypeTest {
5 static void Main(){
6 StringBuilder sb1 = new StringBuilder();
7 StringBuilder sb2 = sb1;
8 sb1.Append("Howdy Pawdner!");
9 Console.WriteLine(sb1);
10 Console.WriteLine(sb2);
11 }
12 }

Referring to Example 6.7 — on line 2, another using directive provides shortcut name access to the StringBuilder

class located in the System.Text namespace. On lines 6 and 7, in the body of the Main() method, two StringBuilder

reference variables named sb1 and sb2 are declared and initialized. Notice that in order to create a StringBuilder

object, you must use the new operator as is shown on line 6. On line 7, the StringBuilder variable named sb2 is initial-

ized to the same value as sb1. Remember, reference type variables store memory addresses to objects located in mem-

ory. So, when the value of sb1 is assigned to sb2, sb2 is being assigned a memory address. Now sb1 and sb2 both

“point” to or “reference” the same StringBuilder object in memory. Any operation performed on the object pointed to

by sb1 affects the object pointed to by sb2 since, in this case, it is the same object. This is what happens when the

Append() method is called via the sb1 variable adding the character string “Howdy Pawdner!”. Note the results of

running this program shown in Figure 6-6.

Figure 6-5: Results of Running Example 6.6
116
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 6: Simple C# Programs Types
Maybe Some Pictures Will Help

Figure 6-7 offers a simple conceptual view of value-type memory allocation based on the code presented in

Example 6.6.

Referring to Figure 6-7 — the integer variables i and j each hold their very own copy of their assigned values.

When the value of variable i is assigned to the variable j, a copy of i’s value, in this case 0, is made and stored in j’s

memory location.

Figure 6-8 shows a simple conceptual view of reference type memory allocation based on the code presented in

Example 6.7.

Referring to Figure 6-8 — the StringBuilder variable sb1 contains the memory address of a StringBuilder object.

The StringBuilder object was created with the expression “new StringBuilder()” which creates the object and returns

the address of the object’s location in memory. When the value of sb1 is assigned to the variable sb2, both variables

will point to the same object in memory. When two reference variables point to the same object, any operation per-

formed on one affects the other, as is shown in Figure 6-9.

Figure 6-6: The Results of Running Example 6.7

int i = 0;
int j = i;

i 0
j 0

j = j + 1; i 0
j 1

Figure 6-7: Value Type Memory Allocation

StringBuilder sb1 = new StringBuilder();
StringBuilder sb2 = sb1;

sb1
sb2

.

.

.

memory address 1

memory address 1

address 1

address 2

Figure 6-8: Reference Type Memory Allocation

sb1.Append(”Howdy Pawdner!”); sb1
sb2

.

.

.

memory address 1

memory address 1

“Howdy Pawdner!”address 1

address 2

Figure 6-9: Results of Calling the Append() Method via the sb1 Variable
C
Fo
r Artists
 © 2008 Rick Miller — All Rights Reserved 117

Types Chapter 6: Simple C# Programs
Mapping Predefined Types To System Structures

All the predefined types correspond to structures within the System namespace of the .NET API. For example,

the predefined simple type int is mapped to the System.Int32 structure. The System.Int32 structure inherits from the

System.ValueType class, as do all value types and enumerations. Example 6.8 gives an alternative version of the Val-

ueTypeTest code originally presented in Example 6.6.

6.8 ValueTypeTest.cs (Version 2)

1 using System;

2

3 public class ValueTypeTest {

4 static void Main(){

5 Int32 i = 0;

6 Int32 j = i;

7 j = j+1;

8 Console.WriteLine("The value of i is: " + i);

9 Console.WriteLine("The value of j is: " + j);

10 }

11 }

Referring to Example 6.8 — compare this program with Example 6.6. Notice the only difference between the

two programs is the substitution here of the type Int32 for the simple type int. Table 6-2 lists the predefined types

along with their corresponding System namespace structures, default values, and value ranges.

Type Description
 System Namespace

Structure or Class
Default Value† / Value Range

object The base class of all types Object Class Default value: null

string A sequence of Unicode code units String Class Default value: null

sbyte 8-bit signed integral type SByte Structure Default value: 0

-128 to 127

short 16-bit signed integral type Int16 Structure Default value: 0

-32768 to 32767

int 32-bit signed integral type Int32 Structure Default value: 0

-2,147,483,648 to 2, 147,483,647

long 64-bit signed integral type Int64 Structure Default value: 0

-9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

byte 8-bit unsigned integral type Byte Structure Default value: 0

0 to 255

ushort 16-bit unsigned integral type UInt16 Structure Default value: 0

0 to 65535

uint 32-bit unsigned integral type UInt32 Structure Default value: 0

0 to 4,294,967,295

ulong 64-bit unsigned integral type UInt64 Structure Default value: 0

0 to 18,446,744,073,709,551,615

float single-precision floating point type Single Structure Default value: 0.0

-3.402823e38 to 3.402823e38

double double-precision 64-bit floating

point type

Double Structure Default value: 0.0

-1.79769313486232e308

to 1.79769313486232e308

Table 6-2: Predefined Type Mappings, Default Values, and Value Ranges
118 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 6: Simple C# Programs Statements, Expressions, and Operators
Quick Review

C# has two kinds of types: value types and reference types. Value type variables contain the actual data as

defined by the type. Reference type variables contain a reference to an object in memory. Two or more reference type

variables can reference the same object in memory. The C# predefined types map to structures within the System

namespace. System.Object is the base type for all types.

Statements, Expressions, and Operators

Statements are the fundamental building blocks of C# programs. A statement can be thought of as the smallest

standalone element of a program, and programs are built using sequences of statements. The simplest type of state-

ment is the empty statement. An empty statement would look like this:

;

It’s just a lonely semicolon on a line by itself, although it doesn’t have to be on a line by itself.

You’ve already seen statements in action in this chapter’s example programs. The following line of code is taken

from Example 6.6:

int i = 0;

This is an example of a local variable declaration statement. It’s a local variable declaration because this line of

code appeared within the body of a method, in this case, the Main() method. This variable declaration statement con-

tains within it an expression statement. The assignment operator ‘=’ assigns the value 0 to the variable i. Complex

statements can be formed by combining statements within statements.

Notice that the statement above is terminated by the semicolon ‘;’ character. The semicolon character indicates a

line of execution. Note the following three lines of code:

The results of the execution of line 1 will be fully complete before line 2 begins execution. And again, the results

of line 2 will be fully available when line 3 begins execution.

Statement Types

There are nineteen different types of statements in the C# language. These are listed in Table 6-3.

bool Represents true or false Boolean Structure Default value: false

true or false

char character type (Unicode code unit) Char Structure Default value: \u0000

Any Unicode value

decimal decimal type with at least 28 signif-

icant digits

Decimal Structure Default value: 0

-79,228,162,514,264,337,593,543,950,335

to

79,228,162,514,264,337,593,543,950,335

† Default values are assigned to class or structure fields. Local method variables must be explicitly assigned.

Type Description
 System Namespace

Structure or Class
Default Value† / Value Range

Table 6-2: Predefined Type Mappings, Default Values, and Value Ranges

1 int i = 0;
2 int j = i;
3 int j = j + 1;
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 119

Statements, Expressions, and Operators Chapter 6: Simple C# Programs
Referring to Table 6-3 — a statement can be any of the statement types listed in the right column. All of these

statement types are discussed throughout the book, so I will not give examples of each here. With sufficient program-

ming experience, their use becomes second nature. I will, however, elaborate on how the different types of C# opera-

tors are used in expression statements. This is the topic of the next section.

Operators And Their Use

Table 6-4 lists the C# operators by expression category and precedence.

Statement Statement Lists and Block Statements

Labeled Statements and goto Statements

Local Constant Declarations

Local Variable Declarations

Expression Statements

if Statements

switch Statements

while Statements

do Statements

for Statements

foreach Statements

break Statements

continue Statements

return Statements

yield Statements

throw Statements and try Statements

checked and unchecked Statements

lock Statements

using Statements

Table 6-3: C# Statement Types

Expression Category Operators

Primary x.y f(x) a[x] x++ x-- new typeof checked unchecked

Unary + - ! ~ ++x --x (T)x

Multiplicative * / %

Additive + -

Table 6-4: Operator Categories by Precedence
120 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 6: Simple C# Programs Statements, Expressions, and Operators
Operator Precedence and Associativity

The term operator precedence refers to the order in which the C# compiler evaluates the operators in an expres-

sion statement. Consider for a moment the following line of code:

int i = 25 - 2 * 2;
The variable i is being assigned some value. But what value? If you leave it to the compiler to apply its prece-

dence rules, the variable i will be assigned the value 21. The multiplication operator ‘*’ has a higher precedence than

the subtraction operator ‘-’. This may or may not be the way you want the expression to evaluate.

The term associativity refers to the direction in which the C# compiler performs a series of operations. Binary

arithmetic operators like the multiplication and subtraction operators used above have left-to-right associativity. For

example, given an expression of the form 2-2-2 the order in which the subtraction operations are performed is (2-
2)-2. In the example statement given above, the expression 2*2 was performed first because the multiplication

operator has a higher precedence than the subtraction operator.

Assignment operations have right-to-left associativity. Thus, the compiler evaluates an expression of the form

i=j=k as i=(j=k).

Forcing Operator Precedence and Associativity Order With Parentheses

You can force the compiler to evaluate a complex expression a particular way by using parentheses. If we apply

parentheses to the expression shown above in the following manner:

int i = (25 - 2) * 2;
This will cause the subtraction operator ‘-’ to be evaluated before the multiplication operator ‘*’, yielding the

value 46. It’s good programming practice to always use parentheses to show how you intend an expression to be eval-

uated. Doing so eliminates the possibility of making hard-to-find mistakes and makes your code easier to read and

understand.

Operators and Operands

Operators are applied to operands. For example, in the following expression fragment:

25 - 2
The subtraction operator takes two operands. In the following code fragment:

i = 25 - 2

Shift << >>

Relational and Type-Testing < > <= >= is as

Equality == !=

Logical AND &

Logical XOR ^

Logical OR |

Conditional AND &&

Conditional OR ||

Conditional ?:

Assignment = *= /= %= += -= <<= >>= &= ^= |=

Expression Category Operators

Table 6-4: Operator Categories by Precedence
C# For Artists © 2008 Rick Miller — All Rights Reserved 121

Statements, Expressions, and Operators Chapter 6: Simple C# Programs
The subtraction operation with its two operands is evaluated first, yielding a value of 23. This leaves two oper-

ands for the assignment operator ‘=’ to work on: i and 23. As you will soon see, some operators operate on one oper-

and, some on two operands, and one on three operands.

Operator Usage Examples

In this section, I demonstrate the use of one or more operators from each of the operator categories listed in Table

6-4. You will most assuredly encounter all of these operators in more depth as you progress through the book.

Primary Expression Operators

Primary expression operators have the highest precedence. The use of parentheses with these is not usually nec-

essary, nor legal in some cases, to force an unnatural association. You’ve seen several primary expression operators in

action already in this chapter. These included the new operator and the member access ‘.’ operator.

The new operator creates a reference type object. The member access operator is used to access object members.

Consider, for example, the following two lines of code:

 StringBuilder sb1 = new StringBuilder();
 sb1.Append(“Adding this string to the sb1 object.”);
The new operator creates a new StringBuilder object in memory. The assignment operator assigns the resulting

memory address to the StringBuilder reference variable sb1. The StringBuilder’s Append() method is called via the

sb1 variable with the help of the member access operator.

Two other primary operators you will frequently use are the postfix increment and decrement operators, ‘++’ and

‘--’ respectively. Example 6.9 shows the operators in use.
6.9 PrimaryOperatorTest.cs

1 using System;
2
3 public class PrimaryOperatorTest {
4 static void Main(){
5 int i = 0;
6 Console.WriteLine(i++); // writes value of i then increments
7 Console.WriteLine(i--); // writes value of i then decrements
8 Console.WriteLine(i); // simply writes value of i
9 }
10 }

Referring to Example 6.9 — an integer variable named i is created on line 5. On lines 6 and 7 the increment and

decrement operators are applied to the variable i, which is being used as an argument to the Console.WriteLine()

method. Notice on line 6 that the increment operator appears to the right of i. This is the postfix application of this

operator, which means “increment the value of i after the statement has been evaluated.” The effects here are that the

value 0 is written to the console.

On line 7, the decrement operator appears to the right of i. The effect is that the current value of i, which is now

1, is printed to the console and then decremented. Line 8 simply prints the last value of i to the screen. Figure 6-10

shows the results of running this program.

Unary Expression Operators

Unary expression operators operate on one operand. The unary expression operators include the prefix increment

‘++’ and decrement ‘--’, the plus ‘+’ and minus ‘-’, the logical negation ‘!’, the bitwise complement ‘~’, and the

cast ‘(T2)T1’. The cast operator forces a change from one type T1 to another type T2. The plus and minus unary

operators change the sign of integral and floating point numbers. The logical negation operator changes the value of

Figure 6-10: Results of Running Example 6.9
12
2 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 6: Simple C# Programs Statements, Expressions, and Operators
boolean expressions from false to true and vice versa. The bitwise complement operator switches the bit values of

unsigned integral types. (i.e., If a bit is set to 1 it will be changed to 0.)

Example 6.10 offers a short program showing some of these operators in action.
6.10 UnaryOperatorTest.cs

1 using System;
2
3 public class UnaryOperatorTest {
4 static void Main(){
5 int i = 25;
6 bool bool_var = true;
7 uint j = 1;
8 Console.WriteLine(-i);
9 Console.WriteLine(!bool_var);
10 Console.WriteLine(~j);
11 }
12 }

Referring to Example 6.10 — on line 5, an integer variable named i is declared and initialized to the value 25. On

line 6, a boolean variable named bool_var is declared and initialized to the value true. On line 7, an unsigned integer

(uint) variable named j is declared and initialized to the value 1. Each of these variables is then printed to the console

after its value has been affected by the various unary operators. Figure 6-11 gives the results of running this program.

Multiplicative Expression Operators

The multiplicative expression operators include the multiplication ‘*’, division ‘/’, and the remainder ‘%’ opera-

tors. The remainder operator ‘%’ is also referred to as the modulus operator.

The multiplicative operators are binary operators in that they operate on two operands. You are already familiar

with the notion of how the multiplication and division operators work from your elementary arithmetic background.

What you need to be acutely aware of, however, is how each of these operators behaves given different types of num-

bers. For example, what happens if you multiply two numbers and try to assign the result into a variable type that’s

too small to accommodate the resultant value? What happens if you divide two integer values vs. two floating point

values? If you always keep in mind the relative range of values the different simple types can represent, you will

avoid most problems. Operations that attempt to assign a large value to a type that’s too small to represent it will

result in both a loss of precision and in a compiler warning.

The remainder operator performs a division operation on integral values and returns only the remainder. Example

6.11 shows the remainder operator in action.
6.11 RemainderOperatorTest.cs

1 using System;
2
3 public class RemainderOperatorTest {
4 static void Main(){
5 int i = 10;
6 int j = 5;
7 int k = 3;
8 Console.WriteLine(i%j);
9 Console.WriteLine(i%k);
10 }
11 }

Referring to Example 6.11 — three integer variables i, j, and k are declared and initialized to the values 10, 5,

and 3, respectively. Line 8 prints out the result of the remainder operator applied to the variables i and j. Line 9 prints

out the result of the remainder operator applied to the variables i and k. Figure 6-12 shows the results of running this

program.

Figure 6-11: Results of Running Example 6.10
C# Fo
r Artists © 2008 Rick Miller — All Rights Reserved 123

Statements, Expressions, and Operators Chapter 6: Simple C# Programs
Additive Expression Operators

The additive expression operators include the arithmetic addition ‘+’ and subtraction ‘-’ operators. I will forego

an example of these operators as they are easy and intuitive to use.

Shift Expression Operators

The shift expression operators include the left shift ‘<<‘ and right shift ‘>>’ operators. The shift operators per-

form bit shifting operations.

The important thing to know about the bit shifting operators is how they behave when applied to different inte-

gral types. If the value being shifted is a signed integral type, then an arithmetic shift is performed. An arithmetic shift

means that the sign of the value is preserved as the bits are shifted right. If the value being shifted is an unsigned inte-

gral type, a logical shift occurs and high-order empty bit positions are set to zero. Let’s take a look at the shift opera-

tors in action in Example 6.12.
6.12 ShiftOperatorTest.cs

1 using System;
2
3 public class ShiftOperatorTest {
4 static void Main(){
5 short i = -0x000F;
6 short j = 0x000F;
7 Console.WriteLine("The value of i before the shift: " + i);
8 Console.WriteLine("The value of j before the shift: " + j);
9 Console.WriteLine("The value of i after the shift: " + (i >> 2));
10 Console.WriteLine("The value of j after the shift: " + (j >> 2));
11 }
12 }

Referring to Example 6.12 — two short variables named i and j are declared and initialized using hexadecimal

literal values representing -15 and 15 respectively. Lines 7 and 8 print these values of i and j to the console. Lines 9

and 10 print the values of i and j after the right shift operator has been applied, shifting the bits two places to the right.

What do you think the new values will be? Figure 6-13 shows the results of running this program. Cover the figure

and try to work it out before proceeding. A detailed explanation follows the figure.

Referring to Figure 6-13 — after the shift, the value of i is -4 and the value of j is 3. Here’s a brief explanation as

to why they are different. The value 15 is represented in hexadecimal as the letter F. The hexadecimal value F is rep-

resented in binary as 1111. A short type is sixteen digits long, therefore the full binary for the positive number 15 is:

0000000000001111
The value of the variable i is -15. To convert the binary value 15 to -15, you need to invert the bits and add 1.

This is known as 1’s complement. The resulting binary value representing the number -15 looks like this:

1111111111110001
When this string of binary digits is shifted two places to the right, the new value becomes:

Figure 6-12: Results of Running Example 6.11

Figure 6-13: Results of Running Example 6.12
124
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 6: Simple C# Programs Statements, Expressions, and Operators
1111111111111100

This is the binary representation of the decimal value -4.

The value of the variable j is also shifted to the right two places, but because it’s a positive value, the left-most

binary digits are replaced with 0. The binary value of j after the shift looks like this:

0000000000000011

This is the binary representation for the decimal value 3.

Relational, Type-Testing, and Equality Expression Operators

This category of operators includes the comparison operators equals ‘==’, not equals ‘!=’, less than ‘<‘, greater

than ‘>’, less than or equal to ‘<=’. and greater than or equal to ‘>=’. It also includes the type testing operators ‘is’

and ‘as’.

The comparison operators work on integral, floating point, decimal, and enumeration types, The ‘==’ and ‘!=’

operators work on boolean, reference, string, and delegate types. The behavior of these operators is summed up in

Table 6-5.

The behavior of these operators is easy to understand in the context of numbers. However, the behavior of the

‘==’ and ‘!=’ operators and how they work for reference objects begs for an example. These two operators will work

on string objects as expected but only because the String class provides a definition for them. In other words, string

objects know how to behave when compared to each other with the ‘==’ and ‘!=’ operators.

User-defined classes that do not overload the ‘==’ or ‘!=’ operators will be compared to each other according to

the rules the operators follow when comparing ordinary objects. Let’s look at an example. Example 6.13 gives the

code.

Operator Behavior Operands

< Returns true if left operand is less than the right operand; false otherwise numeric types

enumeration types

reference types if overloaded

> Returns true is left operand is greater than the right operand; false other-

wise

numeric types

enumeration types

reference types if overloaded

<= Returns true if the left operand is less than or equal to the right operand;

false otherwise

numeric types

enumeration types

reference types if overloaded

>= Returns true if the left operand is greater than or equal to the right oper-

and; false otherwise

numeric types

enumeration types

reference types if overloaded

== Returns true if the left operand is equal to the right operand; false other-

wise

numeric types

enumeration types

boolean values

string objects

delegate types

reference types if overloaded

!= Returns true if the left operand is not equal to the right operand; false oth-

erwise

numeric types

enumeration types

boolean values

string objects

delegate types

reference types if overloaded

Table 6-5: Comparison Operator Behavior
C# For Artists © 2008 Rick Miller — All Rights Reserved 125

Statements, Expressions, and Operators Chapter 6: Simple C# Programs
6.13 ReferenceEqualityTest.cs

1 using System;

2

3 public class ReferenceEqualityTest {

4 static void Main(){

5 Object o1 = new Object();

6 Object o2 = new Object();

7 Object o3 = o2;

8 String s1 = "Hello";

9 String s2 = "Hello";

10 String s3 = "World";

11 Console.WriteLine(o1 == o2);

12 Console.WriteLine(o1 != o2);

13 Console.WriteLine(o2 == o3);

14 Console.WriteLine(s1 == s2);

15 Console.WriteLine(s1 == s3);

16 }

17 }

Referring to Example 6.13 — three Object reference variables named o1 through o3 are declared and initialized

on lines 5 through 7. The variables o1 and o2 point to unique objects. The variable o3 is assigned the same address as

the variable o2. This means that the variables o2 and o3 now point to the same object.

On lines 8 through 10, three String variables are created. The variables s1 and s2 each point to identical string

values “Hello”. The variable s3 points to a string whose value is “World”. Now study the results of running this pro-

gram as shown in Figure 6-14.

Referring to Figure 6-14 — on line 11, the expression o1 == o3 evaluates to false because the variables o1 and o2

point to different objects. The “==” operator’s natural behavior as defined in the Object class is to test if we are com-

paring the same object. If not, the operator returns false. On the next line, the expression o1 != o2 returns true as

expected. On line 3, the expression o3 == o2 returns true because the variables o2 and o3 do in fact point to the same

object and so they must be equal.

These same operators behave somewhat differently when used with String objects. Notice now on line 14 that if

two different Strings are compared the result will be true if their values (i.e., the characters they contain) are identical.

Different String objects with different values will return false, as is shown on the last line.

Logical AND, OR, and XOR Expression Operators

The logical AND ‘&’, OR ‘|’, and XOR ‘^’ operators behave differently according to their parameter types.

Table 6-6 summarizes the logical operator behavior.

Operator Behavior Operands

& Integral operands: x & y performs bitwise logical AND

Enumeration operands: x & y performs bitwise logical AND

Boolean operands: Performs conditional AND comparison

int, uint, long, ulong

enumeration

boolean

| Integral operands: x | y performs bitwise logical OR

Enumeration operands: x | y performs bitwise logical OR

Boolean operands: Performs conditional OR comparison

int, uint, long, ulong

enumeration

boolean

Table 6-6: Logical Operator Behavior

Figure 6-14: Results of Running Example 6.13
126
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 6: Simple C# Programs Statements, Expressions, and Operators
Logical Operations on Integral Operands

When presented with integral operands, the logical operators perform bitwise logical operations on their oper-

ands according to the truth tables shown in Figure 6-15. Example 6.14 shows these operators in action.
6.14 LogicalOperatorTest.cs

1 using System;
2
3 public class LogicalOperatorTest {
4 static void Main(){
5 int i = 0xFFFF;
6 int mask_1 = 0x0000;
7 int mask_2 = 0x0003;
8 int mask_3 = 0xFFFF;
9 Console.WriteLine("FFFF & 0000 = " + (i & mask_1));
10 Console.WriteLine("FFFF | 0000 = " + (i | mask_1));
11 Console.WriteLine("FFFF & 0003 = " + (i & mask_2));
12 Console.WriteLine("FFFF | 0003 = " + (i | mask_2));
13 Console.WriteLine("FFFF ^ FFFF = " + (i ^ mask_3));
14 }
15 }

Referring to Example 6.14 — on line 5, an integer variable i is declared and initialized to the hexadecimal value

FFFF. On lines 6 through 8, three more integer variables named mask_1 through mask_3 are declared and initialized

with the hexadecimal values 0000, 0003, and FFFF, respectively. Lines 9 through 13 use the logical operators to per-

form bit manipulation operations on the variable i using the various mask values. Figure 6-16 shows the results of

running this program.

Logical Operations on Enumeration Operands

The logical operators work with enumeration type operands. An enumeration is a type that represents any one of

a set of authorized values. Enumeration types are declared with the enum keyword and can be defined outside of or

within the body of a class, as the code in Example 6.15 illustrates.

^ Integral operands: x ^ y performs bitwise logical XOR

Enumeration operands: x ^ y performs bitwise logical XOR

Boolean operands: Performs conditional XOR comparison

int, uint, long, ulong

enumeration

boolean

Operator Behavior Operands

Table 6-6: Logical Operator Behavior

X Y X ^ Y
0 0 0
1 0 1
0 1 1
1 1 0

X Y X | Y
0 0 0
1 0 1
0 1 1
1 1 1

X Y X & Y
0 0 0
1 0 0
0 1 0
1 1 1

Figure 6-15: Logical AND, OR, and XOR Truth Tables

Figure 6-16: Results of Running Example 6.14
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 127

Statements, Expressions, and Operators Chapter 6: Simple C# Programs
6.15 LogicalOperationEnumTest.cs

1 using System;
2
3 public class LogicalOperatorEnumTest {
4
5 public enum EYE_COLOR {BLACK, BROWN, HAZEL, BLUE, GREY};
6
7 static void Main(){
8 Console.WriteLine(EYE_COLOR.BLACK & EYE_COLOR.BROWN);
9 Console.WriteLine(EYE_COLOR.BROWN & EYE_COLOR.BROWN);
10 Console.WriteLine(EYE_COLOR.BLACK & EYE_COLOR.BLUE);
11 Console.WriteLine(EYE_COLOR.BLACK | EYE_COLOR.BROWN);
12 Console.WriteLine(EYE_COLOR.BROWN | EYE_COLOR.HAZEL);
13 Console.WriteLine(EYE_COLOR.BLACK | EYE_COLOR.BLUE);
14 Console.WriteLine(EYE_COLOR.BLACK ^ EYE_COLOR.BROWN);
15 Console.WriteLine(EYE_COLOR.BROWN ^ EYE_COLOR.BROWN);
16 Console.WriteLine(EYE_COLOR.BLACK ^ EYE_COLOR.BLUE);
17 }
18 }

Referring to Example 6.15 — an enumerated type named EYE_COLOR is declared on line 5, and within the

curly braces there appear five names: BLACK, BROWN, HAZEL, BLUE, and GREY. The enumeration value

BLACK equates to the value 0, which is the default value for the first enumeration value unless explicitly set to be

something else. The next enumeration value BROWN is assigned the value 1, and so on. (Enumerated types are cov-

ered in more detail in Chapter 9.)

Essentially, the logical operators treat enumeration types like they treat integers, which they ultimately are. Fig-

ure 6-17 shows the results of running Example 6.15.

Logical Operations on Boolean Operands

The logical operators also operate on operands of type boolean. A boolean argument can be a boolean literal, a

boolean variable, or a conditional expression that evaluates to a boolean value. Example 6.16 demonstrates the use of

the logical operators on boolean literals. Just keep in mind that where the keywords “true” or “false” appear in the

program a complex expression that evaluates to “true” or “false” could be substituted. Figure 6-18 gives the results of

running this program. Compare its output with the truth tables given in Figure 6-15.
6.16 LogicalBoolTest.cs

1 using System;
2
3 public class LogicalBoolTest {
4 static void Main(){
5 Console.WriteLine("true & true = " + (true & true));
6 Console.WriteLine("true & false = " + (true & false));
7 Console.WriteLine("false & true = " + (false & true));
8 Console.WriteLine("false & false = " + (false & false));
9 Console.WriteLine("------------");
10 Console.WriteLine("true | true = " + (true | true));
11 Console.WriteLine("true | false = " + (true | false));
12 Console.WriteLine("false | true = " + (false | true));
13 Console.WriteLine("false | false = " + (false | false));
14 Console.WriteLine("------------");
15 Console.WriteLine("true ^ true = " + (true ^ true));
16 Console.WriteLine("true ^ false = " + (true ^ false));
17 Console.WriteLine("false ^ true = " + (false ^ true));
18 Console.WriteLine("false ^ false = " + (false ^ false));
19 }
20 }

Figure 6-17: Results of Running Example 6.15
128
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 6: Simple C# Programs Statements, Expressions, and Operators
Conditional AND and OR Expression Operators

The conditional operators AND ‘&&’ and OR ‘||’ are also referred to as the short-circuiting logical operators.

The reason for this alternate name is that they will skip the evaluation of the second operand if the expression can be

completely evaluated solely on the value of the first operand. For example, the second operand in the expression

(true || true) can be safely skipped because the OR operator requires only one true operand. However, the sec-

ond operand in the expression (false || true) must be evaluated since the first operand was false. These opera-

tors are demonstrated in Example 6.17. Figure 6-19 gives the results of running this program.

6.17 ConditionalOpsTest.cs

1 using System;

2

3 public class ConditionalOpsTest {

4 static void Main(){

5 Console.WriteLine("true && true = " + (true && true));

6 Console.WriteLine("true && false = " + (true && false));

7 Console.WriteLine("false && true = " + (false && true));

8 Console.WriteLine("false && false = " + (false && false));

9 Console.WriteLine("--------------------");

10 Console.WriteLine("true || true = " + (true || true));

11 Console.WriteLine("true || false = " + (true || false));

12 Console.WriteLine("false || true = " + (false || true));

13 Console.WriteLine("false || false = " + (false || false));

14 }

15 }

Conditional (Ternary) Expression Operator

The conditional operator ‘?:’, also referred to as the ternary operator, takes one boolean operand expression.

Based on the results of its evaluation, it returns one of two possible expressions. For example, consider the following

ternary operator statement:

(boolean conditional expression) ? expression A : expression B;

Figure 6-18: Results of Running Example 6.16

Figure 6-19: Results of Running Example 6.17
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 129

Statements, Expressions, and Operators Chapter 6: Simple C# Programs
If the conditional expression evaluates to true, then expression A is evaluated and returned as a result of the oper-

ation. If the conditional expression evaluates to false, then expression B is evaluated and returned instead. The ternary

operator never evaluates both alternate expressions. Example 6.18 shows the ternary operator in use.
6.18 TernaryOperatorTest.cs

1 using System;
2
3 public class TernaryOperatorTest {
4 static void Main(){
5 Console.WriteLine(true ? "Return this string if true" : "Return this string if false");
6 Console.WriteLine(false ? "Return this string if true" : "Return this string if false");
7 Console.WriteLine();
8 int i = 3;
9 int j = 7;
10 Console.WriteLine((i < j) ? "Return this string if true" : "Return this string if false");
11 Console.WriteLine((i > j) ? "Return this string if true" : "Return this string if false");
12 }
13 }

Referring to Example 6.18 — lines 5 and 6 utilize the boolean literals “true” and “false” as arguments to the ter-

nary operator’s conditional expression. Since true is always true, the first string will be returned. On line 6, the second

string will always be returned. On lines 8 and 9, two integer variables i and j are declared and initialized to the values

3 and 7, respectively. On lines 10 and 11, these variables are used to demonstrate how an actual conditional expres-

sion might be constructed.

The use of the boolean literals on lines 5 and 6 triggers a compiler warning that says it has detected unreachable

code, as Figure 6-20 shows. Figure 6-21 shows the results of running the program.

Assignment Expression Operators

The assignment expression operators include both the simple assignment operator ‘=’, which you have seen

used throughout this chapter, and the compound assignment operators +=. -=. *=. /=, %=. <<=, >>=, &=, |=, and

^=. The ‘+=’ operator is also overloaded to include event assignment, which I will cover in depth in Chapter 12.

The compound operators, as their name suggests, combine the indicated operation with an assignment. This

makes for a convenient shorthand way of doing things. For example, the expression i = i + 1 can be written i
+= 1 with the help of the compound operator. Example 6.19 demonstrates the use of several compound operators.

Figure 6-22 shows the results of running this program.
6.19 AssignmentOpsTest.cs

1 using System;
2
3 public class AssignmentOpsTest {
4 static void Main(){
5 int i = 0;
6 Console.WriteLine("The value of i initially = " + i);
7 Console.WriteLine("i += 1 = " + (i += 1));
8 Console.WriteLine("i -= 1 = " + (i -= 1));

Figure 6-20: Compiler Warning due to Unreachable Code

Figure 6-21: Results of Running Example 6.18
130
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 6: Simple C# Programs Summary
9 Console.WriteLine("i += 2 = " + (i += 2));
10 Console.WriteLine("i *= 2 = " + (i *= 2));
11 Console.WriteLine("i /= 2 = " + (i /= 2));
12 }
13 }

Quick Review

Statements are the fundamental building blocks of C# programs. A statement can be thought of as the smallest

standalone element of a program. Programs are built using sequences of statements. C# offers nineteen different types

of statements.

The term operator precedence refers to the order in which the C# compiler evaluates the operators appearing in

an expression statement. The term associativity refers to the direction in which the C# compiler performs a series of

operations.

Summary

A simple C# application is a class that contains a Main() method. The purpose of the Main() method is to provide

an entry point for program execution. There are four authorized versions of the Main() method; each version has a

different method signature.

A class that contains a Main() method can be compiled into an executable assembly. A class with no Main()

method can be compiled into a module. Modules can be added to assemblies. Modules created in CLI-compliant lan-

guages other than C# can be compiled with C# modules to form executable assemblies.

Identifiers are sequences of characters that represent names of objects in a program. Identifiers are used to name

classes, structures, methods, variables, constants, properties, fields, enums, etc. Identifiers can start with either an

uppercase or lowercase letter or an underscore ‘_’ character followed by any number of letters, digits, and under-

scores.

Reserved keywords are identifiers that have special meaning within the C# language. You cannot reintroduce a

reserved keyword as a name for an object within your program. You can, however, prepend the ‘@’ symbol to a

reserved keyword to formulate a valid identifier, however, I discourage doing this as it renders code hard to read,

understand, and maintain.

C# has two kinds of types: value types and reference types. Value type variables contain the actual data as

defined by the type. Reference type variables contain a reference to an object in memory. Two or more reference type

variables could reference the same object in memory. The C# predefined types map to structures within the System

namespace. System.object is the base type for all other types.

Skill-Building Exercises

1. API Drill: Visit the Microsoft Developer Network (MSDN) [www.msdn.com] and research the C# predefined type

structures located in the System namespace. Use Table 6-2 as a guide. Take note of the methods and fields each

Figure 6-22: Results of Running Example 6.19
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 131

Suggested Projects Chapter 6: Simple C# Programs
structure makes available for use. Track down and study any interfaces these structures may implement.

2. Practice Makes Perfect: Compile and run each of the example programs listed in this chapter.

3. Type Ranges: Write a program that displays to the console a list of the predefined numeric types and shows their

minimum and maximum values. Hint: Pay attention to what you discovered in Skill-Building Exercise #1!

Suggested Projects

1. Average Five Numbers: Write a program that computes the average of five floating point numbers and writes the

answer to the console.

2. Compute The Area: Write a program that computes the area of a rectangle or square given the input height and

width.

3. Find The Greatest Value: Write a program that compares the values of two integer variables and returns the larger

of the two. Use the ternary conditional operator to perform the comparison.

4. Compute Time To Travel: Write a program that computes the time required to travel a given distance in miles at a

certain speed in miles/hour. The equation required is:

5. Compute Average Speed: Write a program that computes the speed required to travel a certain distance in a given

amount of time. The equation required is:

6. Compute Fuel Efficiency: Write a program that takes miles traveled since last fill-up and gallons of gas required

to fill your car’s tank. Calculate how many miles/gallon your car is getting between fill ups. Write the results to the

console.

7. Division By Shifting: Write a program that divides an integer by 2 using the right shift operator. Explain why

shifting a number to the right performs a division. What happens when you shift a number to the left? Hint: Think

in terms of binary digits.

Self-Test Questions

1. What two kinds of types does C# support?

2. How many predefined types does C# support.

3. Describe in your own words how two reference type variables might end up referencing the same object.

4. What’s the difference between a value type and a reference type?

5. What character is used to terminate a statement?

6. What’s the purpose of the new operator.

t d s⁄=

s d t⁄=
132 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 6: Simple C# Programs References
7. How many different forms of the Main() method does C# support?

8. What’s the purpose of a Main() method?

9. What’s the purpose of the using directive.

10. Can a reserved keyword be used as an identifier? Explain your answer.

References

ECMA-335 Common Language Infrastructure (CLI), 4th Edition, June 2006 [http://www.ecma-international.org/

publications/standards/Ecma-335.htm]

ECMA-334 C# Language Specification, 4th Edition, June 2006 [http://www.ecma-international.org/publications/

standards/Ecma-334.htm]

Microsoft Developer Network (MSDN) [http://www.msdn.com]

Notes
C# For Artists © 2008 Rick Miller — All Rights Reserved 133

Notes Chapter 6: Simple C# Programs
134 © 2008 Rick Miller — All Rights Reserved C# For Artists

7 Controlling The Flow Of Program Execution

Learning Objectives
• State the difference between selection and iteration statements
• Describe the purpose and use of the “if” statement
• Describe the purpose and use of the “if/else” statement
• Describe the purpose and use of the “for” statement
• Describe the purpose and use of the “while” statement
• Describe the purpose and use of the “do/while” statement
• Describe the purpose and use of chained “if/else” statements
• Describe the purpose and use of nested “for” statements
• Describe the purpose and use of the “switch” statement
• Describe the purpose and use of the “break” and “continue” statements
• Describe the purpose and use of the “goto” statement
• Describe the purpose and use of the “try/catch” statement
• Demonstrate your ability to use control-flow statements in simple C# programs

Chapter 7

Controlling The Flow
Of Program Execution

Amsterdam

C
o
n
ta

x
 T

 /
 K

o
d
ak

 T
ri

-X
C#
 For Artists © 2008 Rick Miller — All Rights Reserved 135

Introduction Chapter 7: Controlling The Flow Of Program Execution
Introduction

Program control-flow statements are an important part of the C# programming language because they allow you

to alter the course of program execution while the program is running. The program control-flow statements pre-

sented in this chapter fall into two categories: 1) selection statements and 2) iteration statements.

Selection statements allow you to alter the course of program execution flow based on the evaluation of a condi-

tional expression. There are three types of selection statements: if, if/else, and switch.

Iteration statements provide a mechanism for repeating one or more program statements based on the result of a

conditional expression evaluation. There are three types of iteration statements: for, while, and do. There is also a

foreach statement that is used with arrays and collections. I will therefore postpone coverage of the foreach
statement until Chapter 8.

As you will soon learn, each type of control-flow statement has a unique personality. After reading this chapter

you will be able to select and apply the appropriate control-flow statement for the particular type of processing you

require. This will enable you to write increasingly powerful programs.

In addition to selection and iteration statements, I will show you how to use the keywords break, continue,

and goto. The proper use of these keywords combined with selection and iteration statements provides a greater

level of processing control.

The material you learn in this chapter will fill your C# programming tool bag with lots of powerful tools. You

will be pleasantly surprised at what you can program with the aid of program control-flow statements.

Selection Statements

There are three types of C# selection statements: if, if/else, and switch. The use of each of these state-

ments is covered in detail in this section.

If Statement

The if statement conditionally executes a block of code based on the evaluation of a conditional expression.

Figure 7-1 graphically shows what happens during the processing of an if statement.

A conditional expression evaluates to either true or false. If the conditional expression contained within the

parentheses evaluates to true, then the body of the if statement executes. If the expression evaluates to false, then the

program bypasses the statements contained within the if statement body and processing continues with the next

statement following the if statement.

Example 7.1 shows an if statement being used in a simple program that reads two integer values from the com-

mand line and compares their values.
7.1 IfStatementTest.cs

1 using System;
2
3 public class IfStatementTest {
4 static void Main(String[] args){

Figure 7-1: if Statement Execution Diagram
136
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 7: Controlling The Flow Of Program Execution Selection Statements
5 int int_i = Convert.ToInt32(args[0]);
6 int int_j = Convert.ToInt32(args[1]);
7
8 if(int_i < int_j)
9 Console.WriteLine(int_i + " is less than " + int_j);
10 }
11 }

Referring to Example 7.1 — the program converts command-line input from strings to integers with the help of

the System.Convert.ToInt32() method and assigns the resultant values to the variables int_i and int_j on lines 5 and 6.

(Study the Convert class for more conversion methods.) The if statement begins on line 8. The less-than operator ‘<’

compares the values of int_i and int_j. If the value of int_i is less than the value of int_j, then the statement on line 9

executes. If not, line 9 is skipped and the program exits. Figure 7-2 shows the results of running this program.

Handling Program Error Conditions

If you were unlucky enough to forget to supply two properly-formed integer values on the command-line when

you ran the previous program you would have received an error message like the one shown in Figure 7-3.

This dialog window signals to you that an error condition or exception of some kind has occurred in your pro-

gram, and it has stopped running. (It has stopped running rather abruptly I might add!) Since you’re running a pro-

gram you wrote, click the Don’t Send button.

As it turns out, there are several things that can go wrong with this program. Failure to supply the proper number

of arguments on the command line will cause an IndexOutOfRangeException. This type of exception occurs if you

attempt to access an array element that does not exist. Figure 7-4 shows the exception message output to the console

for this type of exception.

You will receive a different error message if you supply the right number of arguments, but one of the arguments

fails to convert properly to an integer value. Figure 7-5 shows the results of running Example 7.1 with one good and

one bad input argument.

Figure 7-2: Results of Running Example 7.1

Figure 7-3: Typical .NET Error Message Dialog Window

Figure 7-4: Unhandled IndexOutOfRangeException Message
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 137

Selection Statements Chapter 7: Controlling The Flow Of Program Execution
This time the program threw a FormatException. To produce this output, the arguments ‘1’ and ‘g’ were used as

input to the program. The character ‘g’ failed to convert to an integer and caused the exception condition.

Catching Exceptions With Try/Catch Blocks

Any code that could potentially throw an exception when executed should appear within a try/catch state-

ment, also referred to as a try/catch block. Doing this places you in control of your program. Your code may still

throw an exception, but if it’s in a try/catch block, you can properly handle the exception and gracefully recover.

The user may never know the exception occurred. Look at the code in Example 7.2.
7.2 IfStatementTest.cs (Mod 1)

1 using System;
2
3 public class IfStatementTest {
4 static void Main(String[] args){
5
6 try{
7 int int_i = Convert.ToInt32(args[0]);
8 int int_j = Convert.ToInt32(args[1]);
9
10 if(int_i < int_j)
11 Console.WriteLine(int_i + " is less than " + int_j);
12
13 }catch(IndexOutOfRangeException){
14 Console.WriteLine("You must enter two integer numbers! Please try again.");
15 }catch(FormatException){
16 Console.Write("One of the arguments you entered was not a valid integer value! ");
17 Console.WriteLine("Please try again.");
18 }
19 }
20 }

Referring to Example 7.2 — the body of the original program has been placed inside the body of a try block.

You can think of the try block as a guarded region. If everything placed within the try block executes, great! If

not, the try block will exit at the point where the exception is thrown, and the rest of the code within the try block

will be skipped.

In Example 7.2, all of the code from Example 7.1 inside the body of the Main() method, including the if state-

ment, was placed inside the body of the try block. Doing this avoids executing the if statement if either error con-

dition is encountered since the values of int_i and int_j will not have been properly initialized.

A try block can be followed by one or more catch blocks. If the program throws an exception, the catch

block assumes execution based on the type of exception thrown. This is referred to as handling the exception. The

first catch block begins on line 13. It’s catching the IndexOutOfRangeException. If this exception occurs, then a

message is printed to the screen reminding the user to enter two valid numbers. The second catch block handles the

FormatException, which will occur if either of the command-line arguments cannot be converted to integers.

Figure 7-6 shows the results of running Example 7.2 with various types of bad input.

Figure 7-5: FormatException Error Message

Figure 7-6: Results of Running Example 7.2
138
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 7: Controlling The Flow Of Program Execution Selection Statements
Referring to Figure 7-6 — notice that now when you forget to supply arguments to the program, you get the gen-

tle reminder. Also, if one or more of the supplied arguments fail to convert to an integer value, you get an appropriate

message.

Discovering What Methods Throw What Exceptions

How do you know what type of an exception a .NET Framework API method might throw? You guessed it.

You’ll have to look it up in the API documentation.

Executing Code Blocks In If Statements

More likely than not, you will want to execute multiple statements in the body of an if statement. To do this

simply enclose the statements in a set of braces to create a code block. Example 7.3 gives an example of such a code

block.
7.3 IfStatementTest.cs (Mod 2)

1 using System;
2
3 public class IfStatementTest {
4 static void Main(String[] args){
5
6 try{
7 int int_i = Convert.ToInt32(args[0]);
8 int int_j = Convert.ToInt32(args[1]);
9
10 if(int_i < int_j) {
11 Console.Write("Yes ");
12 Console.WriteLine(int_i + " is less than " + int_j);
13 }
14
15 }catch(IndexOutOfRangeException){
16 Console.WriteLine("You must enter two integer numbers! Please try again.");
17 }catch(FormatException){
18 Console.Write("One of the arguments you entered was not a valid integer value! ");
19 Console.WriteLine("Please try again.");
20 }
21 }
22 }

Referring to Example 7.3 — notice that now the statements executed by the if statement are contained within a

set of braces. The code block begins with the opening brace at the end of line 10 and ends with the closing brace on

line 13. Figure 7-7 shows the results of running this program.

Executing Consecutive If Statements

You can follow one if statement with another as is shown in Example 7.4.
7.4 IfStatementTest.cs (Mod 3)

1 using System;
2
3 public class IfStatementTest {
4 static void Main(String[] args){
5
6 try{
7 int int_i = Convert.ToInt32(args[0]);
8 int int_j = Convert.ToInt32(args[1]);
9
10 if(int_i < int_j) {
11 Console.Write("Yes ");
12 Console.WriteLine(int_i + " is less than " + int_j);
13 }
14

Figure 7-7: Results of Running Example 7.3
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 139

Selection Statements Chapter 7: Controlling The Flow Of Program Execution
15 if(int_i > int_j) {
16 Console.Write("No ");
17 Console.WriteLine(int_i + " is greater than " + int_j);
18 }
19
20
21 }catch(IndexOutOfRangeException){
22 Console.WriteLine("You must enter two integer numbers! Please try again.");
23 }catch(FormatException){
24 Console.Write("One of the arguments you entered was not a valid integer value!");
25 Console.WriteLine("Please try again.");
26 }
27 }
28 }

Referrring to Example 7.4 — when this program executes, the program evaluates the expressions of both if

statements. When the program is run with the inputs 2 and 3, the expression of the first if statement on line 10 eval-

uates to true and its body statements execute. The second if statement’s expression evaluates to false and its body

statements are skipped.

The opposite happens when the program is run a second time using input values 3 and 2. This time around, the

first if statement’s expression evaluates to false, its body statements are skipped, and the second if statement’s

expression evaluates to true and its body statements execute. Figure 7-8 shows the results of running this program.

If/Else Statement

When you want to provide two possible execution paths for an if statement, add the else keyword to form an

if/else statement. Figure 7-9 provides an execution diagram of the if/else statement.

The if/else statement behaves like the if statement, except that now when the expression evaluates to false,

the statements contained within the body of the else clause execute. Example 7.5 provides the same functionality as

Example 7.4 using one if/else statement.
7.5 IfElseStatementTest.cs

1 using System;
2
3 public class IfElseStatementTest {
4 public static void Main(String[] args){
5
6 try{
7 int int_i = Convert.ToInt32(args[0]);
8 int int_j = Convert.ToInt32(args[1]);
9

Figure 7-8: Results of Running Example 7.4

Figure 7-9: if/else Statement Execution Diagram
140
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 7: Controlling The Flow Of Program Execution Selection Statements
10 if(int_i < int_j) {
11 Console.Write("Yes ");
12 Console.WriteLine(int_i + " is less than " + int_j);
13 } else {
14 Console.Write("No ");
15 Console.WriteLine(int_i + " is not less than " + int_j);
16 }
17 }catch(IndexOutOfRangeException){
18 Console.WriteLine("You must enter two integer numbers! Please try again.");
19 }catch(FormatException){
20 Console.Write("One of the arguments you entered was not a valid integer value!");
21 Console.WriteLine("Please try again.");
22 }
23 }
24 }

Referring to Example 7.5 — the if statement begins on line 10. Should the expression evaluate to true, the code

block that forms the body of the if statement executes. Should the expression evaluate to false, the code block fol-

lowing the else keyword executes. Figure 7-10 shows the results of running this program.

Chained If/Else Statements

You can chain if/else statements together to form complex programming logic. To chain one if/else

statement to another, simply follow the else keyword with an if/else statement. Example 7.6 illustrates the use

of chained if/else statements in a program.
7.6 ChainedIfElseTest.cs

1 using System;
2
3 public class ChainedIfElseTest {
4 public static void Main(String[] args){
5
6 try{
7 int int_i = Convert.ToInt32(args[0]);
8 int int_j = Convert.ToInt32(args[1]);
9
10 if(int_i < int_j) {
11 Console.Write("Yes ");
12 Console.WriteLine(int_i + " is less than " + int_j);
13 } else if(int_i == int_j) {
14 Console.Write("Exact match! ");
15 Console.WriteLine(int_i + " is equal to " + int_j);
16 else{
17 Console.Write("No ");
18 Console.WriteLine(int_i + " is greater than " + int_j);
19 }
20 }catch(IndexOutOfRangeException){
21 Console.WriteLine("You must enter two integer numbers! Please try again.");
22 }catch(FormatException){
23 Console.Write("One of the arguments you entered was not a valid integer value!");
24 Console.WriteLine("Please try again.");
25 }
26 }
27 }

There are a couple of important points to note regarding Example 7.6. First, notice how the second if/else

statement begins on line 13 immediately following the else keyword of the first if/else statement. Second,

notice how indenting is used to aid readability. Figure 7-11 gives the results of running this program.

Figure 7-10: Results of Running Example 7.5
C# For Ar
tists © 2008 Rick Miller — All Rights Reserved 141

Selection Statements Chapter 7: Controlling The Flow Of Program Execution
Switch Statement

Use the switch statement, also referred to as the switch/case statement, in situations where you need to

provide multiple execution paths based on the evaluation of a particular sbyte, byte, short, ushort, int, uint, long,

ulong, char, string, or enum type value. Figure 7-12 gives the execution diagram for a switch statement.

When you write a switch statement, you will add one or more case clauses to it. When the switch state-

ment executes, the program compares the value supplied in the parentheses of the switch statement to each case

value. A match results in the execution of that case’s code block.

Notice in Figure 7-12 how each case’s statements are followed by a break statement. The break statement

exits the switch and continues processing. The break statement is required because case statements are not

allowed to implicitly continue processing (i.e., fall through) to the next case after executing one or more statements.

Example 7.7 gives an example of the switch statement in action.
7.7 SwitchStatementTest.cs

1 using System;
2
3 public class SwitchStatementTest {
4 public static void Main(String[] args){
5 try{
6 int int_i = Convert.ToInt32(args[0]);
7
8 switch(int_i){
9 case 1 : Console.WriteLine("You entered one");
10 break;
11 case 2 : Console.WriteLine("You entered two");
12 break;
13 case 3 : Console.WriteLine("You entered three");
14 break;
15 case 4 : Console.WriteLine("You entered four");
16 break;

Figure 7-11: Results of Running Example 7.6

Figure 7-12: switch Statement Execution Diagram

Break statements are

required if a case con-

tains at least one

statement.

A break statement is

also required to exit

the default case!
142
 © 2008 Rick Miller — All Rights Reserved
 C# For Artists

Chapter 7: Controlling The Flow Of Program Execution Selection Statements
17 case 5 : Console.WriteLine("You entered five");
18 break;
19 default : Console.WriteLine("Please enter a number between 1 and 5");
20 break;
21 }
22 }catch(IndexOutOfRangeException){
23 Console.WriteLine("Enter one number at the command-line!");
24 }catch(FormatException){
25 Console.WriteLine("You entered an invalid number! Try again.");
26 }
27 }
28 }

Referring to Example 7.7 — this program reads a string from the command line and converts it to an integer

value using our friend the Convert.ToInt32() method. The integer variable int_i is then used in the switch state-

ment. Its value is compared against the five cases. If there’s a match, meaning its value is either 1, 2, 3, 4, or 5, then

the related case executes and the appropriate message prints to the console. If there’s no match, then the default

case executes and prompts the user to enter a valid value. The try/catch statement handles anticipated excep-

tions. Figure 7-13 shows the results of running this program.

Implicit Case Fall-Through

You can rewrite the switch statement shown in Example 7.7 to take advantage of implicit case fall-through.

In this version, the switch statement relies on the help of an array, as you will see from studying the code shown in

Example 7.8.
7.8 SwitchStatementTest.cs (Mod 1)

1 using System;
2
3 public class SwitchStatementTest {
4 public static void Main(String[] args){
5 try{
6 int int_i = Convert.ToInt32(args[0]);
7 string[] string_array = {"one", "two", "three", "four", "five"};
8
9 switch(int_i){
10 case 1 : // this works because these cases contain no statements...
11 case 2 :
12 case 3 :
13 case 4 :
14 case 5 : Console.WriteLine("You entered " + string_array[int_i-1]);
15 break;
16 default : Console.WriteLine("Please enter a number between 1 and 5");
17 break;
18 }
19 }catch(IndexOutOfRangeException){
20 Console.WriteLine("Enter one number at the command-line!");
21 }catch(FormatException){
22 Console.WriteLine("You entered an invalid number! Try again.");
23 }
24 }
25 }

Referring to Example 7.8 — although arrays are formally covered in Chapter 8, the use of one in this particular

example should not be too confusing to you. A string array, similar to that used as an argument to the Main() method

is declared on line 7. It is initialized to hold five string values: “one”, “two”, “three”, “four”, and “five”. Each element

of the array is accessed with an integer index value of between 0 and 4 where 0 represents the first element of the

Figure 7-13: Results of Running Example 7.7
C# Fo
r Artists © 2008 Rick Miller — All Rights Reserved 143

Selection Statements Chapter 7: Controlling The Flow Of Program Execution
array and 4 represents the last element. The switch statement is then rewritten in a more streamlined fashion with

the help of implicit case fall-through. Implicit case fall-through works as long as a case contains no statements.

The string_array variable on line 14 uses the variable int_i to provide the text representation of the numbers 1, 2,

3, 4, and 5. The variable int_i serves as the array index. Notice, however, that 1 must be subtracted from int_i to yield

the proper array offset and refer to the correct string_array element.

If you are confused by the use of the array in this example don’t panic. I cover arrays in detail in Chapter 8.

Figure 7-14 gives the results of running this program.

Nested Switch Statement

Switch statements can be nested to yield complex programming logic. Study Example 7.9.
7.9 NestedSwitchTest.cs

1 using System;
2
3 public class NestedSwitchTest {
4 public static void Main(String[] args){
5 try{
6 char char_c = (args[0])[0];
7 int int_i = Convert.ToInt32(args[1]);
8
9 switch(char_c){
10 case 'U' :
11 case 'u' : switch(int_i){
12 case 1:
13 case 2:
14 case 3:
15 case 4:
16 case 5: Console.WriteLine("You entered " + char_c + " and " + int_i);
17 break;
18 default: Console.WriteLine("Please enter: 1, 2, 3, 4, or 5");
19 break;
20 }
21 break;
22 case 'D' :
23 case 'd' : switch(int_i){
24 case 1:
25 case 2:
26 case 3:
27 case 4:
28 case 5: Console.WriteLine("You entered " + char_c + " and " + int_i);
29 break;
30 default: Console.WriteLine("Please enter: 1, 2, 3, 4, or 5");
31 break;
32 }
33 break;
34 default: Console.WriteLine("Please enter: U, u, D, or d");
35 break;
36 }
37
38 }catch(IndexOutOfRangeException){
39 Console.WriteLine("The program requires two arguments! Please try again.");
40 }catch(FormatException){
41 Console.WriteLine("Invalid number. Please try again.");
42 }
43 }
44 }

Figure 7-14: Results of Running Example 7.8
144
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 7: Controlling The Flow Of Program Execution Iteration Statements
Referring to Example 7.9 — this program reads two string arguments from the command line. It then takes the

first character of the first string and assigns it to the variable char_c. Next, it converts the second string into an integer

value. The char_c variable is used in the first, or outer, switch statement. As you can see from examining the code,

it is looking for the characters ‘U’, ‘u’, ‘D’, or ‘d’. The nested switch statements are similar to the one used in the

previous example. Notice again that indenting is used to help readers of the code distinguish between outer and inner

switch statements. Figure 7-15 gives the results of running this program.

Quick Review

Selection statements provide alternative program execution paths based on the evaluation of a conditional

expression. There are three types of selection statements: if, if/else, and switch. The conditional expression of

the if and if/else statements must evaluate to a boolean value of true or false. Any expression that evaluates to

boolean true or false can be used. You can chain together if and if/else statements to form complex program

logic.

The switch statement evaluates an sbyte, byte, short, ushort, int, uint, long, ulong, char, string, or enum value

and executes a matching case and its associated statements. Use the break keyword to exit a switch statement and

prevent case fall through. Always provide a default case. Implicit case fall-through is only allowed if a case contains

no statements.

Iteration Statements

Iteration statements provide the capability to execute one or more program statements repeatedly based on the

results of an expression evaluation. There are three flavors of iteration statement: while, do/while, and for. I

discuss these statements in detail in this section. Iteration statements are also referred to as loops. So, when you hear

other programmers talking about a for loop, while loop, or do loop, they are referring to the iteration statements.

While Statement

The while statement repeats one or more program statements based on the results of an expression evaluation.

Figure 7-16 shows the execution diagram for the while statement.

Personality Of The While Statement

The while statement has the following personality:

• It evaluates the expression before executing its body statements or code block.

• The expression must eventually evaluate to false or the while loop will repeat forever. (Some-

times you want a while loop to repeat forever until some action inside it forces it to exit.)

Figure 7-15: Results of Running Example 7.9
C# For Arti
sts © 2008 Rick Miller — All Rights Reserved 145

Iteration Statements Chapter 7: Controlling The Flow Of Program Execution
• The expression may evaluate to false on the first try and therefore not execute its body statements.

Essentially, the while loop performs the expression evaluation first, then executes its body statements. To pre-

vent a while loop from looping indefinitely, a program statement somewhere within the body of the while loop

must either perform an action that will make the expression evaluate to false when the time is right, or explicitly force

an exit from the while loop.

Example 7.10 shows the while statement in action.
7.10 WhileStatementTest.cs

1 using System;
2
3 public class WhileStatementTest {
4 static void Main(){
5 int int_i = 0;
6
7 while(int_i < 10){
8 Console.WriteLine("The value of int_i = " + int_i);
9 int_i++;
10 }
11 }
12 }

Referring to Example 7.10 — on line 5, the integer variable int_i is declared and initialized to 0. The variable

int_i is then compared to the integer literal value 10. So long as int_i is less than 10, the statements contained within

the body of the while loop execute. (This includes all statements between the opening brace appearing at the end of

line 7 and the closing brace on line 10.) Notice how the value of int_i is incremented with the ‘++’ operator. This is

an essential step. If int_i is not incremented, the expression will always evaluate to true, which would result in an infi-

nite loop. Figure 7-17 shows the results of running this program.

Do/While Statement

The do/while statement repeats one or more body statements based on the result of a conditional expression

evaluation. The do/while loop differs from the while loop in that its body statements execute at least once

before the expression is evaluated. Figure 7-18 gives the execution diagram for a do/while statement.

Figure 7-16: while Statement Execution Diagram

Figure 7-17: Results of Running Example 7.10
146
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 7: Controlling The Flow Of Program Execution Iteration Statements
Personality Of The Do/While Statement

The do/while statement has the following personality:

• It executes its body statements once before evaluating its expression.

• A statement within its body must either take some action that will make the expression evaluate to

false or explicitly exit the loop, otherwise the do/while loop will repeat forever. (And, like the

while loop, sometimes you may want it to repeat forever.)

• Use a do/while loop if the statements it contains must execute at least once.

So, the primary difference between the while and do/while statements is when the expression evaluation

occurs. The while statement evaluates it at the beginning — the do/while statement evaluates it at the end.

Example 7.11 shows the do/while statement in action.

7.11 DoWhileStatementTest.cs

1 using System;

2

3 public class DoWhileStatementTest {

4 static void Main(){

5 int int_i = 0;

6

7 do {

8 Console.WriteLine("The value of int_i = " + int_i);

9 int_i++;

10 }while(int_i < 10);

11 }

12 }

Referring to Example 7.11 — on line 5, the integer variable int_i is declared and initialized to 0. The do/while

statement begins on line 7, and its body statements are contained between the opening brace appearing at the end of

line 7 and the closing brace on line 10. Notice that the while keyword and its expression are terminated with a semi-

colon. Figure 7-19 shows the results of running this program.

Figure 7-18: do/while Statement Execution Diagram

Figure 7-19: Results of Running Example 7-11
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 147

Iteration Statements Chapter 7: Controlling The Flow Of Program Execution
For Statement

The for statement repeats a set of program statements, just like the while loop and the do/while loop.

However, the for loop provides a more convenient way to combine the actions of counter variable initialization,

expression evaluation, and counter variable incrementing. Figure 7.20 gives the execution diagram for the for state-

ment.

How The For Statement Is Related To The While Statement

The for statement is more closely related to the while statement than to the do/while statement. This is

because the for statement’s middle expression (i.e., the one used to decide whether or not to repeat its body state-

ments) is evaluated before its body statements execute.

Personality Of The For Statement

The for statement has the following personality:

• It provides a convenient way to initialize counter variables, perform conditional expression evalu-

ation, and increment loop-control variables.

• The conditional expression is evaluated up front before its code block executes, just like the

while statement

• The for statement is the statement of choice to process arrays (You will become an expert at

using the for statement in Chapter 8).

Example 7.12 shows the for statement in action.
7.12 ForStatementTest.cs

1 using System;
2
3 public class ForStatementTest {
4 static void Main(){
5
6 for(int i = 0; i < 10; i++){
7 Console.WriteLine("The value of i = " + i);
8 }
9 }
10 }

Referring to Example 7.12 — the for statement begins on line 6. Notice how the integer variable i is declared

and initialized in the first expression. The second expression compares the value of i to the integer literal value 10.

The third expression increments i using the ‘++’ operator.

In this example, I have enclosed the single body statement in a code block. (Remember, a code block is denoted

by a set of braces.) However, if a for statement only executes one statement, you can omit the braces. (This is true

Figure 7-20: for Statement Execution Diagram
148
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 7: Controlling The Flow Of Program Execution Iteration Statements
for the while and do loops as well.) For example, the for statement shown in Example 7.12 could be rewritten in

the following manner:

 for(int i = 0; i < 10; i++)

 Console.WriteLine(“The value of i = “ + i);

Figure 7-21 shows the results of running example 7.12.

Nesting Iteration Statements

Iteration statements can be nested to implement complex programming logic. For instance, you can use a nested

for loop to calculate the following summation:

Example 7.13 offers one possible solution for this particular problem.

7.13 NestedForLoop.cs

1 using System;

2

3 public class NestedForLoop {

4 static void Main(String[] args){

5 try{

6 int limit_i = Convert.ToInt32(args[0]);

7 int limit_j = Convert.ToInt32(args[1]);

8 int total = 0;

9

10 for(int i = 1; i <= limit_i; i++){

11 for(int j = 1; j <= limit_j; j++){

12 total += (i*j);

13 }

14 }

15 Console.WriteLine("The total is: " + total);

16 }catch(IndexOutOfRangeException){

17 Console.WriteLine("Two arguments are required to run this program!");

18 }catch(FormatException){

19 Console.WriteLine("Both arguments must be integers!");

20 }

21 }

22 }

23

Referring to Example 7.13 — this program takes two strings as command-line arguments, converts them into

integer values, and assigns them to the variables limit_i and limit_j. These variables are then compared against the

values of i and j, respectively, in the middle expression of each for loop. Notice, too, that indenting makes it easier

to distinguish between the outer and inner for statements. Figure 7-22 shows the results of running this program

using various inputs.

Figure 7-21: Results of Running Example 7.12

i j×()

j 1=

n

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

i 1=

m

∑

C# For Artists
 © 2008 Rick Miller — All Rights Reserved 149

Iteration Statements Chapter 7: Controlling The Flow Of Program Execution
Mixing Selection And Iteration Statements: A Powerful Combination

You can combine selection and iteration statements in practically any fashion to solve your particular program-

ming problem. You can place selection statements inside the body of iteration statements or vice versa. Refer to the

Robot Rat program developed in Chapter 3 for an example of how to combine control-flow statements to form com-

plex programming logic. Example 7.14 offers another example. The CheckBookBalancer class below implements a

simple program that will help you balance your check book. It reads string input from the console and converts it into

the appropriate form using the Convert class. It also uses try/catch blocks like the previous examples.
7.14 CheckBookBalancer.cs

1 using System;
2
3 public class CheckBookBalancer {
4 static void Main(){
5 /**** Initialize Program Variables ******/
6
7 char keep_going = 'Y';
8 double balance = 0.0;
9 double deposits = 0.0;
10 double withdrawals = 0.0;
11 bool good_double = false;
12
13 /**** Display Welcome Message ****/
14 Console.WriteLine("Welcome to Checkbook Balancer");
15
16
17 /**** Get Starting Balance *****/
18 do{
19 try{
20 Console.Write("Please enter the opening balance: ");
21 balance = Convert.ToDouble(Console.ReadLine());
22 good_double = true;
23 }catch(FormatException){ Console.WriteLine("Please enter a valid balance!");}
24 }while(!good_double);
25
26
27 /**** Add All Deposits ****/
28 while((keep_going == 'y') || (keep_going == 'Y')){
29 good_double = false;
30 do{
31 try{
32 Console.Write("Enter a deposit amount: ");
33 deposits += Convert.ToDouble(Console.ReadLine());
34 good_double = true;
35 }catch(FormatException){ Console.WriteLine("Please enter a valid deposit value!");}
36 }while(!good_double);
37 Console.WriteLine("Do you have to enter another deposit? y/n");
38 try{
39 keep_going = (Console.ReadLine())[0];
40 }catch(IndexOutOfRangeException){ Console.WriteLine("Problem reading input!");}
41 }
42
43 /**** Subtract All Checks Written ****/
44 keep_going = 'y';
45 while((keep_going == 'y') || (keep_going == 'Y')){
46 good_double = false;
47 do{
48 try{
49 Console.Write("Enter a check amount: ");
50 withdrawals += Convert.ToDouble(Console.ReadLine());

Figure 7-22: Results of Running Example 7.13
150
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 7: Controlling The Flow Of Program Execution Break, Continue, And Goto
51 good_double = true;

52 }catch(FormatException){ Console.WriteLine("Please enter a valid check amount!");}

53 }while(!good_double);

54 Console.WriteLine("Do you have to enter another check? y/n");

55 try{

56 keep_going = (Console.ReadLine())[0];

57 }catch(IndexOutOfRangeException){ Console.WriteLine("Problem reading input!");}

58 }

59

60 /**** Display Final Tally ****/

61

62 Console.WriteLine("***************************************");

63 Console.WriteLine("Opening balance: $ " + balance);

64 Console.WriteLine("Total deposits: +$ " + deposits);

65 Console.WriteLine("Total withdrawals: -$ " + withdrawals);

66 balance = balance + (deposits - withdrawals);

67 Console.WriteLine("New balance is: $ " + balance);

68 Console.WriteLine("\n\n");

69 }

70 }

Figure 7-23 shows the results of running the CheckBookBalancer program.

Quick Review

Iteration statements repeat blocks of program code based on the result of a conditional expression evaluation.

There are three types of iteration statements: while, do/while, and for. The while statement evaluates its con-

ditional expression before executing its code block. The do/while statement executes its code block first and then

evaluates the conditional expression. The for statement provides a convenient way to write a while statement as it

combines loop-counter variable declaration and initialization, conditional expression evaluation, and loop-counter

variable incrementing in one statement.

Break, Continue, And Goto

The break, continue, and goto statements belong to a class of C# statements known as jump statements.

The break statement, as you have already learned, is used to exit a switch statement. It is also used to exit for,

while, and do loops. The continue statement stops the processing of the current loop iteration and begins the

next iteration. It is used in conjunction with for, while, and do loops. The goto statement is used with a label to

jump to a specific point in a program.

Figure 7-23: Results of Running CheckBookBalancer
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 151

Break, Continue, And Goto Chapter 7: Controlling The Flow Of Program Execution
Break Statement

An break statement looks like this:

break;

Use a break statement in the body of switch, for, while, and do/while statements to immediately exit

its containing statement. When used in a nested statement structure, the break exits the innermost containing state-

ment. To exit nested statement structures, you must use the goto statement instead. Example 7.15 shows the break

statement in action.

7.15 BreakStatementTest.cs

1 using System;
2
3 public class BreakStatementTest {
4 static void Main(){
5 for(int i = 0; i < 2; i++){
6 for(int j = 0; j < 1000; j++){
7 Console.WriteLine("Inner for loop - j = " + j);
8 if(j == 3) break;
9 }
10 Console.WriteLine("Outer for loop - i = " + i);
11 }
12 }
13 }

Referring to example 7.15 — here, a break statement is used to exit a nested for loop. The inner for loop is

set to loop 1000 times, however, an if statement on line 8 checks the value of j. If j == 3, the break statement exe-

cutes, otherwise the loop is allowed to continue. As soon as the expression j == 3 evaluates to true, the inner for

loop terminates and the outer for loop executes the Console.WriteLine() method on line 10, and then begins another

iteration. Figure 7-24 shows the results of running this program.

Continue Statement

The continue statement stops the current iteration of its containing loop and begins a new iteration. Example

7.16 shows the continue statement in action in a short program that prints odd integers.
7.16 ContinueStatementTest.cs

1 using System;
2
3 public class ContinueStatementTest {
4 static void Main(String[] args){
5 try{
6 int limit_i = Convert.ToInt32(args[0]);
7 for(int i = 0; i<limit_i; i++){
8 if((i % 2) == 0) continue;
9 Console.WriteLine(i);
10 }
11 }catch(IndexOutOfRangeException){
12 Console.WriteLine("This program requires one integer argument!");
13 }catch(FormatException){
14 Console.WriteLine("Argument must be a valid integer!");
15 }
16 }
17 }

Figure 7-24: Results of Running Example 7.15
152
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 7: Controlling The Flow Of Program Execution Break, Continue, And Goto
Referring to Example 7.16 — a string argument is entered on the command line, converted into an integer value,

and assigned to the limit_i variable. The for statement uses the limit_i variable to determine how many loops it

should perform. The if statement on line 8 uses the modulus operator ‘%’ to see if the current loop index i is evenly

divisible by 2. If so, it’s not an odd number and the continue statement executes another iteration of the for loop. If

the looping index i proves to be odd, then the continue statement is bypassed and the remainder of the for loop

executes, resulting in the odd number being printed to the console. Figure 7-25 shows the results of running this pro-

gram with the input 24.

Goto Statement

The goto statement is used with a label to jump to the labeled point in the program. Example 7.17 shows the

goto statement being used to implement a simple repetitive loop.
7.17 GotoStatementTest.cs

1 using System;
2
3 public class GotoStatementTest {
4 static void Main(){
5 int i = 0;
6 Label1: Console.WriteLine("Label1 statement " + i++);
7 if(i < 10) goto Label1;
8 }
9 }

Referring to Example 7.17 — this program shows how the goto statement can be used to implement a do/
while statement. The statement on line 6 prints first and then increments the variable i. The if statement on line 7

compares i to the value 10. If i < 10, then execution jumps to Label1 on line 6. When i reaches 10, the program exits.

Figure 7-26 shows the results of running this program.

Quick Review

The break and continue statements provide fine-grained control over iteration statements. In addition to

exiting switch statements, the break statement is used to exit for, while, and do/while loops. The

continue statement terminates the current iteration of the loop it’s embedded within and forces the start of a new

iteration. The goto statement is used with a label to jump to the labeled spot within a program.

Figure 7-25: Results of Running Example 7.16

Figure 7-26: Results of Running Example 7.17
C# For Artis
ts © 2008 Rick Miller — All Rights Reserved 153

Selection And Iteration Statement Selection Table Chapter 7: Controlling The Flow Of Program Execution
Selection And Iteration Statement Selection Table

The following table provides a quick summary of the C# selection and iteration statements. Feel free to copy it

and keep it close by your computer until you’ve mastered their use.

Statement Execution Diagram Operation When To Use

if Provides an alternative program ex-

ecution path based on the results of

a conditional expression. If the con-

ditional expression evaluates to true

its body statements execute. If it

evaluates to false, they are skipped.

Use the if statement

when you need to exe-

cute an alternative set

of program statements

based on some condi-

tion.

if/else Provides two alternative program

execution paths based on the result

of a conditional expression. If the

conditional expression evaluates to

true, the body of the if statement

executes. If it evaluates to false, the

statements associated with the

else clause execute.

Use the if/else

when you need to do

one thing when the

condition is true and

another when the con-

dition is false.

switch The switch statement evaluates

sbyte, byte, short, ushort, int, uint,

long, ulong, char, string, or enum

values and executes a matching case

and its associated statement block.

Use the break keyword to exit

each case statement. Always pro-

vide a default case.

Use the switch

statement in place of

chained if/else

statements when you

are evaluating sbyte,

byte, short, ushort, int,

uint, long, ulong, char,

string, or enum values.

while The while statement repeatedly

executes its statement block based

on the results of its conditional ex-

pression evaluation. The conditional

expression will be evaluated first. If

true, the statement body executes

and the conditional expression will

again be evaluated. If it is false, the

statement body is skipped and pro-

cessing continues as normal.

Use the while loop

when you want to do

something over and

over again while some

condition is true.

Table 7-1: C# Selection And Iteration Statement Selection Guide
154 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 7: Controlling The Flow Of Program Execution Summary
Summary

Selection statements are used to provide alternative paths of program execution. There are three types of selec-

tion statements: if, if/else, and switch. The conditional expression of the if and if/else statements must

evaluate to a boolean value of true or false. Any expression that evaluates to boolean true or false can be used. You

can chain together if and if/else statements to form complex program logic.

The switch statement evaluates a sbyte, byte, short, ushort, int, uint, long, ulong, char, string, or enum value

and executes a matching case and its associated statements. Use the break keyword to exit a switch statement and

prevent case fall-through. Always provide a default case. Implicit case fall-through is only allowed if a case con-

tains no statements.

Iteration statements repeat blocks of program code based on the result of a conditional expression evaluation.

There are three types of iteration statements: while, do/while, and for. The while statement evaluates its con-

ditional expression before executing its code block. The do/while statement executes its code block first and then

evaluates the conditional expression. The for statement provides a convenient way to write a while statement as it

combines loop-counter variable declaration and initialization, conditional expression evaluation, and loop-counter

variable incrementing in a compact format.

The break and continue keywords provide fine-grained control over iteration statements. In addition to exit-

ing switch statements, the break statement is used to exit for, while, and do/while loops. The continue

statement terminates the current iteration statement loop and forces the start of a new iteration. The goto statement

is used to jump to any labeled spot within a program.

Skill-Building Exercises

1. If Statement: Write a program that reads four string values from the console, converts them into int values using

the Console.ToInt32() method, and assigns the int values to variables named int_i, int_j, int_k, and

do/while The do/while statement oper-

ates much like the while state-

ment except its body statements are

evaluated at least once before the

conditional expression is evaluated.

Use the do/while

statement when you

want the body state-

ments to be executed at

least once.

for The for statement operates like

the while statement but offers a

more compact way of initializing,

comparing, and incrementing count-

ing variables.

Use the for statement

when you want to iter-

ate over a set of state-

ments for a known

number of times.

Statement Execution Diagram Operation When To Use

Table 7-1: C# Selection And Iteration Statement Selection Guide
C# For Artists © 2008 Rick Miller — All Rights Reserved 155

Skill-Building Exercises Chapter 7: Controlling The Flow Of Program Execution
int_l. Write a series of if statements that perform the conditional expressions shown in the first column of the

following table and executes the operations described in the second column.

Run the program with different sets of input values to see if you can get all the conditional expressions to evalu-

ate to true.

2. If/Else Statement: Write a program that reads two names from the command line. Assign the names to string vari-

ables named name_1 and name_2. Use an if/else statement to compare the text of name_1 and name_2 to each

other. If the text is equal, print a text message to the console showing the names and stating that they are equal. If

the text is not equal, print a text message to the console showing the names and stating they are not equal.

Hint: Use the == operator to perform the string value comparison. For example, given two String objects:

String name_1 = "Coralie";

String name_2 = "Coralie";

You can compare the text of one String object against the text of another String object by using the == operator in

the following fashion:

name_1 == name_2

The == operator returns a boolean value. If the text of both String objects match it will return true, otherwise it

will return false.

3. Switch Statement: Write a program that reads a string value from the command line and assigns the first character

of the string to a character variable named char_val. Use a switch statement to check the value of char_val and

execute a case based on the following table of cases and operations:

Conditional Expression Operation

int_i < int_j Print a text message to the console saying that int_i was less than

int_j. Use the values of the variables in the message.

(int_i + int_j) <= int_k Print a text message to the console showing the values of all the

variables and the results of the addition operation.

int_k == int_l Print a text message to the console saying that int_k was equal to

int_l. Use the values of the variables in the text message.

(int_k != int_i) && (int_j > 25) Print a text message to the console that shows the values of the vari-

ables.

(((++int_j) & (--int_l)) > 0) Print a text message to the console that shows the values of the vari-

ables.

Case Operation

‘A’ Prompt the user to enter two numbers. Add the two numbers the user enters and print the sum

to the console.

‘S’ Prompt the user to enter two numbers. Subtract the first number from the second number and

print the results to the console.

‘M’ Prompt the user to enter two numbers. Multiply them and print the results to the console.

‘D’ Prompt the user to enter two numbers. Divide the first number by the second and print the re-

sults to the console.

default Prompt the user to enter two numbers, add them together, and print the sum.
156 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 7: Controlling The Flow Of Program Execution Suggested Projects
Don’t forget to use the break keyword to exit each case. Study the CheckBookBalancer program given in

Example 7.14 to see how to read input from the console using the Console.ReadLine() method.

4. While Statement: Write a program that prompts the user to enter a letter. Assign the letter to a character variable

named char_c. Use a while statement to repeatedly print the following text to the console so long as the user does

not enter the letter ‘Q’:

“I love C#!”

5. Do/While Statement: Write a program that prompts the user to enter a number. Convert the user’s entry into an int

and assign the value to an integer variable named int_i. Use a do/while loop to add the variable to itself five

times. Print the results of each iteration of the do/while loop.

6. For Statement: Write a program that calculates the following summation using a for statement.

7. Chained If/Else Statements: Rewrite skill-building exercise 1 using chained if/else statements.

8. Mixed Selection and Iteration Statements: Rewrite skill-building exercise 3. Use a while loop to repeatedly

process the switch statement. Exit the while statement if the user enters the character ‘E’.

9. Mixed Selection and Iteration Statements: Rewrite skill-building exercise 3 again. This time make the while

loop execute forever using the following format:

 while(true){

 }

Add a case to the switch statement that exits the program when the user enters the character ‘E’.

10. Mixed Selection and Iteration Statements: Rewrite skill-building exercise 6. Repeatedly prompt the user to

enter a value for n, calculate the summation, and print the results of each step of the summation to the console.

Keep prompting the user for numbers and perform the operation until they enter a zero.

Suggested Projects

1. Weight Guesser Game: Write a program that guesses the user’s weight. Have them enter their height and age as a

starting point. When the program prints a number, it should also ask the user if it is too low, too high, or correct. If

correct, the program terminates after writing the number of guesses to the console.

2. Number Guesser Game: Write a program that generates a random number between 1 and 100 and then asks the

user to guess the number. The program must tell the user if their guess is too high or too low. Keep track of the

number of user guesses and print the statistics when the user guesses the correct answer. Prompt the user to repeat

the game and terminate when the user enters‘N’.

i
2

i 1=

n

∑

C# For Artists © 2008 Rick Miller — All Rights Reserved 157

Self-Test Questions Chapter 7: Controlling The Flow Of Program Execution
3. Simple Calculator: Write a program that implements a four function calculator that adds, subtracts, multiplies,

and divides integer and floating point values.

4. Calculate Area of Circles: Write a program that calculates the area of circles using the following formula:

Prompt the user for the value of r. After each iteration ask users if they wish to continue and terminate the pro-

gram if they enter ‘N’.

5. Temperature Converter: Write a program that converts the temperature from Celsius to Fahrenheit and vice

versa. Use the following formulas to perform your conversions:

6. Continuous Adding Machine: Write a program that repeatedly adds numbers entered by the user. Display the run-

ning total after each iteration. Exit the program when the user enters -9999.

7. Create Multiplication Tables: Write a program that prints the multiplication tables for the numbers 1 through 12

up to the 12th factor.

8. Calculate Hypotenuse: Write a program that calculates the hypotenuse of triangles using the Pythagorean theo-

rem:

9. Calculate Grade Averages: Write a program that helps the instructor calculate test grade averages. Prompt the

user for the number of students and then prompt for each test grade. Calculate the grade average and print the

results.

Self-Test Questions

1. To what type must the conditional expression of a selection or iteration statement evaluate?

2. What’s the purpose of a selection statement?

3. What’s the purpose of an iteration statement?

4. What types can be used as switch statement evaluation values?

5. What’s the primary difference between a while statement and a do/while statement?

6. Explain why, in some programming situations, you would choose to use a do/while statement vs. a while

statement.

Ac πr
2

=

Tc
5
9
---⎝ ⎠
⎛ ⎞ T f 32–()×=T f

9
5
---⎝ ⎠
⎛ ⎞ Tc×⎝ ⎠
⎛ ⎞ 32+=

a
2

b
2

+ c
2

=

158 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 7: Controlling The Flow Of Program Execution References
7. When would you use a switch statement vs. chained if/else statements?

8. For what purpose is the break keyword used in switch statements?

9. What’s the effect of using the break keyword in an iteration statement?

10. What’s the effect of using the continue keyword in an iteration statement?

11. What’s the purpose of the goto statement?

References

Lawrence S. Leff. Geometry The Easy Way, Second Edition. Barron’s Educational Series, Inc. ISBN: 0-8120-

4287-5

ECMA-335 Common Language Infrastructure (CLI), 4th Edition, June 2006 [http://www.ecma-international.org/

publications/standards/Ecma-335.htm]

ECMA-334 C# Language Specification, 4th Edition, June 2006 [http://www.ecma-international.org/publications/

standards/Ecma-334.htm]

Microsoft Developer Network (MSDN) [http://www.msdn.com]

Notes
C# For Artists © 2008 Rick Miller — All Rights Reserved 159

Notes Chapter 7: Controlling The Flow Of Program Execution
160 © 2008 Rick Miller — All Rights Reserved C# For Artists

8 Arrays

Learning Objectives
• Describe the purpose of an array

• List and describe the use of single and multidimensional arrays

• Describe how array objects are allocated in memory

• Describe the difference between arrays of value types vs. arrays of reference types

• Demonstrate your ability to create arrays using array literals

• Demonstrate your ability to create single-dimensional arrays

• Demonstrate your ability to create multidimensional arrays

• Describe how to access individual array elements via indexing

• Demonstrate your ability to manipulate arrays with iteration statements

• Demonstrate your ability to use the Main() method's string array parameter

Chapter 8

Arrays
Rick, Kyle, Coralie — Paris, 2005

C
o
n
ta

x
 T

 /
 K

o
d
ak

 T
ri

-X
C#
For Artists © 2008 Rick Miller — All Rights Reserved 161

Introduction Chapter 8: Arrays
Introduction

The purpose of this chapter is to give you a solid foundational understanding of arrays and their usage. Since

arrays enjoy special status in the C# language, you will find them easy to understand and use. This chapter builds

upon the material presented in Chapters 6 and 7. Here you will learn how to utilize arrays in simple programs and

manipulate them with program control-flow statements to yield increasingly powerful programs.

As you will soon learn, arrays are powerful data structures that can be used to solve many programming prob-

lems. Detailed knowledge of arrays will give you the ability to judge whether an array is right for your particular

application.

In this chapter you will learn the meaning of the term array, how to create and manipulate single and multidi-

mensional arrays, and how to use arrays in your programs. Starting with single-dimensional arrays of simple pre-

defined value types, you will learn how to declare array references and how to use the new operator to dynamically

create array objects. To help you better understand the concepts of arrays and their use, I will show you how they are

represented in memory. A solid understanding of the memory concepts associated with array allocation helps you to

better utilize arrays in your programs. I will then show you how to manipulate single-dimensional arrays using the

program control-flow statements you learned in the previous chapter. Understanding the concepts and use of single-

dimensional arrays enables you to easily understand the concepts behind multidimensional arrays.

Along the way, you will learn the difference between arrays of value types and arrays of reference types. I will

show you how to dynamically allocate array element objects and how to call methods on objects via array element

references. I will also explain to you the difference between rectangular and ragged arrays.

Although you will learn a lot about arrays in this chapter, I have omitted some material I feel is best covered later

in the book. For instance, I have postponed discussion of how to pass arrays as method arguments until you learn

about classes and methods in the next chapter.

What Is An Array?

An array is a contiguous memory allocation of same-sized or homogeneous data type elements. Contiguous

means the array elements are located one after the other in memory. Same-sized means that each array element occu-

pies the same amount of memory space. The size of each array element is determined by the type of objects an array

is declared to contain. So, for example, if an array is declared to contain integer types, each element would be the size

of an integer and occupy 4 bytes. If, however, an array is declared to contain double types, the size of each element

would be 8 bytes. The term homogeneous is often used in place of the term same-sized to refer to objects having the

same data type and therefore the same size. Figure 8-1 illustrates these concepts.

Figure 8-1 shows an array of 5 elements of no specified type. The elements are numbered consecutively, begin-

ning with 1 denoting the first element and 5 denoting the last, or 5th, element in the array. Each array element is refer-

enced or accessed by its array index number. An index number is always one less than the element number it

Figure 8-1: Array Elements are Contiguous and Homogeneous

This array has 5

elements, so it has a

length of 5.

Index values range

from 0 to (length-1)
162
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 8: Arrays What Is An Array?
accesses. For example, when you want to access the 1st element of an array, use index number 0. To access the 2nd

element of an array, use index number 1, etc.

The number of elements an array contains is referred to as its length. The array shown in Figure 8-1 contains 5

elements, so it has a length of 5. The index numbers associated with this array will range from 0 to 4 (that is 0 to

[length - 1]).

Specifying Array Types

Array elements can be value types, reference types, or arrays of these types. When you declare an array, you

must specify the type its elements will contain. Figure 8-2 illustrates this concept through the use of the array declara-

tion and allocation syntax.

Figure 8-2 shows the array declaration and allocation syntax for a single-dimensional array having a particular

type and length. The declaration begins with the array element type. The elements of an array can be value types or

reference types. Reference types can include any reference type specified in the .NET API, reference types you create,

or third-party types created by someone else.

The element type is followed by a set of empty brackets. Single-dimensional arrays use one set of brackets. You

will add a set of brackets for each additional dimension or rank you want the array to have. The element type plus the

brackets yield an array type. This array type is followed by an identifier that declares the name of the array. To actu-

ally allocate memory for an array, use the new operator followed by the type of elements the array can contain fol-

lowed by the length of the array in brackets. The new operator returns a reference to the newly created array object

and the assignment operator assigns it to the array reference name.

Figure 8-2 combines the act of declaring an array and the act of creating an array object on one line of code. If

required, you could declare an array in one statement and create the array in another. For example, the following line

of code declares and allocates memory for a single-dimensional array of integers having a length of 5:

int[] int_array = new int[5];

The following line of code would simply declare an array of floats:

float[] float_array;

And this code would then allocate enough memory to hold 10 float values:

float_array = new float[10];

The following line of code would declare a two-dimensional rectangular array of boolean-type elements and

allocate some memory:

bool[,] boolean_array_2d = new bool[10,10];

The following line of code would create a single-dimensional array of strings:

String[] string_array = new String[8];

type[] array_reference_name = ne w type [length];

Specify the type of elements the

array will contain

Name the array reference

Use the

new

 operator to allocate memory for

a number of elements of a certain type

Figure 8-2: Declaring a Single-Dimensional

Array

 The element

type plus the

brackets yields

an array type
C# For Artists
 © 2008 Rick Miller — All Rights Rese
rved 163

Functionality Provided By C# Array Types Chapter 8: Arrays

Y

ou will soon learn the details about single and multidimensional arrays. If the preceding concepts seem confus-

ing now just hang in there. By the time you complete this chapter, you will be using arrays like a pro!

Quic

k Review

Arrays are contiguously allocated memory elements of homogeneous data types. Contiguous means the elements

are arranged in memory one after the other. Homogeneous means each element of the array is of the same data type.

An array containing

n

 elements is said to have a length equal to

n

. Access array elements via their index value, which

ranges from 0 to (

length - 1

). The index value of a particular array element is always one less than the element num-

ber you wish to access (

i.e.,

the 1

st

 element has index 0, the 2

nd

 element has index 1, ... , the n

th

 element has index n-

1)

F

unctionality Provided By C# Array Types

As you learned in Chapter 6, the C# language has two data-type categories: value types

and reference types.

Arrays are a special case of reference types. When you create an array in C#, it is an object just like a reference type

object. However, C# arrays possess special features over and above ordinary reference types because they inherit

from the System.Array class. This section explains what it means to be an array type.

Ar

ray-Type Inheritance Hierarchy

When you declare an array in C#, you specify an array type as was shown previously in Figure 8-2.

The array

you create automatically inherits the functionality provided by the System.Array class, which itself extends from the

System.Object class. Figure 8-3 shows the UML inheritance diagram for an array type.

Referring to Figure 8-3 — the inheritance from the Array and Object classes is taken care of automatically by the

C# language when you declare an array. The Array class is a special class in the .NET Framework in that you cannot

derive from it directly to create a new array type subclass. Any attempt to explicitly extend from System.Array in

your code will cause a compiler error.

System.Array

type[]

Figure 8-3: Array-Type Inheritance Hierarchy

Object class methods

System.Object

Array class properties
and methods

<<abstract>>
ICloneable, IList, ICollection, IEnumerable

<SerializableAttribute>

Inherits methods and
properties from Array

and Object classes
164
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 8: Arrays

Functionality Provided By C# Array Types

The Array class provides several public properties and methods that make it easy to manipulate arrays. Some of

these properties and methods can be accessed via an array reference, while others are meant only to be accessed via

the Array class itself. You will see examples of the Array class’s methods and properties in action as you progress

through this chapter. In the meantime, however, it would be a good idea to access the MSDN website and pay a visit

to the System.Array class documentation to learn more of what it has to offer.

Special Properties Of C# Arrays

The Table 8-1 summarizes the special properties of C# arrays.

Quick Review

C# array types have special functionality because of their special inheritance hierarchy. C# array types directly

and automatically inherit the functionality of the System.Array class and implement the ICloneable, IList, ICollec-

tion, and IEnumerable interfaces. Arrays are also serializable.

Property Description

Their length cannot be changed

once created.

Array objects have an associated length when they are created. The length of an array

cannot be changed after the array is created. However, arrays can be automatically re-

sized with the help of the Array.Resize() method.

Their number of dimensions or

rank can be determined by ac-

cessing the Rank property.

For example:

int[] int_array = new int[5];
This code declares a single-dimensional array of five integers. The following line of

code prints to the console the number of dimensions int_array contains:

Console.WriteLine(int_array.Rank);

The length of a particular array

dimension or rank can be deter-

mined via the GetLength()

method.

Array objects have a method named GetLength() that returns the value of the length of

a particular array dimension or rank. To call the GetLength() method, use the dot oper-

ator and the name of the array. For example:

int[] int_array = new int[5];
This code declares and initializes an array of integer elements with length 5. The next

line of code prints the length of the int_array to the console:

Console.WriteLine(int_array.GetLength(0));
The GetLength() method is called with an integer argument indicating the desired di-

mension. In the case of a single-dimensional array, there is only one dimension.

Array bounds are checked by the

virtual execution system at run-

time.

Any attempt to access elements of an array beyond its declared length will result in a

runtime exception. This prevents mysterious data corruption bugs that can manifest

themselves when misusing arrays in other languages like C or C++.

Array types directly subclass the

System.Array class.

Because arrays subclass System.Array they have the functionality of an Array.

Elements are initialized to de-

fault values.

Predefined simple value type array elements are initialized to the default value of the

particular value type each element is declared to contain. For example, integer array el-

ements are initialized to zero. Each element of an array of references is initialized to

null.

Table 8-1: C# Array Properties
C# For Artists © 2008 Rick Miller — All Rights Reserved 165

Creating And Using Single-Dimensional Arrays Chapter 8: Arrays
Creating And Using Single-Dimensional Arrays

This section shows you how to declare, create, and use single-dimensional arrays of both value types and refer-

ence types. Once you know how a single-dimensional array works, you can easily apply the concepts to multidimen-

sional arrays.

Arrays Of Value Types

The elements of a value type array can be any of the C# predefined value types or value types that you declare

(i.e., structures). The predefined value types include bool, byte, sbyte, char, short, ushort, int, uint, long, ulong, float,

double, and decimal. Example 8.1 shows an array of integers being declared, created, and utilized in a short program.

Figure 8-4 shows the results of running this program.
8.1 IntArrayTest.cs

1 using System;
2
3 public class IntArrayTest {
4 static void Main(){
5 int[] int_array = new int[10];
6 for(int i=0; i<int_array.GetLength(0); i++){
7 Console.Write(int_array[i] + " ");
8 }
9 Console.WriteLine();
10 }
11 }

Referring to Example 8.1 — this program demonstrates several important concepts. First, an array of integers of

length 10 is declared and created on line 5. The name of the array is int_array. To demonstrate that each element of

the array is automatically initialized to zero, the for statement on line 6 iterates over each element of the array

beginning with the first element [0] and proceeding to the last element [9], and prints each element value to the con-

sole. As you can see from looking at Figure 8-4, this results in all zeros being printed to the console.

Notice how each element of int_array is accessed via an index value that appears between square brackets

appended to the name of the array (i.e., int_array[i]). In this example, the value of i is controlled by the for loop.

How Value-Type Array Objects Are Arranged In Memory

Figure 8-5 shows how the integer array int_array declared and created in Example 8.1 is represented in memory.

The name of the array, int_array, is a reference to an object in memory of type System.Int32[]. The array object is

dynamically allocated on the application’s memory heap with the new operator. Its memory location is assigned to

the int_array reference. At the time of array object creation, each element is initialized to the default value for integers

which is 0. The array object’s Length property returns the value of the total number of elements in the array, which in

this case is 10. The array object’s Rank property returns the total number of dimensions in the array, which in this

case is 1.

Let’s make a few changes to the code given in Example 8.1 by assigning some values to the int_array elements.

Example 8.2 adds another for loop to the program that initializes each element of int_array to the value of the for

loop’s index variable i.

8.2 IntArrayTest.cs (Mod 1)

Figure 8-4: Results of Running Example 8.1
166
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 8: Arrays Creating And Using Single-Dimensional Arrays
1 using System;
2
3 public class IntArrayTest {
4 static void Main(){
5 int[] int_array = new int[10];
6 for(int i=0; i<int_array.GetLength(0); i++){
7 Console.Write(int_array[i] + " ");
8 }
9 Console.WriteLine();
10 for(int i=0; i<int_array.GetLength(0); i++){
11 int_array[i] = i;
12 Console.Write(int_array[i] + " ");
13 }
14 Console.WriteLine();
15 }
16 }

Referring to Example 8.2 — notice on line 11 how the value of the second for loop’s index variable i is

assigned directly to each array element. When the array elements print to the console, each element’s value has

changed except for the first, which is still zero. Figure 8-6 shows the results of running this program. Figure 8-7

shows the memory representation of int_array after its elements have been assigned their new values.

Finding An Array’s Type, Rank, And Total Number of Elements

Study the code shown in Example 8.3, paying particular attention to lines 6 through 10.
8.3 IntArrayTest.cs (Mod 2)

1 using System;
2
3 public class IntArrayTest {
4 static void Main(){
5 int[] int_array = new int[10];
6 Console.WriteLine("int_array has rank of " + int_array.Rank);
7 Console.WriteLine("int_array has " + int_array.Length + " total elements");
8 Console.WriteLine("The number of elements in the first (and only) rank is " +
9 int_array.GetLength(0));
10 Console.WriteLine(int_array.GetType());
11
12 for(int i=0; i<int_array.GetLength(0); i++){

Figure 8-5: Memory Representation of Value Type Array int_array Showing Default Initialization

Each element initial-

ized to the type’s

default value. In this

case each element is

initialized to 0.

int_array reference

located in Main()

method

Figure 8-6: Results of Running Example 8.2
C# For A
rtists © 2008 Rick Miller — All Rights Reserved
 167

Creating And Using Single-Dimensional Arrays Chapter 8: Arrays
13 Console.Write(int_array[i] + " ");
14 }
15 Console.WriteLine();
16 for(int i=0; i<int_array.GetLength(0); i++){
17 int_array[i] = i;
18 Console.Write(int_array[i] + " ");
19 }
20 Console.WriteLine();
21 }
22 }

Referring to Example 8.3 — lines 6 through 10 show how to use Array class methods to get information about an

array. On line 6, the Rank property is accessed via the int_array reference to print out the number of int_array’s

dimensions. On line 7, the Length property returns the total number of array elements. On lines 8 and 9, the

GetLength() method is called with an argument of 0 to determine the number of elements in the first rank. In the case

of single-dimensional arrays, the Length property and GetLength(0) return the same value. On line 10, the GetType()

method determines the type of the int_array reference. It returns the value “System.Int32[],” where the single pair of

square brackets signifies an array type. Figure 8-8 gives the results of running this program.

Creating Single-Dimensional Arrays Using Array Literal Values

Up to this point you have seen how memory for an array can be allocated using the new operator. Another way to

allocate memory for an array and initialize its elements at the same time is to specify the contents of the array using

array literal values. The length of the array is determined by the number of literal values appearing in the declaration.

Example 8.4 shows two arrays being declared and created using literal values.
8.4 ArrayLiterals.cs

1 using System;
2
3 public class ArrayLiterals {
4 static void Main(){
5 int[] int_array = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
6 double[] double_array = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0};
7

Figure 8-7: Element Values of int_array After Initialization Performed by Second for Loop

Figure 8-8: Results of Running Example 8.3
168
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 8: Arrays Creating And Using Single-Dimensional Arrays
8 for(int i = 0; i < int_array.GetLength(0); i++){
9 Console.Write(int_array[i] + " ");
10 }
11 Console.WriteLine();
12 Console.WriteLine(int_array.GetType());
13 Console.WriteLine(int_array.GetType().IsArray);
14
15 Console.WriteLine();
16
17 for(int i = 0; i < double_array.GetLength(0); i++){
18 Console.Write(double_array[i] + " ");
19 }
20 Console.WriteLine();
21 Console.WriteLine(double_array.GetType());
22 Console.WriteLine(double_array.GetType().IsArray);
23 }
24 }

Referring to Example 8.4 — the program declares and initializes two arrays using array literal values. On line 5

an array of integers named int_array is declared. The elements of the array are initialized to the values that appear

between the braces. Each element’s literal value is separated by a comma. The length of the array is determined by the

number of literal values appearing between the braces. The length of int_array is 10.

On line 6, an array of doubles named double_array is declared and initialized with double literal values. The con-

tents of both arrays are printed to the console. Array class methods are then used to determine the characteristics of

each array and the results are printed to the console. Notice on lines 13 and 22 the use of the IsArray property. It will

return true if the reference via which it is called is an array type. Figure 8-9 shows the results of running this program.

Differences Between Arrays Of Value Types And Arrays Of Reference Types

The key difference between arrays of value types and arrays of reference types is that value-type values can be

directly assigned to value-type array elements. The same is not true for reference type elements. In an array of refer-

ence types, each element is a reference to an object in memory. When you create an array of references in memory

you are not automatically creating each element’s object. Instead, each reference element is automatically initialized

to null. You must explicitly create each object you want each reference element to point to. Alternatively, the object

must already exist somewhere in memory and be reachable. To illustrate these concepts, I will use an array of

Objects. Example 8.5 gives the code for a short program that creates and uses an array of Objects.
8.5 ObjectArray.cs

1 using System;
2
3 public class ObjectArray {
4 static void Main(){
5 Object[] object_array = new Object[10];
6 Console.WriteLine("object_array has type " + object_array.GetType());
7 Console.WriteLine("object_array has rank " + object_array.Rank);
8 Console.WriteLine();
9
10 object_array[0] = new Object();
11 Console.WriteLine(object_array[0].GetType());
12 Console.WriteLine();
13
14 object_array[1] = new Object();
15 Console.WriteLine(object_array[1].GetType());
16 Console.WriteLine();
17
18 for(int i = 2; i < object_array.GetLength(0); i++){
19 object_array[i] = new Object();

Figure 8-9: Results of Running Example 8.4
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 169

Creating And Using Single-Dimensional Arrays Chapter 8: Arrays
20 Console.WriteLine(object_array[i].GetType());

21 Console.WriteLine();

22 }

23 }

24 }

Figure 8-10 shows the results of running this program.

Referring to Example 8.5 — on line 5, an array of Objects of length 10 is declared and created. After line 5 exe-

cutes, the object_array reference points to an array of Objects in memory with each element initialized to null, as is

shown in Figure 8-11.

On lines 6 and 7, the program writes to the console some information about the object_array, namely, its type and

rank. On line 10, a new object of type Object is created and its memory location is assigned to the Object reference

located in object_array[0]. The memory picture now looks like that shown in Figure 8-12. Line 11 calls the GetType()

method on the object pointed to by object_array[0].

The execution of line 14 results in the creation of another object of type Object in memory. The memory picture

now looks like that shown in Figure 8.13. The for statement on line 18 creates the remaining Object objects and

assigns their memory locations to the remaining object_array reference elements. Figure 8.14 shows the memory pic-

ture after the for statement completes execution.

Figure 8-10: Results of Running Example 8.5

Figure 8-11: State of Affairs After Line 5 of Example 8.5 Executes

Array elements are

initialized to null.

Each Object object

must now be created.
170
 © 2008 Rick Miller — All Rights Reserved
 C# For Artists

Chapter 8: Arrays Creating And Using Single-Dimensional Arrays
Now that you know the difference between value and reference type arrays, let’s see some single-dimensional

arrays being put to good use.

Single-dimensional Arrays In Action

This section offers several example programs showing how single-dimensional arrays can be used in programs.

These programs represent an extremely small sampling of the usefulness arrays afford.

Message Array

One handy use for an array is to store a collection of string messages for later use in a program. Example 8.6

shows how such an array might be utilized.
8.6 MessageArray.cs

1 using System;
2
3 public class MessageArray {
4 static void Main(){
5 String name = null;
6 int int_val = 0;
7

Figure 8-12: State of Affairs After Line 10 of Example 8.5 Executes.

object_array[0] now

points to a dynamically

allocated Object object

Figure 8-13: State of Affairs After Line 14 of Example 8.5 Executes

object_array[1] now

points to an Object

object
C# For Artists
 © 2008 Rick Miller — All Rights Reserved
 171

Creating And Using Single-Dimensional Arrays Chapter 8: Arrays
8 String[] messages = {"Welcome to the Message Array Program",
9 "Please enter your name: ",
10 ", please enter an integer: ",
11 "You did not enter an integer!",
12 "Thank you for running the Message Array program"};
13
14 const int WELCOME_MESSAGE = 0;
15 const int ENTER_NAME_MESSAGE = 1;
16 const int ENTER_INT_MESSAGE = 2;
17 const int INT_ERROR = 3;
18 const int THANK_YOU_MESSAGE = 4;
19
20 Console.WriteLine(messages[WELCOME_MESSAGE]);
21 Console.Write(messages[ENTER_NAME_MESSAGE]);
22 name = Console.ReadLine();
23
24 Console.Write(name + messages[ENTER_INT_MESSAGE]);
25
26 try{
27 int_val = Int32.Parse(Console.ReadLine());
28 }catch(FormatException) { Console.WriteLine(messages[INT_ERROR]); }
29
30 Console.WriteLine(messages[THANK_YOU_MESSAGE]);
31 }
32 }

Referring to Example 8.6 — this program creates a single-dimensional array of strings named messages. It ini-

tializes each string element using string literals. On lines 14 through 18, an assortment of constants are declared and

initialized. These constants are used to index the messages array as is shown on lines 20 and 21. The program simply

asks the user to enter a name followed by a request to enter an integer value. If the user fails to enter an integer, the

Int32.Parse() method will throw a FormatException. Figure 8-15 shows the results of running this program.

Figure 8-14: Final State of Affairs: All object_array Elements Point to an Object object
172
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 8: Arrays Creating And Using Single-Dimensional Arrays
Calculating Averages

The program given in Example 8.7 calculates class grade averages.
8.7 Average.cs

1 using System;
2
3 public class Average {
4 static void Main(){
5 double[] grades = null;
6 double total = 0;
7 double average = 0;
8 int grade_count = 0;
9
10 Console.WriteLine("Welcome to Grade Averager");
11 Console.Write("Please enter the number of grades to enter: ");
12 try{
13 grade_count = Int32.Parse(Console.ReadLine());
14 } catch(FormatException) { Console.WriteLine("You did not enter a number!"); }
15
16 if(grade_count > 0){
17 grades = new double[grade_count];
18 for(int i = 0; i < grade_count; i++){
19 Console.Write("Enter grade " + (i+1) + ": ");
20 try{
21 grades[i] = Double.Parse(Console.ReadLine());
22 } catch(FormatException) { Console.WriteLine("You did not enter a number!"); }
23 } //end for
24
25 for(int i = 0; i < grade_count; i++){
26 total += grades[i];
27 } //end for
28
29 average = total/grade_count;
30 Console.WriteLine("Number of grades entered: " + grade_count);
31 Console.WriteLine("Grade average: {0:F2} ", average);
32
33 }//end if
34 } //end main
35 }// end Average class definition

Referring to Example 8.7 — an array reference of doubles named grades is declared on line 5 and initialized to

null. On lines 6 through 8, several other program variables are declared and initialized.

The program then prompts the user to enter the number of grades. If this number is greater than 0 then it is used

on line 17 to create the grades array. The program then enters a for loop on line 18, reads each grade from the con-

sole, converts it to a double, and assigns it to the ith element of the grades array.

After all the grades are entered into the array, the grades are summed in the for loop on line 25. The average is

calculated on line 29. Notice how numeric formatting is used on line 38 to properly format the double value contained

in the average variable. Figure 8-16 shows the results of running this program

Histogram: Letter Frequency Counter

Letter frequency counting is an important part of deciphering messages encrypted using monalphabetic substitu-

tion. Example 8.8 gives the code for a program that counts the occurrences of each letter appearing in a text string and

prints the letter frequency display to the console. The program ignores all characters except the 26 letters of the alpha-

bet.
8.8 Histogram.cs

Figure 8-15: Results of Running Example 8.6
C# For Arti
sts © 2008 Rick Miller — All Rights Reserved 173

Creating And Using Single-Dimensional Arrays Chapter 8: Arrays
1 using System;
2
3 public class Histogram {
4 static void Main(String[] args){
5 int[] letter_frequencies = new int[26];
6 const int A = 0, B = 1, C = 2, D = 3, E = 4, F = 5, G = 6,
7 H = 7, I = 8, J = 9, K = 10, L = 11, M = 12, N = 13,
8 O = 14, P = 15, Q = 16, R = 17, S = 18, T = 19, U = 20,
9 V = 21, W = 22, X = 23, Y = 24, Z = 25;
10 String input_string = null;
11
12 Console.Write("Enter a line of characters: ");
13 input_string = Console.ReadLine().ToUpper();
14
15
16 if(input_string != null){
17 for(int i = 0; i < input_string.Length; i++){
18 switch(input_string[i]){
19 case 'A': letter_frequencies[A]++;
20 break;
21 case 'B': letter_frequencies[B]++;
22 break;
23 case 'C': letter_frequencies[C]++;
24 break;
25 case 'D': letter_frequencies[D]++;
26 break;
27 case 'E': letter_frequencies[E]++;
28 break;
29 case 'F': letter_frequencies[F]++;
30 break;
31 case 'G': letter_frequencies[G]++;
32 break;
33 case 'H': letter_frequencies[H]++;
34 break;
35 case 'I': letter_frequencies[I]++;
36 break;
37 case 'J': letter_frequencies[J]++;
38 break;
39 case 'K': letter_frequencies[K]++;
40 break;
41 case 'L': letter_frequencies[L]++;
42 break;
43 case 'M': letter_frequencies[M]++;
44 break;
45 case 'N': letter_frequencies[N]++;
46 break;
47 case 'O': letter_frequencies[O]++;
48 break;
49 case 'P': letter_frequencies[P]++;
50 break;
51 case 'Q': letter_frequencies[Q]++;
52 break;
53 case 'R': letter_frequencies[R]++;
54 break;
55 case 'S': letter_frequencies[S]++;
56 break;
57 case 'T': letter_frequencies[T]++;
58 break;
59 case 'U': letter_frequencies[U]++;
60 break;
61 case 'V': letter_frequencies[V]++;
62 break;
63 case 'W': letter_frequencies[W]++;
64 break;
65 case 'X': letter_frequencies[X]++;
66 break;

Figure 8-16: Results of Running Example 8.7
174
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 8: Arrays Creating And Using Single-Dimensional Arrays
67 case 'Y': letter_frequencies[Y]++;
68 break;
69 case 'Z': letter_frequencies[Z]++;
70 break;
71 default : break;
72 } //end switch
73 } //end for
74
75 for(int i = 0; i < letter_frequencies.Length; i++){
76 Console.Write((char)(i + 65) + ": ");
77 for(int j = 0; j < letter_frequencies[i]; j++){
78 Console.Write('*');
79 } //end for
80 Console.WriteLine();
81 } //end for
82
83 } //end if
84 } // end main
85 } // end Histogram class definition

Referring to Example 8.8 — on line 5, an integer array named letter_frequencies is declared and initialized to

contain 26 elements, one for each letter of the English alphabet. On lines 6 through 9, several constants are declared

and initialized. The constants, named A through Z, are used to index the letter_frequencies array later in the program.

On line 10, a string reference named input_string is declared and initialized to null.

The program then prompts the user to enter a line of characters. The program reads this line of text and converts

it to upper case using the String.ToUpper() method. Most of the work is done within the body of the if statement that

starts on line 16. If the input_string is not null, then the for loop will repeatedly execute the switch statement, test-

ing each letter of input_string and incrementing the appropriate letter_frequencies element.

Take special note on line 19 of how the length of the input_string is determined using the String class’s Length

property. Also note that a string’s characters can be accessed using array notation. Figure 8-17 gives the results of

running this program with a sample line of text.

Quick Review

Single-dimensional arrays have one dimension — length. You can get an array’s length by calling the

GetLength() method with an integer argument indicating the particular dimension in which you are interested. Arrays

can have elements of either value or reference types. An array type is created by specifying the type name of array

elements followed by one set of brackets, []. Use System.Array class methods and properties to get information

about an array.

Each element of an array is accessed via an index value indicated by an integer within a set of brackets (e.g.,

array_name[0]). Value-type element values can be directly assigned to array elements. When an array of value types

Figure 8-17: Results of Running Example 8.8
C# For A
rtists © 2008 Rick Miller — All Rights Reserved 175

Creating And Using Multidimensional Arrays Chapter 8: Arrays
is created, each element is initialized to the type’s default value. Each element of an array of references is initialized

to null. Each object that a reference element points to must either already exist or be created during program execu-

tion.

Creating And Using Multidimensional Arrays

C# supports two kinds of multidimensional arrays: rectangular and ragged. In this section you will learn how to

create and use both kinds of multidimensional arrays. I will also show you how to create multidimensional arrays

using the new operator as well as how to initialize multidimensional arrays using literal values.

Rectangular Arrays

A rectangular array is a multidimensional array whose shape is fixed based on the length of each dimension or

rank. All of a rectangular array’s dimensions must be specified when the array object is created. Figure 8-18 gives the

rectangular array declaration syntax for a two-dimensional array.

Referring to Figure 8-18 — the type name combined with the brackets and comma yield the array type. For

example, the following line of code declares and creates a two-dimensional rectangular array of integers having 10

rows and 10 columns:

int[,] int_2d_array = new int[10,10];
A two-dimensional array can be visualized as a grid or matrix comprised of rows and columns, as is shown in

Figure 8-19. Each element of the array is accessed using two index values, one each for the row and column you wish

to access. For example, the following line of code would write to the console the element located in the first row, sec-

ond column of int_2d_array:

Console.WriteLine(int_2d_array[0,1]);
Figure 8-19 also includes a few more examples of two-dimensional array element access. Example 8.9 offers a

short program that creates a two-dimensional array of integers and prints their values to the console in the shape of a

grid.
8.9 TwoDimensionalArray.cs

1 using System;
2
3 public class TwoDimensionalArray {
4 static void Main(String[] args){
5
6 try{
7 int rows = Int32.Parse(args[0]);
8 int cols = Int32.Parse(args[1]);
9
10 int[,] int_2d_array = new int[rows, cols];
11 Console.WriteLine(" Array rank: " + int_2d_array.Rank);
12 Console.WriteLine(" Array type: " + int_2d_array.GetType());
13 Console.WriteLine("Total array elements: " + int_2d_array.Length);
14 Console.WriteLine();
15
16 for(int i = 0, element = 1; i<int_2d_array.GetLength(0); i++){
17 for(int j = 0; j<int_2d_array.GetLength(1); j++){
18 int_2d_array[i,j] = element++;

type[,] array_reference_name = new type[row_length, col_length];

Specify the type of elements the

array will contain
Name the array

reference

Use the new operator to

allocate memory

Specify the type and length of

each array dimension

Type name plus brackets and

comma yields array type

Figure 8-18: Rectangular Array Declaration Syntax
176
 © 2008 Rick Mill
er — All Rights Reserved
 C# For Artists

Chapter 8: Arrays Creating And Using Multidimensional Arrays
19 Console.Write("{0:D3} ",int_2d_array[i,j]);

20 }

21 Console.WriteLine();

22 }

23

24 }catch(IndexOutOfRangeException){

25 Console.WriteLine("This program requires two command-line arguments.");

26 }catch(FormatException){

27 Console.WriteLine("Arguments must be integers!");

28 }

29 }

30 }

Referring to Example 8.9 — when the program executes, the user enters two integer values on the command line

for the desired row and column lengths. These values are read and converted on lines 7 and 8, respectively. The two-

dimensional array of integers is created on line 10, followed by several lines of code that writes some information

about the array including its rank, type, and total number of elements to the console. The nested for statement begin-

ning on line 16 iterates over each element of the array. Notice that the outer for statement on line 16 declares an

extra variable named element. It’s used in the body of the inner for loop to keep count of how many elements the

array contains so that its value can be assigned to each array element. The statement on line 19 prints each array ele-

ment’s value to the console with the help of numeric formatting. Figure 8-20 gives the results of running this pro-

gram.

rows

columns

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Figure 8-19: Accessing Two-Dimensional Array Elements

int_2d_array[0,1]

int_2d_array[1,4]

int_2d_array[3,9]

int_2d_array[6,6]

int_2d_array[7,9]

int_2d_array[8,8]

Figure 8-20: Results of Running Example 8.9
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 177

Creating And Using Multidimensional Arrays Chapter 8: Arrays
Initializing Rectangular Arrays With Array Literals

Rectangular arrays can be initialized using literal values in an array initializer expression. Study the code offered

in Example 8.10.
8.10 RectangularLiterals.cs

1 using System;
2
3 public class RectangularLiterals {
4 static void Main(){
5 char[,] char_2d_array = {{'a', 'b', 'c'},
6 {'d', 'e', 'f'},
7 {'g', 'h', 'i'}};
8
9 Console.WriteLine("char_2d_array has rank: " + char_2d_array.Rank);
10 Console.WriteLine("char_2d_array has type: " + char_2d_array.GetType());
11 Console.WriteLine("Total number of elements: " + char_2d_array.Length);
12 Console.WriteLine();
13
14 for(int i = 0; i<char_2d_array.GetLength(0); i++){
15 for(int j = 0; j<char_2d_array.GetLength(1); j++){
16 Console.Write(char_2d_array[i,j] + " ");
17 }
18 Console.WriteLine();
19 }
20 }
21 }

Referring to Example 8.10 — a two-dimensional array of chars named char_2d_array is declared and initialized

on line 5 to have 3 rows and 3 columns. Notice how each row of characters appears in a comma-separated list

between a set of braces. Each row of initialization data is itself separated from the next row by a comma, except for

the last row of data on line 7. Lines 9 through 11 write some information about the character array to the console,

namely, its rank, type, and total number of elements. The nested for statement beginning on line 14 iterates over the

array and prints each character to the console in the form of a grid. Figure 8-21 shows the results of running this pro-

gram.

Ragged Arrays

A ragged array is an array of arrays. Ragged arrays can be any number of dimensions, but the last, or rightmost,

dimension is omitted from the array creation expression. Each rightmost array object must then be dynamically cre-

ated during program execution, resulting in the possibility that the array dimensions may differ in length, hence the

name ragged array. Figure 8.22 shows the ragged array declaration syntax for a two-dimensional ragged array. Exam-

ple 8.11 gives a short program showing the use of a ragged array.
8.11 Ragged2dArray.cs

1 using System;
2
3 public class Ragged2dArray {
4 static void Main(){
5 int[][] ragged_2d_array = new int[10][];
6
7 Console.WriteLine("ragged_2d_array has rank: " + ragged_2d_array.Rank);
8 Console.WriteLine("ragged_2d_array has type: " + ragged_2d_array.GetType());
9 Console.WriteLine("Total number of elements: " + ragged_2d_array.Length);
10 Console.WriteLine();
11
12 for(int i = 0; i<ragged_2d_array.GetLength(0); i++){
13 ragged_2d_array[i] = new int[i+1];
14 }

Figure 8-21: Results of Running Example 8.10
178
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 8: Arrays Creating And Using Multidimensional Arrays
15
16 for(int i = 0; i<ragged_2d_array.GetLength(0); i++){
17 for(int j = 0; j<ragged_2d_array[i].GetLength(0); j++){
18 Console.Write(ragged_2d_array[i][j] + " ");
19 }
20 Console.WriteLine();
21 }
22 }
23 }

Referring to Example 8.11 — on line 5 a two-dimensional ragged array of integers is declared and created. Lines

7 through 9 write some information about the array including its rank, type, and total number of elements to the con-

sole. The for statement beginning on line 12 creates 10 new arrays of varying lengths and assigns their references to

each element of ragged_2d_array. The next for statement on line 16 iterates over the ragged two-dimensional array

structure and writes the value of each element to the console. Figure 8-23 shows the results of running this program.

Multidimensional Arrays In Action

The example presented in this section shows how single and multidimensional arrays can be used together effec-

tively.

Weighted Grade Tool

Example 8.12 gives the code for a class named WeightedGradeTool. The program calculates a student’s final

grade based on weighted grades.
8.12 WeightedGradeTool.cs

1 using System;
2
3 public class WeightedGradeTool {
4 static void Main() {
5
6 double[,] grades = null;
7 double[] weights = null;

type[][] array_reference_name = ne w type [r ow_length][]

Figure 8-22:

Array Declaration Syntax for a

T

wo-Dimensional Ragged

Array

T

ype name plus

brackets yields array

type

Specify the type of elements the

array will contain

Name the array

reference

Use the

new

 operator to

allocate memory

Specify the type and length of

each array

The leftmost dimension is mandatory

(mandatory)

Leave rightmost

dimension empty

Figure 8-23: Results of Running Example 8.11
C# For Artists
 © 2008 Rick Mi
ller — All Rights Reserved
 179

Creating And Using Multidimensional Arrays Chapter 8: Arrays

8

 String[] students = null;

9

 int student_count = 0;

10

 int grade_count = 0;

11

 double final_grade = 0;

12

13

 Console.WriteLine("Welcome to Weighted Grade Tool");

14

15

 /**************** get student count *********************/

16

 Console.Write("Please enter the number of students: ");

17

 try {

18

 student_count = Int32.Parse(Console.ReadLine());

19

 }

20

 catch (FormatException) {

21

 Console.WriteLine("That was not an integer!");

22

 Console.WriteLine("Student count will be set to 3.");

23

 student_count = 3;

24

 }

25

26

 27 if (student_count > 0) {
28

 students = new String[student_count];

29

 /***************** get student names **********************/

30

 for (int i = 0; i < students.Length; i++) {

31

 Console.Write("Enter student name: ");

32

 students[i] = Console.ReadLine();

33

 }

34

35

 /**************** get number of grades per student **********/

36

 Console.Write("Please enter the number of grades to average: ");

37

 try {

38

 grade_count = Int32.Parse(Console.ReadLine());

39

 }

40

 catch (FormatException) {

41

 Console.WriteLine("That was not an integer!");

42

 Console.WriteLine("Grade count will be set to 3.");

43

 grade_count = 3;

44

 }
45
46 /****************** get raw grades *****************************/
47 grades = new double[student_count, grade_count];
48 for (int i = 0; i < grades.GetLength(0); i++) {
49 Console.WriteLine("Enter raw grades for " + students[i]);
50 for (int j = 0; j < grades.GetLength(1); j++) {
51 Console.Write("Grade " + (j + 1) + ": ");
52 try {
53 grades[i, j] = Double.Parse(Console.ReadLine());
54 }
55 catch (FormatException) {
56 Console.WriteLine("That was not a double!");
57 Console.WriteLine("Grade will be set to 100");
58 grades[i, j] = 100;
59 }
60 }//end inner for
61 }
62
63 /***************** get grade weights *********************/
64 weights = new double[grade_count];
65 Console.WriteLine("Enter grade weights. Make sure they total 100%");
66 for (int i = 0; i < weights.Length; i++) {
67 Console.Write("Weight for grade " + (i + 1) + ": ");
68 try {
69 weights[i] = Double.Parse(Console.ReadLine());
70 }
71 catch (FormatException) {
72 Console.WriteLine("That was not a double!");
73 Console.WriteLine("The weight will be set to 25");
74 weights[i] = 25.0;
75 }
76 }
77
78 /****************** calculate weighted grades ********************/
79 for (int i = 0; i < grades.GetLength(0); i++) {
80 for (int j = 0; j < grades.GetLength(1); j++) {
81 grades[i, j] *= weights[j];
82 }//end inner for
83 }
84
85 /***************** calculate and print final grade *********************/
86 for (int i = 0; i < grades.GetLength(0); i++) {
87 Console.WriteLine("Weighted grades for " + students[i] + ": ");
88 final_grade = 0;
180 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 8: Arrays The Main() Method’s String Array
89 for (int j = 0; j < grades.GetLength(1); j++) {
90 final_grade += grades[i, j];
91 Console.Write(grades[i, j] + " ");
92 }//end inner for
93 Console.WriteLine(students[i] + "'s final grade is: " + final_grade);
94 }
95 }// end if
96 }// end Main
97 }// end class

Figure 8-24 shows the results of running this program.

Quick Review

C# supports two kinds of multidimensional arrays: rectangular and ragged. A rectangular array is a multidimen-

sional array whose shape is fixed based on the length of each dimension or rank. All of a rectangular array’s dimen-

sions must be specified when the array object is created. A ragged array is an array of arrays. Ragged arrays can be

any number of dimensions, but the last, or rightmost, dimension is omitted from the array creation expression. Each

rightmost array object must then be created during program execution, introducing the possibility that the array’s

dimensions may differ in length.

The Main() Method’s String Array

Now that you have a better understanding of arrays, the Main() method’s string array should make more sense.

This section explains the purpose and use of the Main() method’s string array.

Purpose And Use Of The Main() Method’s String Array

The purpose of the Main() method’s string array is to enable C# applications to accept and act upon command-

line arguments. The csc compiler is an example of a program that takes command-line arguments, the most important

of which is the name of the file to compile. This chapter and the previous chapter also gave several examples of

accepting program input via the command line. Now that you are armed with a better understanding of how arrays

work, you have the knowledge to write programs that accept and process command-line arguments.

Example 8.13 gives a short program that accepts a line of text as a command-line argument and displays it in

lower or upper case depending on the first command-line argument.

8.13 CommandLine.cs

Figure 8-24: Results of Running Example 8.12
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 181

Manipulating Arrays With The System.Array Class Chapter 8: Arrays
1 using System;
2 using System.Text;
3
4 public class CommandLine {
5 static void Main(String[] args){
6 StringBuilder sb = null;
7 bool upper_case = false;
8 int start_index = 0;
9
10 /********** check for upper case option **************/
11 if(args.Length > 0){
12 switch(args[0][0]){ // get the first character of the first argument
13 case '-' :
14 if(args[0].Length > 1){
15 switch(args[0][1]){ // get the second character of the first argument
16 case 'U' :
17 case 'u' : upper_case = true;
18 break;
19 default: upper_case = false;
20 break;
21 }
22 }
23 start_index = 1;
24 break;
25 default: upper_case = false;
26 break;
27
28 }// end outer switch
29
30 sb = new StringBuilder(); //create StringBuffer object
31
32 /******* process text string **********************/
33 for(int i = start_index; i < args.Length; i++){
34 sb.Append(args[i] + " ");
35 }//end for
36
37 if(upper_case){
38
39 Console.WriteLine(sb.ToString().ToUpper());
40 }else {
41
42 Console.WriteLine(sb.ToString().ToLower());
43 }//end if/else
44
45 } else { Console.WriteLine("Usage: CommandLine [-U | -u] Text string");}
46
47 }//end main
48 }//end class

Figure 8.25 shows the results of running this program.

Manipulating Arrays With The System.Array Class

The .NET platform makes it easy to perform common array manipulations such as searching and sorting with the

System.Array class. Example 8.14 offers a short program that shows the Array class in action sorting an array of inte-

gers.
8.14 ArraySortApp.cs

49 using System;
50
51 public class ArraySortApp {
52 static void Main() {
53 int[] int_array = { 100, 45, 9, 1, 34, 22, 6, 4, 3, 2, 99, 66 };
54
55 for (int i = 0; i < int_array.Length; i++) {

Figure 8-25: Results of Running Example 8.13
182
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 8: Arrays Numeric Formatting
56 Console.Write(int_array[i] + " ");
57 }
58 Console.WriteLine();
59
60 Array.Sort(int_array);
61
62 for (int i = 0; i < int_array.Length; i++) {
63 Console.Write(int_array[i] + " ");
64 }
65 } // end Main() method
66 } // end ArraySortApp class definition

Figure 8-26 shows the results of running this program.

Numeric Formatting

C# makes it easy to format numeric strings. You have seen several examples of numeric formatting in both this

and the previous chapter. You can format numeric results using the String.Format() method or the Console.Write() or

Console.WriteLine() methods.

A format string takes the form Cfnn where Cf is a format specifier character and nn specifies the number of deci-

mal digits. Table 8-2 lists the standard C# numeric format strings along with some brief example code.

Summary

C# array types have special functionality because of their special inheritance hierarchy. C# array types directly

inherit functionality from the System.Array class and implement the ICloneable, IList, ICollection, and IEnumerable

interfaces. Arrays are also serializable.

Single-dimensional arrays have one dimension — length. You can get an array’s length by calling the

GetLength() method with an integer argument that indicates the dimension in which you are interested. You can also

get the length of a single dimensional array by accessing its Length property. Arrays can have elements of either value

Character Description Example Code Results

C or c Currency Console.Write("{0:C}", 4.5);

Console.Write("{0:C}", -4.5);

$4.50

($4.50)

D or d Decimal Console.Write("{0:D5}", 45); 00045

E or e Scientific Console.Write("{0:E}", 450000); 4.500000E+005

F or f Fixed-point Console.Write("{0:F2}", 45);

Console.Write("{0:F0}", 45);

45.00

45

G or g General Console.Write("{0:G}", 4.5); 4.5

N or n Number Console.Write("{0:N}", 4500000); 4,500,000.00

X or x Hexadecimal Console.Write("{0:X}", 450);

Console.Write("{0:X}", 0xabcd);

1C2

ABCD

Table 8-2: Numeric Formatting

Figure 8-26: Results of Running Example 8.14
C# For
Artists © 2008 Rick Miller — All Rights Reserved 183

Skill-Building Exercises Chapter 8: Arrays
or reference types. An array type is created by specifying the type name of array elements followed by one set of

brackets []. Use System.Array class methods and properties to get information about an array.

Each element of an array is accessed via an index value contained within a set of brackets. Value-type element

values can be directly assigned to array elements. When an array of value types is created, each element is initialized

to the types default value. Each element of an array of references is initialized to null. Each object that a reference

element points to must either already exist or be created during program execution.

C# supports two kinds of multidimensional arrays: rectangular and ragged. A rectangular array is a multidimen-

sional array whose shape is fixed based on the length of each dimension or rank. All of a rectangular array’s dimen-

sions must be specified when the array object is created.

A ragged array is an array of arrays. Ragged arrays can be any number of dimensions but the last, or rightmost,

dimension is omitted from the array creation expression. Each rightmost array object must then be created during pro-

gram execution, introducing the possibility that the array’s dimensions may differ in length.

Use the built-in methods and properties of the System.Array class to perform certain array manipulations such as

sorting.

Skill-Building Exercises

1. Further Research: Study the System.Array class and the interfaces it implements to better familiarize yourself

with the functionality it provides.

2. Further Research: Conduct a web search for different applications for single and multidimensional arrays.

3. Single-Dimensional Arrays: Write a program that lets you create a single-dimensional array of integers of differ-

ent sizes at program runtime using command-line inputs.

4. Single-Dimensional Arrays: Write a program that reverses the order of text entered on the command line. This

will require the use of the Main() method’s string array.

5. Further Research: Conduct a web search on different sorting algorithms and how arrays are used to implement

these algorithms. Also, there are several good sources of information regarding sorting algorithms listed in the ref-

erences section of this chapter.

6. Multidimensional Arrays: Modify Example 8.9 so that it creates two-dimensional arrays of characters. Initialize

each element with the character ‘c’. Run the program several times to create character arrays of different sizes.

7. Multidimensional Arrays: Modify Example 8.9 again so that the character array is initialized to the value of the

first character read from the command line. Hint: Refer to Example 8.13 to see how to access the first character of

a string.

Suggested Projects

1. Matrix Multiplication: Given two matrices Aij and Bjk, the product Cik can be calculated with the following equa-

tion:
184 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 8: Arrays Suggested Projects
Write a program that multiplies the following matrices together and stores the results in a new matrix. Print the

resulting matrix values to the console.

2. Modify Histogram Program: Modify the histogram program given in Example 8.8 so that it counts the occur-

rence of the digits 0 through 9 and the punctuation marks period ‘.’, comma ‘,’, question mark ‘?’, colon ‘:’, and

semicolon ‘;’.

3. Computer Simulator: You are a C# developer with a high-tech firm doing contract work for the Department of

Defense. Your company has won the proposal to develop a proof-of-concept model for an Encrypted Instruction

Set Computer System Mark 1 (EISCS Mk1). Your job is to simulate the operation of the EISCS Mk1 with a C#

application.

Supporting Information: The only language a computer understands is its machine-language instruction set. The

EISCS Mk1 is no different. The EISCS machine language instruction set will consist of a four-digit integer with

the two most significant digits being the operation code (opcode) and the two least significant digits being the

operand. For example, consider the following instruction:

The number 11 represents the opcode and the number 33 represents the operand. The following table lists and

describes each EISCS machine instruction.

Opcode Mnemonic Description

Input/Output Operations

10 READ Reads an integer value from the console and stores it in memory location

identified by the operand.

11 WRITE Writes the integer value stored in memory location operand to the console.

Load/Store Operations

20 LOAD Loads the integer value stored at memory location operand into the accu-

mulator.

Table 8-3: EISCS Machine Instructions

Cik AijB jk
j 1=

n

∑=

2 3

3 4

4 5

2 3 4

3 4 5

1133

opcode operand
C# For Artists © 2008 Rick Miller — All Rights Reserved 185

Suggested Projects Chapter 8: Arrays
Sample Program: Using the instruction set given in Table 8-3, you can write simple programs that will run on the

EISCS Mk1 computer simulator. The following sample program reads two numbers from the input, multiplies

them together, and writes the results to the console.

21 STORE Stores the integer value residing in the accumulator into memory location

operand.

Arithmetic Operations

30 ADD Adds the integer value located in memory location operand to the value

stored in the accumulator and leaves the result in the accumulator.

31 SUB Subtracts the integer value located in memory location operand from the

value stored in the accumulator and leaves the result in the accumulator.

32 MUL Multiplies the integer value located in memory location operand by the val-

ue stored in the accumulator and leaves the result in the accumulator.

33 DIV Divides the integer value stored in the accumulator by the value located in

memory location operand.

Control and Transfer Operations

40 BRANCH Unconditional jump to memory location operand.

41 BRANCH_NEG If accumulator value is less than zero jump to memory location operand.

42 BRANCH_ZERO If accumulator value is zero then jump to memory location operand.

43 HALT Stop program execution.

Memory

Location

Instruction /

Contents

Action

00 1007 Read integer into memory location 07

01 1008 Read integer into memory location 08

02 2007 Load contents of memory location 07 into accumulator

03 3208 Multiply value located in memory location 08 by value stored in accumula-

tor. Leave result in accumulator

04 2109 Store value currently in accumulator to memory location 09

05 1109 Write the value located in memory location 09 to the console

06 4010 Jump to memory location 10

07

08

09

10 4300 Halt program

Opcode Mnemonic Description

Table 8-3: EISCS Machine Instructions
186 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 8: Arrays Self-Test Questions
Basic Operation: This section discusses several aspects of the EISCS computer simulation operation to assist you

in completing the project.

Memory: The machine language instructions that constitute an EISCS program must be loaded into memory

before the program can be executed by the simulator. Represent the computer simulator’s memory as an array of

integers 100 elements long.

Instruction Decoding: Instructions are fetched one at a time from memory and decoded into opcodes and oper-

ands before being executed. The following code sample demonstrates one possible decoding scheme:

Hints:

• Use switch/case structure to implement the instruction execution logic.

• You may either hard code sample programs in your simulator or allow a user to enter a program

into memory via the console.

• Use an array of 100 integers to represent memory.

Self-Test Questions

1. Arrays are contiguously allocated memory elements of homogeneous data types. Explain in your own words what

this means.

2. What’s the difference between arrays of value types vs. arrays of reference types?

3. C# array types directly inherit functionality from what class?

4. How do you determine the length of an array?

5. (T/F) An array can be resized after it has been created.

6. (T/F) One or more of the dimensions of a rectangular array can be left unspecified upon array object creation.

7. Ragged arrays are _______________ of ______________.

8. When a ragged array is created, which dimensions are optional and which dimensions are mandatory?

9. What is meant by the term “ragged array”?

10. What’s the purpose of the Main() method’s string array?

instruction = memory[program_counter++];
 operation_code = instruction / 100;
 operand = instruction % 100;
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 187

References Chapter 8: Arrays
References

ECMA-335 Common Language Infrastructure (CLI), 4th Edition, June 2006 [http://www.ecma-international.org/

publications/standards/Ecma-335.htm]

ECMA-334 C# Language Specification, 4th Edition, June 2006 [http://www.ecma-international.org/publications/

standards/Ecma-334.htm]

Microsoft Developer Network (MSDN) [http://www.msdn.com]

Rick Miller. Java For Artists: The Art, Philosophy, And Science Of Object-Oriented Programming. Pulp Free

Press, Falls Church, VA. ISBN: 1-932504-05-2

Donald E. Knuth. The Art of Computer Programming. Volume 3: Sorting and Searching, Second Edition. Addi-

son-Wesley. Reading Massachusetts. ISBN: 0-201-89685-0

Notes
188 © 2008 Rick Miller — All Rights Reserved C# For Artists

9 Toward Problem Abstraction: Creating New Data Types

Learning Objectives
• Describe the purpose and use of abstract data types
• State the purpose and use of an enumeration
• State the purpose and use of a structure
• State the purpose and use of a class
• List and describe the differences between structures and classes
• State the purpose and use of methods
• Demonstrate your ability to create structures, classes, and methods
• State the purpose and use of overloaded methods
• State the purpose and use of constructor methods
• State the definition of the term “method signature”
• Demonstrate your ability to overload ordinary methods and constructor methods
• State the purpose and use of the keyword “static”
• Demonstrate your ability to create class fields and methods
• State the purpose and use of a UML class diagram
• Demonstrate your ability to create classes that represent abstract data types

Chapter 9

Toward Problem Abstraction:
Deer Skull

P
en

ta
x
 6

7
 /

 S
M

C
 T

ak
u
m

ar
 1

5
0
/2

.8
 /

 I
lf

o
rd

 D
el

ta
 4

0
0

Creating New Data Types
C#
 For Artists © 2008 Rick Miller — All Rights Reserved 189

Introduction Chapter 9: Toward Problem Abstraction
Introduction

A computer program is a model of a real world problem. But real world problems are notoriously complex. It is

impossible to capture all the details and nuances of a real world problem in software. However, it is possible to study

the problem closely, identify its important points or components, and then create new software data types that repre-

sent the essential features or elements of these components. The process of selecting the essential elements of a prob-

lem with an eye towards modeling them in software is referred to as problem abstraction.

This chapter shows you how to approach the process of problem abstraction. Along the way, you will learn more

about classes, methods, fields, Unified Modeling Language (UML) class diagrams, and object-oriented programming.

You will learn how to break functionality into logical groups to formulate methods. These methods provide a measure

of code reuse that will save you both work and time.

The primary focus of this chapter is the class construct and its use in abstract data type modeling. At the end of

the chapter, I present a brief section on structures and explain the similarities and differences between structures and

classes. I then offer suggestions on when you might want to implement an abstract data type as a structure and the

ramifications of making such a decision.

The material discussed here builds upon that presented in previous chapters. By now you should be very com-

fortable using your chosen development environment and a handful of .NET Framework classes. You should be able

to create simple C# programs, control the flow of program execution with if, if/else, for, while, and do/
while statements, and you should understand the concepts and use of single-dimensional arrays. You should also be

an expert at looking through the .NET API documentation for classes that can help you solve problems.

Upon completion of this chapter, you will have added several powerful tools to your programmer’s toolbag.

These tools will enable you to write increasingly complex programs with ease.

Abstraction: Amplify The Essential, Eliminate The Irrelevant

The process of problem abstraction is summarized nicely in the following mantra: amplify the essential, elimi-

nate the irrelevant. The very nature of programming demands that a measure of simplification be performed on real

world problems. Consider for a moment the concept of numbers. Real numbers can have infinite precision. This

means that in the real world, numbers can have an infinite number of digits to the right of the decimal point. This is

not possible in a computer with finite resources, therefore the machine representation of real numbers is only an

approximation. However, for all practical purposes, an approximation is all the precision required to yield acceptable

calculations. In C#, real number approximations are provided by the float and double data types.

Abstraction Is The Art Of Programming

When compared with all other aspects of programming, problem abstraction requires the most creativity. You

must analyze the problem at hand, extract its essential elements, and model these in software. Also, the process of

identifying which abstractions to model may entail the creation of software entities that have no corresponding coun-

terpart in the problem domain. Have you ever heard the term, “think outside the box”? It means that to make progress

you must shed your old ways of thinking. You must check your prejudices and preconceived notions at the door. Suc-

cessful programmers have mastered the art of thinking outside, inside, over, under, to the left of, and to the right of

the box. With their minds, they transform real world problems into a series of program instructions that are then exe-

cuted on a machine. Successful programmers have mastered the art of reducing real world problems to a state that can

be put inside of a box!

Like any form of art, the mastery of problem abstraction requires lots of practice. The only way to get lots of

practice with problem abstraction is to solve lots of problems and write lots of code.
190 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 9: Toward Problem Abstraction Abstraction: Amplify The Essential, Eliminate The Irrelevant
Where Problem Abstraction Fits Into The Development Cycle

Problem abstraction straddles the analysis and design phases of the development cycle. Project requirements may

or may not be fully or adequately documented. In fact, on most projects, the important requirements that deeply affect

the quality of the source code are not documented at all, and must be derived or deduced from existing or known

requirements. Nonetheless, you must be able to distinguish the “signal” of the problem from its “noise”. The abstrac-

tions you choose to help model the problem in software directly influence its design (architecture).

Creating Your Own Data Types

The end result of problem abstraction is the identification and creation of one or more new data types. These data

types will interact with each other in some way to implement the solution to the problem at hand. In C#, you create a

new data type by defining a new enumeration, structure, class, or interface. Arrays and delegates are data types as

well, but not useful for the purposes discussed here. These data types can then be used by other data types. This is

referred to as design by composition. The new data types created through the process of problem abstraction are

referred to as abstract data types or user-defined types.

To introduce you to the process of problem abstraction and the creation of new data types, I will walk you

through a small case-study project. The rest of this chapter is devoted to developing the data types identified in the

project specification along with a detailed discussion about the inner workings of the C# class construct. Most every-

thing you learn about classes also applies to structures. I will discuss the differences between structures and classes at

the end of the chapter.

Case-Study Project: Write A People Manager Program

Figure 9-1 gives the project specification that will be used to build the program presented in this chapter.

The project specification offers some guidance and several hints. Let’s concentrate on the tasks. First, it says that

you must write a program to manage people. A full-blown people management program is obviously out of the ques-

tion, so our first simplification will be to put a bound on exactly what functionality is provided in the final solution.

Luckily, we are guided in this decision by the next sentence that says the program should focus on the following func-

tions:

People Manager Program

Objectives:
• Apply problem abstraction to determine essential program ele-
ments.

• Create user-defined data types using the class construct
• Utilize user-defined data types in a C# application
• Create and manipulate arrays of user-defined data type objects

Tasks:
• Write a simple program that lets you manage people. The program
should let users add or delete a person when necessary. The
program should also let users set and query a person’s last,
middle, and first names as well as his or her birthdate and
gender. It should also let you determine a person’s age.

• Store the people objects in a single-dimensional array.
• Create a separate application class that utilizes the services
of a PeopleManager class.

Figure 9-1: People Management Program Project Specification
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 191

Abstraction: Amplify The Essential, Eliminate The Irrelevant Chapter 9: Toward Problem Abstraction
• Add a person

• Delete a person

• Set a person’s first, middle, and last names

• Query a person’s first, middle, and last names

• Set a person’s birthdate

• Query a person’s birthdate

• Query a person’s gender

• Set a person’s gender

• Query a person’s age

The project specification also says that you must store person objects in a single-dimensional array. This is clear

enough, but where will this array reside? Again, the next sentence provides a clue. It says that you must write a sepa-

rate application that utilizes the services of a PeopleManager class. This is a great hint that provides you with a candi-

date name for one of the classes that makes up the completed program.

This will suffice for a first-pass analysis of the project specification. The trick now is to derive additional require-

ments that are not specifically addressed. You can begin by making some assumptions. I recommend you start by

identifying the number of classes you will need to write the program. One class, PeopleManager, is spelled out for

you in the specification. Another class is also alluded to in the last sentence, and that is the application class. You

could name the class anything you want, but I will use the name PeopleManagerApplication. That should make the

purpose of that class clear to anyone reading your code.

OK, you have two classes so far: PeopleManager and PeopleManagerApplication. Since you will need person

objects to work with, you need to create another user-defined type named Person. The Person class will implement

the functionality of a person as required to fulfill the project requirements. You can add additional functionality to

exceed the project specification if you desire.

I recommend now that you make a list of the classes identified thus far and assign to them the functionality each

requires. One possible list for this project is given in Table 9-1.

This looks like a good start. As you progress with the design and implementation of each class, especially the

Person and PeopleManager classes, you may find they require functionality not originally thought of or imagined.

That’s OK — software design is an iterative process. As you progress with the design and implementation of a pro-

Class Name Functionality Required

Person The Person class will embody the concept of a person entity. A person will

have the following attributes:

• first name

• middle name

• last name

• gender

• birth date

The Person class will provide the capability to set and query each of its at-

tributes as well as calculate the age of a person given a person’s birth date and

the current date.

PeopleManager The PeopleManager class will manage an array of Person objects. It will have

the following attribute:

• an array of Person objects

The PeopleManager class will also provide the following functionality:

• add a person to the array

• delete a person from the array

• list the people in the array

PeopleManagerApplication The PeopleManagerApplication class will be the C# application class that has

the Main() method. This class will be used to test the functionality of the Peo-

pleManager and Person classes as they are developed.

Table 9-1: People Manager Program Class Responsibilities
192 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 9: Toward Problem Abstraction The UML Class Diagram
gram, you gain a deeper insight or understanding of the problem you are trying to solve. This knowledge is then used

to improve later versions of the software. Alright, enough soap boxing! On with the project.

The next step I recommend taking is to examine each class and see which piece of its functionality might be pro-

vided by a class from the .NET Framework API. Let’s look closely at the Person class. The requirement to calculate a

person’s age means that we will have to perform some sort of date calculation. The question is, “Is this sort of thing

already done for us by the .NET Framework API?” The answer is yes. The place to look for this sort of utility func-

tionality is in the System namespace. There you will find the DateTime class. Take time now to familiarize yourself

with the DateTime class, as you will find it helpful in other projects as well.

This completes the analysis phase of this project. You should have a fairly clear understanding of the project

requirements and the number of user-defined data types required to implement the solution. The next step I recom-

mend you take is to concentrate on the Person class and implement and test its functionality in its entirety. The Person

class is the logical place to start since all the other classes depend on it.

Quick Review

Problem abstraction requires lots of programmer creativity and represents the art in the art of programming.

Your guiding mantra during problem abstraction is to amplify the essential, eliminate the irrelevant. Problem abstrac-

tion is performed in the analysis and design phase of the development cycle. The abstractions you choose to model a

particular problem will directly influence a program’s design.

The end result of problem abstraction is the identification and creation of one or more new data types. The data

types derived through problem abstraction are referred to as abstract data types (ADTs) or user-defined data types.

User-defined data types can be implemented as structures or classes. These structures or classes will interact with

each other in some capacity to implement the complete problem solution.

The UML Class Diagram

Now that the three classes of the People Manager project have been identified, you can express their relationship

to each other via a UML class diagram. The purpose of a UML class diagram is to express the static relationship

between classes, interfaces, and other components of a software system. UML class diagrams are used to communi-

cate and solidify your understanding of software designs to yourself, to other programmers, to management, and to

clients. Figure 9-2 gives a basic UML diagram showing the static relationship between the classes identified in the

People Manager project.

PeopleManagerApplicationPeopleManagerPerson
<< application >>

uses

+ Main(String[] args): void

uses

is a

// fields // fields

// methods // methods

Figure 9-2: Class Diagram for People Manager Classes

is a
is a

uses

System.DateTime System.Object

// fields - (none required)
C# For Artis
ts © 2008 Rick Miller — All Rights Reserved 193

Overview Of The Class Construct Chapter 9: Toward Problem Abstraction
Each rectangle shown in Figure 9-2 represents a class. The lines tipped with the hollow arrowheads represent

generalization and specialization. The arrow points from the specialized class to the generalized class. This represents

an “is a...” relationship between the classes. As Figure 9-2 illustrates, the classes Person, PeopleManager, and People-

ManagerApplication extend the functionality provided by the System.Object class. The Object class serves as the

direct base class for all reference types that do not explicitly extend another class. I discuss inheritance in detail in

Chapter 11.

Each class rectangle can be drawn either as a simple rectangle or with three compartments. The uppermost com-

partment will have the class name, the middle compartment will list the fields, and the bottom compartment will list

the methods.

Figure 9-2 further shows that the PeopleManagerApplication class is an application. This is indicated with the

use of the <<application>> stereotype. A stereotype introduces a new type of element within a system. The

name of the new element is contained within the guillemet characters << >>. The application will have one method,

Main(). Since it is a class, it could have fields and other methods, but in this example no other fields or methods are

required.

The PeopleManagerApplication class uses the services of the PeopleManager class. This is indicated by the

dashed arrow pointing from the PeopleManagerApplication class to the PeopleManager class. The dashed arrow rep-

resents a dependency. The PeopleManager class will have several attributes and methods which have yet to be

defined.

The PeopleManager class will use the services of the Person class. The Person class will have fields, properties,

and methods as well. These will be developed in the next several sections.

The Person class uses the services of the System.DateTime structure. The DateTime structure will give the Per-

son class the ability to calculate the age of each Person object.

Now that you have a basic design for the People Manager project, you can concentrate on one piece of the design

and implement its functionality. Over the next several sections, I discuss the class construct in detail and show you

how to create the Person and PeopleManager classes. Along the way I will show you how to test these classes using

the PeopleManagerApplication class.

Quick Review

A UML class diagram shows the static relationship between classes that participate in a software design. Pro-

grammers use the class diagram to express and clarify design concepts to themselves, to other programmers, to man-

agement, and to clients.

In UML, a rectangle represents a class. The rectangle can have three compartments. The uppermost compartment

contains the class name, the middle compartment contains fields, and the bottom compartment contains the methods.

A stereotype introduces a new type of element within a system. The stereotype name is contained within the

guillemet characters << >>.

Generalization and specialization are indicated by lines tipped with hollow arrows. The arrow points from the

specialized class to the generalized class. The generalized class is the base class, and the specialized class is the

derived or subclass. Generalizations specify “is a...” relationships between base and subclasses.

Dependencies are indicated by dashed arrows pointing to the class being depended upon. Dependencies are one

way to indicate “uses...” relationships between classes.

Overview Of The Class Construct

This section presents an overview of the C# class construct. You have already been exposed to the structure of a

C# application class in Chapter 6 so some of this material will be a review.

Eleven Categories Of Class Members

C# classes can contain eleven different types of members: fields, constants, methods, properties, events, index-

ers, operators, instance constructors, static constructors, finalizers, and nested type declarations. In this section I
194 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 9: Toward Problem Abstraction Overview Of The Class Construct
present a brief description of each member type. The rest of the chapter will demonstrate the use of fields, constants,

methods, properties, and instance constructors, as these are the most often used class members. I will discuss the

remaining class member types later in the book when their use becomes appropriate. I find it best not to present too

much information at one go, or your head will explode!

Fields

Fields are variables that are used to set and maintain object state information. Fields can be either static or non-

static.

Static Or Class-Wide Fields

A static field represents an attribute that is shared among all object instances of a particular class. This means that

the field’s value exists independently of any particular instance, and therefore does not require a reference to an object

to access it. Another term used to describe static fields is class or class-wide fields.

Non-Static Or Instance Fields

Non-static fields represent attributes for which each object has its very own copy. Another term used to describe

non-static fields is instance fields. It’s through the use of instance fields that objects can set and maintain their

attribute state information. For example, if we are talking about Person objects, each Person object will have its own

first name, middle name, last name, gender, and birth date. This instance attribute state information is not shared with

other Person objects. Figure 9-3 graphically illustrates the relationship between static and non-static fields.

Readonly Fields

It’s often helpful to have a field maintain its first-assigned value throughout the life of the program. Such a field

is said to be a constant. Instance readonly fields can be initialized at the point of declaration or in one or more con-

structors, where each constructor might assign a different value to the readonly field. Static readonly fields can be ini-

tialized at the point of declaration or in a static constructor. This can be done by declaring a field to be “readonly”

with the readonly keyword. Let’s take a look at the behavior of an ordinary field vs. a readonly field. Example 9.1

offers a simple code example.
9.1 ReadOnlyTest.cs

1 using System;
2
3 public class ReadOnlyTest {
4 int field_1 = 1;
5 readonly int field_2 = 25;
6
7 static void Main(){
8 ReadOnlyTest rot = new ReadOnlyTest();
9 Console.WriteLine(rot.field_1);
10 Console.WriteLine(rot.field_2);
11 }
12 }

Figure 9-3: Static and Non-Static Fields

Static fields reside on

the stack and are

shared by all objects

belonging to a particu-

lar class.

Each object has its

own instance fields.

These are not shared

among objects.
C# For Artists
 © 2008 Rick Miller — All Rights Reserved
 195

Overview Of The Class Construct Chapter 9: Toward Problem Abstraction
Referring to Example 9.1 — two fields have been declared and initialized on lines 4 and 5. The field named

field_2 has been declared readonly. This short program simply prints the field values to the console, as is shown in

Figure 9-4.

As long as you don’t try to change the value of a readonly field, you’ll be fine. Example 9.2 gives a short pro-

gram that attempts to change the values of both fields. The error produced when I attempt to compile the program is

shown in Figure 9-5.
9.2 ReadOnlyTest.cs (Mod 1)

1 using System;
2
3 public class ReadOnlyTest {
4 int field_1 = 1;
5 readonly int field_2 = 25;
6
7 static void Main(){
8
9 ReadOnlyTest rot = new ReadOnlyTest();
10 Console.WriteLine(rot.field_1);
11 Console.WriteLine(rot.field_2);
12
13 rot.field_1 = 2;
14 rot.field_2 = 26; // this will cause an error
15
16 Console.WriteLine(rot.field_1);
17 Console.WriteLine(rot.field_2);
18 }
19 }

Referring to Example 9.2 — the value of field_1 is modified on line 13 with no problem. The attempt to modify

the value of field_2 results in a compiler error.

As you can see from the two previous example programs, a readonly field is a constant. Since neither field_1 nor

field_2 are declared static, they are both instance fields, which means that each object of type ReadOnlyTest contains

its very own copy of these values. It is generally desirable to conserve storage space and declare class constants to be

static. This way, the constant values are shared among all objects of a particular class, as Figure 9-3 illustrated. To

make field_2 a static field, simply add the keyword static to the declaration like so:

static readonly int field_2 = 25;
Doing this, however, changes the field’s behavior. Since it’s a static field, it can only be accessed either via the

class name or directly from within a class’s static or non-static methods, as Example 9.3 illustrates.
9.3 ReadOnlyTest.cs (Mod 2)

1 using System;
2
3 public class ReadOnlyTest {
4 int field_1 = 1;
5 static readonly int field_2 = 25; // now it's a class-wide constant
6
7 static void Main(){
8 ReadOnlyTest rot = new ReadOnlyTest();
9 Console.WriteLine(rot.field_1);

Figure 9-4: Results of Running Example 9.1

Figure 9-5: Error Resulting from an Attempt to Assign to a Readonly Field
196
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 9: Toward Problem Abstraction Overview Of The Class Construct
10 Console.WriteLine(ReadOnlyTest.field_2); // access via classname
11 Console.WriteLine(field_2); // or directly because it is static!
12 }
13 }

Referring to Example 9.3 — adding the static keyword to the declaration of field_2 makes it a static field. Static

fields can be accessed directly by a class’s static or non-static methods or via the class name, as is shown on line 10.

Figure 9-6 gives the results of running this program.

Constants

As you saw in the previous section, class constants can be created by declaring a static readonly field. C# pro-

vides a shortcut way to do this with the const keyword. Example 9.4 shows how it’s done.
9.4 ConstantTest.cs

1 using System;
2
3 public class ConstantTest {
4 int field_1 = 1;
5 static readonly int field_2 = 25;
6 const int CONSTANT_1 = 35;
7
8 static void Main(){
9 ConstantTest ct = new ConstantTest();
10 Console.WriteLine(ct.field_1); // can only be accessed via reference since it's non-static
11 Console.WriteLine(ConstantTest.field_2); // can be accessed via class
12 Console.WriteLine(field_2); // or directly because it's static
13 Console.WriteLine(ConstantTest.CONSTANT_1); // can be accessed via class
14 Console.WriteLine(CONSTANT_1); // or directly because it's static
15 }
16 }

Referring to Example 9.4 — on line 6 the keyword const declares a class-wide constant member. This is akin

to declaring a field to be static readonly, but there is a difference, which I explain in the next section. Note that

uppercase letters were used to form the constant’s identifier to make it stand out in the program. Figure 9-7 gives the

results of running this program.

The Difference Between const and readonly; Compile-Time vs. Runtime Constants

A constant declared with the const keyword must be initialized at the moment of declaration. The const key-

word is used to introduce what are called compile-time constants. Use the readonly keyword to declare a constant

if you need to create the constant object using the new keyword or if you need to initialize the constant value in a

constructor. For example, if you need to create a constant DateTime object that is initialized to a particular date, do

something like the following:

static readonly DateTime MIN_VALID_SQL_DATE = new DateTime(01, 01, 1753);

Figure 9-6: Results of Running Example 9.3

Figure 9-7: Results of Running Example 9,4
C# For Artist
s © 2008 Rick Miller — All Rights Reserved 197

Overview Of The Class Construct Chapter 9: Toward Problem Abstraction
Properties

A property is a class member that provides access to an object or class attribute. A property provides accessors

that contain statements that are executed when its value is read or written. Properties can be static or non-static, read-

only, write-only, or read-write.

Properties, at first glance, can be a confusing concept to grasp. One has a tendency to associate properties with

fields, but they are more closely related to methods; property accessors get converted into methods during the compi-

lation process.

Instance Properties

An instance property is a non-static member that must be accessed via an object reference.

Static Properties

A static property is a class-wide member that can be accessed via the class name or directly in static and non-

static methods.

Read-Only Properties

A read-only property is one whose value can only be read and not written. A read-only property defines a get

accessor.

Write-Only Properties

A write-only property is one whose value can only be written and not read. A write-only property defines a set

accessor.

Read-Write Properties

A read-write property is one whose value can be both read and written. A read-write property defines both a get

and a set accessor.

Properties In Action

Example 9.5 gives a short program demonstrating the use of properties.
9.5 PropertiesDemo.cs

1 using System;
2
3 public class PropertiesDemo {
4
5 /**** Constants and Fields *****/
6 private const String MESSAGE = "Hello Stranger";
7 private static int field_1 = 1;
8 private int field_2 = 2;
9
10 /***** Properties ******/
11 public String ClassName {
12 get { return this.GetType().ToString(); }
13 }
14
15 public String Message {
16 get { return MESSAGE; }
17 }
18
19 public static int ObjectCount {
20 get { return field_1; }
21 set { field_1 = value; }
22 }
23
24 public int SomeProperty {
25 get { return field_2; }
26 set { field_2 = value; }
27 }
198 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 9: Toward Problem Abstraction Overview Of The Class Construct
28
29 static void Main(){
30 PropertiesDemo pd = new PropertiesDemo();
31 Console.WriteLine(pd.ClassName);
32 Console.WriteLine(pd.Message);
33 Console.WriteLine(ObjectCount);
34 ObjectCount++;
35 Console.WriteLine(ObjectCount);
36 Console.WriteLine(pd.SomeProperty++);
37 Console.WriteLine(pd.SomeProperty);
38 }
39 }

Referring to Example 9.5 — the PropertiesDemo class has one constant and two fields. One of the fields, field_1,

is a static field. I have defined four properties. Note that each property has a type and a name. Property names are by

convention formed with camel case. Camel case means the first letter of each word in the identifier name is uppercase

and the remaining letters of each word are lowercase.

Each property’s accessor definitions are enclosed in the property’s body, which is denoted by the opening and

closing brace. A read-only property has a get accessor defined, which itself has an opening and closing brace and

can contain any number of statements as long as it eventually returns an object of the property’s specified type. For

example, the ClassName property whose definition begins on line 11 is a read-only property. It defines a get acces-

sor that returns a string value. Note that the ClassName property computes the value of the string, in this case the

class name, by making a series of method calls on the appropriate objects. Compare the behavior of the ClassName

property to that of the Message property whose definition starts on line 15. The Message property is a read-only prop-

erty that simply returns the value of the MESSAGE constant.

The ObjectCount property is a read-write property because it defines both get and set accessors. It is also a static

property because its definition includes the use of the static keyword. Note on line 21 the use of the implicit

parameter named “value” in the set accessor. Remember that these accessors will be ultimately invoked as method

calls. The value parameter is automatically supplied by the compiler when a set accessor is called.

The SomeProperty property is a read-write instance property.

These four properties are used in the body of the Main() method that starts on line 29. Note specifically how

properties can be used in ways similar to fields. Instance properties must be accessed in a static method via an object

reference. Static properties can be accessed via the class name or directly in static and instance methods. Figure 9-8

gives the results of running Example 9.5.

Methods

A method is a class member that implements a series of instructions that can be executed or called via a class or

object. Methods, like fields and properties, can be static or non-static.

Methods can share the same name as long as their method signatures differ. This is referred to as method over-

loading. A method’s signature includes its name, and the number and type of its formal parameters. I cover methods

in greater detail in this chapter in the Methods section.

Instance Constructors

An instance constructor, or simply a constructor, is a special type of method that contains the instructions

required to properly initialize an object. A constructor method takes the same exact name as the class in which it

appears and has no return type.

Figure 9-8: Results of Running Example 9.5
C# For Ar
tists © 2008 Rick Miller — All Rights Reserved 199

Overview Of The Class Construct Chapter 9: Toward Problem Abstraction
A default constructor is a constructor that has an empty parameter list. (i.e., It takes no parameters.) If you fail to

define a default constructor, the compiler will generate one for you.

Constructors, like ordinary methods, can be overloaded. This comes in handy when you want to define several

different ways to create an object.

Constructors are usually declared to have public accessibility, although in some cases it’s helpful to declare them

to be protected or private so you can maintain full control over how and when an instance object is created. (Refer to

the Singleton pattern in Chapter 25 for an example.)

Use instance constructors to initialize non-static readonly fields. This is especially helpful if you needed the read-

only constant value to be initialized differently according to which constructor was called.

You’ll see many examples of instance constructors throughout this book.

Static Constructors

A static constructor is a special method that contains the instructions required to properly initialize static class

fields. Static constructors take no parameters and are called automatically by the runtime environment when the pro-

gram executes. The use of access modifiers is not allowed with static constructors. (i.e., A static constructor cannot be

public or private.) Use a static constructor if you need to initialize static readonly constants.

Events

An event is a class member that enables a class or an object to provide notifications. I cover events in detail in

Chapter 12 — Windows Forms Programming, and Chapter 13 — Custom Events.

Operators

An operator is a member that defines what it means to apply certain expression operators (like the ‘+’ or ‘==’

operators for example) to objects. This operator overloading allows you to create well-behaved objects. Operator

overloading is covered in detail in Chapter 21 — Operator Overloading.

Indexers

An indexer is a class member that allows an object to be indexed like an array. I give an example of an indexer in

Chapter 14- Collections.

Nested Type Declarations

A type definition that appears within the body of a class is referred to as a nested type. The most often seen exam-

ple of this is when an enumerated type (enumeration) is declared within the body of a class. The overuse of nested

types leads to hard-to-read and hard-to-maintain code. Generally avoid using them unless you have a compelling rea-

son to do so.

Finalizers

A finalizer is a class member that’s called automatically when an object is collected by the runtime environment

garbage collector. A finalizer contains the instructions required to clean up the object. An example of object clean-up

might be the release of network resources or file handles used during the object’s lifetime.

A finalizer method takes the same name of the class with the tilde character ‘~’ prepended to its name. Finalizers

take no parameters and cannot be called explicitly. Because a finalizer method cannot be called explicitly, there is no

telling when it will be called. Therefore, the release of critical resources should not be left, as a rule, to the whims of

the garbage collector. In practice, use ordinary methods that can be called explicitly to provide critical object clean-up

services. The finalizer can then be relied upon as a back-up.
200 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 9: Toward Problem Abstraction Overview Of The Class Construct
Access Modifiers

Use the access modifiers public, protected, private, internal, and protected internal to

control access to class members. If no access is specified, then private is assumed. The following sections describe

the use of these access modifiers in greater detail.

Public

The keyword public indicates that the member is accessible to all client code. Generally speaking, most of the

methods, constants, and properties you declare in a class will be public.

Private

The keyword private indicates that the member is intended for internal class use only and is not available for

use by client programs. You will usually declare non-static instance fields to be private. You can think of private fields

as being surrounded by the protective cocoon of the class, though if you’re not careful, you can breach this encapsu-

lation by absentmindedly returning a reference to a private field via a method or property.

You can also declare methods to be private as well. Private methods are intended to be utilized exclusively by

other methods within the class. These private methods are often referred to as utility methods since they are usually

written to perform some utility function that is not intended to be part of the class’s public interface.

Protected

The keyword protected prevents horizontal access to members, but allows them to be inherited or accessed

by subclasses. I discuss the protected keyword in detail in Chapter 11 — Inheritance.

Internal

The meaning of the internal keyword is “for use within this program”. An alternative meaning for the inter-

nal keyword might be “local public”. Essentially, if you declare a member to have internal accessibility, it can be

freely accessed by other classes and members within the same assembly. This includes separate .netmodules that are

compiled together using the /addmodule compiler switch.

If, however, you create a dynamic link library (dll) using the /target:library compiler switch, then inter-

nal members are accessible to other internal classes and members within that dll, but are not available for use by

external code that links to it.

Protected Internal

A member declared to have protected internal accessibility is visible to all components contained

within the dll just as the internal keyword specifies. Additionally, it can be inherited by subclasses of the member’s

containing type regardless of the assembly to which the subclass belongs.

The Concepts Of Horizontal Access, Interface, and Encapsulation

The term horizontal access describes the access a client object has to the members of a server object. The client

object represents the code that uses the services of another object. It can do this in two ways: 1) by accessing a class’s

public static members via the class name, or 2) by creating an instance of the class and accessing its public non-static

members via an object reference.

The members (usually constants, properties, methods, constructors, and events) a class exposes as public are col-

lectively referred to as its public interface. Client code becomes dependent upon these public interface members. The

wrong kind of change to a class’s interface will break any code that depends upon that interface. When changing a

class’s public interface, the rule-of-thumb is that you can add public members but never remove them. If you look

through the .NET API you will see lots of classes with deprecated members. A deprecated member is a member that
C# For Artists © 2008 Rick Miller — All Rights Reserved 201

Methods Chapter 9: Toward Problem Abstraction
is targeted for deletion in some future version of the API. These members are not yet removed because doing so

would break existing programs that use (depend upon) those members.

Any member declared private is said to be encapsulated within its class, as it is shielded from horizontal access

by client code. Generally speaking, a class’s interface can be thought of as the set of services it provides to client pro-

grams. It provides those services by manipulating its private, or encapsulated, data structures. The idea is that at some

point in the future, programmers may think up a new ways to enhance a particular service’s functionality. They may

do this by making changes to the class’s internal, or private, data structures. Since these data structures are encapsu-

lated, a change to them will have no effect on client code, except perhaps for the effects of an improvement to the ser-

vice provided.

Figure 9-9 illustrates the concept of horizontal access and the effects of using public and private access

modifiers.

The concepts of public interfaces, horizontal access, and encapsulation are important to the world of object-ori-

ented programming, which means they are important to you. You will deal with these concepts every time you write

code in the C# language.

Quick Review

C# classes can contain eleven different types of members: fields, constants, methods, properties, events, index-

ers, operators, instance constructors, static constructors, finalizers, and nested type declarations.

The access modifiers public, protected, private, internal, and protected internal are used

to control access to class and instance members. If no access is specified then private is assumed.

The term horizontal access describes the access a client object has to the members of a server object. The client

object represents the code that uses the services of another object. It can do this in two ways: 1) by accessing a class’s

public static members via the class name, or 2) by creating an instance of the class and accessing its public non-static

members via an object reference.

Methods

A method is a named module of executable program functionality. A method contains program statements that,

when grouped together, represent a basic level of code reuse. Access the functionality of a method by calling the

method using its name in a program. I use the term program here to mean any piece of code that could possibly use

the services of the class that defines the method. This might include 1) another method within the class you are defin-

ing, 2) another class within your program, or 3) a third-party program that wants to use the services provided by your

program.

In the C# language, a method must belong to a class; methods cannot exist or be defined outside of a class con-

struct.

Figure 9-9: Horizontal Access Controlled via Access Modifiers public and private

Horizontal access to

private members is not

authorized.
202
 © 2008 Rick Miller — All Rights Reserved
 C# For Artists

Chapter 9: Toward Problem Abstraction Methods
Method Naming: Use Action Words That Indicate The Method’s Purpose

Use action words (verbs) when naming a method that provide an indication of the method’s intended purpose.

See Appendix C: Identifier Naming and Self-Commenting Code for a detailed discussion on how to formulate identi-

fier names in a way that makes your code humanly readable.

Maximize Method Cohesion

The first rule of thumb to keep in mind when writing a method is to keep the functionality of the method focused

on the task at hand. The formal term used to describe a method’s focus characteristic is cohesion. Your goal is to write

highly cohesive methods. A method that does things it really shouldn’t be doing is not focused and is referred to as

minimally cohesive. You can easily write cohesive methods if you follow this two-step approach:

Step 1: Follow the advice offered in the previous subsection and start with a good method name.
The name of the method must indicate the method’s intended purpose.

Step 2: Keep the method’s body code focused on performing the task indicated by the method’s
name. A well-named, maximally-cohesive method pulls no surprises!

Sounds simple enough. But if you’re not careful, you can slip functionality into a method that doesn’t belong

there. Sometimes you will do this because you are lazy, and sometimes it will happen no matter how hard you try to

avoid doing so. Practice makes perfect!

Structure Of A Method Definition

A method definition declares and implements a method. A method definition consists of several optional and

mandatory components. These include method modifiers, a return type or void, method name, and parameter list. I

discuss these method components in detail below. Figure 9-10 shows the structure of a method definition.

Any piece of the method definition structure shown in Figure 9-10 that’s labeled with the subscript opt is optional

and can be omitted from a method definition depending on the method’s required behavior. In this chapter, I focus on

just a few of the potentially many method variations you can write. You will be gradually introduced to different

method variations as you progress through the book. The following sections describe each piece of the method defini-

tion structure in more detail.

Method Modifiers (optional)

Use method modifiers to specify a particular aspect of method behavior. Table 9-2 lists and describes the C# key-

words that can be used as method modifiers.

Modifier Description

public The public keyword declares the method’s accessibility to be public.

Public methods can be accessed by client code (i.e., grants horizontal access

to the method).

Table 9-2: Method Modifiers

method_modifiersopt return_type or voidopt method_name(parameter_listopt){
 // method body - program statements go here

 }

Figure 9-10: Method Definition Structure
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 203

Methods Chapter 9: Toward Problem Abstraction
Return Type Or Void (optional)

A method can return a result as a side effect of its execution. If you intend for a method to return a result, you

must specify the return type of the result. If the method does not return a result, then you must use the keyword

void.

The return type and void are optional because constructor methods return neither. Constructor methods are dis-

cussed in detail later in this section.

protected The protected keyword declares the method’s accessibility to be pro-

tected. Protected accessibility prevents horizontal access but allows the

method to be inherited by derived classes.

private The private keyword declares the method’s accessibility to be private.

It prevents both horizontal access and method inheritance.

internal The meaning of the internal keyword is “for use within this program”.

Internal methods can be freely accessed by other classes and members with-

in the same assembly. This includes separate .netmodules compiled togeth-

er using the /addmodule compiler switch.

If, however, you create a dynamic link library (dll) using the /
target:library compiler switch, then internal methods are accessi-

ble to other internal classes and members within that dll, but are not avail-

able for use by external code that links to it.

protected internal A method declared to have protected internal accessibility is

visible to all components contained within the assembly as specified by the

internal keyword, and for use (i.e., can be inherited) by subclasses of the

member’s containing type, regardless to which assembly the subclass be-

longs.

static The static keyword declares a static or class method.

abstract The abstract keyword declares a method that contains no body (no im-

plementation). The purpose of an abstract method is to defer the implemen-

tation of a method’s functionality to a subclass. Abstract methods are

discussed in Chapter 11 — Inheritance.

new The new keyword declares a member with the same name or method sig-

nature as an inherited member. This new member hides the base member.

The new keyword is covered in detail in Chapter 11 — Inheritance.

override The override keyword designates a method as overriding an inherited

method. The override keyword is covered in detail in Chapter 11 — In-

heritance.

virtual The virtual keyword designates a method as being virtual. A virtual

method can be overridden in a subclass. The virtual keyword is cov-

ered in detail in Chapter 11 — Inheritance.

sealed The sealed keyword prevents a method from being overridden in de-

rived classes. Sealed methods are covered in detail in Chapter 11 — Inher-

itance.

extern The extern keyword designates a method as being external. An external

method is one that is implemented in a language other than C#. (C++ or C

for example) The use of the extern keyword is not covered in this book.

Modifier Description

Table 9-2: Method Modifiers
204 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 9: Toward Problem Abstraction Methods
Method Name (mandatory)

The method name is mandatory. As I discussed earlier, you should use verbs in method names since methods per-

form some sort of action. If you chose to ignore good method naming techniques, you will find that your code is hard,

if not impossible, to read and understand. As a result, it will also be hard to fix if it’s broken.

Parameter List (optional)

A method can specify one or more formal parameters. Each formal parameter has a type, a name, and an optional

modifier (ref or out). The name of the parameter has local scope within the body of the method and hides any field

members having the same name. By default, arguments are passed to method parameters by value. The ref parame-

ter modifier can be used to pass arguments by reference. The out parameter modifier is used to return values to the

calling program via the method arguments.

Method Body (optional for abstract or external methods)

The method body is denoted by a set of opening and closing brackets. Any code that appears between a method’s

opening and closing brackets is said to be in the body of the method. If you are declaring an abstract or external

method, omit the braces and terminate the method declaration with a semicolon.

Method Definition Examples

This section offers a few examples of method definitions. The body code is omitted so that you can focus on the

structure of each method definition. The following line of code would define a method that returns a String object that

represents the first name of some object (perhaps a Person object).

public String GetFirstName(){ // body code goes here }

Notice that the above method definition uses the public access modifier, declares a return type of String, and

takes no arguments because it declares no parameters. The name of the method is GetFirstName, which does a good

job of describing the method’s purpose.

The next method declaration might be used to set an object’s first name:

public void SetFirstName(String first_name){ // body code goes here }

This method is also public, but it does not return a result, hence the use of the keyword void. It contains one

parameter named first_name that is of type String.

The following method definition might be used to get a Person object’s age:

public int GetAge(){ // body code goes here }

This method is public and returns an integer type result. It takes no arguments.

See if you can guess what type of method is being defined by the following definition:

public Person(String f_name, String m_name, String l_name){
 // body code goes here
 }

If you guessed that it was a constructor method, you would be right. Constructor methods have no return type,

not even void. This particular constructor declares three formal parameters having type String.
C# For Artists © 2008 Rick Miller — All Rights Reserved 205

Methods Chapter 9: Toward Problem Abstraction
Method Signatures

Methods have a distinguishing characteristic known as a signature. A method’s signature consists of its name and

the number, modifiers, and types of its parameters. Method modifiers and return types are not part of a method’s sig-

nature. It’s important that you understand the concept of method signatures so that you can understand the concept of

method overloading, which is discussed in the next section.

Methods with different names and the same parameter list have different signatures. Methods with the same

name and different parameter lists have different signatures as well, and are said to be overloaded (because they share

the same name). Methods cannot have the same name and identical parameter lists. This will cause a compiler error.

Overloading Methods

A class can define more than one method with the same name but having different signatures. This is referred to

as method overloading. You would overload methods when the method performs the same function but in a slightly

different way or on different argument types. The most commonly overloaded method is the class constructor. You

will see many examples of overloaded class constructors throughout the remaining chapters of this book.

Another frequently encountered method overloading scenario occurs when you want to provide a public method

for horizontal access but actually do the work behind the scenes with a private method. The only rule, as stated above,

is that each method must have a different signature, which means their names can be the same but their parameter

lists must be different in some way. The fact that one is public and the other is private has no bearing on their signa-

tures.

Constructor Methods

Constructor methods are special methods whose purpose is to set up or build the object in memory when it is cre-

ated. You can chose not to define a constructor method for a particular class if you desire. In that case, the compiler

creates a default constructor for you. This default constructor will usually not provide the level of functionality you

require except perhaps in the case of very simple or trivial class declarations. If you want to be sure of the state of an

object when it is created, you must define one or more constructor methods.

Quick Review

Methods are named modules of executable program functionality. Methods contain program statements that,

when grouped together, represent a basic level of code reuse. You access the functionality of a method by calling the

method using its name in a program.

Methods should be well named and maximally cohesive. A well named, maximally cohesive method will pull no

surprises.

Method definitions have structure. Their behavior can be optionally modified with method modifiers, they can

optionally specify a return result type or void, and they can have an optional parameter list.

Methods have a distinguishing characteristic known as a method signature. Methods with different names and

parameter lists are said to have different signatures. Methods with different names and the same parameter list also

have different signatures. Methods with the same name and different parameter lists have different signatures as well

and are said to be overloaded (because they share the same name). Methods cannot have the same name and identical

parameter lists. This will cause a compiler error.

Constructor methods set up or build an object when it’s created in memory. If you do not provide one, the com-

piler will create a default constructor for you, but it may or may not provide the level of functionality you require.
206 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 9: Toward Problem Abstraction Building And Testing The Person Class
Building And Testing The Person Class

Now that you have been introduced to the C# class construct in more detail, it’s time to apply some of what was

discussed above to create and test the Person class. To get the Person class in working order, you will have to take the

results of the analysis performed earlier and map attributes and functionality to fields, properties, and methods. As

you build the Person class, you may discover that you need to add members as necessary to fully implement the class

to your satisfaction. That’s a normal part of the design and programming process.

To write the code for the Person class, I will use the development cycle presented in Chapter 1 and explained in

detail in Chapter 3. The development cycle is applied iteratively. (i.e., I will apply the steps of plan, code, test, and

integrate repeatedly until I have completed the code.)

Start By Creating The Source File And Class Definition Shell

I recommend you start this process by creating the Person.cs source file and the Person class definition shell.

Example 9.6 gives the code for this early stage of the program.

9.6 Person.cs (1st Iteration)

1 public class Person {

2

3 } //end Person class

At this point, I recommend you compile the code to ensure you’ve typed everything correctly and that the name

of the class matches the name of the file. Because you are defining a class that contains no Main() method, you’ll get

an error stating such unless you create a module using the /target:module compiler switch. The complete com-

mand required to compile the Person.cs file will be:

csc /target:module Person.cs

A successful compilation results in no errors or warnings, and a file named Person.netmodule will be written to

the project directory.

The next thing to do is to refer to Table 9-1 and see what attributes or fields the Person class must contain, and

add those fields. This is done in the next section.

Defining Person Instance Fields

After consulting Table 9-1, you learn that the Person class represents a person entity in our problem domain.

Each person has his or her own name, gender, and birth date, so these are good candidates for instance fields in the

Person class. Example 9.7 shows the Person class code after the instance fields have been added.

9.7 Person.cs (2nd Iteration)

1 using System;

2

3 public class Person {

4 private String _firstName;

5 private String _middleName;

6 private String _lastName;

7 private String _gender;

8 private DateTime _birthday;

9

10 } // end Person class

Two .NET API classes are used for the fields in Example 9.7: String and DateTime. The using keyword on line 1

provides shortcut naming for both the String and DateTime types. These fields represent a first attempt at defining

fields for the Person class. Each field is declared to be private, which means they will be encapsulated by the Person

class to prevent horizontal access. The only way to access or modify these fields will be through the Person class’s

public interface properties or methods. Let’s define a few of those right now. But, before you move on, compile the

Person.cs source file again to make sure you didn’t break anything. Compiling the Person class in its present state will

result in several compiler warnings, one for each unused field. You may safely ignore those warnings for now.
C# For Artists © 2008 Rick Miller — All Rights Reserved 207

Building And Testing The Person Class Chapter 9: Toward Problem Abstraction
Defining Person Properties And Constructor Method

Now that several Person class instance fields have been created, it’s time to define a way to set and manipulate

those fields. My approach starts by defining Person’s instance properties. I will then use the properties in one or more

constructor methods to set the value of each field at the time of object creation. After you’ve defined several proper-

ties and a constructor method, you can use them to test those aspects of Person class behavior.

Adding Properties

Properties are the preferred way to get or set an object’s attributes. In this simple example, the initial set of prop-

erties defined for the Person class will correspond to its instance fields. Example 9.8 shows the code for an initial set

of read/write properties.
9.8 Person.cs (3rd Iteration)

1 using System;
2
3 public class Person {
4
5 // private instance fields
6 private String _firstName;
7 private String _middleName;
8 private String _lastName;
9 private String _gender;
10 private DateTime _birthday;
11
12
13 // public properties
14 public String FirstName {
15 get { return _firstName; }
16 set { _firstName = value; }
17 }
18
19 public String MiddleName {
20 get { return _middleName; }
21 set { _middleName = value; }
22 }
23
24 public String LastName {
25 get { return _lastName; }
26 set { _lastName = value; }
27 }
28
29 public String Gender {
30 get { return _gender; }
31 set { _gender = value; }
32 }
33
34 public DateTime BirthDay {
35 get { return _birthday; }
36 set { _birthday = value; }
37 }
38
39 } // end Person class

Referring to Example 9.8 — each read/write property implements a get and set accessor. Remember that the

identifier named “value” is an implied parameter. Compiling the Person.cs file in its current state will clear up the

unused field warnings now that each field is used in a property definition.

Adding A Constructor Method

The purpose of a constructor method is to properly initialize an object when it is created in memory. In the case

of the Person class, this means that each person object’s fields must be initialized to some valid value. To make this

happen, I will add a constructor method that takes a parameter list matching the fields contained in the Person class.

These parameters will then be used to initialize each field. The approach I will take will be to initialize the fields via

the properties. Example 9.9 gives the code for the Person class definition after the constructor has been added.
208 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 9: Toward Problem Abstraction Building And Testing The Person Class
9.9 Person.cs (4th Iteration)

1 using System;
2
3 public class Person {
4
5 // private instance fields
6 private String _firstName;
7 private String _middleName;
8 private String _lastName;
9 private String _gender;
10 private DateTime _birthday;
11
12 // constructor
13 public Person(String firstName, String middleName, String lastName,
14 String gender, DateTime birthday){
15 FirstName = firstName;
16 MiddleName = middleName;
17 LastName = lastName;
18 Gender = gender;
19 BirthDay = birthday;
20 }
21
22 // public properties
23 public String FirstName {
24 get { return _firstName; }
25 set { _firstName = value; }
26 }
27
28 public String MiddleName {
29 get { return _middleName; }
30 set { _middleName = value; }
31 }
32
33 public String LastName {
34 get { return _lastName; }
35 set { _lastName = value; }
36 }
37
38 public String Gender {
39 get { return _gender; }
40 set { _gender = value; }
41 }
42
43 public DateTime BirthDay {
44 get { return _birthday; }
45 set { _birthday = value; }
46 }
47 } // end Person class

Referring to Example 9.9 — the Person constructor method begins on line 13. Notice that it is declared to be

public and has no return value. It has five parameters. Each parameter is used in the body of the constructor to set the

Person’s properties. The properties, in turn, set the values of their corresponding fields.

OK, now that you’ve got the constructor written, compile the Person.cs source file to ensure you didn’t break

anything. It’s now time to test this puppy.

Testing The Person Class: A Miniature Test Plan

Testing the Person class at this stage of the development cycle consists of creating a Person object and then writ-

ing and reading each of its properties. When you create a Person object using the constructor defined in the previous

section, you are testing that constructor. The constructor method exercises each property’s set accessor. Printing the

value of each property to the console would test each property’s get accessor.

Use The PeopleManagerApplication Class As A Test Driver

To test the Person class functionality you’ll need to create an application class. Since you need to create the Peo-

pleManagerApplication class anyway, you may as well use that class as a test driver. The term driver means a small

program written specifically to run or test another program. Example 9.10 gives the code for the PeopleManagerAp-

plication class with a few lines of code that tests the functionality of the Person class developed thus far.
C# For Artists © 2008 Rick Miller — All Rights Reserved 209

Building And Testing The Person Class Chapter 9: Toward Problem Abstraction
9.10 PeopleManagerApplication.cs (Testing Person)

1 using System;
2
3 public class PeopleManagerApplication {
4 public static void Main(){
5 Person p1 = new Person("Ulysses", "S", "Grant", "Male", new DateTime(1822, 04, 22));
6 Console.WriteLine(p1.FirstName + " " + p1.MiddleName + " " + p1.LastName + " "
7 + p1.Gender + " " + p1.BirthDay);
8 } // end Main
9 } // end class definition

Referring to Example 9.10 — notice how a new DateTime object must be created before being used as an argu-

ment for the Person constructor method. To compile this program with the Person.netmodule, use the following com-

mand:

csc /addmodule:Person.netmodule PeopleManagerApplication.cs

Figure 9-11 shows the results of running this program. Everything appears to run fine. It’s now time to add a few

more features to the Person class.

Adding Features To The Person Class: Calculating Age

Returning to Table 9-1 for some direction reveals the requirement to calculate a person’s age. This could be done

in several ways. Think for a moment how you might go about doing this in real life. You might ask people for their

birth date and perform the calculation yourself, or you could just ask them how old they are and let them do the calcu-

lation for you. I will take the later approach. I’ll add a read-only property named Age that computes a Person object’s

age and returns the result. Example 9.11 shows the modified Person class code.
9.11 Person.cs (5th Iteration)

1 using System;
2
3 public class Person {
4
5 // private instance fields
6 private String _firstName;
7 private String _middleName;
8 private String _lastName;
9 private String _gender;
10 private DateTime _birthday;
11
12 public Person(String firstName, String middleName, String lastName,
13 String gender, DateTime birthday){
14 FirstName = firstName;
15 MiddleName = middleName;
16 LastName = lastName;
17 Gender = gender;
18 BirthDay = birthday;
19 }
20
21 // public properties
22 public String FirstName {
23 get { return _firstName; }
24 set { _firstName = value; }
25 }
26
27 public String MiddleName {
28 get { return _middleName; }
29 set { _middleName = value; }
30 }
31
32 public String LastName {
33 get { return _lastName; }
34 set { _lastName = value; }
35 }
36

Figure 9-11: Results of Running Example 9.10
210
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 9: Toward Problem Abstraction Building And Testing The Person Class
37 public String Gender {
38 get { return _gender; }
39 set { _gender = value; }
40 }
41
42 public DateTime BirthDay {
43 get { return _birthday; }
44 set { _birthday = value; }
45 }
46
47 public int Age {
48 get {
49 int years = DateTime.Now.Year - _birthday.Year;
50 int adjustment = 0;
51 if(DateTime.Now.Month < _birthday.Month){
52 adjustment = 1;
53 }else if((DateTime.Now.Month == _birthday.Month) && (DateTime.Now.Day < _birthday.Day)){
54 adjustment = 1;
55 }
56 return years - adjustment;
57 }
58 }
59
60 } // end Person class

Referring to Example 9.11 — the Age property definition begins on line 47. As you can see, calculating some-

one’s age takes some doing.

After making the necessary modifications to the Person class you can test the changes in the PeopleManagerAp-

plication class. Example 9.12 shows the code for the modified PeopleManagerApplication class. Figure 9-12 shows

the results of running this program.
9.12 PeopleManagerApplication.cs

(Testing Person Age property)

1 using System;
2
3 public class PeopleManagerApplication {
4 public static void Main(){
5 Person p1 = new Person("Ulysses", "S", "Grant", "Male", new DateTime(1822, 04, 22));
6 Console.WriteLine(p1.FirstName + " " + p1.MiddleName + " " + p1.LastName + " "
7 + p1.Gender + " " + p1.BirthDay);
8 Console.WriteLine(p1.FirstName + " is " + p1.Age + " years old!");
9 } // end Main
10 } // end class definition

Adding Features To The Person Class: Convenience Properties

The Age property seems to work pretty well. However, it’s a hassle to get a Person object’s full name and other

vital information by calling each individual property. It might be a good idea to add a property that will do the job for

you. While you’re at it, you could add a property that returns both the full name and age. Each of these properties can

use the services of existing properties. Example 9.13 shows the modified Person class.
9.13 Person.cs (6th Iteration)

1 using System;
2
3 public class Person {
4
5 // private instance fields
6 private String _firstName;
7 private String _middleName;
8 private String _lastName;
9 private String _gender;
10 private DateTime _birthday;
11
12 public Person(String firstName, String middleName, String lastName,

Figure 9-12: Results of Running Example 9.12
C# For Artist
s © 2008 Rick Miller — All Rights Reserved 211

Building And Testing The Person Class Chapter 9: Toward Problem Abstraction
13 String gender, DateTime birthday){
14 FirstName = firstName;
15 MiddleName = middleName;
16 LastName = lastName;
17 Gender = gender;
18 BirthDay = birthday;
19 }
20
21 // public properties
22 public String FirstName {
23 get { return _firstName; }
24 set { _firstName = value; }
25 }
26
27 public String MiddleName {
28 get { return _middleName; }
29 set { _middleName = value; }
30 }
31
32 public String LastName {
33 get { return _lastName; }
34 set { _lastName = value; }
35 }
36
37 public String Gender {
38 get { return _gender; }
39 set { _gender = value; }
40 }
41
42 public DateTime BirthDay {
43 get { return _birthday; }
44 set { _birthday = value; }
45 }
46
47 public int Age {
48 get {
49 int years = DateTime.Now.Year - _birthday.Year;
50 int adjustment = 0;
51 if(DateTime.Now.Month < _birthday.Month){
52 adjustment = 1;
53 }else if((DateTime.Now.Month == _birthday.Month) && (DateTime.Now.Day < _birthday.Day)){
54 adjustment = 1;
55 }
56 return years - adjustment;
57 }
58 }
59
60 public String FullName {
61 get { return FirstName + " " + MiddleName + " " + LastName; }
62 }
63
64 public String FullNameAndAge {
65 get { return FullName + " " + Age; }
66 }
67
68 } // end Person class

Referring to Example 9.13 — the FullName property appears on line 60. It concatenates the FirstName, Middle-

Name, and LastName properties and returns the resulting String object that represents the Person object’s full name.

The FullNameAndAge property on line 64 utilizes the services of the FullName and Age properties. This is a

good example of code reuse at the class level. Since the properties exist and already provide the required functionality

it’s a good idea to use them.

It’s time to compile the Person class and test the changes. Example 9.14 gives the modified PeopleManagerAp-

plication class with the changes required to test the Person class’s new functionality. Notice the code is a lot cleaner

now. Figure 9-13 shows the results of running this program.
9.14 PeopleManagerApplication.cs

(Testing Person FullNameAndAge Property)

1 using System;
2
3 public class PeopleManagerApplication {
4 public static void Main(){
5 Person p1 = new Person("Ulysses", "S", "Grant", "Male", new DateTime(1822, 04, 22));
6 Console.WriteLine(p1.FullNameAndAge);
7 }
8 }
212 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 9: Toward Problem Abstraction Building And Testing The Person Class
Adding Features To The Person Class: Finishing Touches

It’s time to take a step back and look at the Person class with an eye towards adding any methods, properties, or

other members that might make its usage easier or more intuitive. There are, in fact, many ways to improve upon the

design of Person class, but some of what can be done will have to wait until you’ve gone a little farther in the book.

One aspect of performance we can address here is the addition of a default constructor. Because up to this point I

have failed to implement a default constructor, Person objects can be created with meaningless values assigned to

each field. To prevent this from happening, add a private default constructor. This will force the use of the one public

constructor currently supported by the Person class.

Another helpful member to add is an overriding ToString() method. Although I do not formally cover the concept

of method overriding until Chapter 11 — Inheritance, it won’t hurt to give you a peek at a simple example.

One last thing. It would be nice to limit the range of authorized values the Gender property can assume. This is a

perfect use for an enumeration. Example 9.15 gives the code for the improved Person class.
9.15 Person.cs (7th Iteration)

1 using System;
2
3 public class Person {
4
5 //enumeration
6 public enum Sex {MALE, FEMALE};
7
8 // private instance fields
9 private String _firstName;
10 private String _middleName;
11 private String _lastName;
12 private Sex _gender;
13 private DateTime _birthday;
14
15 //private default constructor
16 private Person(){}
17
18 public Person(String firstName, String middleName, String lastName,
19 Sex gender, DateTime birthday){
20 FirstName = firstName;
21 MiddleName = middleName;
22 LastName = lastName;
23 Gender = gender;
24 BirthDay = birthday;
25 }
26
27 // public properties
28 public String FirstName {
29 get { return _firstName; }
30 set { _firstName = value; }
31 }
32
33 public String MiddleName {
34 get { return _middleName; }
35 set { _middleName = value; }
36 }
37
38 public String LastName {
39 get { return _lastName; }
40 set { _lastName = value; }
41 }
42
43 public Sex Gender {
44 get { return _gender; }
45 set { _gender = value; }
46 }
47
48 public DateTime BirthDay {

Figure 9-13: Results of Running Example 9.14
C# For Artis
ts © 2008 Rick Miller — All Rights Reserved 213

Building And Testing The Person Class Chapter 9: Toward Problem Abstraction
49 get { return _birthday; }
50 set { _birthday = value; }
51 }
52
53 public int Age {
54 get {
55 int years = DateTime.Now.Year - _birthday.Year;
56 int adjustment = 0;
57 if(DateTime.Now.Month < _birthday.Month){
58 adjustment = 1;
59 }else if((DateTime.Now.Month == _birthday.Month) && (DateTime.Now.Day < _birthday.Day)){
60 adjustment = 1;
61 }
62 return years - adjustment;
63 }
64 }
65
66 public String FullName {
67 get { return FirstName + " " + MiddleName + " " + LastName; }
68 }
69
70 public String FullNameAndAge {
71 get { return FullName + " " + Age; }
72 }
73
74 public override String ToString(){
75 return FullName + " is a " + Gender + " who is " + Age + " years old.";
76 }
77
78 } // end Person class

Referring to Example 9.15 — the enumeration Sex is defined on line 6 and provides two authorized values:

MALE and FEMALE. The _gender field’s type on line 12 is now Sex vs. String. A similar change was made to the

constructor’s gender parameter. The private default constructor appears on line 17. On line 43, the type of the Gender

property was changed to Sex. Finally, the overriding ToString() method definition begins on line 74.

Example 9.16 shows the modified Person class being tested in the PeopleManagerApplication class.
9.16 PeopleManagerApplication.cs

(Testing modified Person class)

1 using System;
2
3 public class PeopleManagerApplication {
4 public static void Main(){
5 Person p1 = new Person("Ulysses", "S", "Grant", Person.Sex.MALE, new DateTime(1822, 04, 22));
6 Console.WriteLine(p1);
7 } // end Main
8 } // end class definition

Referring to Example 9.16 — note the use of the enumeration in the constructor argument list to set the Person

object’s gender. Also note now that because Object’s ToString() method has been overridden, all that’s required to

print a Person object’s vital information is to simply call the WriteLine() method with the argument p1. Figure 9-14

shows the results of running this program.

Quick Review

Incrementally build and test abstract data types by iteratively applying the steps of the development cycle. Start

with the class definition shell and then add fields, properties, and methods as required to fulfill the class’s design

objectives.

Test class functionality with the help of a test driver. A test driver is a small program that’s used to exercise the

functionality of another program.

Figure 9-14: Results of Running Example 9.16
214
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 9: Toward Problem Abstraction Building and Testing The PeopleManager Class
Building and Testing The PeopleManager Class

Now that the Person class is finished, it’s time to shift focus to the PeopleManager class. Consulting Table 9-1

again reveals that the PeopleManager class will manipulate an array of Person objects. It must insert Person objects

into the array, delete Person objects from the array, and list the names and perhaps other information for Person

objects contained in the array.

The same approach used to develop the Person class is used here to develop the PeopleManager class. The devel-

opment cycle is applied iteratively to yield the final result.

Defining The PeopleManager Class Shell

Example 9.17 gives the source code for the PeopleManager class definition shell. Compile the code the same

way you did the Person class by using the compiler’s /target:module switch.
9.17 PeopleManager.cs (1st Iteration)

1 public class PeopleManager {
2
3
4
5 } // end PeopleManager class

To this shell you will add fields and methods.

Defining PeopleManager Fields

Table 9-1 says the PeopleManager class will manage an array of Person objects. This means it will need a field

that is a single-dimensional array of type Person. Example 9.18 gives the modified source code for the PeopleMan-

ager class after the declaration of a Person array named people_array.
9.18 PeopleManager.cs (2nd Iteration)

1 public class PeopleManager {
2 Person[] people_array;
3
4
5 } // end PeopleManager class

Additional fields may be required, but for now this is a good start. You can compile this file in its current state

using two approaches. If you want to use the Person.netmodule created earlier you can use the following compiler

command:

csc /target:module /addmodule:Person.netmodule PeopleManager.cs

Alternatively, you can compile both the Person.cs and PeopleManager.cs files together using the following com-

piler command:

csc /target:module Person.cs PeopleManager.cs

Both approaches yield a new module named PeopleManager.netmodule. Now it’s time to add some methods.

Defining PeopleManager Constructor Methods

We’ll give the PeopleManager class two constructors. One will be a default constructor, but unlike the Person’s

private default constructor, this one will be public for the reasons you’ll soon see. The other constructor will do most

of the dirty work of initializing the PeopleManager object. This includes initializing the people_array and any other

fields we add to the PeopleManager class. The default constructor will simply call the other constructor with a default

array length value.

To create the people_array object, you will need to know how long the array must be. (i.e., how many Person ref-

erences you need it to store.) You will supply the length via a constructor parameter. If you do not supply a length

argument when you create an instance of PeopleManager then the default constructor will create the people_array
C# For Artists © 2008 Rick Miller — All Rights Reserved 215

Building and Testing The PeopleManager Class Chapter 9: Toward Problem Abstraction
with some default length value. In the following example, I use a default length of 10. Example 9.19 gives the modi-

fied PeopleManager class after the constructors have been added.
9.19 PeopleManager.cs (3rd Iteration)

1 using System;
2
3 public class PeopleManager {
4 // private fields
5 private Person[] people_array;
6
7 // overloaded constructor
8 public PeopleManager(int length){
9 people_array = new Person[length];
10 }
11
12 // default constructor
13 public PeopleManager():this(10){ }
14
15 } // end PeopleManager class

Referring to Example 9.19 — the constructor on line 8 takes an integer parameter named length and uses it to

dynamically create the people_array in memory. The default constructor starts on line 13. It takes no parameters. It

calls the constructor defined on line 8 via the peculiar-looking this(10) call. The compiler will sort out which con-

structor this() refers to by examining the parameter list. Since there is a constructor defined to take an integer as a

parameter, it will use that constructor.

Compile the code to ensure you didn’t break anything. Then add some more methods so you can start seriously

testing the PeopleManager class.

Defining Additional PeopleManager Methods

I recommend adding the capability to add Person objects to the people_array first. Then you can add the capabil-

ity to list their information, and finally, the capability to delete them.

A good candidate name for a method that adds a person would be AddPerson(). Likewise, a good candidate name

for a method that lists the Person objects in the array might be ListPeople(). Example 9.20 gives the source code for

the PeopleManager class containing the newly created AddPerson() and ListPeople() methods.
9.20 PeopleManager.cs (4th Iteration)

1 using System;
2
3 public class PeopleManager {
4 // private fields
5 private Person[] people_array;
6 int index = 0;
7
8 // overloaded constructor
9 public PeopleManager(int length){
10 people_array = new Person[length];
11 }
12
13 // default constructor
14 public PeopleManager():this(10){ }
15
16
17 public void AddPerson(String firstName, String middleName, String lastName,
18 Person.Sex gender, int dob_year, int dob_month, int dob_day){
19 if(index >= people_array.Length){
20 index = 0;
21 }
22 if(people_array[index] == null){
23 people_array[index++] = new Person(firstName, middleName, lastName, gender,
24 new DateTime(dob_year, dob_month, dob_day));
25 }
26 } // end method
27
28
29 public void ListPeople(){
30 for(int i = 0; i<people_array.Length; i++){
31 if(people_array[i] != null){
32 Console.WriteLine(people_array[i]);
33 }
34 }
35 } // end method
36 } // end PeopleManager class
216 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 9: Toward Problem Abstraction Building and Testing The PeopleManager Class
Referring to Example 9.20 — let’s look at the AddPerson() method for a moment. It has a parameter list that con-

tains all the elements required to create a Person object. These include firstName, middleName, lastName, gender,

dob_year, dob_month, and dob_day. The first thing the AddPerson() method does is to check to see if the value of the

index field is greater than or equal to the length of the people_array. If so, it resets its value to 0. This guards against

the possibility of exceeding the bounds of the array. Next, the AddPerson() method checks to see if a particular array

element is equal to null. The first time the AddPerson() method is called on a particular PeopleManager object all the

people_array elements will be null.

In this simple example, the AddPerson() method will add Person objects to the array until the array is full. From

then on it will only insert Person objects if the array element it’s trying to access is null. There are better ways to

implement this method and they are left as exercises at the end of the chapter.

The ListPerson() method simply iterates over the people_array. If the array element is not null (meaning it points

to a Person object) it uses that array element as an argument to the WriteLine() method, which in turn calls the Person

object’s ToString() method automatically.

Testing The PeopleManager Class

You can use the PeopleManagerApplication class once again to test the functionality of the PeopleManager class.

Example 9.21 gives the source code for the modified PeopleManagerApplication class. Figure 9-15 shows the results

of running this program.
9.21 PeopleManagerApplication.cs

(Testing the PeopleManager class)

1 using System;
2
3 public class PeopleManagerApplication {
4 public static void Main(){
5 PeopleManager pm = new PeopleManager(); // default constructor call
6 pm.AddPerson("Jeff", "J", "Meyer", Person.Sex.MALE, 1975, 03, 12);
7 pm.AddPerson("Pete", "M", "Luongo", Person.Sex.MALE, 1967, 06, 18);
8 pm.AddPerson("Alex", "T", "Remily", Person.Sex.MALE, 1965, 11, 24);
9 pm.ListPeople();
10 } // end Main
11 } // end class definition

Referring to Example 9.21 — the PeopleManager default constructor is tested on line 5. This also tests the other

PeopleManager constructor. Killed two birds with one stone here! The AddPerson() method is tested on lines 6

through 8, and the ListPeople() method is tested on line 9. Everything appears to work as expected. You can now add

the capability to delete Person objects and perhaps some other functionality as well.

Adding Features To The PeopleManager Class

The PeopleManager class now implements two out of three required features. You can add Person objects to the

people_array and you can list information about each Person object contained in the people_array. It’s now time to

implement the capability to delete Person objects from the array. A good candidate name for a method to delete a Per-

son object from the array is DeletePerson(). See — method naming isn’t so hard! But wait, not so fast. You just can’t

delete a Person from an arbitrary element. It might be better instead to delete a Person object from a specific

people_array element, in which case you might want to better name the method DeletePersonAtIndex().

While you’re at it, you might want to add the capability to insert Person objects into a specific element within the

array. A good candidate name for such a method might be InsertPersonAtIndex(). Example 9.22 gives the source code

for the modified PeopleManager class.

Figure 9-15: Results of Running Example 9.21
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 217

Building and Testing The PeopleManager Class Chapter 9: Toward Problem Abstraction
9.22 PeopleManagerClass.cs (5th Iteration)

1 using System;
2
3 public class PeopleManager {
4 // private fields
5 private Person[] people_array;
6 int index = 0;
7
8 // overloaded constructor
9 public PeopleManager(int length){
10 people_array = new Person[length];
11 }
12
13 // default constructor
14 public PeopleManager():this(10){ }
15
16 public void AddPerson(String firstName, String middleName, String lastName,
17 Person.Sex gender, int dob_year, int dob_month, int dob_day){
18 if(index >= people_array.Length){
19 index = 0;
20 }
21 if(people_array[index] == null){
22 people_array[index++] = new Person(firstName, middleName, lastName, gender,
23 new DateTime(dob_year, dob_month, dob_day));
24 }
25 } // end method
26
27 public void ListPeople(){
28 for(int i = 0; i<people_array.Length; i++){
29 if(people_array[i] != null){
30 Console.WriteLine(people_array[i]);
31 }
32 }
33 } // end method
34
35
36 public void DeletePersonAtIndex(int index){
37 if(!(index < 0) || (index >= people_array.Length)){
38 people_array[index] = null;
39 this.index = index;
40 }
41 }
42
43 public void InsertPersonAtIndex(int index, String firstName, String middleName,
44 String lastName, Person.Sex gender, int dob_year,
45 int dob_month, int dob_day){
46 if(!(index < 0) || (index >= people_array.Length)){
47 this.index = index;
48 people_array[this.index++] = new Person(firstName, middleName, lastName, gender,
49 new DateTime(dob_year, dob_month, dob_day));
50 }
51 }
52
53 } // end PeopleManager class

Referring to Example 9.22 — examine closely for a moment the DeletePersonAtIndex() method whose defini-

tion starts on line 36. It declares one parameter named index. This parameter name will hide the field named index

which is the desired behavior in this case. There is also a danger that the argument used in the DeletePersonAtIndex()

method call might be invalid given the length of the people_array. The if statement on line 37 enforces the precondi-

tion that the value of the index parameter must be greater than or equal to zero or less than the length of the

people_array. A similar test is made on the index parameter of the InsertPersonAtIndex().

Example 9.23 gives the source code for the PeopleManagerApplication class that tests the newly added People-

Manager class functionality. Figure 9-16 shows the results of running this program.
9.23 PeopleManagerApplication.cs

1 using System;
2
3 public class PeopleManagerApplication {
4 public static void Main(){
5 PeopleManager pm = new PeopleManager(); // default constructor call
6 pm.AddPerson("Jeff", "J", "Meyer", Person.Sex.MALE, 1975, 03, 12);
7 pm.AddPerson("Pete", "M", "Luongo", Person.Sex.MALE, 1967, 06, 18);
8 pm.AddPerson("Alex", "T", "Remily", Person.Sex.MALE, 1965, 11, 24);
9 pm.ListPeople();
10 Console.WriteLine("--");
11 pm.DeletePersonAtIndex(0);
12 pm.ListPeople();
13 Console.WriteLine("--");
218 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 9: Toward Problem Abstraction More About Methods
14 pm.InsertPersonAtIndex(0, "Coralie", "S", "Miller", Person.Sex.FEMALE, 1963, 04, 04);

15 pm.ListPeople();

16 } // end Main

17 } // end class definition

Quick Review

The PeopleManager class implementation process followed the same pattern as that of class Person. It started

with the class shell and added fields and methods as required to implement the necessary functionality. Develop code

incrementally by applying the development cycle in an iterative fashion.

More About Methods

In this section I’d like to focus your attention on several behavioral aspects of methods you will find helpful to

fully understand before attempting more complex programming projects. You need to know the difference between

value parameters and reference parameters, and be aware of local variable scoping rules.

Value Parameters And Reference Parameters

There are two ways to pass arguments to methods: 1) by value, or 2) by reference. A method parameter that omits

the optional ref modifier is a value parameter by default. It’s critical that you understand completely the difference

between these two modes of parameter behavior or your methods may not work as you expect.

Value Parameters: The Default Parameter Passing Mode

Two sorts of things can be passed as arguments to a method: 1) a value type object or 2) a reference that points to

an object, otherwise simply referred to as a reference. When an argument is passed to a method, a copy of the argu-

ment is made and assigned to its associated method parameter. This is referred to as pass by copy or pass by value. I

say again, behind the scenes, both categories of objects, value and reference, are copied into memory areas accessible

to the method. Once copied, value types behave one way and reference types behave another way.

Consider for a moment the following method declaration:

public void SomeMethod(int int_param, Object object_ref_param){
 // body statements omitted
 }

The SomeMethod() method declares two parameters: one value type int parameter and one Object reference

parameter. This means that SomeMethod() can take two arguments: the first must be an integer and the second can be

a reference to any Object. Remember — classes are reference types and structures are value types! Also remember

that a reference contains a value that represents the memory location of the object to which it points. The values con-

tained in these two arguments (an int and a reference) are copied to their corresponding parameters during the early

Figure 9-16: Results of Running Example 9.23
C# For Artis
ts © 2008 Rick Miller — All Rights Reserved 219

More About Methods Chapter 9: Toward Problem Abstraction
stages of the call to SomeMethod(). When SomeMethod() executes, it is only operating on its parameters, meaning it

is only operating on copies of the original argument values.

For value types, this simply means that any change of value made to a method’s parameter will only affect the

copy — not the original value. The same holds true for reference parameters. A reference parameter will point to the

same object the reference argument points to unless, during the method call, the reference parameter is changed to

point to a different object. This change will only affect the parameter or copy — not the original reference used as an

argument to the method call. Bear in mind, however, that as long as a reference parameter points to the same object

the argument points to, changes to the object made via the parameter will have the same effect as though they were

made via the argument itself. Figure 9-17 illustrates these concepts using a class’s fields as method arguments.

Referring to Figure 9-17 — Prior to a method call, value type and reference fields contain values. During method

setup these values are copied to their corresponding method parameters. The parameters can be manipulated by the

method during the method’s lifetime. Changes to the parameter values will only affect the parameters, not the original

arguments. After the method call, value types and references used as arguments will retain their original values.

Changes to the object pointed to by the reference parameter will remain in effect.

Reference Parameters: Using The ref Parameter Modifier

The ref modifier can be applied to parameters to change the way they behave inside of a method. Consider for

a moment this modified version of SomeMethod():

public void SomeMethod(ref int int_param, ref Object object_ref_param){
 // body statements omitted
}
In this version, the ref modifier is applied to each parameter. Figure 9-18 illustrates how these reference param-

eters behave differently from value parameters.

Referring to Figure 9-18 — the ref modifier changes the behavior of the method’s parameters. Value type argu-

ments like int, float, double, etc., behave as though they are references. Any change made to a value type ref parame-

ter in the body of the method affects the original argument. In the case of reference type arguments, the ref

parameter is a reference to a reference, as you can see from the diagram. What this means is that if you create a new

object in the body of the method and assign its address to a reference parameter, it will be assigned to the original

argument reference and it will now point to the new object.

I see that glazed look in your eyes. Check out the following two programs and note their behavior. Example 9.24

demonstrates the scenario shown in Figure 9-17. Example 9.25 demonstrates the scenario shown in Figure 9-18.

Figure 9-17: Default Value Parameter Behavior

Before method call: value type field will have an

int value and reference field will contain the

address of an object.

During method setup

values contained in

fields are copied to

method parameters.

During the method’s lifetime it manipulates its param-

eters, which contain copies of the original arguments.

Upon completion of method call

only original arguments remain.
220
 © 2008 Rick Miller — All Righ
ts Re
served C# For Artists

Chapter 9: Toward Problem Abstraction More About Methods
9.24 ValueParameterTest.cs

1 using System;
2 using System.Text;
3
4 public class ValueParameterTest {
5
6 int int_field;
7 StringBuilder object_ref_field = new StringBuilder();
8
9 public void F(int int_param, StringBuilder object_ref_param){
10 int_param = 2;
11 Console.WriteLine("Value of int_param modified in method: " + int_param);
12 object_ref_param.Append("Two");
13 Console.WriteLine("The value of object_ref_param after calling Append() in method: "
14 + object_ref_param);
15 object_ref_param = new StringBuilder();
16 object_ref_param.Append("Three");
17 Console.WriteLine("The value of object_ref_param after calling Append() in method: "
18 + object_ref_param);
19
20 }
21
22 public void G(){
23 int_field = 1;
24 object_ref_field.Append("One");
25 Console.WriteLine("The value of int_field before method call is: " + int_field);
26 Console.WriteLine("The value of the object_ref_field before method call is: " + object_ref_field);
27 Console.WriteLine("--");
28 F(int_field, object_ref_field);
29 Console.WriteLine("--");
30 Console.WriteLine("The value of int_field after method call is: " + int_field);
31 Console.WriteLine("The value of the object_ref_field after method call is: " + object_ref_field);
32
33 }
34
35 public static void Main(){
36 ValueParameterTest pt = new ValueParameterTest();
37 pt.G();
38 } // end Main
39 } // end class definition

Referring to Example 9.24 — the ValueParameterTest class declares two fields: int_field and object_ref_field.

The object_ref_field is of type StringBuilder. The method F() whose definition begins on line 9 declares two parame-

ters, one of type int named int_param and one of type StringBuilder named object_ref_param. The important thing to

note in the body of method F() is that after the Append() method is called on the initial object_ref_param value, a new

StringBuilder is created on line 15 and its reference is assigned to object_ref_param. Note that this has no effect on

the reference value contained in object_ref_field.

Method G() whose definition begins on line 22 simply prints field values to the console before and after calling

method F(). Again, value parameter passing is the default mode. Compare this code with Example 9.25.

Before method call: value type field will have an

int value and reference field will contain the

address of an object.

During method setup

values contained in

fields are copied to

method parameters.

During the method’s lifetime int_param behaves like a

reference while object_ref_param is a reference to a

reference.

Upon completion of method call only orig-

inal arguments remain, but they may con-

tain modified values.

Figure 9-18: Reference Parameter Behavior — Using ref Modifier
C#
 For Artists © 2008 Rick Miller — All R
ights Reserved 221

More About Methods Chapter 9: Toward Problem Abstraction
9.25 RefParameterTest.cs

1 using System;
2 using System.Text;
3
4 public class RefParameterTest {
5
6 int int_field;
7 StringBuilder object_ref_field = new StringBuilder();
8
9 public void F(ref int int_param, ref StringBuilder object_ref_param){
10 int_param = 2;
11 Console.WriteLine("Value of int_param modified in method: " + int_param);
12 object_ref_param.Append("Two");
13 Console.WriteLine("The value of object_ref_param after calling Append() in method: "
14 + object_ref_param);
15 object_ref_param = new StringBuilder();
16 object_ref_param.Append("Three");
17 Console.WriteLine("The value of object_ref_param after calling Append() in method: "
18 + object_ref_param);
19
20 }
21
22 public void G(){
23 int_field = 1;
24 object_ref_field.Append("One");
25 Console.WriteLine("The value of int_field before method call is: " + int_field);
26 Console.WriteLine("The value of the object_ref_field before method call is: " + object_ref_field);
27 Console.WriteLine("--");
28 F(ref int_field, ref object_ref_field);
29 Console.WriteLine("--");
30 Console.WriteLine("The value of int_field after method call is: " + int_field);
31 Console.WriteLine("The value of the object_ref_field after method call is: " + object_ref_field);
32 }
33
34 public static void Main(){
35 RefParameterTest pt = new RefParameterTest();
36 pt.G();
37 } // end Main
38 } // end class definition

Referring to Example 9.25 — the differences between this code and the previous example is the following: 1) the

class name, 2) the ref modifier has been applied to both of method F()’s parameters, and 3) the ref argument mod-

ifier has been applied to the arguments passed to the F() method call on line 28. This is required otherwise you will

receive a compiler error. Figures 9.19 and 9.20 show the results of running these programs.

Figure 9-19: Results of Running Example 9.24

Figure 9-20: Results of Running Example 9.25
222
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 9: Toward Problem Abstraction More About Methods
The out Parameter Modifier

The out parameter modifier indicates that a parameter will be used to return a result to the calling program via

its associated argument. An out parameter is similar to a ref parameter, but differs in that the initial value of an out

parameter’s associated argument is not important. Example 9.26 shows the use of the out parameter modifier.
9.26 OutParamTest.cs

1 using System;
2
3 public class OutParamTest {
4 int _a = 2;
5 int _count = 10;
6 long _result;
7
8 public void Factor(int value, int power, out long total){
9 total = 1;
10 for(int i = 1; i <= power; i++){
11 total = total * value;
12 Console.WriteLine("Value of i is {0} and value of total is {1}", i, total);
13 }
14 }
15
16 public void Run(){
17 Console.WriteLine("The value of _result before calling Factor is: " + _result);
18 Console.WriteLine("--");
19 Factor(_a, _count, out _result);
20 Console.WriteLine("--");
21 Console.WriteLine("The value of _result after calling Factor is: " + _result);
22 }
23
24 public static void Main(){
25 OutParamTest pt = new OutParamTest();
26 pt.Run();
27 } // end Main
28 } // end class definition

Referring to Example 9.26 — the class defines three fields: _a, _count, and _result. The Factor() method whose

definition begins on line 8 declares three parameters, the last of which is an out parameter named total. The Run()

method on line 16 writes the value of _result to the console before and after the Factor() method call. Figure 9-21

shows the results of running this program.

Parameter Arrays: Using The params Modifier

Methods can take an indefinite number of arguments with the help of parameter arrays. Use the params modi-

fier to declare an array parameter argument. If a parameter array appears in a method’s parameter list, it must be either

the last parameter in the list or the only parameter. Example 9.27 offers a short program that demonstrates the use of

a parameter array.
9.27 ParamArrayTest.cs

1 using System;
2
3 public class ParamArrayTest {
4
5 public void ParamMethod(params String[] args){
6 Console.WriteLine("Method called with {0} arguments.", args.Length);
7 for(int i = 0; i<args.Length; i++){

Figure 9-21: Results of Running Example 9.26
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 223

More About Methods Chapter 9: Toward Problem Abstraction
8 Console.WriteLine("Argument " + i + " is " + args[i]);
9 }
10 }
11
12 public static void Main(){
13 ParamArrayTest pt = new ParamArrayTest();
14 pt.ParamMethod();
15 pt.ParamMethod("one");
16 pt.ParamMethod("one", "two");
17 pt.ParamMethod(new String[] {"one", "two", "three"});
18 }
19 }

Referring to Example 9.27 — the ParamMethod() whose definition begins on line 5 declares a String parameter

array. The method simply prints the number of arguments it was called with, and then prints the value of each argu-

ment to the console. The method’s use is demonstrated in the Main() method. The ParamMethod() is called on line 14

with no arguments, followed by a call with one argument, next with two arguments, then finally with a String array

that contains three arguments. I included this last method call to show you how arguments can also be passed as an

array of the type expected by the method. Figure 9-22 shows the results of running this program.

Local Variable Scoping

Methods can declare variables for use within the method body. These variables are known as local variables. The

scope of a local variable includes the method body block or code block in which it is declared, however, it is only

available for use after its point of declaration. Parameters are considered to be local variables and are available for use

from the beginning to the end of the method body.

A local variable whose name is the same as a class or instance field will hide that field from the method body. To

access the field you must preface its name with the this keyword. Or, better still, change the field’s name or the local

variable’s name to eliminate the problem!

Anywhere An Object Of <type> Is Required, A Method That Returns <type> Can Be Used

The title of this section says it all. Anywhere an object of a certain type is required, a method that returns a result

of that type can be used. Substitute the word type in the previous sentence for any value or reference type you require.

For reference types, the new keyword can be used to create argument objects on the fly. Refer to the following

method declaration once again:

public void SomeMethod(int int_param, Object object_ref_param){
 // body statements omitted
 }

Assume for this example that the following fields and methods exist as well: int_field, object_reference_field,

GetInt() and GetObject(). Assume for this example that GetInt() returns an int value and that GetObject() returns a

reference to an Object. Given these fields and methods the SomeMethod() could be called in the following ways:

SomeMethod(int_field, object_reference_field);
SomeMethod(GetInt(), object_reference_field);

SomeMethod(int_field, GetObject());
SomeMethod(GetInt(), GetObject());
SomeMethod(GetInt(), new Object());

Figure 9-22: Results of Running Example 9.27
224
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 9: Toward Problem Abstraction Structures vs. Classes
As you progress through this book and your knowledge of C# grows, you will be exposed to all the above forms

of a method call plus several more.

Quick Review

By default, arguments are passed to a method call by value. This is also referred to as pass by copy. The method

parameters contain a copy of the argument values. Any change to the parameter values only affect the copies, not the

actual arguments. Changes to an object pointed to by a reference parameter will affect the original object. However, a

change to what a reference parameter points to only affects the parameter, not the original reference argument.

Use the ref parameter modifier to change parameter behavior so that changes made to the parameters also affect

the original argument values. By using the ref parameter, a change to what a reference parameter points to (i.e., cre-

ating a new object with the new operator) will also change what the original reference argument points to.

Use the out parameter modifier if you need to return method results via one or more of its arguments.

Use the params modifier to create parameter arrays.

Methods can contain local variables whose scope is the body code block or the code block in which they are

declared. Local variables are available for use after the point of their declaration up to the end of the code block.

Method parameters are local variables that are available to the entire method body.

Anywhere an object of <type> is required, a method that returns that <type> can be used in its place.

Structures vs. Classes

Structures (structs) share many similarities with classes with one huge difference; a structure defines a new value

type whereas a class defines a new reference type, as is shown in Figure 9-23. This section highlights the differences

between structures and classes and offers some advice on when you might want to use a structure vs. a class.

Value Semantics vs. Reference Semantics

A structure type (value type) variable directly contains the data associated with the structure as opposed to a class

type (reference type) variable that contains a reference to an object in memory. It is possible for two different refer-

ence variables to point to the same object in memory. But not so for value type variables, where each variable has its

own copy of the data.

Structures are not allocated on the heap unless they undergo a boxing operation. Boxing and unboxing are cov-

ered below.

Because structure variables are not reference variables they cannot be null.

System.ValueType

System.Object System.Object

Struct

Class

Figure 9-23: Structures vs. Value Types

Structures are value types and implicitly

inherit from System.ValueType which in

turn inherits from System.Object.

Classes are reference types and implicitly

inherit directly from System.Object.
C# For Artists © 2
008 Rick Miller — All Rights Reserved
 225

Structures vs. Classes Chapter 9: Toward Problem Abstraction
Ten Authorized Members vs. Eleven

Structures can have constants, fields, methods, properties, events, indexers, operators, constructors, static con-

structors, and nested type declarations.

A structure cannot have a finalizer, nor can you define an explicit parameterless (default) constructor.

Default Variable Field Values

As stated above, you cannot define a parameterless (default) constructor for a structure. The compiler-supplied

default constructor will set all a structure’s value type fields to their default values and any reference type fields to

null. Also, you cannot use instance field initializers to set the values of each field.

Behavior During Assignment

The assignment of one value type variable to another causes a complete copy of the structure’s data being

assigned. Compare this behavior to that of a reference type where only the reference to an object is copied from the

variable being assigned. Recall that when value types are passed as arguments to methods, a copy of the argument is

assigned to its corresponding parameter. This behavior was discussed in detail earlier in this chapter. (Also, see Chap-

ter 22 — Well-Behaved Objects)

this Behaves Differently

In a structure, this is considered a variable via which the values of the structure can be assigned to and modi-

fied. In an instance constructor, this functions like an out parameter. In an instance method, this functions like a

ref parameter.

Inheritance Not Allowed

You cannot extend a structure. Structures are never abstract and always inherently sealed. Structures can imple-

ment interfaces but they cannot specify a base class. Structure members cannot be abstract or virtual. The override

keyword is only allowed when overriding members of System.ValueType.

Boxing And Unboxing

If you need to treat a value type like a reference type, you can box the value-type into an object that is then allo-

cated on the heap. Look at the following example.
9.28 BoxingDemo.cs

1 using System;
2
3 public class BoxingDemo {
4
5 public static void Main(){
6 int i = 3;
7 Console.WriteLine("Unboxed i = " + i);
8 object o = i; // boxing
9 Console.WriteLine("o = " + o);
10 o = 4; // treat o like an int
11 Console.WriteLine("Modified o = " + o);
12 Console.WriteLine("Unboxed i = " + i);
13 i = (int)o; // unboxing
14 Console.WriteLine("Modified i = " + i);
15 }
16 }

Referring to Example 9.28 — the local variable i is declared and initialized to the value 3. On line 8, an object

reference named o is declared and the value-type i is boxed by the assignment to o. The reference o now points to a

boxed integer value type. Line 10 demonstrates that assignments to o can take place like assignments to ordinary inte-

gers. On line 13, the value type contained in o is unboxed and assigned to the variable i. The explicit cast is required.

Figure 9-24 shows the results of running this program.
226 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 9: Toward Problem Abstraction Summary
When To Use Structures

Structures are appropriate when the amount of data they contain is small. Remember, when one structure variable

is assigned to another a complete copy of the assigned structure’s data is copied over. The ultimate answer to the

structure vs. class question can only be answered by thoroughly accessing a project’s design and performance

requirements.

Summary

Problem abstraction requires lots of programmer creativity and represents the art in the art of programming.

Your guiding mantra during problem abstraction is to amplify the essential, eliminate the irrelevant. Problem abstrac-

tion is performed in the analysis and design phase of the development cycle. The abstractions you choose to model a

particular problem will directly influence a program’s design.

The end result of problem abstraction is the identification and creation of one or more new data types. The data

types derived through problem abstraction are referred to as abstract data types (ADTs) or user-defined data types.

User-defined data types can be implemented as structures or classes. These structures or classes will interact with

each other in some capacity to implement the complete problem solution.

A UML class diagram shows the static relationship between classes that participate in a software design. Pro-

grammers use the class diagram to express and clarify design concepts to themselves, to other programmers, to man-

agement, and to clients.

In UML, a rectangle represents a class. The rectangle can have three compartments. The uppermost compartment

contains the class name, the middle compartment contains fields, and the bottom compartment contains the methods.

A stereotype introduces a new type of element within a system. The stereotype name is contained within the

guillemet characters << >>.

Generalization and specialization are indicated by lines tipped with hollow arrows. The arrow points from the

specialized class to the generalized class. The generalized class is the base class, and the specialized class is the

derived or subclass. Generalizations specify “is a...” relationships between base and subclasses.

Dependencies are indicated by dashed arrows pointing to the class being depended upon. Dependencies are one

way to indicate “uses...” relationships between classes.

C# classes can contain eleven different types of members: fields, constants, methods, properties, events, index-

ers, operators, instance constructors, static constructors, finalizers, and nested type declarations.

The access modifiers public, protected, private, internal, and protected internal are used

to control access to class and instance members. If no access is specified then private is assumed.

The term horizontal access describes the access a client object has to the members of a server object. The client

object represents the code that uses the services of another object. It can do this in two ways: 1) by accessing a class’s

public static members via the class name, or 2) by creating an instance of the class and accessing its public non-static

members via an object reference.

Methods are named modules of executable program functionality. Methods contain program statements that,

when grouped together, represent a basic level of code reuse. You access the functionality of a method by calling the

method using its name in a program.

Figure 9-24: Results of Running Example 9.28
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 227

Skill-Building Exercises Chapter 9: Toward Problem Abstraction
Methods should be well named and maximally cohesive. A well named, maximally cohesive method will pull no

surprises!

Method definitions have structure. Their behavior can be optionally modified with method modifiers, they can

optionally specify a return result type or void, and they can have an optional parameter list.

Methods have a distinguishing characteristic known as a method signature. Methods with different names and

parameter lists are said to have different signatures. Methods with different names and the same parameter list also

have different signatures. Methods with the same name and different parameter lists have different signatures as well

and are said to be overloaded (because they share the same name). Methods cannot have the same name and identical

parameter lists. This will cause a compiler error.

Constructor methods set up or build an object when it’s created in memory. If you do not provide one, the com-

piler will create a default constructor for you, but it may or may not provide the level of functionality you require.

Incrementally build and test abstract data types by iteratively applying the steps of the development cycle. Start

with the class definition shell and then add fields, properties, and methods as required to fulfill the class’s design

objectives.

Test class functionality with the help of a test driver. A test driver is a small program that’s used to exercise the

functionality of another program.

By default, arguments are passed to a method call by value. This is also referred to as pass by copy. The method

parameters contain a copy of the argument values. Any change to the parameter values only affect the copies, not the

actual arguments. Changes to an object pointed to by a reference parameter will affect the original object. However, a

change to what a reference parameter points to only affects the parameter, not the original reference argument.

Use the ref parameter modifier to change parameter behavior so that changes made to the parameters also affect

the original argument values. By using the ref parameter, a change to what a reference parameter points to (i.e., cre-

ating a new object with the new operator) will also change what the original reference argument points to.

Use the out parameter modifier if you need to return method results via one or more of its arguments.

Use the params modifier to create parameter arrays.

Methods can contain local variables whose scope is the body code block or the code block in which they are

declared. Local variables are available for use after the point of their declaration up to the end of the code block.

Method parameters are local variables that are available to the entire method body.

Anywhere an object of <type> is required, a method that returns that <type> can be used in its place.

Skill-Building Exercises

1. .NET API Drill: Browse through the .NET API and look for classes that contain static class methods or fields.

Note how they are being used in each class.

2. Problem Abstraction Drill: Revisit the Robot Rat project presented in Chapter 3. Study the project specification

and identify candidate classes. Make a table of the classes and list their names along with a description of their

potential fields and functionality. Try not to be influenced by the solution approach taken in Chapter 3. Instead,

focus on breaking the problem into potential classes and assigning functionality to those classes. For example, the

program written in Chapter 3 is included in one large application class. At a minimum you will want to have a sep-

arate application class. Draw a UML diagram to express your design.

3. Problem Abstraction Drill: Consider the problem of modeling the functionality of an automobile in code. Create

a list of candidate classes and include potential fields and methods. Draw a UML diagram to express your design.

4. Problem Abstraction Drill: Consider the problem of modeling the functionality of an airplane in code. Create a

list of candidate classes and include potential fields and methods. Draw a UML diagram to express your design.

5. Problem Abstraction Drill: Consider the problem of modeling the functionality of a nuclear submarine. Create a

list of candidate classes and include potential fields and methods. Draw a UML diagram to express your design.
228 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 9: Toward Problem Abstraction Suggested Projects
6. Further Research: Research the topic of data encapsulation. The goal of your research should be to understand

the role design plays in determining the level of data encapsulation and what design and programming strategies

you can use to enforce data encapsulation.

7. Coding Exercise: Write a program that lets you experiment with the effects of method parameter passing. The

names of the class and any fields and methods required are left to your discretion. The idea is to create a class that

contains several value type and reference fields. It should also contain several methods that return value types and

references. Write a method that takes at least one value type and one reference type parameter. Practice calling the

method using a combination of fields, methods, and the new operator. Manipulate the parameters in the body of

the method and note the results. Change the method’s parameter behavior with the use of the ref and out modi-

fiers. Again, write some code that calls the method and note the results on both the arguments supplied to the

method and to the method’s parameters during the method’s lifetime.

8. Problem Abstraction Drill: Consider the problem of modeling the functionality of a computer in code. Create a

list of candidate classes and include potential fields and methods. Draw a UML diagram to express your design.

9. Problem Abstraction Drill: Consider the problem of modeling the functionality of a coffee maker. Create a list of

candidate classes and include potential fields and methods. Draw a UML diagram to express your design.

10. Problem Abstraction Drill: Consider the problem of modeling the functionality of a gasoline pump. Create a list

of candidate classes and include potential fields and methods. Draw a UML diagram to express your design.

Suggested Projects

1. Improve the PeopleManager.AddPerson() Method: Improve the functionality of the AddPerson() method of the

PeopleManager class presented in this chapter. In its current state, the AddPerson() method only creates a new Per-

son object and assigns the reference to the array element if the array element is null. Otherwise it does nothing and

gives no indication that the creation and insertion of a new Person object failed. Make the following modifications

to the AddPerson() method:

a. Search the people_array for a null element and insert the new Person reference at that element.

b. If the array is full, create a new array that’s 1.5 times the size of the current people_array and then insert the

new Person reference at that element.

c. Have the AddPerson() method return a boolean value indicating success or failure of the new Person object

creation and insertion operation.

2. Write a Submarine Commander Program: Using the results of the problem abstraction performed in skill-build-

ing exercise 5, write a program that lets you create a fleet of nuclear submarines. You should be able to add subma-

rines to the fleet, remove them from the fleet, and list all the submarines in your fleet. You will want to power-up

their nuclear reactors and shut down their nuclear reactors. You will also want to fire their weapons. To keep this

programming exercise manageable, just write simple messages to the console in response to commands sent to

each submarine object.

3. Write a Gasoline Pump Operation Program: Using the results of the analysis you performed in skill-building

exercise 10, write a program that lets you control the operation of a gasoline pump. You should be able to turn the

gas pump on and off. You should only be able to pump gas when the pump is on. When you are done pumping gas,

indicate how much gas was pumped in gallons or liters and give the total price of the gas pumped. Provide a way

to set the price of gas.

4. Write a Calculator Program: Write a program that implements the functionality of a simple calculator. The focus

of this project should be the creation of a class that performs the calculator’s operations. Give the Calculator class
C# For Artists © 2008 Rick Miller — All Rights Reserved 229

Suggested Projects Chapter 9: Toward Problem Abstraction
the ability to add, subtract, multiply, and divide integers and floating point numbers. Some of the Calculator class

methods may need to be overloaded to handle different types of arguments.

5. Write a Library Manager Program: Write a program that lets you catalog the books in your personal library. The

Book class should have the following attributes: title, author, and International Standard Book Number (ISBN).

You can add any other attributes you deem necessary. Create a class named LibraryManager that lets you create

and add books to your library, delete books from your library, and list the books in your library. Use an array to

hold the books in your library. Research sorting routines and implement a SortBooks() method.

6. Write a Linked-List Program: A special property of C# classes is that the name of the class you are defining can

be used to declare fields within that class. Consider the following code example:

9.29 Node.cs (Partial Listing)

1 public class Node {

2 private Node previous = null;

3 private Node next = null;

4 private Object payload = null;

5

6 // methods omitted for now

7 }

Here, the class name Node appears in the body of the Node class definition to declare two Node references

named previous and next. This technique creates data structures designed for use within a linked list. Use the code

shown in Example 9.29 to help you write a program that manages a linked list. Here are a few hints to get you started:

Referring to Figure 9-25 above — a linked list contains one or more nodes and a head and a tail. The head points

to the first node in the list. The tail always points to the last node in the list. Each node has a next and previous

attribute along with a payload. Figure 9-25 shows a linked list having three nodes. The first node element’s next

attribute points to the second node element, and the second node element’s next attribute points to the third node ele-

ment. The third node element is the last node in the list and its next attribute points to the head, which always points

to the first node in the list. Each node’s previous attribute works in the opposite fashion. Because each node has a next

and a previous attribute, it can be used to create circular linked list as is shown in Figure 9-25.

For this project, write a linked list manager program that lets you add, delete, and list the contents of each node in

the list. You will have to add methods or properties to the Node class code given in Example 9.29. At a minimum you

should add properties for each field.

This is a challenging project and will require you to put some thought into the design of both the Node and the

LinkedListManager class. The most complicated part of the design will be figuring out how to insert and delete nodes

into and from the list. When you successfully complete this project, you will have a good, practical understanding of

references and how they are related to pointers in other programming languages.

Figure 9-25: Circular Linked List with Three Nodes
230
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 9: Toward Problem Abstraction Self-Test Questions
7. Convert The Library Manager To Use A Linked List: Rewrite the library manager program presented in sug-

gested project 6 to use a linked list of books instead of an array.

Self-Test Questions

1. Define the term problem abstraction. Explain why problem abstraction requires creativity.

2. What is the end result of problem abstraction?

3. Describe in your own words how you would go about the problem abstraction process for a typical programming

problem.

4. What is the purpose of the UML class diagram? What geometric shape is used to depict classes in a UML class dia-

gram? Where are class names, fields, and methods depicted on a class symbol?

5. What do the lines tipped with hollow arrowheads depict in a UML class diagram?

6. What are the eleven categories of C# class members?

7. What’s the difference between static and non-static fields?

8. What the difference between static and non-static methods?

9. What’s the difference between readonly fields and const fields?

10. List and describe the purpose of member access modifiers.

11. Explain the concept of horizontal access. Draw a picture showing how client code access to a server class’s mem-

bers is controlled using the access modifiers public and private.

12. What is a method?

13. List and describe the desirable characteristics of a method.

14. Explain the concept of cohesion as it pertains to methods.

15. (True/False) A method should be maximally cohesive.

16. What steps can you take as a programmer to ensure your methods are maximally cohesive?

17. What’s the purpose of a method definition?

18. What parts of a method definition are optional?

19. What is meant by the term method signature?

20. What parts of a method are included in a method’s signature?

21. What constitutes an overloaded method?

22. Give at least one example for which method overloading is useful.
C# For Artists © 2008 Rick Miller — All Rights Reserved 231

References Chapter 9: Toward Problem Abstraction
23. What makes constructor methods different from ordinary methods?

24. Describe in your own words how arguments are passed to methods.

References

ECMA-335 Common Language Infrastructure (CLI), 4th Edition, June 2006 [http://www.ecma-international.org/

publications/standards/Ecma-335.htm]

ECMA-334 C# Language Specification, 4th Edition, June 2006 [http://www.ecma-international.org/publications/

standards/Ecma-334.htm]

Microsoft Developer Network (MSDN) [http://www.msdn.com]

Rick Miller. Java For Artists: The Art, Philosophy, And Science Of Object-Oriented Programming. Pulp Free

Press, Falls Church, VA. ISBN: 1-932504-05-2

Donald E. Knuth. The Art of Computer Programming. Volume 3: Sorting and Searching, Second Edition. Addi-

son-Wesley. Reading MA. ISBN: 0-201-89685-0

Grady Booch. Object-Oriented Analysis And Design With Applications, Second Edition. The Benjamin/Cum-

mings Publishing Company, Inc., Redwood City, CA. ISBN: 0-8053-5340-2

Sinan Si Alhir. UML In A Nutshell: A Desktop Quick Reference. O’Reilly and Associates, Inc., Sebastopol, CA.

ISBN: 1-56592-448-7

Notes
232 © 2008 Rick Miller — All Rights Reserved C# For Artists

10 Compositional Design

Learning Objectives
• State the definition of the term “simple aggregation”
• State the definition of the term “composite aggregation”
• Explain the difference between simple and composite aggregation
• Express simple and composite aggregation using Unified Modeling Language (UML) diagrams
• Express an association between two class types using a UML diagram
• Define the terms “has a”, “contains”, and “uses” in the context of compositional design
• Explain the difference between a dependency and an association
• Explain the client/server relationship between a containing and a contained class
• Demonstrate your ability to use both simple and composite aggregation in your program design
• Explain how to implement message passing between objects
• State the purpose and use of a UML sequence diagram

Chapter 10

Compositional Design
Flowers

P
en

ta
x
 6

7
 /

 S
M

C
 T

ak
u
m

ar
 9

0
/2

.8
 /

 K
o
d
ak

 T
ri

-X
 P

ro
fe

ss
io

n
al
C#
For Artists © 2008 Rick Miller — All Rights Reserved 233

Introduction Chapter 10: Compositional Design
Introduction

Rarely does an application comprise just one class. In reality, applications are typically constructed from many

classes, each providing a unique service. This chapter introduces you to the concepts and terminology associated with

building complex application behavior from a collection of classes. This is referred to as compositional design or

design by composition.

The study of compositional design is the study of aggregation and containment. In this chapter you will learn the

two primary aggregation associations: simple and composite. You will also learn how to use a UML class diagram to

illustrate the static relationship between classes in a complex application. To do this you will need to know how to

express simple and composite aggregation visually.

The study of aggregation also entails learning how a whole class accesses the services of its part classes. The

concepts of message passing and sequencing will be demonstrated by introducing you to a new type of UML diagram

known as the sequence diagram.

Managing Conceptual And Physical Complexity

Programs that depend upon the services of multiple classes are inherently more complex than those that do not.

This complexity takes two forms: 1) the conceptual complexity derived from the nature of the relationship between or

among classes that participate in the design, and 2) the physical complexity that results from having to deal with mul-

tiple source files. In this chapter, you will encounter programming examples that are both conceptually and physically

more complex than previous examples.

You will manage a program’s conceptual complexity by using object-oriented design principles in conjunction

with UML to express a program’s design. In this chapter you will learn the concepts of building complex programs

using compositional design. You will also learn how to express compositional design using UML.

The physical complexity of the programs you write in this chapter must be managed through source file organi-

zation. If you have not already started to put related project source files in one folder, you will want to start doing so.

This will make them easier to manage — at least for the purposes of this book. You will also need to change the way

you compile your project source files. Until now, I have shown you how to compile source files one at a time. How-

ever, when you are working on projects that contain many source files, these files may have dependencies to other

source files in the project. A change to one source file will require a recompilation of all the other source files that

depend upon it.

If you use an integrated development environment (IDE) like Microsoft’s Visual Studio, it will manage the

source file dependencies automatically. If you are developing your projects with a simple text editor and the .NET

Runtime Environment as recommended in Chapter 2, then you can use Microsoft Build (MSBuild.exe) located in the

.NET Framework folder. MSBuild is what Visual Studio uses to build projects. However, you don’t need to use these

tools just yet. As the next section explains, you can compile almost all of the projects in this book from the command

line with the csc compiler tool.

Compiling Multiple Source Files Simultaneously With csc

If you don’t have time to learn MSBuild and don’t want to bother with Visual Studio just yet, that’s no problem.

You can compile multiple source files simultaneously using the csc compiler tool. All you need to do is enter the

names of the source files you want to compile following the csc command on the command line, as is shown in the

following example:

csc SourceFileOne.cs SourceFileTwo.cs SourceFileThree.cs

List each source file on the command line, one after the other, separated by a space. You can compile as many

source files as you require using this method.
234 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 10: Compositional Design Dependency vs. Association
If you are working on a project that has more than two or three source files, then you may want to create a batch

file (Microsoft Windows) or a shell script (Linux, Mac OS X) that you can call to perform the compilation for you.

Another way to compile multiple related source files is to put them in a project directory and invoke the csc

compiler tool as shown in the following example:

csc *.cs

This compiles all the source files in a given directory. You may, of course, provide an explicit directory path as

shown in the following example:

csc c:\myprojects\project1*.cs

If you have organized your project files into multiple subdirectories, you can use the /recurse compiler switch

to recursively compile the source files. Recursive compilation starts with files located in the root project directory,

and visits each subdirectory in turn. To compile recursively, use the /recurse compiler switch like so:

csc /recurse:*.cs

Quick Review

There are two types of complexity: conceptual and physical. Manage conceptual complexity by using object-ori-

ented design concepts and by expressing your object-oriented designs in UML. Manage physical complexity with the

help of your IDE or with an automated build tool such as Microsoft Build (MSBuild). You can also manage physical

complexity on a small scale by organizing your source files into project directories and compiling multiple files

simultaneously using the csc compiler tool.

Dependency vs. Association

A C# program built from many classes manifests several types of interclass relationships. Before continuing with

this chapter, you must be clear in your understanding of the terms dependency and association.

A dependency is a relationship between two classes in which a change made to one class will have an effect on

the behavior of the class or classes that depend on it. For example, say you have two classes, Class A and Class B. If

Class A depends upon the behavior of Class B in a way that a change to Class B affects Class A, then Class A has a

dependency on Class B. If you use a class in your program and write code that calls one or more of that class’s inter-

face methods, then your code is dependent upon that class. If its interface methods change, your code might break. If

the behavior of those methods change, your program’s behavior will change as well.

All but the most trivial programs you write will be chock full of dependency relationships between your classes

and, at the very least, the classes you use in your programs that are supplied by the .NET API.

An association is a relationship between two classes that denotes a connection between those classes. An associ-

ation implies a peer-to-peer relationship between the classes that participate in the association. If you have two

classes, Class A and Class B, and there is an association between them, then Class A and Class B are linked together

at the same level of importance. They may each depend on the other and the link between them will be navigable in

one, or perhaps two, directions.

An aggregation is a special type of association and is discussed in detail in the following section.

Aggregation

An aggregation is an association between two objects that results in a whole/part relationship. An object com-

prising other objects (i.e., the whole object) is referred to as an aggregate. Objects used to build the whole object are
C# For Artists © 2008 Rick Miller — All Rights Reserved 235

Expressing Aggregation In A UML Class Diagram Chapter 10: Compositional Design
called part objects. There are two types of aggregation: simple and composite. Each type of aggregation is discussed

in detail below.

Simple vs. Composite Aggregation

Aggregate objects are built from one or more part objects. An aggregate object can be a simple aggregate, a com-

posite aggregate, or a combination of both. The difference between simple and composite aggregation is how the

whole or aggregate object is linked to its part objects. The type of linking between an aggregate and its parts dictates

who controls the lifetime (creation and destruction) of its part objects.

The Relationship Between Aggregation And Object Lifetime

The difference between simple and composite aggregation is dictated by who (i.e., what object) controls the life-

time of the aggregate’s part objects. This section discusses simple and composite aggregation in greater detail.

Simple Aggregation

If the aggregate object simply uses its part objects and otherwise has no control over their creation or existence,

then the relationship between the aggregate and its parts is a simple aggregation. The part object can exist (i.e., it can

be created and destroyed) independently of the simple aggregate object. This leads to the possibility that a part object

can participate, perhaps simultaneously, in more than one simple aggregation relationship.

The .NET runtime garbage collector eventually destroys unreferenced objects, but as long as the simple aggre-

gate object maintains a reference to its part object, the part object will be maintained in memory.

References to existing part objects can be passed to aggregate object constructors or other aggregate object meth-

ods as dictated by program design. This type of aggregation is also called containment by reference.

Composite Aggregation

If the aggregate object controls the lifetime of its part objects (i.e., it creates and destroys them) then it is a com-

posite aggregate. Composite aggregates have complete control over the existence of their part objects. This means

that a composite aggregate’s part objects do not come into existence until the aggregate object is created.

Composite aggregate part objects are created when the aggregate object is created. Aggregate part creation usu-

ally takes place in the aggregate object constructor. However, in C#, there is no direct way for a programmer to

destroy an object. You must rely on the .NET runtime garbage collector to collect unreferenced objects. Therefore,

during an aggregate object’s lifetime, it must guard against violating data encapsulation by not returning a reference

to its part objects. Strict enforcement of this rule will largely be dictated by program design objectives.

This type of aggregation is also called containment by value.

Quick Review

An aggregation is an association between two objects that results in a whole/part relationship. There are two

types of aggregation: simple and composite. The type of aggregation is determined by the extent to which the whole

object controls the lifetime of its part objects. If the whole object simply uses the services of a part object but does not

control its lifetime, then it’s a simple aggregation. On the other hand, if the whole object creates and controls the life-

time of its part objects, then it is a composite aggregate.

Expressing Aggregation In A UML Class Diagram

The UML class diagram can be used to show aggregate associations between classes. This section shows you

how to use the UML class diagram to express simple and composite aggregation.
236 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 10: Compositional Design Aggregation Example Code
Simple Aggregation Expressed In UML

Figure 10-1 shows a UML diagram expressing simple aggregation between classes Whole and Part. The associa-

tion is expressed via the line that links Whole and Part. The simple aggregation property is denoted by the hollow dia-

mond shape used to anchor the line to the Whole class. Simple aggregation represents a uses relationship between the

aggregate and its parts, since the lifetime of part objects are not controlled by the aggregate.

Figure 10-2 shows two different simple aggregate classes, Whole A and Whole B, sharing an instance of the Part

class. Such a sharing situation may require thread synchronization.

Composite Aggregation Expressed In UML

Composite aggregation is denoted by a solid diamond adorning the side of the aggregate class. Composite aggre-

gate objects control the creation of their part objects, which means part objects belong fully to their containing aggre-

gate. Thus, a composite aggregation denotes a contains or has a relationship between whole and part classes. Figure

10-3 shows a UML diagram expressing composite aggregation between classes Whole and Part.

Aggregation Example Code

At this point it will prove helpful to you to see a few short example programs that implement simple and compos-

ite aggregation before attempting a more complex example. Let’s start with a simple aggregation.

Figure 10-1: UML Diagram Showing Simple Aggregation

<< Simple Aggregate >>

Whole
Part

uses

Figure 10-2: Part Class Shared Between Simple Aggregate Classes

<< Simple Aggregate >> << Simple Aggregate >>

Whole A Whole B
Part

<< Shared Instance >>

uses uses

Figure 10-3: UML Diagram Showing Composite Aggregation

<< Composite Aggregate >>

Whole
Part

contains
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 237

Aggregation Example Code Chapter 10: Compositional Design
Simple Aggregation Example

Figure 10-4 gives a UML diagram showing a simple aggregate class named A that uses the services of a part

class named B.

Class A has one attribute, its_b, which is a reference to an object of class B. A reference to a B object is passed

into an object of class A via a constructor argument when an object of class A is created. Class A has another method

named MakeContainedObjectSayHi() that returns void.

Class B has no attributes, one constructor method, and another method named SayHi(). Examples 10.1 and 10.2

give the code for these two classes.
10.1 A.cs

1 using System;
2
3 public class A {
4 private B its_b = null;
5
6 public A(B b_ref){
7 its_b = b_ref;
8 Console.WriteLine("A object created!");
9 }
10
11 public void MakeContainedObjectSayHi(){
12 its_b.SayHi();
13 }
14 }

Referring to Example 10.1 — the its_b reference variable is declared on line 4 and initialized to null. The con-

structor takes a reference to a B object and assigns it to the its_b variable. The its_b variable is then used on line 12 in

the MakeContainedObjectSayHi() method to call its SayHi() method.
10.2 B.cs

1 using System;
2
3 public class B {
4 public B(){
5 Console.WriteLine("B object created!");
6 }
7
8 public void SayHi(){
9 Console.WriteLine("Hi!");
10 }
11 }

The only thing to note in Example 10.2 is the SayHi() method, which starts on line 8. It just prints a simple mes-

sage to the console. Example 10.3 gives a short program called TestDriver that is used to test classes A and B and

illustrate simple aggregation.
10.3 TestDriver.cs

1 public class TestDriver {
2 public static void Main(){
3 B b = new B();
4 A a = new A(b);
5 a.MakeContainedObjectSayHi();
6 }
7 }

B

+B():
+SayHi(): void

A

-its_b: B

+A(b_ref: B):
+MakeContainedObjectSayHi(): void

Figure 10-4: Simple Aggregation Example
238
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 10: Compositional Design Aggregation Example Code
Referring to Example 10.3 — a B object is first created on line 3. The reference b is used as an argument to the

A() constructor. In this manner an A object gets a reference to a B object. On line 5 a call is made to the MakeCon-

tainedObjectSayHi() method via reference a. The results of running this program are shown in Figure 10-5.

Composite Aggregation Example

Figure 10-6 gives a UML diagram that illustrates composite aggregation between classes A and B.

Referring to Figure 10-6 — class A still has an attribute named its_b and a method named MakeContainedOb-

jectSayHi(), however, the A() constructor has no parameters. Class B is exactly the same here as it was in the previ-

ous example. The source code for both these classes is given in Examples 10.4 and 10.5.
10.4 A.cs

1 using System;
2
3 public class A {
4 private B its_b = null;
5
6 public A(){
7 its_b = new B();
8 Console.WriteLine("A object created!");
9 }
10
11 public void MakeContainedObjectSayHi(){
12 its_b.SayHi();
13 }
14 }

10.5 B.cs

1 using System;
2
3 public class B {
4 public B(){
5 Console.WriteLine("B object created!");
6 }
7
8 public void SayHi(){
9 Console.WriteLine("Hi!");
10 }
11 }

Referring to Example 10.4 — the its_b attribute is declared and initialized to null on line 4. In the A() constructor

on line 7, a new B object is created and its memory location is assigned to the its_b reference. In this manner, the A

object controls the creation of the B object.

Figure 10-5: Results of Running Example 10.3

A

-its_b: B

+A():
+MakeContainedObjectSayHi(): void

B

+B():
+SayHi(): void

Figure 10-6: Composite Aggregation Example
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 239

Sequence Diagrams Chapter 10: Compositional Design
Example 10.6 gives a modified version of the TestDriver program. Compare Example 10.6 to Example 10.3. This

version is exactly one line shorter than the previous version. This is because there’s no need to create a B object

before creating the A object. Figure 10-7 shows the results of running this program.

10.6 TestDriver.cs

1 public class TestDriver {

2 public static void Main(){

3 A a = new A();

4 a.MakeContainedObjectSayHi();

5 }

6 }

Quick Review

The UML class diagram can be used to show aggregation associations between classes. A hollow diamond

denotes simple aggregation and expresses a uses or uses a relationship between the whole and part classes. A solid

diamond denotes composite aggregation and expresses a contains or has a relationship between whole and part

classes.

Sequence Diagrams

A sequence diagram is another type of UML diagram that illustrates the order or sequence of execution events

that occur between objects in an application. Sequence diagrams become extremely helpful and important, especially

when using compositional design. Figure 10-8 shows the sequence diagram for the simple aggregation program given

in Examples 10.1 through 10.3 in the previous section.

Figure 10-7: Results of Running Example 10.6

Figure 10-8: Sequence Diagram — Simple Aggregation

System objects

Method call

or messages

Focus of control

Object lifeline

Return
240
 © 2008 Rick Miller — All Rights Reserved
 C# For Artists

Chapter 10: Compositional Design Sequence Diagrams
Referring to Figure 10-8 — read the sequence diagram from left to right. The objects that participate in the

sequence of events appear along the top of the diagram. Each object has an object lifeline. An object can be an

instance of a class or an external system (actor) that participates in the event sequence.

The User initiates the event sequence by starting the program. This is done by running the TestDriver program.

The TestDriver program creates an instance of class B by calling the B() constructor method. Upon the constructor

call return, the TestDriver program then creates an A object by calling the A() constructor method passing the refer-

ence b as an argument. The TestDriver then sends the MakeContainedObjectSayHi() message to the A object. (i.e., It

calls a method.) The A object in turn sends the SayHi() message to the B object. This results in the message “Hi!”

being printed to the console. After the message is printed the program terminates.

The sequence of events is a little different for the composite aggregate version of this program, as Figure 10-9

illustrates.

In the composite aggregate sequence, the TestDriver program creates the A object first. The A object then creates

the B object. This is shown in message numbers 2 and 3.

The sequence diagrams shown here are unique in that the example program is small enough to show the whole

sequence of events in one picture. In reality, however, most software systems are so complex that sequence diagrams

usually focus on one piece of functionality at a time. You’ll see an example of this in the next section.

Magic Draw

I used a UML design tool called Magic Draw to create the sequence diagrams in this chapter. You can get more

information about Magic Draw at [www.magicdraw.com]

Quick Review

Sequence diagrams are a type of UML diagram used to graphically illustrate a sequence of system events.

Sequence event participants can be internal system objects or external actors. Sequence diagrams do a good job of

illustrating the complex message passing between objects that participate in a compositional design.

Figure 10-9: Sequence Diagram — Composite Aggregation
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 241

The Engine Simulation: An Extended Example Chapter 10: Compositional Design
The Engine Simulation: An Extended Example

In this section I will ramp up the complexity somewhat and present an extended example of compositional

design: the engine simulation. Don’t panic! It’s a simple simulation designed primarily to get you comfortable with

an increased level of both conceptual and physical complexity. This means there are more classes that participate in

the design which means there are more source code files to create, compile, and maintain.

Figure 10-10 gives the project specification for the engine simulation. Read it carefully before proceeding to the

next section.

The project specification offers good direction and several hints regarding the project requirements. The engine

simulation consists of seven classes. The Engine class is the composite. An engine has a fuel pump, oil pump, com-

pressor, oxygen sensor, and temperature sensor. These parts are represented in the design by the FuelPump, OilPump,

Compressor, OxygenSensor, and TemperatureSensor classes respectively. Each of these classes has an association

with the PartStatus enumeration, as the class diagram in Figure 10-11 illustrates.

Project Specification
Engine Simulation

Objectives:
- Apply compositional design techniques to create a C# program
- Create a composite aggregation class whose functionality is derived

 from its various part classes
- Employ UML class and sequence diagrams to express your design ideas
- Derive user-defined data types to model a problem domain
- Employ inter-object message passing

Tasks:
- Write a program that simulates the basic functionality of an engine.

 The engine should contain the following parts: fuel pump, oil pump,
 compressor, temperature sensor, and oxygen sensor. Limit the
 functionality to the following functions:

 * Set and check each engine part status
 * Set and check the overall engine status
 * Start the engine
 * Stop the engine

Hints:
- Each engine should have an assigned engine number, and each part

 contained by the engine should register itself with the engine number.
- When checking the engine status while the engine is running, the engine
 should stop running if it detects a fault in one of its parts.
- When an individual part’s status changes, the engine must perform a

 comprehensive status check on itself.
- If, when trying to start, the engine detects a faulty part, the engine
 must not start until the status on the faulty part changes.
- Limit the user interface to simple text messages printed to the console.

Figure 10-10: Engine Simulation Project Specification
242
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 10: Compositional Design The Engine Simulation: An Extended Example
The Purpose Of The Engine Class

The purpose of the Engine class is to embody the behavior of this thing we are modeling called an engine. A

UML class diagram for the Engine class is given in Figure 10-12.

Figure 10-11: Engine Simulation Class Diagram

Figure 10-12: Engine Class Diagram
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 243

The Engine Simulation: An Extended Example Chapter 10: Compositional Design
Engine Class Attributes And Methods

Referring to Figure 10-12 — the Engine class has several attributes: its_compressor, its_fuelpump, its_oilpump,

its_oxygensensor, and its_temperaturesensor. Each maps to its respective part class. However, several more attributes

are required to complete the class. Two of these, its_engine_number and is_running, are value type variables. The last

attribute, its_status, is an enumeration variable of type PartStatus.

As you can tell from looking at the class diagram in Figure 10-12, all of the Engine class attributes are declared

to be private. This is denoted by the ‘-’ symbol preceding each attribute’s name. The design of Engine class guards

against returning a reference to any of its part objects. This ensures that when a reference to an Engine object goes out

of scope, the Engine object it referenced, along with all its component objects, will be collected by the garbage col-

lector. Although, if you remember, you cannot guarantee when this garbage collection event will occur.

The Engine class has one constructor that takes an integer as an argument. When created, an Engine object will

set its_engine_number attribute using this number.

The remaining Engine class methods map pretty much directly to those specified or hinted at in the project spec-

ification. The Engine class interface allows you to set the status of each of an engine’s component parts, check the sta-

tus of an engine, and start and stop an engine.

Engine Simulation Sequence Diagrams

The engine simulation is sufficiently complex to warrant focused sequence diagrams. Figure 10-13 gives the

sequence diagram for the creation of an Engine object.

Referring to Figure 10-13 — a User starts the sequence of events by running the EngineTester program. The

EngineTester class is covered in the next section. The EngineTester program creates an Engine object by calling the

Engine() constructor with an integer argument. The Engine constructor in turn creates all the required part objects.

When all the part object constructor calls return, the Engine constructor call returns to the EngineTester program. At

this point, the Engine object is ready for additional interface method calls from the EngineTester program.

As I said earlier, this sequence diagram represents a focused part of the simulation program. In fact, this diagram

only accounts for the sequence of events resulting from the execution of line 3 of Example 10.7 in the next section.

The creation of additional sequence diagrams for the simulation program is left for you to do as an exercise.

Running The Engine Simulation Program

To run the engine simulation, you’ll need to create a test driver program. My version of the test driver program is

a class named EngineTester, and is shown in Example 10-7. The result of running this program is shown in Figure 10-

14.
10.7 EngineTester.cs

1 using EngineSimulation;
2
3 public class EngineTester {
4 public static void Main(){
5 Engine e1 = new Engine(1);
6 e1.StartEngine();
7 e1.SetCompressorStatus(PartStatus.NOT_WORKING);
8 e1.StartEngine();
9 e1.SetCompressorStatus(PartStatus.WORKING);
10 e1.StartEngine();
11 }
12 }

Referring to Example 10.7 — an Engine object is created on line 5. As noted above, this line kicks off the

sequence of events illustrated in Figure 10-13. All of the Engine’s part objects are initially created with WORKING

part status. The StartEngine() method call on line 6 initiates a CheckEngineStatus() method call. Refer to the Engine

class code listing in the next section. If all goes well, the engine reports that it is running.

On line 7, a fault is introduced to the engine’s compressor component. This causes the engine to shut down. The

attempt on line 8 to start the engine fails due to the failed compressor. When the compressor fault is removed, the

engine starts fine. This sequence of events can be traced through the source code and by carefully reading the pro-

gram’s output shown in Figure 10-14.
244 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 10: Compositional Design The Engine Simulation: An Extended Example
F
ig

u
re

 1
0
-1

3
:

C
re

at
e

E
n
g
in

e
O

b
je

ct
 S

eq
u
en

ce
C# For Artists © 2008 Rick Miller — All Rights Reserved
 245

Complete Engine Simulation Code Listing Chapter 10: Compositional Design
Quick Review

The Engine class is a composite aggregate. Its behavior is dictated by the behavior of its contained part class

objects. Its part classes include Compressor, FuelPump, OilPump, OxygenSensor, and TemperatureSensor. All the

classes in the simulation use the functionality of the PartStatus enumeration.

Complete Engine Simulation Code Listing

10.8 Engine.cs

1 using System;
2
3 namespace EngineSimulation {
4
5 public class Engine {
6 private Compressor its_compressor = null;
7 private FuelPump its_fuelpump = null;
8 private OilPump its_oilpump = null;
9 private OxygenSensor its_oxygensensor = null;
10 private TemperatureSensor its_temperaturesensor = null;
11 private int its_engine_number = 0;
12 private bool is_running = false;
13 private PartStatus its_status;
14
15 public Engine(int engine_number) {
16 its_engine_number = engine_number;
17 its_compressor = new Compressor(PartStatus.WORKING, its_engine_number);
18 its_fuelpump = new FuelPump(PartStatus.WORKING, its_engine_number);
19 its_oilpump = new OilPump(PartStatus.WORKING, its_engine_number);
20 its_oxygensensor = new OxygenSensor(PartStatus.WORKING, its_engine_number);
21 its_temperaturesensor = new TemperatureSensor(PartStatus.WORKING, its_engine_number);
22 its_status = PartStatus.WORKING;
23 Console.WriteLine("Engine #" + its_engine_number + " created!");
24 }
25
26 public void SetCompressorStatus(PartStatus status) {
27 its_compressor.Status = status;
28 CheckEngineStatus();
29 }
30
31 public void SetFuelPumpStatus(PartStatus status) {
32 its_fuelpump.Status = status;
33 CheckEngineStatus();
34
35 }
36
37 public void SetOilPumpStatus(PartStatus status) {
38 its_oilpump.Status = status;
39 CheckEngineStatus();
40 }
41

Figure 10-14: Result of Running Example 10.7
246
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 10: Compositional Design Complete Engine Simulation Code Listing
42 public void SetOxygenSensorStatus(PartStatus status) {
43 its_oxygensensor.Status = status;
44 CheckEngineStatus();
45 }
46
47 public void setTemperatureSensor(PartStatus status) {
48 its_temperaturesensor.Status = status;
49 CheckEngineStatus();
50 }
51
52 public bool CheckEngineStatus() {
53 if (its_compressor.IsWorking && its_fuelpump.IsWorking &&
54 its_oilpump.IsWorking && its_oxygensensor.IsWorking &&
55 its_temperaturesensor.IsWorking) {
56 its_status = PartStatus.WORKING;
57 Console.WriteLine("All engine #" + its_engine_number + " components working properly.");
58 }
59 else {
60 its_status = PartStatus.NOT_WORKING;
61 Console.WriteLine("Engine #" + its_engine_number + " malfunction.");
62 if (is_running) {
63 Console.WriteLine("Engine #" + its_engine_number + " shutting down!");
64 StopEngine();
65 }
66 }
67
68 return its_status == PartStatus.WORKING ? true : false;
69 }
70
71 public void StartEngine() {
72 if (!is_running) {
73 if (CheckEngineStatus()) {
74 is_running = true;
75 Console.WriteLine("Engine #" + its_engine_number + " is running!");
76 }
77 else {
78 Console.WriteLine("There is a problem with an engine #" + its_engine_number
79 + " component. Engine cannot start.");
80 }
81 }
82 else {
83 Console.WriteLine("Engine #" + its_engine_number + " is already running!");
84 }
85 }
86
87 public void StopEngine() {
88 is_running = false;
89 Console.WriteLine("Engine #" + its_engine_number + " has been stopped!");
90 }
91
92 } // end class definition
93 } // end namespace

10.9 Compressor.cs

1 using System;
2
3 namespace EngineSimulation {
4
5 public class Compressor {
6 private int registered_engine_number = 0;
7 private PartStatus part_status;
8
9 public PartStatus Status {
10 get { return part_status; }
11 set { part_status = value; }
12 }
13
14 public int RegisteredEngineNumber {
15 get { return registered_engine_number; }
16 set { registered_engine_number = value; }
17 }
18
19 public bool IsWorking {
20 get {
21 if (Status == PartStatus.WORKING) {
22 return true;
23 }
24 return false;
C# For Artists © 2008 Rick Miller — All Rights Reserved 247

Complete Engine Simulation Code Listing Chapter 10: Compositional Design
25 }
26 }
27
28 public Compressor(PartStatus status, int engine_number) {
29 RegisteredEngineNumber = engine_number;
30 Status = status;
31 Console.WriteLine("Compressor Created...");
32 }
33 } // end class definition
34
35 } // end namespace

10.10 FuelPump.cs

1 using System;
2
3 namespace EngineSimulation {
4
5 public class FuelPump {
6 private int registered_engine_number = 0;
7 private PartStatus part_status;
8
9 public PartStatus Status {
10 get { return part_status; }
11 set { part_status = value; }
12 }
13
14 public int RegisteredEngineNumber {
15 get { return registered_engine_number; }
16 set { registered_engine_number = value; }
17 }
18
19 public bool IsWorking {
20 get {
21 if (Status == PartStatus.WORKING) {
22 return true;
23 }
24 return false;
25 }
26 }
27
28 public FuelPump(PartStatus status, int engine_number) {
29 RegisteredEngineNumber = engine_number;
30 Status = status;
31 Console.WriteLine("FuelPump Created...");
32 }
33 } // end class definition
34
35 } // end namespace

10.11 OilPump.cs

1 using System;
2
3 namespace EngineSimulation {
4
5 public class OilPump {
6 private int registered_engine_number = 0;
7 private PartStatus part_status;
8
9 public PartStatus Status {
10 get { return part_status; }
11 set { part_status = value; }
12 }
13
14 public int RegisteredEngineNumber {
15 get { return registered_engine_number; }
16 set { registered_engine_number = value; }
17 }
18
19 public bool IsWorking {
20 get {
21 if (Status == PartStatus.WORKING) {
22 return true;
23 }
24 return false;
25 }
26 }
248 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 10: Compositional Design Complete Engine Simulation Code Listing
27
28 public OilPump(PartStatus status, int engine_number) {
29 RegisteredEngineNumber = engine_number;
30 Status = status;
31 Console.WriteLine("OilPump Created...");
32 }
33 } // end class definition
34 } // end namespace

10.12 OxygenSensor.cs

1 using System;
2
3 namespace EngineSimulation {
4
5 public class OxygenSensor {
6 private int registered_engine_number = 0;
7 private PartStatus part_status;
8
9 public PartStatus Status {
10 get { return part_status; }
11 set { part_status = value; }
12 }
13
14 public int RegisteredEngineNumber {
15 get { return registered_engine_number; }
16 set { registered_engine_number = value; }
17 }
18
19 public bool IsWorking {
20 get {
21 if (Status == PartStatus.WORKING) {
22 return true;
23 }
24 return false;
25 }
26 }
27
28 public OxygenSensor(PartStatus status, int engine_number) {
29 RegisteredEngineNumber = engine_number;
30 Status = status;
31 Console.WriteLine("OxygenSensor Created...");
32 }
33 } // end class definition
34 } // end namespace

10.13 TemperatureSensor.cs

1 using System;
2
3 namespace EngineSimulation {
4
5 public class TemperatureSensor {
6 private int registered_engine_number = 0;
7 private PartStatus part_status;
8
9 public PartStatus Status {
10 get { return part_status; }
11 set { part_status = value; }
12 }
13
14 public bool IsWorking {
15 get {
16 if (Status == PartStatus.WORKING) {
17 return true;
18 }
19 return false;
20 }
21 }
22
23 public int RegisteredEngineNumber {
24 get { return registered_engine_number; }
25 set { registered_engine_number = value; }
26 }
27
28 public TemperatureSensor(PartStatus status, int engine_number) {
29 RegisteredEngineNumber = engine_number;
30 Status = status;
C# For Artists © 2008 Rick Miller — All Rights Reserved 249

Summary Chapter 10: Compositional Design
31 Console.WriteLine("TemperatureSensor Created...");
32 }
33 } // end class definition
34 } // end namespace

10.14 PartStatus..cs

1 using System;
2
3 namespace EngineSimulation {
4
5 public enum PartStatus { WORKING, NOT_WORKING }
6
7 }

10.15 EngineTester..c

1 using EngineSimulation;
2
3 public class EngineTester {
4 public static void Main(){
5 Engine e1 = new Engine(1);
6 e1.StartEngine();
7 e1.SetCompressorStatus(PartStatus.NOT_WORKING);
8 e1.StartEngine();
9 e1.SetCompressorStatus(PartStatus.WORKING);
10 e1.StartEngine();
11 }
12 }

Summary

There are two types of complexity: conceptual and physical. Conceptual complexity is managed by using object-

oriented concepts and expressing your object-oriented designs in UML. Physical complexity can be managed by your

IDE or with an automated build tool such as Microsoft Build (MSBuild). You can also manage physical complexity

on a small scale by organizing your source files into project directories and by compiling multiple files simulta-

neously using the csc compiler tool.

A dependency is a relationship between two classes in which a change to the depended-upon class will affect the

dependent class. An association is a peer-to-peer structural link between two classes.

An aggregation is a special type of association between two objects that results in a whole/part relationship.

There are two types of aggregation: simple and composite. The type of aggregation is determined by the extent to

which the whole object controls the lifetime of its part objects. If the whole object simply uses the services of a part

object but does not control its lifetime, then it’s a simple aggregation. On the other hand, if the whole object creates

and controls the lifetime of its part objects, then it is a composite aggregate.

A UML class diagram can be used to show aggregation associations between classes. A hollow diamond denotes

simple aggregation and expresses a uses or uses a relationship between the whole and part classes. A solid diamond

denotes composite aggregation and expresses a contains or has a relationship between whole and part classes.

Sequence diagrams are a type of UML diagram used to graphically illustrate a sequence of system events.

Sequence event participants can be internal system objects or external actors. Sequence diagrams do a good job of

illustrating the complex message passing between objects that participate in a compositional design.

The Engine class is a composite aggregate. Its behavior is dictated by the behavior of its contained part class

objects. Its part classes include Compressor, FuelPump, OilPump, OxygenSensor, and TemperatureSensor. All classes

in the engine simulation use the PartStatus enumeration.

Skill-Building Exercises

1. Study The UML: Obtain a reference on UML and conduct further research on how to model complex associations

and aggregations using class diagrams. Also study how to express complex event sequences using sequence dia-

grams.
250 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 10: Compositional Design Skill-Building Exercises
2. Obtain a UML Modeling Tool: If you haven’t already done so, procure a UML modeling tool to help you draw

class and sequence diagrams.

3. Discover Dependency Relationships: Study the .NET Framework API. Write down at least five instances in

which one class depends on the services of another class. Describe the nature of the dependency and explain the

possible effects that changing the depended-upon class might have on the dependent class.

4. Programming Exercise — Demonstrate Simple Aggregation: Write a program that implements the simple

aggregation shown in Figure 10-15.

Hints: Implement the PrintMessage() method in ServerClass to print a short message of your choosing to the

console. You’ll need to write a test driver program to test your code. Study Examples 10.1 through 10.3 for clues on

how to implement this exercise.

5. Programming Exercise — Demonstrate Composite Aggregation: Write a program that implements the compos-

ite aggregation shown in Figure 10-16.

Hints: Implement the PrintMessage() method in ServerClass to print a short message of your choosing to the

console. You’ll need to write a test driver program to test your code. Study Examples 10.4 through 10.6 for clues on

how to implement this exercise.

6. Compile Multiple Source Files: Find the engine simulator project source code presented in this chapter on the

PulpFreePress C# For Artists’ SupportSite®. [http://www.pulpfreepress.com] Use the csc compiler tool to com-

pile all the source files in the project directory using the ‘*’ wildcard character.

ClientClass

- its_server:Server

+ ClientClass(Server s)

+ PrintMessage()

ServerClass

+ ServerClass()
+ PrintMessage()

uses

Figure 10-15: Simple Aggregation Class Diagram

ClientClass

- its_server:Server

+ ClientClass()

+ PrintMessage()

ServerClass

+ ServerClass()
+ PrintMessage()

contains

Figure 10-16: Composite Aggregation Class Diagram
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 251

Suggested Projects Chapter 10: Compositional Design
Suggested Projects

1. Create Sequence Diagrams For Engine Simulator: Using your UML modeling tool, create a set of sequence dia-

grams to model the StartEngine(), StopEngine(), and CheckEngineStatus() method events.

2. Programming Project — Aircraft Simulator: Using the code supplied in the engine simulation project write a

program that simulates an aircraft with various numbers of engines. Give your aircraft the ability to start, stop, and

check the status of each engine. Implement the capability to inject engine part faults. Utilize a simple text-based

menu to control your aircraft’s engines. Draw a UML class diagram of your intended design.

3. Programming Project — Automobile Simulator: Write a program that implements a simple automobile simula-

tion. Perform an analysis and determine what parts your simulated car needs. Modify the engine simulator code to

use in this project, or adopt it as-is. Control your car with a simple text-based menu. Draw a UML class diagram of

your intended design.

4. Programming Project — Gasoline Pump Simulation: Write a program that implements a simple gas pump sys-

tem. Perform an analysis to determine what components your gas pump system requires. Control your gas pump

system with a simple text-based menu. Draw a UML class diagram of your intended design.

5. Programming Project — Hubble Space Telescope: Write a program that controls the Hubble Space Telescope.

Perform an analysis to determine what components the telescope control system will need. Control the space tele-

scope with a simple text-based menu. Draw a UML class diagram of your intended design.

6. Programming Project — Mars Rover: Write a program that controls the Mars Rover. Perform an analysis to

determine what components your rover requires. Control the rover with a simple text-based menu. Draw a UML

class diagram of your intended design.

Self-Test Questions

1. What is a dependency relationship between two objects?

2. What is an association relationship between two objects?

3. What is an aggregation?

4. List the two types of aggregation.

5. Explain the difference between the two types of aggregation.

6. How do you express simple aggregation using a UML class diagram?

7. How do you express composite aggregation using a UML class diagram?

8. Which type of aggregation denotes a uses or uses a relationship between two objects?

9. Which type of aggregation denotes a contains or has a relationship between two objects?

10. What is the purpose of a UML sequence diagram?
252 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 10: Compositional Design References
11. A class built from other class types is referred to as a/an ________________________.

12. In this type of aggregation, part objects belong solely to the whole or containing class. Name the type of aggrega-

tion.

13. In this type of aggregation, part object lifetimes are not controlled by the whole or containing class. Name the

type of aggregation.

14. In a UML class diagram, the aggregation diamond is drawn closest to which class, the whole or the part?

References

Grady Booch, et. al. The Unified Modeling Language User Guide. Addison-Wesley, Reading, MA, 1998. ISBN:

0-201-57168-4

Grady Booch. Object-Oriented Analysis and Design with Applications. Second Edition. The Benjamin/Cum-

mings Publishing Company, Inc., Redwood City, CA, 1994. ISBN: 0-8053-5340-2

Sinan Si Alhir. UML In A Nutshell: A Desktop Quick Reference. O’Reilly and Associates, Inc., Sebastopol, CA.

ISBN: 1-56592-448-7

Rick Miller. Java For Artists: The Art, Philosophy, And Science Of Object-Oriented Programming. Pulp Free

Press, Falls Church, VA. ISBN: 1-932504-05-2

Notes
C# For Artists © 2008 Rick Miller — All Rights Reserved 253

Notes Chapter 10: Compositional Design
254 © 2008 Rick Miller — All Rights Reserved C# For Artists

11 Inheritance and Interfaces

Learning Objectives
• State the three essential purposes of inheritance
• State the purpose of a base class
• State the purpose of a derived class
• State the purpose of an abstract method
• State the purpose of an abstract base class
• Define the following keywords: “sealed”, “virtual,” “override”, “new”, and “protected”
• Demonstrate your ability to use inheritance to create class hierarchies
• Demonstrate your ability to override base class methods in derived classes
• State the purpose of an interface
• Demonstrate your ability to create classes that implement interfaces
• State the definition of the term polymorphism
• Demonstrate your ability to write polymorphic code
• Express inheritance relationships using UML class diagrams

Chapter 11

InheritanceFairview Park

P
en

ta
x
 6

7
 /

 S
M

C
 T

ak
u
m

ar
 5

5
/2

.8
 /

 K
o
d
ak

 T
ri

-X
 P

ro
fe

ss
io

n
al

and Interfaces
C# F
or Artists © 2008 Rick Miller — All Rights Reserved 255

Introduction Chapter 11: Inheritance and Interfaces
Introduction

Inheritance is a powerful feature provided by modern object-oriented programming languages. The behavior pro-

vided or specified by one class can be adopted or extended by another class. Up to this point you have been using

inheritance in every program you have written, although mostly this has been done for you behind the scenes by the

C# compiler. For example, every user-defined class you create automatically inherits from the System.Object class.

In this chapter, you will learn how to create new derived classes from existing classes and interfaces. There are

three ways of doing this: 1) by extending the functionality of an existing class, 2) by implementing one or more inter-

faces, or 3) by combining these two methods to create derived classes that both extend the functionality of a base

class and implement the operations declared in one or more interfaces.

Along the way I will show you how to create and use abstract methods to create abstract classes. You will learn

how to create and utilize interfaces in your program designs, as well as how to employ the sealed keyword to inhibit

the inheritance mechanism. You will also learn how to use a Unified Modeling Language (UML) class diagram to

show inheritance hierarchies.

By the time you complete this chapter, you will fully understand how to create an object-oriented C# program

that exhibits dynamic polymorphic behavior. Most importantly, however, you will understand why dynamic polymor-

phic behavior is a desired object-oriented design objective.

This chapter also builds on the material presented in Chapter 10 - Compositional Design. The primary code

example in this chapter demonstrates the design possibilities you can achieve when you combine inheritance with

compositional design.

Three Purposes Of Inheritance

Inheritance serves three essential purposes. The first purpose of inheritance is to serve as an object-oriented

design mechanism that enables you to think and reason about the structure of your programs in terms of both general-

ized and specialized class behavior. A base class implements, or specifies, generalized behavior common to all of its

subclasses. Subclasses derived from this base class capitalize on the behavior it provides. Additionally, subclasses

may specify, or implement, specialized behavior if required in the context of the design.

When designing with inheritance, you create class hierarchies, where base classes that implement generalized

behavior appear at or near the top of the hierarchy, and derived classes that implement specialized behavior appear

toward the bottom. Figure 11-1 gives a classic example of an inheritance hierarchy showing generalized/specialized

behavior.

Figure 11-1: Inheritance Hierarchy Illustrating Generalized and Specialized Behavior

The Auto class sits at the

top of the inheritance hier-

archy and provides the

most general behavior

common to all Auto

objects.

Derived classes provide

increasingly specific

behavior.
256
 © 2008 Rick Miller — All Rights Reserved
 C# For Artists

Chapter 11: Inheritance and Interfaces Three Purposes Of Inheritance
Referring to Figure 11-1 — the Auto class sits at the top of the inheritance hierarchy and provides generalized

behavior for all of its derived classes. The Truck and Car classes derive from Auto. They provide specialized behavior

found only in Trucks and Car objects. The DumpTruck and PickupTruck classes derive from Truck, which means that

Truck is also serving as a base class. DumpTruck and PickupTruck inherit Truck’s generalized behavior and also

implement the specialized behavior required of these class types. The same holds true for the PassengerCar and

SportsCar classes. Their direct base class is Car, whose direct base class is Auto. For more real world examples of

inheritance hierarchies simply consult the .NET API documentation or refer to Chapter 5.

The second purpose of inheritance is to provide a way to gain a measure of code reuse within your programs. If

you can implement generalized behavior in a base class that’s common to all of its subclasses, then you don’t have to

re-write the code in each subclass. If, in one of your programming projects, you create an inheritance hierarchy and

find you are repeating a lot of the same code in each of the subclasses, then it’s time for you to refactor your design

and migrate the common code into a base class higher up in your inheritance hierarchy.

The third purpose of inheritance is to enable you to incrementally develop code. It is rare for a programmer, or

more often, a team of programmers, to sit down and in one heroic effort completely code the entire inheritance hierar-

chy for a particular application. It’s more likely the case that the inheritance hierarchy, and its accompanying classes,

grows over time. Take the .NET API as a prime example.

Implementing The “is a” Relationship

A class that belongs to an inheritance hierarchy participates in what is called an is a relationship. Referring again

to Figure 11-1, a Truck is an Auto and a Car is an Auto. Likewise, a DumpTruck is a Truck, and since a Truck is an

Auto, a DumpTruck is an Auto as well. In other words, class hierarchies are transitive in nature when navigating from

specialized classes to more generalized classes. They are not transitive in the opposite direction, however. For

instance, an Auto is not a Truck or a Car, etc.

A thorough understanding of the is a relationships that exist within an inheritance hierarchy will pay huge divi-

dends when you want to substitute a derived class object in code that specifies one of its base classes. This is a critical

skill in C#.NET programming and in object-oriented programming in general.

The Relationship Between The Terms Type, Interface, and Class

Before moving on, it will help you to understand the relationship between the terms type, interface and class. C#

is a strongly typed programming language. This means that when you write a program and wish to call a method on a

particular object, the compiler must know, in advance, the type of object to which you refer. In this context, the term

type refers to that set of operations or methods a particular object supports. Every object you use in your programs

has an associated type. If, by mistake, you try and call a non-supported method on an object, you will be alerted to

your mistake by a compiler error when you try to compile your program.

Meaning Of The Term Interface

An interface is a construct that introduces a new data type and its set of authorized operations in the form of

method, property, event, or indexer declarations. An interface member declaration provides a specification only and

no implementation. Interfaces are discussed in more detail later in the chapter.

Meaning Of The Term Class

A class is a construct that introduces and defines a new data type. Like the interface, the class specifies a set of

legal operations that can be performed on an object of its type. However, the class can go one step further and provide

definitions (i.e., behavior) for some or all of its methods, properties, events, or indexers. A class that provides defini-

tions for all of its members is a concrete class, meaning that objects of that class type can be created with the new

operator. (i.e., They can be instantiated.) If a class definition omits the body, and therefore the behavior, of one or

more of its members, then that class must be declared to be an abstract class. Abstract class objects cannot be created

with the new operator. I will discuss abstract classes in greater detail later in the chapter.
C# For Artists © 2008 Rick Miller — All Rights Reserved 257

Expressing Generalization And Specialization In The UML Chapter 11: Inheritance and Interfaces
Quick Review

Inheritance serves three essential purposes: 1) it is an object-oriented design mechanism that enables you to think

and reason about your program structure in terms of generalized and specialized class behavior, 2) it provides you

with a measure of code reuse within your program by locating common class behavior in base classes, and 3) it pro-

vides a means to incrementally develop your programs over time.

Classes that belong to an inheritance hierarchy participate in an is a relationship between themselves and their

chain of base classes. This is a relationship is transitive in the direction of specialized to generalized classes, but not

vice versa.

Class and interface constructs are each used to create new, user-defined data types. The interface construct speci-

fies a set of authorized type operations and omits their behavior; the class construct specifies a set of authorized type

operations and, optionally, their behavior as well. A class construct, like an interface, can omit the bodies of one or

more of its members. Such members must be declared to be abstract. A class that declares one or more abstract mem-

bers must be declared an abstract class. Abstract class objects cannot be created with the new operator.

Expressing Generalization And Specialization In The UML

Generalization and specialization relationships can be expressed in a UML class diagram by drawing a solid line

with a hollow-tipped arrow from the derived class to the base class, as Figure 11-2 illustrates.

Referring to Figure 11-2 — BaseClass acts as the direct base class to DerivedClass. Behavior provided by Base-

Class is inherited by DerivedClass. The extent of BaseClass behavior that’s inherited by DerivedClass is controlled

by the use of the member access modifiers public, protected, internal, protected internal, and

private. Generally speaking, base class members declared to be public, protected, internal, or

protected internal are inherited by a derived class. A detailed discussion of how these access modifiers are

used to control horizontal and vertical member access is presented later in this chapter. For now, however, let’s take a

look at an example program that implements the two classes shown in Figure 11-2.

BaseClass provides generalized

behavior.

DerivedClass provides specialized

behavior.

A solid line with a hollow-tipped

arrow denotes a generalization -

specialization relationship between

two classes

Figure 11-2: UML Class Diagram Showing DerivedClass Inheriting from BaseClass
258 © 2008 Rick Miller — All Rights Reserved
 C# For Artists

Chapter 11: Inheritance and Interfaces A Simple Inheritance Example
A Simple Inheritance Example

The simple inheritance example program presented in this section expands on the UML diagram shown in Figure

11-2. The behavior implemented by BaseClass is kept intentionally simple so that you can concentrate on the topic of

inheritance. You’ll be introduced to more complex programs soon enough.

The UML Diagram

A more complete UML diagram showing the fields, properties, and methods of BaseClass and DerivedClass is

presented in Figure 11-3

Referring to Figure 11-3 — BaseClass contains one private field named _message which is of type String. It has

one public property named Message. BaseClass has three public methods: two constructors and the PrintMessage()

method. One of the constructors is a default constructor that takes no arguments. The second constructor has one

parameter of type String named message. Based on this information, objects of type BaseClass can be created in two

ways. Once an object of type BaseClass is created, the PrintMessage() method and the Message property can be

called on that object.

DerivedClass has only two constructors that are similar to the constructors found in BaseClass. It inherits the

public members of BaseClass, which include the Message property and the PrintMessage() method. Let’s now take a

look at the source code for each class.

BaseClass Source Code
11.1 BaseClass.cs

1 using System;
2
3 public class BaseClass {
4 private String _message;
5
6 public String Message {
7 get { return _message; }
8 set { _message = value; }
9 }
10
11 public BaseClass(String message){

Figure 11-3: UML Diagram of BaseClass and DerivedClass Showing Fields, Properties, and Methods
C# For A
rtists © 2008 Rick Miller — All Rights Reserved 259

A Simple Inheritance Example Chapter 11: Inheritance and Interfaces
12 Console.WriteLine("BaseClass object created...");
13 Message = message;
14 }
15
16 public BaseClass():this("Default BaseClass message"){ }
17
18 public void PrintMessage(){
19 Console.WriteLine("BaseClass PrintMessage(): " + Message);
20 }
21 }

Referring to Example 11.1 — BaseClass is fairly simple. Its first constructor begins on line 11 and declares one

string parameter named message. The _message field is set via the Message property. The default constructor begins

on line 16. It calls the first constructor with the string literal “Default BaseClass message!” The PrintMessage()

method begins on line 18. It simply prints the Message property to the console. A BaseClass object’s message can be

changed by setting its Message property.

Since the Message property and the PrintMessage() method each have a body, and are therefore defined, the

BaseClass is considered a concrete class. This means that objects of type BaseClass can be created with the new

operator.

Example 11.2 gives the code for DerivedClass.

DerivedClass Source Code
11.2 DerivedClass.cs

1 using System;
2
3 public class DerivedClass:BaseClass {
4
5 public DerivedClass(String message):base(message){
6 Console.WriteLine("DerivedClass object created...");
7 }
8
9 public DerivedClass():this("Default DerivedClass message"){ }
10 }

Referring to Example 11.2 — DerivedClass inherits the functionality of BaseClass by extending BaseClass. Note

that on line 3, the name BaseClass follows the colon character ‘:’. DerivedClass itself provides only two constructors.

The first constructor begins on line 5. It declares a string parameter named message. The first thing this constructor

does is call the string parameter version of the BaseClass constructor using the base() method with the message

parameter as an argument. Note how the call to base() follows the colon. The next thing the DerivedClass constructor

does is print a short message to the console.

DerivedClass’s default constructor begins on line 9. It calls its version of the string parameter constructor using

the string literal “Default DerivedClass message!” as an argument to the this() call. This ultimately results in a call to

the version of the BaseClass constructor that takes a string argument.

Let’s now take a look at how these two classes can be used in a program.

DriverApplication Program
11.3 DriverApplication.cs

1 public class DriverApplication {
2 public static void Main(){
3 BaseClass b1 = new BaseClass();
4 BaseClass b2 = new DerivedClass();
5 DerivedClass d1 = new DerivedClass();
6
7 b1.PrintMessage();
8 b2.PrintMessage();
9 d1.PrintMessage();
10 }
11 }

The DriverApplication class tests the functionality of BaseClass and DerivedClass. The important thing to note

in this example is which type of object is being declared and created on lines 3 through 5. Starting on line 3, a Base-

Class reference named b1 is declared and initialized to point to a BaseClass object. On line 4, another BaseClass ref-

erence named b2 is declared and initialized to point to a DerivedClass object. On line 5, a DerivedClass reference

named d1 is declared and initialized to point to a DerivedClass object. Note that a reference to a base class object can
260 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 11: Inheritance and Interfaces Another Inheritance Example: Person - Student
also point to a derived class object. Also note that this example only uses the default constructors to create each

object. This results in the default message text being used upon the creation of each type of object.

Continuing with Example 11.3 — on lines 7 through 9, the PrintMessage() method is called on each reference.

It’s time now to compile and run the code. Figure 11-4 gives the results of running Example 11.3.

As you will notice from studying Figure 11-4, there are eight lines of program output that correspond to the cre-

ation of the three objects and the three PrintMessage() method calls on each reference b1, b2, and d1. Creating a

BaseClass reference and initializing it to a BaseClass object results in the BaseClass version (the only version at this

point) of the PrintMessage() method being called, which prints the default BaseClass text message.

Creating a BaseClass reference and initializing it to point to a DerivedClass object has slightly different behavior.

The value of the resulting text printed to the console shows that a DerivedClass object was created, which resulted in

the BaseClass _message field being set to the DerivedClass default value. Note that DerivedClass does not have a

PrintMessage() method, therefore it is the BaseClass version of PrintMessage() that is called. The PrintMessage()

method is inherited by DerivedClass (i.e., it is accessible to it) because it is declared public.

Finally, declaring a DerivedClass reference and initializing it to point to a DerivedClass object appears to have

the same effect as the previous BaseClass reference/DerivedClass object combination. This is the case in this simple

example because DerivedClass simply inherits BaseClass’s default behavior and, except for its own constructors,

leaves it unchanged.

Quick Review

A base class implements default behavior in the form of public, protected, internal, and protected internal mem-

bers that can be inherited by derived classes. There are three reference/object combinations: 1) if the base class is a

concrete class (meaning it is not abstract) then a base class reference can point to a base class object, 2) a base class

reference can point to a derived class object, and 3) a derived class reference can point to a derived class object.

Another Inheritance Example: Person - Student

Let’s now take a look at a more realistic example of inheritance. This example uses the Person class presented in

Chapter 9 as a base class. The derived class will be called Student. Let’s take a look at the UML diagram for this

inheritance hierarchy.

The Person - Student UML Class Diagram

Figure 11-5 gives the UML class diagram for the Student class inheritance hierarchy. Notice the behavior pro-

vided by the Person class in the form of its public interface methods and properties. The Student class extends the

functionality of Person and provides a small bit of specialized functionality of its own in the form of the StudentNum-

ber and Major properties.

Since the Student class participates in an is-a relationship with class Person, a Student object can be used wher-

ever a Person object is called for in your source code. However, now you must be keenly aware of the specialized

Figure 11-4: Results of Running Example 11.3
C# For Arti
sts © 2008 Rick Miller — All Rights Reserved 261

Another Inheritance Example: Person - Student Chapter 11: Inheritance and Interfaces
behavior provided by the Student class, as you will soon see when you examine and run the driver application pro-

gram for this example.

Person - Student Source Code
11.4 Person.cs

1 using System;
2
3 public class Person {
4
5 //enumeration
6 public enum Sex {MALE, FEMALE};
7
8 // private instance fields
9 private String _firstName;
10 private String _middleName;
11 private String _lastName;
12 private Sex _gender;
13 private DateTime _birthday;
14
15 //private default constructor
16 private Person(){}
17
18 public Person(String firstName, String middleName, String lastName,
19 Sex gender, DateTime birthday){
20 FirstName = firstName;
21 MiddleName = middleName;
22 LastName = lastName;
23 Gender = gender;
24 BirthDay = birthday;
25 }
26
27 // public properties
28 public String FirstName {
29 get { return _firstName; }
30 set { _firstName = value; }
31 }
32
33 public String MiddleName {
34 get { return _middleName; }
35 set { _middleName = value; }
36 }
37
38 public String LastName {

Figure 11-5: UML Diagram Showing Student Class Inheritance Hierarchy
262
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 11: Inheritance and Interfaces Another Inheritance Example: Person - Student
39 get { return _lastName; }
40 set { _lastName = value; }
41 }
42
43 public Sex Gender {
44 get { return _gender; }
45 set { _gender = value; }
46 }
47
48 public DateTime BirthDay {
49 get { return _birthday; }
50 set { _birthday = value; }
51 }
52
53 public int Age {
54 get {
55 int years = DateTime.Now.Year - _birthday.Year;
56 int adjustment = 0;
57 if(DateTime.Now.Month < _birthday.Month){
58 adjustment = 1;
59 }else if((DateTime.Now.Month == _birthday.Month) && (DateTime.Now.Day < _birthday.Day)){
60 adjustment = 1;
61 }
62 return years - adjustment;
63 }
64 }
65
66 public String FullName {
67 get { return FirstName + " " + MiddleName + " " + LastName; }
68 }
69
70 public String FullNameAndAge {
71 get { return FullName + " " + Age; }
72 }
73
74 public override String ToString(){
75 return FullName + " is a " + Gender + " who is " + Age + " years old.";
76 }
77 } // end Person class

The Person class code is unchanged from Chapter 9.
11.5 Student.cs

1 using System;
2
3 public class Student:Person {
4 private String _student_number;
5 private String _major;
6
7 public String StudentNumber {
8 get { return _student_number; }
9 set { _student_number = value; }
10 }
11
12 public String Major {
13 get { return _major; }
14 set { _major = value; }
15 }
16
17 public Student(String firstName, String middleName, String lastName,
18 Sex gender, DateTime birthday, String studentNumber,
19 String major):base(firstName, middleName, lastName, gender, birthday) {
20 StudentNumber = studentNumber;
21 Major = major;
22 }
23
24 public override String ToString(){
25 return (base.ToString() + " Student Number: " + StudentNumber + " Major: " + Major);
26 }
27
28 } // end Student class definition

Referring to Example 11.5 — the Student class extends Person and implements specialized behavior in the form

of the StudentNumber and Major properties. The Student class has one constructor. With the exception of the last two

parameters, studentNumber and major, the parameters are those required by the Person class. Note how the required

person constructor arguments are used in the call to base() on line 19. The parameters studentNumber and major are

then used on lines 20 and 21, respectively to set a Student object’s StudentNumber and Major properties.
C# For Artists © 2008 Rick Miller — All Rights Reserved 263

Another Inheritance Example: Person - Student Chapter 11: Inheritance and Interfaces
The Student class also overrides the ToString() method, which begins on line 24. Note how the Person class’s

version of ToString() is called via base.ToString(). The required additional Student information is appended to this

string and returned.

This is all the specialized functionality required of the Student class for this example. The majority of its func-

tionality is provided by the Person class. Let’s now take a look at these two classes in action. Example 11.6 gives the

test driver program.
11.6 PersonStudentTestApp.cs

1 using System;
2
3 public class PersonStudentTestApp {
4 public static void Main(){
5 Person p1 = new Person("Ulysses", "S", "Grant", Person.Sex.MALE, new DateTime(1822, 04, 22));
6 Person p2 = new Student("Steven", "Jay", "Jones", Person.Sex.MALE, new DateTime(1986, 03, 21),
7 "1234564", "Finance");
8 Student s1 = new Student("Virginia", "LeAnn", "Mattson", Person.Sex.FEMALE,
9 new DateTime(1973, 09, 14), "8798765", "Computer Science");
10 Console.WriteLine(p1);
11 Console.WriteLine(p2);
12 Console.WriteLine(s1);
13
14 // p2.Major = "Criminal Justice"; // ERROR: p2 is a Person reference
15 s1.Major = "Physics";
16
17 Console.WriteLine("---");
18 Console.WriteLine(p2);
19 Console.WriteLine(s1);
20 }
21 }

Referring to Example 11.6 — this program is similar in structure to Example 11-3 in that it declares three refer-

ences and shows you the effects of accessing methods and properties via those references. A Person reference named

p1 is declared on line 5 and initialized to point to a Person object. On line 6, another Person reference named p2 is

declared and initialized to point to a Student object. On line 8, a Student reference is declared and initialized to point

to a Student object. On lines 10, 11, and 12, each object’s information is printed to the console.

Line 14 is commented out. This line, if you were to try to compile it, will cause a compiler error because an

attempt is made to set the Major property on a Student object via a Person reference. Now, repeat the previous sen-

tence to yourself several times until you fully understand its meaning. Good! Now, you may ask, and rightly so at this

point, “But wait, why can’t you set the Major property on a Student object?” You can, but p2 is a Person type refer-

ence, which means that the compiler is enforcing the interface defined by the Person class. Remember the “C# is a

strongly-typed language...” spiel I delivered earlier in this chapter? I will show you how to use casting to resolve this

issue after I show you how this program runs.

Continuing with Example 11.6, on line 15, the Major property is set on a Student object via a Student reference.

Finally, on lines 18 and 19, the information for references p2 and s1 is printed to the console. Figure 11-6 gives the

results of running Example 11.6.

Casting

OK, now let’s take a look at a modified version of Example 11.6 that takes care of the problem encountered on

line 14. Example 11.7 gives the modified version of PersonStudentTestApp.cs.

Figure 11-6: Results of Running Example 11.6
264
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 11: Inheritance and Interfaces Another Inheritance Example: Person - Student
11.7 PersonStudentTestApp.cs (Mod 1)

1 using System;

2

3 public class PersonStudentTestApp {

4 public static void Main(){

5 Person p1 = new Person("Ulysses", "S", "Grant", Person.Sex.MALE, new DateTime(1822, 04, 22));

6 Person p2 = new Student("Steven", "Jay", "Jones", Person.Sex.MALE, new DateTime(1986, 03, 21),

7 "1234564", "Finance");

8 Student s1 = new Student("Virginia", "LeAnn", "Mattson", Person.Sex.FEMALE, new DateTime(1973, 09, 14),

9 "8798765", "Computer Science");

10 Console.WriteLine(p1);

11 Console.WriteLine(p2);

12 Console.WriteLine(s1);

13

14 ((Student)p2).Major = "Criminal Justice"; // OK - Person reference is cast to type Student

15 s1.Major = "Physics";

16

17 Console.WriteLine("---");

18 Console.WriteLine(p2);

19 Console.WriteLine(s1);

20 }

21 }

Referring to Example 11.7 — notice on line 14 that the compiler has been instructed to treat the p2 reference as

though it were a Student type reference. This form of explicit type coercion is called casting. Casting only works if

the object the reference actually points to is of the proper type. In other words, you can cast p2 to a Student type

because it points to a Student object. However, you could not cast the p1 reference to Student since it actually points

to a Person object. Figure 11-7 shows the results of running Example 11.7.

Use Casting Sparingly

Casting is a helpful feature, but too much casting usually means your design is not optimal from an object-ori-

ented point of view. You will see more situations in this book where casting is required, but mostly, I try to show you

how to design programs that minimize the need to cast.

Quick Review

The Person class provided the default behavior for the Student class. The Student class inherited Person’s default

behavior and implemented its own specialized behavior.

Reference variables have an associated type. Method calls to an object pointed to by a reference will succeed

without casting as long as the reference type supports the method you are trying to call. Casting forces, or coerces, the

compiler into treating a reference to an object of one type as if it were a reference to an object of another. This is

extremely helpful in some circumstances but, as a rule, use casting sparingly. Also, casting only works if the object

really is of the type you are casting it to.

Figure 11-7: Results of Running Example 11.7
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 265

Overriding Base Class Methods Chapter 11: Inheritance and Interfaces
Overriding Base Class Methods

So far you have only seen examples of inheritance in which the derived class fully accepted the behavior pro-

vided by its base class. This section shows you how to override base class behavior in the derived class by overriding

base class methods.

To override a base class method in a derived class you need to redefine the method with the exact signature in the

derived class. The overriding derived class method must also return the same type as the overridden base class

method and be declared with the keyword override. You also need to add the keyword virtual to the base class

method declaration. By using the virtual/override keyword pair, you can achieve polymorphic behavior.

Let’s take a look at a simple example. Figure 11-8 gives a UML class diagram for the revised BaseClass and

DerivedClass classes.

Referring to Figure 11-8 — notice that DerivedClass now has a public method named PrintMessage(). BaseClass

has been modified by adding the keyword virtual to the declaration of its PrintMessage() method, which is not

shown in the diagram. Example 11.8 gives the source code for the modified version of BaseClass.
11.8 BaseClass.cs (Mod 1)

1 using System;
2
3 public class BaseClass {
4 private String _message;
5
6 public String Message {
7 get { return _message; }
8 set { _message = value; }
9 }
10
11 public BaseClass(String message){
12 Console.WriteLine("BaseClass object created...");
13 Message = message;
14 }
15
16 public BaseClass():this("Default BaseClass message"){ }
17
18 public virtual void PrintMessage(){
19 Console.WriteLine("BaseClass PrintMessage(): " + Message);
20 }
21 }

Referring to Example 11.8 — the only change to BaseClass is the addition of the virtual keyword to the defi-

nition of the PrintMessage() method. The virtual keyword enables the PrintMessage() method to be overridden in

DerivedClass. If you omit the virtual keyword from a base class method or other overrideable member, then you

will get a compiler error if you attempt to override that member in a derived class.

Example 11.9 gives the code for the modified version of DerivedClass.

Figure 11-8: UML Class Diagram For BaseClass & DerivedClass
266
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 11: Inheritance and Interfaces Abstract Methods and Abstract Base Classes
11.9 DerivedClass.cs (Mod 1)

1 using System;
2
3 public class DerivedClass:BaseClass {
4
5 public DerivedClass(String message):base(message){
6
7 Console.WriteLine("DerivedClass object created...");
8 }
9
10 public DerivedClass():this("Default DerivedClass message"){ }
11
12 public override void PrintMessage(){
13 Console.WriteLine("DerivedClass PrintMessage(): " + Message);
14 }
15 }

Referring to Example 11.9 —the DerivedClass’s version of PrintMessage() on line 12 overrides the BaseClass

version. Note the use of the override keyword in the PrintMessage() method definition. How does this affect the

behavior of these two classes? A good way to explore this issue is to recompile and run the DriverApplication given

in Example 11.3. Figure 11-9 shows the results of running the program using the modified versions of BaseClass and

DerivedClass.

Referring to Figure 11-9 — compare these results with those of Figure 11-4. The first message is the same, which

is as it should be. The b1 reference points to a BaseClass object. The second message is different, though. Why is this

so? The b2 reference is pointing to a DerivedClass object. When the PrintMessage() method is called on the Derived-

Class object via the BaseClass reference, the overriding PrintMessage() method provided in DerivedClass is called.

This is an example of polymorphic behavior. A base class reference, b2, points to a derived class object. You call a

method provided by the base class interface via the base class reference, but is overridden in the derived class and,

voila, you have polymorphic behavior. Pretty cool, huh?

Quick Review

Derived classes override base class behavior by providing overriding methods. An overriding method is a

method in a derived class that has the same signature as the base class method it is intending to override. Use the

virtual keyword to declare an overrideable base class method. Use the override keyword to define an overrid-

ing derived class method. Overriding methods can be called polymorphically via a base class reference that points to

a derived class object.

Abstract Methods and Abstract Base Classes

An abstract method is one that appears in the body of a class declaration but omits the method body. A class that

declares one or more abstract methods must be declared to be an abstract class. If you create an abstract method and

forget to declare the class as being abstract, the compiler will inform you of your mistake.

Now, you could simply declare a class to be abstract even though it provides implementations for all of its meth-

ods. This would prevent you from creating objects of the abstract class directly with the new operator. This may or

may not be the intention of your application design goals.

Figure 11-9: Results of Running Example 11.3 with Modified Versions of BaseClass and DerivedClass
C# Fo
r Artists © 2008 Rick Miller — All Rights Reserved 267

Abstract Methods and Abstract Base Classes Chapter 11: Inheritance and Interfaces
The Primary Purpose Of An Abstract Base Class

The primary purpose of an abstract base class is to provide a set of one or more public interface methods whose

implementations are expected to be found in some derived class further down the inheritance hierarchy. The key

phrase is “expected to be found in some derived class further down the inheritance hierarchy.” This means that as a

designer, you would employ an abstract class in your application architecture when you want a base class to specify

rather than implement behavior, and you expect derived classes to actually implement the behavior specified by the

base class interface.

OK, why would you want to do this? Why create a class that does nothing but specify a set of interface methods?

Good questions! The short answer is that abstract classes will constitute the upper tier of your inheritance hierarchy.

The upper tier of an inheritance hierarchy is where you expect to find specifications for the general behavior inherited

by derived classes, which appear in the lower tier of an inheritance hierarchy. The derived classes, at some point,

must provide implementations for those abstract methods specified in their base classes. Designing application archi-

tectures in this fashion — abstractions at the top and concrete implementations at the bottom — enables the architec-

ture to be extended, rather than modified, to accommodate new functionality. This design technique injects a good

dose of stability into your application architecture. This and other advanced object-oriented design techniques are dis-

cussed in more detail in Chapter 23.

Expressing Abstract Base Classes In UML

Figure 11-10 shows a UML diagram that contains an abstract base class named AbstractClass.

Referring to Figure 11-10 — the stereotype <<abstract>> is optional, but if your draw your UML diagrams by

hand, it’s hard to write in italics, so, this notation comes in handy. Abstract classes can have the same kinds of mem-

bers as normal classes, but abstract members are shown in italics. Let’s now have a look at a short abstract class

inheritance example.

Abstract Class Example
Figure 11-11 gives the UML class diagram for our example:

Referring to Figure 11-11 — AbstractClass has two methods and one property. The first method is its default con-

structor and it is not abstract. (Remember, constructors cannot be abstract.) The next method, PrintMessage(), is

shown in italics and is therefore an abstract method. The Message property is also abstract in this example but a limi-

tation in MagicDraw prevents it from being displayed in italics, otherwise, MagicDraw is a fine UML design tool.

DerivedClass inherits from AbstractClass. Since AbstractClass’s PrintMessage() method is abstract and has no

implementation, DerivedClass must provide an implementation for it. DerivedClass’s PrintMessage() method is in

plain font, indicating it has an implementation.

Now, if for some reason, you as a designer decided to create a class that inherited from DerivedClass, and you

defer the implementation of the PrintMessage() method to that class, then DerivedClass would itself have to be

declared to be an abstract class. I just wanted to mention this because in most situations you will have more than the

two-tiered inheritance hierarchy I have used here in this simple example.

Let’s now take a look at the code for these two classes. Example 11.10 gives the code for AbstractClass.

Figure 11-10: Expressing an Abstract Class in the UML

Class name in italics

Stereotype of <<abstract>>

Abstract methods in italics
268
 © 2008 Rick Miller — All Rights Reserved
 C# For Artists

Chapter 11: Inheritance and Interfaces Abstract Methods and Abstract Base Classes
11.10 AbstractClass.cs

1 using System;
2
3 public abstract class AbstractClass {
4
5 public abstract String Message {
6 get;
7 set;
8 }
9
10 public AbstractClass(){
11 Console.WriteLine("AbstractClass object created...");
12 }
13
14 public abstract void PrintMessage();
15 }

Referring to Example 11.10 — the important point to note is that on line 3 the keyword abstract indicates

that this is an abstract class definition. The abstract keyword is also used on lines 5 and 14 in the Message prop-

erty definition and the PrintMessage() method declaration. An abstract member is implicitly virtual, so you don’t need

to add the virtual keyword to an abstract member definition. In fact, doing so will produce a compiler warning.

Also note how the Message property’s get and set accessors are terminated with a semicolon, indicating they have

no implementation. (i.e., No curly braces, no body, no implementation.) The same holds true for the PrintMessage()

method. Example 11.11 gives the code for DerivedClass.
11.11 DerivedClass.cs

1 using System;
2
3 public class DerivedClass:AbstractClass {
4 private String _message;
5
6 public override String Message {
7 get { return _message; }
8 set { _message = value; }
9 }
10
11 public DerivedClass(String message){
12 Message = message;
13 Console.WriteLine("DerivedClass object created...");
14 }
15
16 public DerivedClass():this("Default DerivedClass message"){ }
17
18 public override void PrintMessage(){
19 Console.WriteLine("DerivedClass PrintMessage(): " + Message);
20 }
21 }

Referring to Example 11.11 — DerivedClass extends AbstractClass. DerivedClass provides an implementation

for each of AbstractClass’s abstract members. Let’s take a look now at the test driver program that exercises these two

classes.

Figure 11-11: UML Class Diagram Showing the AbstractClass and DerivedClass Inheritance Hierarchy
C# For A
rtists © 2008 Rick Miller — All Rights Reserved 269

Interfaces Chapter 11: Inheritance and Interfaces
11.12 DriverApplication.cs

1 public class DriverApplication {
2 public static void Main(){
3 AbstractClass a1 = new DerivedClass(); // preferred combination
4 DerivedClass d1 = new DerivedClass();
5 a1.PrintMessage();
6 d1.PrintMessage();
7 a1.Message = "New Message";
8 d1.Message = "Another Message";
9 a1.PrintMessage();
10 d1.PrintMessage();
11 }
12 }

Referring to Example 11.12 — remember, you cannot directly instantiate an abstract class object. On line 3, a

reference to an AbstractClass type object named a1 is declared and initialized to point to a DerivedClass object. On

line 4, a reference to a DerivedClass type object named d1 is declared and initialized to point to a DerivedClass

object.

The comment on line 3 that says “preferred combination” means that the abstract type reference pointing to the

derived class object is the preferred combination in an object-oriented program. Remember, your goal is to write code

that works the same regardless of what type of object a reference points to. The abstract class serves as a specification

for behavior. As long as it points to an object that implements the specified behavior, things should work fine.

Figure 11-12 shows the results of running Example 11.12.

Quick Review

An abstract member is a member that omits its body and has no implementation behavior. A class that declares

one or more abstract members must be declared to be abstract.

The primary purpose of an abstract class is to provide a specification for behavior whose implementation is

expected to be found in some derived class further down the inheritance hierarchy.

Designers employ abstract classes to provide a measure of application architectural stability.

Interfaces

An interface is a construct that functions like an implicit abstract class. In C#, a derived class can extend the

behavior of only one class, but it can implement as many interfaces as it requires. Interfaces themselves can inherit

(i.e., extend) from multiple interfaces.

The Purpose Of Interfaces

The purpose of an interface is to provide a specification for behavior in the form of abstract properties, methods,

events, and indexers. An interface declaration introduces a new data type, just as class declarations and definitions do.

Authorized Interface Members

C# interfaces can only contain four types of members. These include:

Figure 11-12: Results of Running Example 11.12
270
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 11: Inheritance and Interfaces Interfaces
• Properties — Implicitly public and abstract.

• Methods — Implicitly public and abstract.

• Events — Implicitly public and abstract.

• Indexers — Implicitly public and abstract.

The Differences Between An Interface And An Abstract Class

Table 11-1 summarizes the differences between abstract classes and interfaces.

Expressing Interfaces In UML

Interfaces are expressed in the UML in two ways, as is shown in Figure 11-13.

Referring to Figure 11-13 — one way to show an interface in UML is by using a circle with the name of the

interface close by. The second way involves the use of an ordinary class diagram that includes the stereotype <<inter-

face>>. Each of these diagrams, the circle and the class diagram, can represent the use of interfaces in an inheritance

hierarchy, as is discussed in the following section.

Expressing Realization In A UML Class Diagram

When a class implements an interface it is said to be realizing that interface. Interface realization is expressed in

UML in two distinct forms: 1) the simple form in which the circle represents the interface and is combined with an

association line to create a lollipop diagram, or 2) the expanded form in which an ordinary class diagram represents

the interface. Figure 11-14 illustrates the use of the lollipop diagram to convey the simple form of realization. Figure

11-15 shows an example of the expanded form of realization.

Abstract Class Interface

Must be declared abstract with the abstract keyword. Is implicitly abstract.

Can contain abstract and concrete members. Can only contain abstract members. All members in an in-

terface are implicitly public and abstract.

Can contain fields, constants, and static members. Can only contain declarations for properties, methods,

events, and indexers.

Can contain nested class and interface declarations. Can only contain declarations for properties, methods,

events, and indexers.

Can extend one class and implement many interfaces. Can extend many interfaces.

Table 11-1: Differences Between Abstract Classes and Interfaces

Figure 11-13: Two Types of UML Interface Diagrams
C# For Artis
ts © 2008 Rick Miller — All Rights Reserved 271

Interfaces Chapter 11: Inheritance and Interfaces
An Interface Example

Let’s turn our attention to a simple example of an interface in action. Figure 11-16 gives the UML diagram of the

IMessagePrinter interface and a class named MessagePrinter that implements the IMessagePrinter interface. The

source code for these two classes is given in Examples 11.13 and 11.14.

Dependency line

Figure 11-14: UML Diagram Showing the Simple Form of Realization

SomeClass depends on

SomeInterface.

AnotherClass implements

or realizes SomeInterface.

Figure 11-15: UML Diagram Showing the Expanded Form of Realization

SomeClass depends on

SomeInterface.

Dependency line

Dashed line with hollow-

tipped arrow denotes real-

ization.

Figure 11-16: UML Diagram Showing the MessagePrinter Class Implementing the IMessagePrinter Interface
272 © 2008 Rick Miller — All Rights Reserved
 C# For Artists

Chapter 11: Inheritance and Interfaces Interfaces
11.13 IMessagePrinter.cs

1 using System;
2
3 public interface IMessagePrinter {
4 String Message {
5 get;
6 set;
7 }
8
9 void PrintMessage();
10 }

11.14 MessagePrinter.cs

1 using System;
2
3 public class MessagePrinter:IMessagePrinter {
4 private String _message;
5
6 public String Message {
7 get { return _message; }
8 set { _message = value; }
9 }
10
11 public MessagePrinter(String message){
12 Message = message;
13 Console.WriteLine("MessagePrinter object created...");
14 }
15
16 public MessagePrinter():this("Default MessagePrinter message"){ }
17
18 public void PrintMessage(){
19 Console.WriteLine("MessagePrinter PrintMessage(): " + Message);
20 }
21 }

11.15 DriverApplication.cs

1 public class DriverApplication {
2 public static void Main(){
3 IMessagePrinter i1 = new MessagePrinter();
4 MessagePrinter m1 = new MessagePrinter();
5 i1.PrintMessage();
6 m1.PrintMessage();
7 i1.Message = "New Message";
8 m1.Message = "Another Message";
9 i1.PrintMessage();
10 m1.PrintMessage();
11 }
12 }

As you can see from Example 11.13, the IMessagePrinter interface is short and simple. All it does is declare two

interface members: the Message property and the PrintMessage() method. The implementation of these interface

members is left to any class that implements the IMessagePrinter interface, as the MessagePrinter class does in

Example 11.14.

Example 11.15 gives the test driver program for this example. As you can see on line 3, you can declare an inter-

face type reference. I called this one i1. Although you cannot instantiate an interface directly with the new operator,

you can initialize an interface-type reference to point to an object of any concrete class that implements the interface.

The only object members you can access via the interface-type reference are those members specified by the inter-

face. You could of course cast to a different type if required, as long as the object implements that type’s interface, but

strive to minimize the need to cast in this manner.

Figure 11-17 gives the results of running Example 11.15.

Figure 11-17: Results of Running Example 11.15
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 273

Controlling Horizontal And Vertical Access Chapter 11: Inheritance and Interfaces
Quick Review

The purpose of an interface is to specify behavior. Interfaces can have four types of members: 1) properties, 2)

methods, 3) events, and 4) indexers. Classes can inherit from or extend only one other class, but they can implement

as many interfaces as required. Interfaces can extend as many interfaces as necessary.

Controlling Horizontal And Vertical Access

The term horizontal access describes the level of access an object of one type has to the members of another

type. I discussed this topic in detail in Chapter 9. The term vertical access refers to the level of access a derived class

has to its base class members. In both cases access is controlled by the access modifiers public, protected,

private, internal, and protected internal.

The default class member access is private. That is, when you omit an explicit access modifier from the definition

of a class member, the member’s accessibility is set to private by default. Conversely, interface members are public

by default. A derived class does not have access to a base class’s private members. (i.e., Private members are not

inherited.)

Derived classes have access to their base class’s public, protected, internal, and protected internal members. (i.e.,

These members are inherited by the derived class.)

The most frequently used access modifiers are private, public, and protected. As a rule of thumb you

will declare a class’s fields and one of more of its methods to be private. You saw an example of this already with pri-

vate fields and private default constructors. Utility methods meant to be used only by their containing class are usu-

ally declared to be private as well.

If you want a member to be inherited by derived classes (i.e., accessible vertically) but not accessible horizon-

tally by other classes or code, declare it to be protected. If you want a member to be both horizontally and verti-

cally accessible to all code within an assembly but only vertically accessible to derived classes outside the assembly,

declare it to be protected internal.

Quick Review

Use the access modifiers private, protected, public, internal, and protected internal to

control horizontal and vertical member access.

Sealed Classes And Methods

Sometimes you want to prevent classes from being extended or individual methods of a particular class from

being overridden. Use the keyword sealed for these purposes. When used to declare a class, it prevents that class

from being extended.

When used to declare a method, it prevents the method from being overridden in a derived class. Use the

sealed keyword in conjunction with the override keyword. In other words, a sealed method is an overridden

method that you want to prevent from being further overridden in the future.

You cannot use the keyword sealed in combination with the keyword abstract for obvious reasons.

Quick Review

Use the sealed keyword to stop the inheritance mechanism or prevent base class methods from being overrid-

den in derived classes.
274 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 11: Inheritance and Interfaces Polymorphic Behavior
Polymorphic Behavior

A good definition of polymorphism is “The ability to operate on and manipulate different derived objects in a

uniform way.” (Sadr) Add to this the following amplification: “Without polymorphism, the developer ends up writing

code consisting of large case or switch statements. This is in fact the litmus test for polymorphism. The existence of a

switch statement that selects an action based upon the type of an object is often a warning sign that the developer has

failed to apply polymorphic behavior effectively.” (Booch)

Polymorphic behavior is easy to understand. In a nutshell, it is simply the act of using the set of public interface

members defined for a particular class (or interface) to interact with that class’s (or interface’s) derived classes. When

you write code, you need some level of a priori knowledge about the type of objects your code will manipulate. In

essence, you have to set the bar at some level, meaning that at some point in your code, you need to make an assump-

tion about the type of objects with which you are dealing and the behavior they manifest. An object’s type, as you

know, is important because it specifies the set of operations that are valid for objects of that type (and subtypes).

Code that’s written to take advantage of polymorphic behavior is generally cleaner, easier to read, easier to main-

tain, and easier to extend. If you find yourself casting a lot, you are not writing polymorphic code. If you use the

typeof operator frequently to determine object types, then you are not writing polymorphic code. Polymorphic behav-

ior is the essence of object-oriented programming.

Quick Review

Polymorphic behavior is achieved in a program by targeting a set of operations specified by a base class or inter-

face and manipulating their derived class objects via those operations. This uniform treatment of derived class objects

results in cleaner code that’s easier to extend and maintain. Polymorphic behavior is the essence of object-oriented

programming.

Inheritance Example: Employee

This section offers an inheritance example that extends, once again, the functionality of the Person class given in

Chapter 9. Figure 11-18 gives the UML diagram. Referring to Figure 11-18 — the Employee class extends Person

and implements the IPayable interface. However, in this example, as you will see later, the implementation of the

Pay() method specified in the IPayable interface is deferred by the Employee class to its derived classes. It does this

by mapping the IPayable.Pay() method to an abstract method, which means the Employee class now becomes an

abstract class.

The HourlyEmployee and SalariedEmployee classes extend the functionality of Employee. Each of these classes

will implement the Pay() method in its own special way.

From a polymorphic point of view, you could write a program that uses these classes in several ways. It just

depends on which set of interface methods you want to target. For instance, you could write a program that contains

an array of Person references. Each of these Person references could then be initialized to point to an HourlyEm-

ployee object or a SalariedEmployee object. In either case, the only members you can access on these objects via a

Person reference without casting are those public members specified by the Person class.

Another approach would be to declare an array of IPayable references. Then again, you could initialize each

IPayable reference to point to either an HourlyEmployee object or a SalariedEmployee object. Now the only mem-

bers of each object that you can access without casting is the Pay() method.

A third approach would be to declare an array of Employee references and initialize each reference to point to

either an HourlyEmployee object or a SalariedEmployee object. In this scenario, you could then access any member

specified by Person, IPayable, and Employee. This is the approach taken in the EmployeeTestApp program listed in

Example 11.20.

The code for each of these classes (except Person class, which was shown earlier in the chapter) along with the

EmployeeTestApp class is given in Examples 11.16 through 11.20.
C# For Artists © 2008 Rick Miller — All Rights Reserved 275

Inheritance Example: Employee Chapter 11: Inheritance and Interfaces
11.16 IPayable.cs

1 using System;
2
3 public interface IPayable {
4 double Pay();
5 }

11.17 Employee.cs

1 using System;
2
3 /***
4 * The Employee class entends Person and implements
5 * IPayable, but since it defers the actual
6 * implementation of IPayable's Pay() method
7 * to derived classes it must be declared an
8 * abstract class.
9 **/
10
11 public abstract class Employee : Person, IPayable {
12 private String _employeeNumber;
13
14 public String EmployeeNumber {
15 get { return _employeeNumber; }
16 set { _employeeNumber = value; }
17 }
18
19 public Employee(String firstName, String middleName, String lastName,
20 Sex gender, DateTime birthday, String employeeNumber):
21 base(firstName, middleName, lastName, gender, birthday){
22 EmployeeNumber = employeeNumber;
23 }
24
25
26 public abstract double Pay(); // map IPayable.Pay() to an abstract method
27 // and defer implementation
28
29 } // end Employee class definition

Figure 11-18: Employee Class Inheritance Hierarchy

IPayable interface

declares the Pay()

method.

Employee class defers

implementation of Pay()

method to derived classes

making it an abstract class.

Derived classes implement

unique behavior for Pay()

method.
276
 © 2008 Rick Miller — All Rights Reserved
 C# For Artists

Chapter 11: Inheritance and Interfaces Inheritance Example: Employee
11.18 HourlyEmployee.cs

1 using System;
2
3 public class HourlyEmployee : Employee {
4
5 private int _hoursWorked;
6 private double _hourlyWage;
7
8 public int HoursWorked {
9 get { return _hoursWorked; }
10 set { _hoursWorked = value; }
11 }
12
13 public double HourlyWage {
14 get { return _hourlyWage; }
15 set { _hourlyWage = value; }
16 }
17
18 public HourlyEmployee(String firstName, String middleName, String lastName,
19 Sex gender, DateTime birthday, String employeeNumber, int hoursWorked,
20 double hourlyWage): base(firstName, middleName, lastName, gender, birthday,
21 employeeNumber){
22 HoursWorked = hoursWorked;
23 HourlyWage = hourlyWage;
24 }
25
26 public override double Pay(){
27 return HoursWorked * HourlyWage;
28 }
29
30 }

11.19 SalariedEmployee.cs

1 using System;
2
3 public class SalariedEmployee : Employee {
4
5 private double _salary;
6
7 public double Salary {
8 get { return _salary; }
9 set { _salary = value; }
10 }
11
12 public SalariedEmployee(String firstName, String middleName, String lastName,
13 Sex gender, DateTime birthday, String employeeNumber, double salary):
14 base(firstName, middleName, lastName, gender, birthday, employeeNumber){
15 Salary = salary;
16
17 }
18
19 public override double Pay(){
20 return Salary/24;;
21 }
22
23 }

11.20 EmployeeTestApp.cs

1 using System;
2
3 public class EmployeeTestApp {
4 public static void Main(){
5 Employee[] employees = new Employee[4];
6
7 employees[0] = new HourlyEmployee("Rick", "W", "Miller", Person.Sex.MALE,
8 new DateTime(1964,02,02), "11111111", 80, 17.00);
9
10 employees[1] = new SalariedEmployee("Steve", "J", "Jones", Person.Sex.MALE,
11 new DateTime(1975,08,09), "22222222", 130000.00);
12
13 employees[2] = new HourlyEmployee("Bob", "E", "Evans", Person.Sex.MALE,
14 new DateTime(1956,12,23), "33333333", 80, 25.00);
15
16 employees[3] = new SalariedEmployee("Coralie", "S", "Miller", Person.Sex.FEMALE,
17 new DateTime(1967,11,21), "44444444", 67000.00);
18
19 for(int i=0; i<employees.Length; i++){
20 Console.WriteLine(employees[i].FullName + " " + String.Format("{0:C}", employees[i].Pay()));
21 }
22 } // end Main()
23 } // end class definition
C# For Artists © 2008 Rick Miller — All Rights Reserved 277

Inheritance Example: Engine Simulation Chapter 11: Inheritance and Interfaces
Referring to Example 11.20 — on line 5, the EmployeeTestApp program declares an array of Employee refer-

ences named employees. On lines 7 through 17, it initializes each Employee reference to point to either an Hourly-

Employee or SalariedEmployee object.

In the for statement on line 19, each Employee object is manipulated polymorphically via the interface speci-

fied by the Employee class, which includes the interfaces inherited from Person and IPayable. The results of running

this program are shown in Figure 11-19.

Inheritance Example: Engine Simulation

This example expands on the engine simulation originally presented in Chapter 10. Here the concepts of inherit-

ance fuse with compositional design to yield a truly powerful combination.

Engine Simulation UML Diagram

Figure 11-20 shows the UML diagram for this version of the engine simulation. Note now that most of the func-

tionality of a part resides in the Part class. In addition to its constructor method, the Part class contains two private

fields: _partStatus and _partName, and two public read-write properties: Status, PartName. It contains one read-only

property named IsWorking, which simply returns true or false depending on the part’s current status.

The IManagedPart interface declares two methods: SetFault() and ClearFault(). The EnginePart class extends the

Part class and implements IManagedPart. The EnginePart class also contains one private field named

_registeredEngineNumber and a corresponding public property named RegisteredEngineNumber. It has one read-

only property named PartIdentifier that returns a string containing the name of the part and its registered engine num-

ber. It also defines a private utility method named DisplayStatus() that is called internally by the SetFault() and

ClearFault() methods. The EnginePart class is declared to be an abstract class to prevent the creation of EnginePart

objects with the new operator.

The classes OilPump, FuelPump, Compressor, WaterPump, OxygenSensor, and TemperatureSensor all extend

from EnginePart. The Engine class is an aggregate of all of its parts. It contains an array of EngineParts named

_itsParts. It also contains several other private fields, _engineNumber and _isRunning, along with their corresponding

public properties EngineNumber and IsRunning. It has four public methods: StartEngine(), StopEngine(), SetPart-

Fault(), and ClearPartFault(). It has one private method named CheckEngine(), which is used internally by the Start-

Engine() method.

Simulation Operational Description

Examples 11.31 and 11.32 give the source code for the Engine and EngineTestApp classes. Refer to them for this

discussion. The results of running Example 11.32 can be seen in Figure 11-21.

Referring first to Example 11.32 — the EngineTestApp declares an Engine reference named e1 and creates an

Engine object with an engine number of 1. This is followed by a call to both the StartEngine() and StopEngine()

methods. Next, a fault is set in the OilPump via a call to the SetPartFault() method. An attempt is then made to call

StartEngine(), but because of the now faulty oil pump the engine will not start. The fault is cleared with a call to

ClearPartFault(), and the next call to StartEngine() works fine. You can follow this sequence of events in Figure 11-

21.

Figure 11-19: Results of Running Example 11.20
278
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 11: Inheritance and Interfaces Inheritance Example: Engine Simulation
F
ig

u
re

 1
1
-2

0
:

E
n
g
in

e
S

im
u
la

ti
o
n
 U

M
L

 C
la

ss
 D

ia
g
ra

m

C# For Artists © 2008 Rick Miller — All Rights Reserved
 279

Complete Engine Simulation Code Listing Chapter 11: Inheritance and Interfaces
Compiling The Engine Simulation Code

You can compile the engine simulation code by putting all the code in one directory and issuing the following

command: csc *.cs

Complete Engine Simulation Code Listing

11.21 PartStatus.cs

1 using System;
2
3 namespace EngineSimulation {
4
5 public enum PartStatus { WORKING, NOT_WORKING }
6
7 }

11.22 Part.cs

1 using System;
2
3 namespace EngineSimulation {
4
5 public class Part {
6 private PartStatus _partStatus;
7 private String _partName;
8
9 public PartStatus Status {
10 get { return _partStatus; }
11 set { _partStatus = value; }
12 }
13
14 public String PartName {
15 get { return _partName; }
16 set { _partName = value; }
17 }
18
19 public bool IsWorking {
20 get {
21 if (Status == PartStatus.WORKING) {
22 return true;
23 }
24 return false;

Figure 11-21: Results of Running the EngineTestApp
280
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 11: Inheritance and Interfaces Complete Engine Simulation Code Listing
25 }
26 }
27
28 public Part(PartStatus status, String partName) {
29 PartName = partName;
30 Status = status;
31 Console.WriteLine("Part Created...");
32 }
33 } // end class definition
34 } // end namespace

11.23 IManagedPart.cs

1 namespace EngineSimulation {
2 public interface IManagedPart {
3 void SetFault();
4 void ClearFault();
5 }
6 }

11.24 EnginePart.cs

1 using System;
2
3 namespace EngineSimulation {
4 public abstract class EnginePart : Part, IManagedPart {
5 private int _registeredEngineNumber;
6
7 public int RegisteredEngineNumber {
8 get { return _registeredEngineNumber; }
9 set { _registeredEngineNumber = value; }
10 }
11
12 public String PartIdentifier {
13 get { return PartName + " For Engine Number: " + RegisteredEngineNumber; }
14 }
15
16 public EnginePart(PartStatus status, String partName, int engineNumber):base(status, partName){
17 RegisteredEngineNumber = engineNumber;
18 }
19
20 public void SetFault() {
21 Status = PartStatus.NOT_WORKING;
22 DisplayStatus();
23 }
24
25 public void ClearFault() {
26 Status = PartStatus.WORKING;
27 DisplayStatus();
28 }
29
30 private void DisplayStatus(){
31 Console.WriteLine(PartIdentifier + " status is now: " + Status);
32 }
33 } // end class definition
34 } // end namespace

11.25 Compressor.cs

1 using System;
2
3 namespace EngineSimulation {
4 public class Compressor : EnginePart {
5 public Compressor(PartStatus status, int engineNumber):
6 base(PartStatus.WORKING, "Compressor", engineNumber){
7 Console.WriteLine("Compressor created...");
8 }
9 } // end class
10 } // end namespace

11.26 FuelPump.cs

1 using System;
2
3 namespace EngineSimulation {
4 public class FuelPump : EnginePart {
5 public FuelPump(PartStatus status, int engineNumber):
6 base(PartStatus.WORKING, "FuelPump", engineNumber){
7 Console.WriteLine("FuelPump created...");
8 }
9 } // end class
10 } // end namespace
C# For Artists © 2008 Rick Miller — All Rights Reserved 281

Complete Engine Simulation Code Listing Chapter 11: Inheritance and Interfaces
11.27 OilPump.cs

1 using System;
2
3 namespace EngineSimulation {
4 public class OilPump : EnginePart {
5 public OilPump(PartStatus status, int engineNumber):
6 base(PartStatus.WORKING, "OilPump", engineNumber){
7 Console.WriteLine("OilPump created...");
8 }
9 } // end class
10 } // end namespace

11.28 OxygenSensor.cs

1 using System;
2
3 namespace EngineSimulation {
4 public class OxygenSensor : EnginePart {
5 public OxygenSensor(PartStatus status, int engineNumber):
6 base(PartStatus.WORKING, "OxygenSensor", engineNumber){
7 Console.WriteLine("OxygenSensor created...");
8 }
9 } // end class
10 } // end namespace

11.29 TemperatureSensor.cs

1 using System;
2
3 namespace EngineSimulation {
4 public class TemperatureSensor : EnginePart {
5 public TemperatureSensor(PartStatus status, int engineNumber):
6 base(PartStatus.WORKING, "TemperatureSensor", engineNumber){
7 Console.WriteLine("TemperatureSensor created...");
8 }
9 } // end class
10 } // end namespace

11.30 WaterPump.cs

1 using System;
2
3 namespace EngineSimulation {
4 public class WaterPump : EnginePart {
5 public WaterPump(PartStatus status, int engineNumber):
6 base(PartStatus.WORKING, "WaterPump", engineNumber){
7 Console.WriteLine("WaterPump created...");
8 }
9 } // end class
10 } // end namespace

11.31 Engine.cs

1 using System;
2
3 namespace EngineSimulation {
4 public class Engine {
5 private int _engineNumber;
6 private bool _isRunning;
7 private EnginePart[] _itsParts;
8
9 public int EngineNumber {
10 get { return _engineNumber; }
11 set { _engineNumber = value; }
12 }
13
14 public bool IsRunning {
15 get { return _isRunning; }
16 set { _isRunning = value; }
17 }
18
19 public Engine(int engineNumber){
20 EngineNumber = engineNumber;
21 IsRunning = false;
22 _itsParts = new EnginePart[6];
23 _itsParts[0] = new Compressor(PartStatus.WORKING, EngineNumber);
24 _itsParts[1] = new FuelPump(PartStatus.WORKING, EngineNumber);
25 _itsParts[2] = new OilPump(PartStatus.WORKING, EngineNumber);
26 _itsParts[3] = new WaterPump(PartStatus.WORKING, EngineNumber);
27 _itsParts[4] = new OxygenSensor(PartStatus.WORKING, EngineNumber);
28 _itsParts[5] = new TemperatureSensor(PartStatus.WORKING, EngineNumber);
282 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 11: Inheritance and Interfaces Complete Engine Simulation Code Listing
29 Console.WriteLine("Engine number {0} created", EngineNumber);
30 }
31
32
33 private bool CheckEngine(){
34 Console.WriteLine("Checking engine number {0}...", EngineNumber);
35 bool is_working = false;
36
37 for(int i=0; i<_itsParts.Length; i++){
38 is_working = _itsParts[i].IsWorking;
39 if(!is_working){
40 Console.WriteLine(_itsParts[i].PartIdentifier + " " + _itsParts[i].Status);
41 break;
42
43 }
44 }
45
46 if(is_working){
47 Console.WriteLine("Engine number {0} working properly!", EngineNumber);
48 }else{
49 Console.WriteLine("Engine number {0} malfunction!", EngineNumber);
50 StopEngine();
51 }
52 return is_working;
53 }
54
55
56
57 public void StartEngine(){
58 if(!IsRunning){
59 IsRunning = CheckEngine();
60 if(!IsRunning){
61 Console.WriteLine("Engine number {0} failed to start!", EngineNumber);
62 }else{
63 Console.WriteLine("Engine number {0} started!", EngineNumber);
64 }
65 }else{
66 Console.WriteLine("Engine number {0} is already running!", EngineNumber);
67 }
68 }
69
70 public void StopEngine(){
71 if(IsRunning){
72 IsRunning = false;
73 Console.WriteLine("Engine number {0} has been stopped!", EngineNumber);
74 }else{
75 Console.WriteLine("Engine number {0} is not running!", EngineNumber);
76 }
77 }
78
79
80 public void SetPartFault(String partName){
81 for(int i=0; i<_itsParts.Length; i++){
82 if(_itsParts[i].PartName.Equals(partName)){
83 _itsParts[i].SetFault();
84 Console.WriteLine("The status of Engine number {0}'s {1} is {2}", EngineNumber,
85 _itsParts[i].PartName, _itsParts[i].Status);
86 }
87 }
88 }
89
90 public void ClearPartFault(String partName){
91 for(int i=0; i<_itsParts.Length; i++){
92 if(_itsParts[i].PartName.Equals(partName)){
93 _itsParts[i].ClearFault();
94 Console.WriteLine("The status of Engine number {0}'s {1} is {2}", EngineNumber,
95 _itsParts[i].PartName, _itsParts[i].Status);
96 }
97 }
98 }
99
100 } // end class
101 } // end namespace
C# For Artists © 2008 Rick Miller — All Rights Reserved 283

Summary Chapter 11: Inheritance and Interfaces
11.32 EngineTestApp.cs

1 using System;
2 using EngineSimulation;
3
4 public class EngineTestApp {
5 public static void Main(){
6 Engine e1 = new Engine(1);
7 e1.StartEngine();
8 e1.StopEngine();
9 e1.SetPartFault("OilPump");
10 e1.StartEngine();
11 e1.ClearPartFault("OilPump");
12 e1.StartEngine();
13 e1.StopEngine();
14 } // end Main()
15 } // end class

Summary

Inheritance serves three essential purposes: 1) it is an object-oriented design mechanism that enables you to think

and reason about your program structure in terms of generalized and specialized class behavior, 2) it provides you

with a measure of code reuse within your program by locating common class behavior in base classes, and 3) it pro-

vides a means to incrementally develop your programs over time.

Classes that belong to an inheritance hierarchy participate in an is a relationship between themselves and their

chain of base classes. This is a relationship is transitive in the direction of specialized to generalized classes but not

vice versa.

Class and interface constructs introduce new, user-defined data types. The interface construct is used to specify a

set of authorized type operations but omits their behavior; the class construct is used to specify a set of authorized

type operations and, optionally, their behavior as well. A class construct, like an interface, can omit the bodies of one

or more of its members, however, such members must be declared to be abstract. A class that declares one or more of

its members to be abstract must itself be declared to be an abstract class. Abstract class objects cannot be created with

the new operator.

A base class implements default behavior in the form of public, protected, internal, and protected internal mem-

bers that can be inherited by derived classes. There are three reference/object combinations: 1) if the base class is a

concrete class, meaning it is not abstract, then a base class reference can point to a base class object, 2) a base class

reference can point to a derived class object, and 3) a derived class reference can point to a derived class object.

Reference variables have an associated type. Method calls to an object pointed to by a reference will succeed

without casting as long as the type of the reference supports the method you are trying to call. You can force, or

coerce, the compiler to treat a reference to an object of one type as if it were a reference to an object of another. This

is extremely helpful in some circumstances, but as a rule, use casting sparingly. Also, casting only works if the object

really is of the type you are casting it to.

Derived classes can override base class behavior by providing overriding methods. An overriding method is a

method in a derived class that has the same method signature as the base class method it is overriding. Use the

virtual keyword to declare an overrideable base class method. Use the override keyword to define an overrid-

ing derived class method. Overriding methods can be called polymorphically via a base class reference that points to

a derived class object.

An abstract member is a member that omits its body and has no implementation behavior. A class that declares

one or more abstract members must be declared to be abstract. The primary purpose of an abstract class is to provide

a specification for behavior whose implementation is expected to be found in some derived class further down the

inheritance hierarchy. Designers employ abstract classes to provide a measure of application architectural stability.

The purpose of an interface is to specify behavior. Interfaces can have four types of members: 1) properties, 2)

methods, 3) events, and 4) indexers. Classes can inherit from or extend only one other class, but they can implement

as many interfaces as are required. Interfaces can extend as many other interfaces as necessary.

Use the access modifiers private, protected, public, internal, and protected internal to

control horizontal and vertical member access.

Use the sealed keyword to stop the inheritance mechanism or prevent base class methods from being overrid-

den in derived classes.
284 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 11: Inheritance and Interfaces Skill-Building Exercises
Polymorphic behavior is achieved in a program by targeting a set of operations specified by a base class or inter-

face and manipulating their derived class objects via those operations. This uniform treatment of derived class objects

results in cleaner code that’s easier to extend and maintain. Polymorphic behavior is the essence of object-oriented

programming.

Skill-Building Exercises

1. Simple Inheritance: Write a small program to test the effects of inheritance. Create a class named ClassA that

implements the following methods: A(), B(), and C(). Each method should print a short text message to the con-

sole. Create a default constructor for ClassA that prints a message to the console announcing the creation of a

ClassA object. Next, create a class named ClassB that extends ClassA. Give ClassB a default constructor that

announces the creation of a ClassB object. In a test driver program create three references. Two of the references

should be of type ClassA and the third should be of type ClassB. Initialize the first reference to point to a ClassA

object, initialize the second reference to point to a ClassB object, and initialize the third reference to point to a

ClassB object as well. Call the methods A(), B(), and C() via each of the references. Run the test driver program

and note the results.

2. Overriding Methods: Reusing some of the code you created in the previous exercise create another class named

ClassC that extends ClassA and provides overriding methods for each of ClassA’s methods A(), B(), and C(). Have

each of the methods defined in ClassC print short messages to the console. In the test driver program declare three

references, the first two of type ClassA and the third of type ClassC. Initialize the first reference to point to an

object of type ClassA, the second to point to an object of type ClassC, and the third to point to an object of ClassC

as well. Call the methods A(), B(), and C() via each of the references. Run the test driver program and note the

results.

3. Abstract Classes: Create an abstract class named AbstractClassA and give it a default constructor and three

abstract methods named A(), B(), and C(). Create another class named ClassB that extends ClassA. Provide over-

riding methods for each of the abstract methods declared in ClassA. Each overriding method should print a short

text message to the console. Create a test driver program that declares two references. The first reference should be

of type ClassA, the second reference should be of type ClassB. Initialize the first reference to point to an object of

type ClassB, and the second reference to point to an object of ClassB as well. Call the methods A(), B(), and C()

via each of the references. Run the program and note the results.

4. Interfaces: Convert the abstract class you created in the previous exercise to an interface. What changes did you

have to make to the code? Compile your interface and test driver program code, re-run the program, and note the

results.

5. Mental Exercise: Consider the following scenario: Given an abstract base class named ClassOne with the follow-

ing abstract public interface methods A(), B(), and C(). Given a class named ClassTwo that derives from ClassOne,

provides implementations for each of ClassOne’s abstract methods, and defines one additional method named D().

Now, you have two references. One is of type ClassOne, the other of type ClassTwo.

Answer these questions: What methods can be called via the ClassOne reference without casting? Likewise, what

methods can be called via the ClassTwo reference without casting?

Suggested Projects

1. Draw Sequence Diagram: Draw a UML sequence diagram of the Engine constructor call. Refer to the code sup-

plied in Examples 11.21 through 11.32.
C# For Artists © 2008 Rick Miller — All Rights Reserved 285

Suggested Projects Chapter 11: Inheritance and Interfaces
2. Draw Sequence Diagram: Draw a UML sequence diagram of the Engine StartEngine() method.

3. Draw Sequence Diagram: Draw a UML sequence diagram of the Engine CheckEngine() method.

4. Extend Functionality: Extend the functionality of the Employee example given in this chapter. Create a subclass

named PartTimeEmployee that extends HourlyEmployee. Limit the number of hours a PartTimeEmployee can

have to 30 hours per pay period.

5. Oil Tanker Pumping System: Design and create an oil tanker pumping system simulation. Assume your tanker

ship has five oil cargo compartments as shown in the diagram below.

Each compartment can be filled and drained from either the port or starboard service header. The oil pumping

system consists of 14 valves numbered 1 through 16. Even-numbered valves are located on the port side of the ship

and odd-numbered valves are located on the starboard side of the ship. Note: Valve numbers 13 and 15 are not used.

The system also consists of two pumps that can be run in two speeds, slow or fast speed, and in two directions,

drain and fill. When a pump is running in the drain direction it is taking a suction from the tank side. When running in

the fill direction it is taking a suction from the hull side. Assume a pumping capacity of 1,000 gallons per minute in

fast mode.

Each tank contains one tank-level indicator that is a type of sensor. The indicators sense a continuous tank level

from 0 (empty) to 100,000 gallons.

Your program should let you drain and fill the oil compartments by opening and closing valves and starting and

setting pump speeds. For instance, to fill tank A quickly you could open valves 1, 2, 11, 12, 14 and 16, and start

pumps P1 and P2 in the fill direction in the fast mode.
286 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 11: Inheritance and Interfaces Self-Test Questions
Self-Test Questions

1. What are the three essential purposes of inheritance?

2. A class that belongs to an inheritance hierarchy participates in what type of relationship with its base class?

3. Describe the relationship between the terms interface, class, and type.

4. How do you express generalization and specialization in a UML class diagram? You may draw a picture to answer

the question.

5. Describe how to override a base class method in a derived class.

6. Why would it be desirable to override a base class method in a derived class?

7. What’s the difference between an ordinary method and an abstract method?

8. How many abstract methods must a class have before it must be declared to be an abstract class?

9. List several differences between classes and interfaces.

10. How do you express an abstract class in a UML class diagram?

11. Hi, I’m a class that declares a set of interface methods but fails to provide an implementation for those methods.

What type of class am I?

12. List the four authorized members of an interface.

13. Which two ways can you express realization in a UML class diagram? You may use pictures to answer the ques-

tion.

14. How do you call a base class constructor from a derived class constructor?

15. How do you call a base class method, other than a constructor, from a derived class method?

16. Describe the effects of using the access modifiers public, private, protected, internal, and

protected internal has on horizontal and vertical member access.

17. What can you do to prevent or stop a class from being inherited?

18. What can you do to prevent a method from being overridden in a derived class?

19. State, in your own words, a good definition for the term polymorphism.

References

Grady Booch, et. al. The Unified Modeling Language User Guide. Addison-Wesley, Reading, MA, 1998. ISBN:

0-201-57168-4
C# For Artists © 2008 Rick Miller — All Rights Reserved 287

Notes Chapter 11: Inheritance and Interfaces
Grady Booch. Object-Oriented Analysis and Design with Applications. Second Edition. The Benjamin/Cum-

mings Publishing Company, Inc., Redwood City, CA, 1994. ISBN: 0-8053-5340-2

Babak Sadr. Unified Objects: Object-Oriented Programming Using C++. The IEEE Computer Society, Los

Alamitos, CA. ISBN: 0-8186-7733-3

Antero Taivalsaari. On the Notion of Inheritance. ACM Computing Surveys, Vol. 28, No. 3, September 1996, pp.

438 - 479.

Clyde Ruby and Gary T. Levens. Safely Creating Correct Subclasses without Seeing Superclass Code. In OOP-

SLA ‘00 Conference Proceedings.

Derek Rayside and Gerard T. Campbell. An Aristotelian Understanding of Object-Oriented Programming. OOP-

SLA ‘00 Conference Proceedings.

ECMA-335 Common Language Infrastructure (CLI), 4th Edition, June 2006 [http://www.ecma-international.org/

publications/standards/Ecma-335.htm]

ECMA-334 C# Language Specification, 4th Edition, June 2006 [http://www.ecma-international.org/publications/

standards/Ecma-334.htm]

Microsoft Developer Network (MSDN) [http://www.msdn.com]

Rick Miller. Java For Artists: The Art, Philosophy, And Science Of Object-Oriented Programming. Pulp Free

Press, Falls Church, VA. ISBN: 1-932504-05-2

Notes
288 © 2008 Rick Miller — All Rights Reserved C# For Artists

Part III: Graphical User Interface Programming
&

Custom Events
C# For Artists © 2008 Rick Miller — All Rights Reserved 289

290 © 2008 Rick Miller — All Rights Reserved C# For Artists

12 Windows Forms Programming

Learning Objectives
• Create Graphical User Interface (GUI) programs using Windows forms components
• List and describe the parts of a window
• Describe how to register event handler methods with component events
• State the definition of the term “delegate”
• Handle events generated in one object using event handler methods located in another object
• Use the Form, TextBox, Button, and Label controls
• Automatically arrange controls with the FlowLayoutPanel and TableLayoutPanel controls
• Pass references to event handler objects via constructor methods
• Manipulate arrays of controls
• Add controls to a window’s Controls collection
• Control programs via menus
• Manipulate text in a text box

Chapter 12

Windows Forms Programming
Fairview Park

P
en

ta
x
 6

7
 /

 S
M

C
 T

ak
u
m

ar
 5

5
/2

.8
 /

 K
o
d
ak

 T
ri

-X
 P

ro
fe

ss
io

n
al
C#
 For Artists © 2008 Rick Miller — All Rights Reserved 291

Introduction Chapter 12: Windows Forms Programming
Introduction

Nearly every application running on your personal computer (PC) sports a Graphical User Interface (GUI). This

chapter shows you how to create GUIs for your programs.

Before we get started, I’d like to share with you some good news and some bad news. First the bad news: An

exhaustive treatment of all aspects of Microsoft Windows GUI programming is way beyond the scope of this book. If

you want to move beyond what’s covered in this chapter, I recommend reading one of the many books available

devoted entirely to the subject. Go to any good book store and you’ll find several on the shelves.

Now the good news: You don’t need to know a whole lot to create really nice GUIs. Most of the heavy lifting is

done for you by the classes found in the System.Windows.Forms namespace. Some of the more important classes to

know include Form, TextBox, Button, and Label. Add to these an understanding of how events and delegates work

and you’ll be off to a good start.

I will also teach you how to separate the GUI from other parts of your program. To do this, you’ll need to know

how to register event handler methods, located in one or more separate classes, with buttons or other GUI compo-

nents located in your GUI.

An unfortunate mistake many novice programmers make is to rely too heavily upon the GUI designer available

in Microsoft Visual Studio. The problem with using the GUI designer is that it makes it difficult to separate concerns.

In this chapter, I will show you how to create GUIs by hand. It’s not difficult once you get the hang of things. I’ll also

show you how you can automatically place components within a GUI via layout managers.

After you complete this chapter, the only thing you’ll need to do to create spectacular GUIs is to dive deeper into

the .NET API and use a little imagination.

The Form Class

The Form class, found in the System.Windows.Forms namespace, serves as the basis for all types of windows

you might need to create in your application. These include standard, tool, borderless, or floating windows. The Form

class is also used to create dialog boxes and multiple-document interface (MDI) windows.

Form Class Inheritance Hierarchy

A Form is a lot of things, as you can see from its inheritance diagram shown in Figure 12-1.

System.Object

System.MarshalByRefObject

System.ComponentModel.Component

System.Windows.Forms.Control

System.Windows.Forms.ScrollableControl

System.Windows.Forms.ContainerControl

System.Windows.Forms.Form

Figure 12-1: Form Class Inheritance Hierarchy
292
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 12: Windows Forms Programming The Form Class
Referring to Figure 12-1 — a Form is a ContainerControl, a ScrollableControl, a Control, a Component, a Mar-

shalByRefObject, and ultimately an Object. I recommend that you visit the Microsoft Developer Network (MSDN)

website and do a little research on the Form class so you can get a better feel for what it can do. A quick review of its

methods and properties will give you a few ideas about how you can manipulate the Form class in your programs.

A Simple Form Program

Example 12.1 gives the code for a simple Form-based program. All this program does is display an empty win-

dow on the screen. I’ll use its output to introduce you to the parts of a standard window.
12.1 SimpleForm.cs

1 using System;
2 using System.Windows.Forms;
3
4 public class SimpleForm : Form {
5 public static void Main(){
6 Application.Run(new SimpleForm());
7 }
8 }

Referring to Example 12.1 — the SimpleForm class extends Form and provides a Main() method. The important

point to note here is the use on line 6 of the System.Windows.Forms.Application class to display the form. The Appli-

cation class’s static Run() method starts an application message loop on the current thread. Don’t worry about threads

for now as they are covered in detail in Chapter 16. I will discuss messages and the message loop in more detail in the

next section.

A Microsoft Windows program is event-driven, meaning that when a window is displayed, it will sit there for-

ever processing events until the application exits. Some of the events are mouse clicks within the window itself or on

controls within the window like buttons, text boxes, or menus. Other events may be events sent to the application

from other applications, like the operating system, perhaps.

You can compile Example 12.1 two ways. If you compile it the way we’ve been compiling programs up untill

now, which is just using csc *.cs, you will create an application that displays both a window and a command con-

sole. Compiling with the /target:winexe switch results in an application that displays only the window. The full

command required to create a windows executable from Example 12.1 is:

csc /target:winexe SimpleForm.cs
You can compile either way, but you’ll find having a console window to display output can come in handy for

testing purposes, as you’ll see later. Figure 12-2 shows the results of running Example 12.1.

Referring to Figure 12-2 — when you execute the program either from the command line or by double-clicking,

it displays an empty window. It’s only empty because I didn’t put anything in it, nor did I set any of its properties.

However, the empty window has a lot of functionality built in. You can drag the window around the screen, resize the

window, minimize the window, maximize the window, and close the application by clicking the box with the “X” in

the upper right corner. It has all the basic functionality you’ve come to expect from a standard window.

The title bar would have a title in it if I had set the form’s Text property. I’ll show you how to do that in a

moment. The window’s visible region includes those areas of the window visible to the user. In this case the entire

Figure 12-2: Results of Running Example 12.1

Title Bar Window Controls:

- Minimize

- Maximize

- System Close

Window

Visible Region
C# For Artists
 © 2008 Rick Miller — All Rights Reserved
 293

Application Messages, Message Pump, Events, And Event Loop Chapter 12: Windows Forms Programming
window is visible. If you moved another window over top of this one, then some of it would be visible and some of it

would not. Figure 12-3 shows the same window resized smaller and larger.

Quick Review

The Form class, found in the System.Windows.Forms namespace, serves as the basis for all types of windows

you might need to create in your application. These include standard, tool, borderless, or floating windows. The Form

class is also used to create dialog boxes and multiple-document interface (MDI) windows. A Form is a ContainerCon-

trol, a ScrollableControl, a Control, a Component, a MarshalByRefObject, and ultimately an Object.

The Form class provides a lot of functionality right out of the box. You can drag the window around the screen,

resize the window, minimize the window, maximize the window, and close the application by clicking the box with

the “X” in the upper right corner.

Application Messages, Message Pump, Events, And Event Loop

As I mentioned earlier, Microsoft Windows applications are event driven. This means that when a GUI applica-

tion executes, it sits there patiently waiting for an event to occur such as a mouse click or keystroke. These events are

delivered to the application in the form of messages. Messages can be generated by the system in response to various

types of stimuli including direct user interaction (i.e., mouse movement, clicking, scrolling, keystrokes, etc.), or by

other applications.

The majority of system-generated messages are placed into a data structure referred to as the system message

queue. A queue is a data structure that has a first-in-first-out (FIFO) characteristic. Messages are placed into the queue

as they occur. Each message contains data that includes the type of event, target window, cursor coordinates, etc. The

system then examines each message and routes it to its target window. This process, referred to as the message pump,

is illustrated in Figure 12-4.

Referring to Figure 12-4 — system messages are placed into the system message queue where they wait in line to

be processed. The system then examines the data within each message to determine its GUI application target. Each

GUI application, which runs in its own thread of execution, has its own message queue. The message is placed in the

GUI application’s queue where again it waits its turn to be examined and forwarded on to its generating window.

Note: Applications can have multiple windows open at the same time.

Figure 12-3: A Standard Window can be Resized by Dragging the Lower Right Corner
294
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 12: Windows Forms Programming Application Messages, Message Pump, Events, And Event Loop
Message Categories

As you can well imagine, many types of events can occur during the execution of a complex GUI application.

Each of these application events generates a corresponding system message. The following table lists the system mes-

sage categories and their message prefixes.

Prefix Message Category Prefix Message Category

ABM Application Desktop Toolbar MCM Month Calendar Control

BM Button Control PBM Progress Bar

CB Combo Box PGM Pager Control

CBEM Extended Combo Box Control PSM Property Sheet

CDM Common Dialog Box RB Rebar Control

DBT Device SB Status Bar Window

DL Drag List Box SBM Scroll Bar Control

DM Default Push Button Control STM Static Control

DTM Date and Time Picker Control TB Toolbar

EM Edit Control TBM Trackbar

HDM Header Control TCM Tab Control

HKM Hot Key Control TTM Tooltip Control

IPM IP Address Control TVM Tree-view Control

LB List Box Control UDM Up-down Control

LVM List View Control WM General Window

Table 12-1: System Message Categories and their Prefixes

Figure 12-4: Windows Message Routing (Message Pump)

A mouse click in this

application’s window

generates a system

message. This win-

dow is the target of

that mouse click.

A keystroke in this

application’s window

generates a system

message. This win-

dow is the target of

that keystroke.
C# For Artists
 © 2008 Rick Miller — All Rights Reserved
 295

Application Messages, Message Pump, Events, And Event Loop Chapter 12: Windows Forms Programming
Messages In Action: Trapping Messages With IMessageFilter

One way to see messages in action is to print them to the console as they occur. The following program is very

similar to the SimpleForm code given in Example 12.1 in that the MessagePumpDemo class extends Form. It also

implements the IMessageFilter interface, which declares one method named PreFilterMessage(). The PreFilterMes-

sage() method’s implementation begins on line 6. All it does in this simple example is write the incoming message to

the console.
12.2 MessagePumpDemo.cs

1 using System;
2 using System.Windows.Forms;
3
4 public class MessagePumpDemo : Form, IMessageFilter {
5
6 public bool PreFilterMessage(ref Message m){
7 Console.WriteLine(m);
8 return false;
9 }
10
11 public static void Main(){
12 MessagePumpDemo mpd = new MessagePumpDemo();
13 Application.AddMessageFilter(mpd);
14 Application.Run(mpd);
15 }
16 }

Referring to Example 12.2 — any class that implements IMessageFilter can be used as a message filter. In this

example, the MessagePumpDemo class uses an instance of itself as a message filter with a call to the Applica-

tion.AddMessageFilter() method. To see the messages being printed to the console, compile this program into an

ordinary console executable file. Figure 12-5 shows the results of running this program.

Referring to Figure 12-5 — cursor movement within the application window, not the console, causes the genera-

tion of WM_MOUSEMOVE messages. Note that since the window has no additional components like buttons or text

boxes, almost all the messages generated belong to the WM (general window) category. Scrolling the mouse wheel

causes a WM_MOUSEWHEEL message. Keystrokes cause a sequence of messages including WM_KEYDOWN,

WM_CHAR, and WM_KEYUP. The best way to see these messages in action is to run this application and experi-

ment with different types of mouse and keyboard entry along with window movement and resizing.

Final Thoughts On Messages

The information presented in this section falls into the category of “nice to know”. Unless you’re writing com-

plex GUI applications that need to filter system messages you can safely ignore them. What you’ll most likely do is

create windows that contain various components, like text boxes, buttons, labels, menus, etc. These components, and

indeed, forms as well, can respond to certain events. For example, buttons have (among others) the Click event. If

Figure 12-5: Results of Running Example 12.2
296
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 12: Windows Forms Programming Screen And Window (Client) Coordinate System
you want a button to do something in response to a mouse click on it, you will need to create what is referred to as an

event handler method and register it with the button’s Click event. When the button is clicked, its event handler

method, or methods if there is more than one, is called.

So, although the system is creating, sending, and responding to messages, you will think in terms of components

and the events they can respond to. I will show you how to do this shortly, but first, I want to show you a few things

about screen coordinates.

Quick Review

Microsoft Windows applications are event-driven. When launched, they wait patiently for an event to occur such

as a mouse click or keystroke. Events are delivered to the application in the form of messages. Messages can be gen-

erated by the operating system in response to various types of stimuli, including direct user interaction (i.e., mouse

movement, clicking, scrolling, keystrokes, etc.), or by other applications.

The majority of system generated messages are placed into a data structure referred to as the system message

queue. A queue is a data structure that has a FIFO characteristic. Messages are placed into the queue as they occur.

Each message contains data that includes the type of event, target window, cursor coordinates, etc. The system then

examines each message and routes it to its target window.

Screen And Window (Client) Coordinate System

When working with GUIs you’ll need to be aware to two types of coordinates: screen coordinates and window

coordinates. Window coordinates are also referred to as client coordinates.

A window is drawn upon a computer screen at a certain position. The placement of the window’s upper left cor-

ner falls on a certain point within the screen’s coordinate system. The basic unit of measure for a screen is the pixel.

The screen coordinate system is illustrated in Figure 12-6.

Referring to Figure 12-6 — the origin of the screen, or the point where the value of both its x and y coordinates

equal 0, is located in the upper left corner of the screen. The value of the x coordinate increases to the right, while the

value of the y coordinate increases down. Points upon the screen are given in (x, y) pairs.

Windows have a coordinate system similar to screen coordinates as is shown in Figure 12-7.

Figure 12-6: Screen Coordinate System
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 297

Screen And Window (Client) Coordinate System Chapter 12: Windows Forms Programming
Referring to Figure 12-7 — the window is placed on the screen at position (100, 275). This is the location of its

upper left corner. The origin of the window is its upper left corner, meaning that components drawn within the win-

dow are placed with respect to the window’s origin. The button drawn in the window is placed at position (125, 125).

Windows, and the components drawn within them, have height and width. The bounds of a component are the

location of its upper left corner together with its width and height. If a window is placed at position (100, 275) and is

300 pixels wide and 100 pixels high, then its bounds are (100, 275, 300, 100). Example 12.3 gives a short program

that prints the bounds of a window in response to user input.

12.3 ShowBounds.cs

1 using System;

2 using System.Windows.Forms;

3

4 public class ShowBounds : Form, IMessageFilter {

5

6 public bool PreFilterMessage(ref Message m){

7 Console.WriteLine(this.Bounds);

8 return false;

9 }

10

11 public static void Main(){

12 ShowBounds sb = new ShowBounds();

13 Application.AddMessageFilter(sb);

14 Application.Run(sb);

15 }

16 }

Referring to Example 12.3 — this program is just a slight modification to the previous program. The Show-

Bounds class extends Form and implements the IMessageFilter interface. The PreFilterMessage() method has been

modified to print the window’s Bounds property. Figure 12-8 shows the results of running this program.

Referring to Figure 12-8 — the output shown is the result of dragging the window through various sizes. Its final

screen position is (45, 136); its final width is 271 pixels wide, and it is 111 pixels high. Thus, the bounds of this par-

ticular window are (45, 136, 271, 111), as is shown in the console window’s final lines of output.

Figure 12-7: Window Coordinates
298
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 12: Windows Forms Programming Manipulating Form Properties
Quick Review

There are two types of coordinates: screen coordinates and window coordinates. Window coordinates are also

referred to as client coordinates. The basic unit of measure upon a screen is the pixel. The origin of the screen, or the

point where the value of both its x and y coordinates equal 0, is located in the upper left corner of the screen. The

value of the x coordinate increases to the right, while the value of the y coordinate increases down. Points upon the

screen are given in (x, y) pairs. Windows have a coordinate system similar to the screen, with their origin located in

the upper left corner of the window. Windows, and the components drawn within them, have height and width. The

bounds of a component are the location of its upper left corner together with its width and height.

Manipulating Form Properties

The Form class provides many properties, methods, and events that make it easy to manipulate them in your pro-

grams. In fact, as you saw in Figure 12-1, the Form class gets most of its functionality via its inheritance hierarchy.

What you can do to a form you can also do, for the most part, to other controls, containers, and components.

In this section I’d like to demonstrate a few helpful form properties. Before going on though, I’d like to say that

there are way too many Form class members to demonstrate them all in one section, or even one chapter. I recom-

mend you take the time now, if you haven’t already done so, to review the Form class documentation on the MSDN

website and get a feel for all the things you can do to a form. I will demonstrate the use of other Form members when

their use becomes appropriate in the text.

When you display a window, it’s usually nice to give it a title. You can set a window’s title bar text via its Text

property. If you want to change a window’s background color set its BackColor property. If you want to set a win-

dow’s background image, do so via its BackgroundImgage property.

The use of each of these properties requires the help of additional .NET Framework classes or structures includ-

ing System.Drawing.Color, System.Drawing.Image, and System.Drawing.BitMap. Example 12.4 gives a short pro-

gram that shows how to set a window’s title bar text, backgound color, and its background image.
12.4 FormProperties.cs

1 using System;
2 using System.Windows.Forms;
3 using System.Drawing;
4
5 public class FormPropertiesDemo : Form {
6 public static void Main(String[] args){
7 FormPropertiesDemo fpd = new FormPropertiesDemo();
8 if(args.Length > 0){
9 try{
10 Image image = new Bitmap(args[0]);
11 fpd.BackgroundImage = image;

Figure 12-8: Results of Running Example 12.3

(45, 136)

271

111
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 299

Manipulating Form Properties Chapter 12: Windows Forms Programming
12 fpd.Size = image.Size;
13 }catch(Exception){
14 //ignore for now
15 }
16 }else{
17 fpd.BackColor = Color.Black;
18 }
19
20 fpd.Text = "Form Properties Demo";
21 Application.Run(fpd);
22
23 } // end Main()
24 } // end class

Referring to Example 12.4 — the FormProperties class extends Form. Notice that I have used the String array

version of the Main() method. This program can be run two ways: 1) by providing the name of an image file to use as

the window background image, or 2) with no command line input, in which case the window’s background color is

set to black.

The code that creates the image and sets the window’s BackgroundImage property is enclosed in a try/catch

block that ignores the generated exception. If an exception does occur, the window is displayed with its default back-

ground color and no image. It would be easy, however, to add some code to the body of the catch clause that sets the

background image to some default image.

Notice on line 11 that the image is created with the help of the Bitmap class. The Bitmap class has many over-

loaded constructor methods that make it easy to create images from different sources. The version used here creates

an image from a string that represents the image filename. The string can be just the name of the file, in which case

the program expects to find the image file in the default or working directory. (i.e., The directory in which it exe-

cutes.) The string can also be a complete path name. Notice on line 12 that the size of the window is set to the size of

the image.

If the program is run with no command-line argument or by being double-clicked, then its background color is

set to black with the help of the Color structure on line 17. The Color structure defines many public properties that

represent different colors. In this example, I used Color.Black to set the window’s BackColor property.

Lastly, I set the window’s title bar text on line 20 via its Text property. I then display the form and kick off the

GUI application execution thread with the Application.Run() method.

Figure 12-9 shows the results of running this program via the command line given the name of an image file.

(You can download this image, WCC_2.jpg, from the PulpFreePress.com or Warrenworks.com websites, or you can

use one of your own images.)

Figure 12-9: Running Example 12.4 via the Command Line with the Name of the Image WCC_2.jpg
300
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 12: Windows Forms Programming Adding Components To Windows: Button, TextBox, And Label
Figure 12-10 shows the results of running Example 12.4 with no image name or by double-clicking the execut-

able file.

Quick Review

The Form class provides many properties, methods, and events which make it easy to manipulate them in your

programs. The Form class gets most of its functionality via its inheritance hierarchy. What you can do to a form you

can also do, for the most part, to other controls, containers, and components.

Setting a control’s properties often requires the use of other classes, structures, or enumerations found in the

.NET Framework. A few of these include System.Drawing.Point, System.Drawing.Rectangle, System.Draw-

ing.Color, System.Drawing.Bitmap, and System.Drawing.Image. The type of property determines what type of object

you must use to set the property.

Adding Components To Windows: Button, TextBox, And Label

In this section, I show you how to add components to windows. The components I use to explain the concepts

include Button, TextBox, and Label. You’ll find these, and many other components, in the System.Windows.Forms

namespace. You’ll also need the System.Drawing.Point structure to help place components in absolute positions

within the window. Study the code given in Example 12.5.
12.5 ComponentDemo.cs

1 using System;
2 using System.Windows.Forms;
3 using System.Drawing;
4
5
6 public class ComponentDemo : Form {
7 private Button _button1;
8 private TextBox _textbox1;
9 private Label _label1;
10
11 public ComponentDemo(int x, int y, int width, int height){
12 this.Bounds = new Rectangle(x, y, width, height);
13 this.Text = "Component Demo";
14 InitializeComponents();
15 }
16
17 public ComponentDemo():this(100, 200, 400, 200){ }
18
19 private void InitializeComponents(){
20 _label1 = new Label();
21 _label1.Text = "This is a Label!";
22 _label1.Location = new Point(25, 25);
23
24 _button1 = new Button();
25 _button1.Text = "Click Me!";

Figure 12-10: Running Example 12.4 with no Image
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 301

Adding Components To Windows: Button, TextBox, And Label Chapter 12: Windows Forms Programming
26 _button1.Location = new Point(125, 25);

27

28 _textbox1 = new TextBox();

29 _textbox1.Text = "some default text";

30 _textbox1.Location = new Point(225, 25);

31

32 this.Controls.Add(_label1);

33 this.Controls.Add(_button1);

34 this.Controls.Add(_textbox1);

35 }

36

37 public static void Main(){

38 Application.Run(new ComponentDemo());

39 } // end Main()

40 } // end class

Referring to Example 12.5 — the ComponentDemo class extends Form and declares three private component

members: _button1, _textbox1, and _label1. It declares two constructors. The first constructor, beginning on line 11,

declares four parameters that are used to set the window’s Bounds property. Notice that the Bounds property must be

set with the help of a Rectangle structure. Alternatively, you could set the window’s Location, Height, and Width

properties separately. On line 13, the window’s title bar text is set via its Text property. And lastly, on line 14, the Ini-

tializeComponents() method is called.

The InitializeComponents() method begins on line 19 and creates and initializes the window’s _button1,

_textbox1, and _label1 components. Notice how each component’s Location property is set with the help of the Point

structure.

On lines 32 through 34, each component is added to the window by adding it to the window’s Controls collec-

tion. Figure 12-11 shows the results of running this program.

Referring to Figure 12-11 — notice the effects of setting the Text property for each component. Also note how

the absolute placement of the components affects the window’s appearance when it’s resized. It’s tedious to place

components in specific positions within a window. If you’re not careful, you can cover one component with another

and wonder where it disappeared to. In a moment, I’ll show you how to use layout panels to automatically place com-

ponents within a window. But first, I want to show you how to make the button actually do something when it’s

clicked.

Quick Review

To add a control like a Button or TextBox to a window, you must first declare and create the control, set its prop-

erties, and then add the control to the window’s Controls collection. The absolute placement of controls can be

tedious. Use the System.Drawing.Rectangle structure to set a control’s Bounds property. You may alternatively set a

control’s Top, Left, Width, and Height properties separately.

Figure 12-11: Results of Running Example 12.5

Resizing the window causes

component clipping.

The window as displayed

when the program starts up.
302
 ©
 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 12: Windows Forms Programming Registering Event Handlers With GUI Components
Registering Event Handlers With GUI Components

The whole point of creating a GUI is to have it respond to user interaction. As it stands now, the program shown

in Example 12.5 simply displays a window with a label, a button, and a text box. Although you can type in the text

box and click the button, nothing else happens. Let’s change that by adding an event handler method and registering

it with the button’s Click event.

Delegates And Events

All System.Windows.Forms GUI controls have event members. An event is something an object can respond to.

For example, a Button can respond to a mouse click via its Click event (and also via its MouseClick event!) GUI

components can respond to many types of events. Table 12-2 offers an incomplete listing of some common events

associated with the Control class, from which most Windows forms components inherit.

The important thing to note about the events listed in Table 12-2 is that different types of events are handled by

different types of event handlers. An event handler type is defined or specified by a delegate type. A delegate provides

Event Description Delegate Type

BackColorChanged Occurs when the BackColor property changes System.EventHandler

BackgroundImageChanged Occurs when the BackgroundImage property

changes

System.EventHandler

Click Occurs when control is clicked.† System.EventHandler

DoubleClick Occurs when control is double clicked System.EventHandler

GotFocus Occurs when the control receives focus System.EventHandler

MouseClick Occurs when the control is clicked by the

mouse††

System.Windows.Forms.MouseEventHandler

MouseDoubleClick Occurs when the control is double-clicked by

the mouse

System.Windows.Forms.MouseEventHandler

MouseDown Occurs when the mouse pointer is over the

control and the mouse button is pressed

System.Windows.Forms.MouseEventHandler

MouseEnter Occurs when the mouse pointer enters the

control

System.EventHandler

MouseLeave Occurs when the mouse pointer leaves the

control

System.EventHandler

MouseMove Occurs when the mouse pointer moves over

the control

System.Windows.Forms.MouseEventHandler

MouseUp Occurs when the mouse pointer is over the

control and the mouse button is released

System.Windows.Forms.MouseEventHandler

Paint Occurs when the control is redrawn System.Windows.Forms.PaintEventHandler

† A Click event can be caused by pressing the Enter key

†† A MouseClick is of type MouseEventHandler which uses MouseEventArgs to convey additional mouse information to the

event handler method

Table 12-2: Partial Listing of Control Events
C# For Artists © 2008 Rick Miller — All Rights Reserved 303

Registering Event Handlers With GUI Components Chapter 12: Windows Forms Programming
a specification for a method signature. For example, the System.EventHandler delegate specifies a method with the

following signature:

void EventHandler(Object sender, EventArgs e)

This means that if you want to register a method to respond to Click events on a control, the method must have

the same signature as the event’s delegate type. The best way to see all this work is to look at some code. Example

12.6 expands on the previous example by adding an event handler method for the _button1 component. When the but-

ton is clicked the text appearing in the text box is used to set the label’s text.
12.6 ComponentDemo.cs (Mod 1)

1 using System;
2 using System.Windows.Forms;
3 using System.Drawing;
4
5
6 public class ComponentDemo : Form {
7 private Button _button1;
8 private TextBox _textbox1;
9 private Label _label1;
10
11 public ComponentDemo(int x, int y, int width, int height){
12 this.Bounds = new Rectangle(x, y, width, height);
13 this.Text = "Component Demo";
14 InitializeComponents();
15 }
16
17 public ComponentDemo():this(100, 200, 400, 200){ }
18
19 private void InitializeComponents(){
20 _label1 = new Label();
21 _label1.Text = "This is a Label!";
22 _label1.Location = new Point(25, 25);
23
24 _button1 = new Button();
25 _button1.Text = "Click Me!";
26 _button1.Location = new Point(125, 25);
27 _button1.Click += new EventHandler(ButtonClickHandler);
28
29 _textbox1 = new TextBox();
30 _textbox1.Text = "some default text";
31 _textbox1.Location = new Point(225, 25);
32
33 this.Controls.Add(_label1);
34 this.Controls.Add(_button1);
35 this.Controls.Add(_textbox1);
36 }
37
38
39 public void ButtonClickHandler(Object sender, EventArgs e){
40 _label1.Text = _textbox1.Text;
41 }
42
43
44 public static void Main(){
45 Application.Run(new ComponentDemo());
46 } // end Main()
47 } // end class

Referring to Example 12.6 — I made only two minor modifications to the previous program. The first addition

appears on line 27 where an event handler is registered with the _button1.Click event. Notice the use of the ‘+=’ and

new operators. Note that Click events require event handler methods with a signature of the EventHandler delegate

type. The ButtonClickHandler() method, defined starting on line 39, sports the required signature, namely, it takes

two parameters — one of type Object and the other of type EventArgs. The names of the method and its parameters

can be just about anything you can think of, but I recommend keeping the parameter names the same, and choose a

method name that makes it easy to identify it as an event handler method. In this example, I chose the name Button-

ClickHandler.

Notice in the body of the ButtonClickHandler() method how the text box text is assigned to the label text. Let’s

see this program in action. Figure 12-12 gives the results of running the code. Referring to Figure 12-12 — the top

image shows the state of affairs when the program first executes. When you click the button the label text changes to

say “some default text”, which is the text initially loaded into the tex tbox. In the bottom image the text “Events are

cool!” is entered into the text box, the button clicked, and the label’s text changed again.
304 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 12: Windows Forms Programming Handling GUI Component Events In Separate Objects
Quick Review

The whole point of creating a GUI is to have it respond to user interaction. All System.Windows.Forms GUI con-

trols have event members. An event is something an object can respond to. For example, a Button can respond to a

mouse click via its Click event.

A delegate declares a new type in the form of a method signature. Events are class members declared to have a

certain delegate type, meaning that a method assigned to handle that event must have the specified delegate’s method

signature.

Use the ‘+=’ operator to assign an event handler method to a control’s event. Give your event handler method’s

names that clarify their role as event handlers.

Handling GUI Component Events In Separate Objects

In this section I am going to teach you a most critical skill, one that will liberate your thinking and take your pro-

gramming skills to new heights. I’m going to show you how to handle GUI component events in separate objects. To

do this you’ll need to know how to do the following things:

• Create a stand-alone, non-application GUI class that extends Form.

• Create a separate application class that uses the services of the GUI class. This application class

will also contain the required event handler code.

• Create GUI class constructors that take a reference to the object that contains the event handler

code.

• Register a component’s event with the event handler code via the supplied reference.

• Create appropriate methods or properties in the GUI class that allow horizontal manipulation of

private GUI components.

Figure 12-13 gives the UML class diagram for the sample program I’m going to use to show you how to do these

things. Referring to Figure 12-13 — the MyGUI class extends Form. I’ve shown the constructors for the MyGUI

class. Note that one of the parameters in each constructor is of type MainApp. It’s through this parameter that the

MainApp class passes an instance of itself when it creates an instance of MyGUI. The MyGUI class then uses the

MainApp reference to access the MainApp.ButtonClickHandler() method.

The MainApp class pulls double duty in this example. It contains the Main() method and some event handler

code in the form of the ButtonClickHandler() method.

Let’s now take a look at the code for these two classes. Example 12-7 gives the code for the MyGUI class.
12.7 MyGUI.cs

Figure 12-12: Results of Running Example 12.6 with Different Text in the TextBox

Initial state of affairs.

Click the button to

change the label’s text.

Now, change the text in the

text box and click the but-

ton to change the label’s

text.
C# For Artis
ts © 2008 Rick Miller — All Rights Reserved
 305

Handling GUI Component Events In Separate Objects Chapter 12: Windows Forms Programming
1 using System;
2 using System.Windows.Forms;
3 using System.Drawing;
4
5
6 public class MyGUI : Form {
7
8 /** Private GUI Components **/
9 private Button _button1;
10 private TextBox _textbox1;
11 private Label _label1;
12
13 /** Public Properties **/
14 public string TextBoxText {
15 get { return _textbox1.Text; }
16 set { _textbox1.Text = value; }
17 }
18
19 public string LabelText {
20 get { return _label1.Text; }
21 set { _label1.Text = value; }
22 }
23
24 /** Constructors **/
25 public MyGUI(MainApp ma, int x, int y, int width, int height){
26 this.Bounds = new Rectangle(x, y, width, height);
27 this.Text = "MyGUI Window";
28 InitializeComponents(ma);
29 }
30
31 public MyGUI(MainApp ma):this(ma, 100, 200, 400, 200){ }
32
33 /** Other Methods **/
34 private void InitializeComponents(MainApp ma){
35 _label1 = new Label();
36 _label1.Text = "This is a Label!";
37 _label1.Location = new Point(25, 25);
38
39 _button1 = new Button();
40 _button1.Text = "Click Me!";
41 _button1.Location = new Point(125, 25);
42 _button1.Click += new EventHandler(ma.ButtonClickHandler);
43
44 _textbox1 = new TextBox();
45 _textbox1.Text = "some default text";
46 _textbox1.Location = new Point(225, 25);
47
48 this.Controls.Add(_label1);
49 this.Controls.Add(_button1);
50 this.Controls.Add(_textbox1);
51 }
52 } // end MyGUI class definition

Referring to Example 12.7 — the MyGUI class is very similar in structure to Example 12.6. The primary differ-

ence is that it’s no longer an application because I removed the Main() method. I have removed the ButtonClickHan-

dler() method and moved it to the MainApp class. I have also added two public properties named TextBoxText and

LabelText that allow access to the Text properties of the private _textbox1 and _label1 components. I also modified

the two constructors by adding a MainApp type parameter, and have added a parameter of type MainApp to the Ini-

Figure 12-13: UML Class Diagram Showing Separate GUI and Application/Event Handler Classes
306
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 12: Windows Forms Programming Layout Managers
tializeComponents() method as well. Before I walk you through the operation of this code, take a look at the Main-

App code given in Example 12.8.
12.8 MainApp.cs

1 using System;
2 using System.Windows.Forms;
3
4 public class MainApp {
5
6 private MyGUI _gui;
7
8 public MainApp(){
9 _gui = new MyGUI(this);
10 Application.Run(_gui);
11 }
12
13 public void ButtonClickHandler(Object sender, EventArgs e){
14 _gui.LabelText = _gui.TextBoxText;
15 }
16
17 public static void Main(){
18 new MainApp();
19 } // end Main()
20 } // end MyApp class definition

Referring to Example 12.8 — the MainApp class has a private field of type MyGUI named _gui. The MainApp

constructor creates an instance of MyGUI and passes to its constructor a reference to itself via the this keyword. It

then displays the window with a call to the Application.Run() method passing in the _gui reference. All the Main()

method does is create an instance of MainApp.

The ButtonClickHandler() method shown on line 13 manipulates the text box and label text via the _gui refer-

ence by accessing the two public properties named TextBoxText and LabelText. Note that if you tried to access the

MyGUI’s _textbox1 and _label1 components directly, you’d get a compiler error because they are private fields,

hence the need for public methods or properties to perform the required manipulations.

Let’s now walk though the creation of the MyGUI object. When the MainApp constructor calls the MyGUI con-

structor, it passes in a reference to itself (i.e., a reference to the object that’s currently being created) via the this

pointer. The single-parameter MyGUI constructor takes the reference and passes it on to the five parameter version of

the MyGUI constructor. The x, y, width, and height parameters set the window’s bounds. The ma parameter is

passed as an argument to the InitializeComponents() method, where it is used to register its ButtonClickHandler()

method with the _button1 Click event.

This is some of the most complex code you’ve encountered so far in this book. And though at this point it may

seem difficult to trace through its execution, keep at it until you understand exactly what’s happening in the code.

Handling GUI events in separate objects is truly a critical programming skill and is a stepping stone to understanding

and applying more complex object-oriented programming patterns in your code.

Now, let’s see this bad boy run! Figure 12-14 shows the results of running this program.

Quick Review

Knowing how to write code so that GUI events generated in one object are handled by event handler methods

located in another object is a critical programming skill. To do this, you must know how to do the following things: 1)

create a stand-alone, non-application GUI class that extends Form, 2) create a separate application class that uses the

services of the GUI class; this application class will also contain the required event handler code, 3) create GUI class

constructors that take a reference to the object that contains the event handler code, 4) register a component’s event

with the event handler code via the supplied reference, and 5) create appropriate methods or properties in the GUI

class that allow horizontal manipulation of private GUI components.

Layout Managers

As you saw earlier, placing GUI components in a window at absolute positions is tedious at best. While there

may be times when you really want to put some component in a particular spot and have it stay there, it’s generally

preferable to make the window’s components adjust their positions automatically to accommodate window resizing
C# For Artists © 2008 Rick Miller — All Rights Reserved 307

Layout Managers Chapter 12: Windows Forms Programming
and prevent component clipping or hiding. In this section, I will show you how to automatically place components on

a window via layout panels.

The .NET Framework provides two layout panels: FlowLayoutPanel and TableLayoutPanel. This may not seem

like much, but you really can create complex window layouts using only these two layout panels.

FlowLayoutPanel

The purpose of the FlowLayoutPanel is to dynamically lay out its components either horizontally or vertically.

When you resize a window that contains components in a FlowLayoutPanel, those components will float within the

panel and readjust their position based on the size of the window. Let’s see a FlowLayoutPanel in action.

Examples 12.9 and 12.10 give the code for a program that displays five buttons in a window. The buttons are

placed in a FlowLayoutPanel. To make the program more interesting, I have added the capability for each button to

display the time it was clicked relative to program launch.
12.9 FlowLayoutGUI.cs

1 using System;
2 using System.Windows.Forms;
3 using System.Drawing;
4
5 public class FlowLayoutGUI : Form {
6
7 private Button[] _buttonArray;
8 private FlowLayoutPanel _panel;
9
10 public FlowLayoutGUI(MainApp ma, int x, int y, int width, int height){
11 this.Bounds = new Rectangle(x, y, width, height);
12 this.Text = "Flow Layout GUI";
13 InitializeComponents(ma);
14 }
15
16 public FlowLayoutGUI(MainApp ma):this(ma, 100, 200, 425, 150){ }

Figure 12-14: Results of Running Example 12.8 — GUI Events Handled in Separate Object

Title change to mix it up.

Initial state of affairs...

Click the button to change

the label text...

Change the text in the text

box and click the button

again...
308
 © 2008 Rick Miller — All Rights Reserved
 C# For Artists

Chapter 12: Windows Forms Programming Layout Managers
17
18 public void InitializeComponents(MainApp ma){
19 _panel = new FlowLayoutPanel();
20 _panel.SuspendLayout();
21 _panel.AutoSize = true;
22 _panel.AutoSizeMode = AutoSizeMode.GrowAndShrink;
23 _panel.WrapContents = true;
24 _panel.Dock = DockStyle.Top;
25
26 _buttonArray = new Button[5];
27
28 for(int i=0; i<_buttonArray.Length; i++){
29 _buttonArray[i] = new Button();
30 _buttonArray[i].Text = "Button " + (i+1);
31 _buttonArray[i].Click += new EventHandler(ma.ButtonClickHandler);
32 _panel.Controls.Add(_buttonArray[i]);
33 }
34
35 this.SuspendLayout();
36 this.Controls.Add(_panel);
37
38 _panel.ResumeLayout();
39 this.ResumeLayout();
40 }
41 } // end FlowLayoutGUI class definition

Referring to Example 12.9 — the FlowLayoutGUI class declares an array of Buttons and one FlowLayoutPanel.

Most of the action takes place in the InitializeComponents() method. First, the FlowLayoutPanel is created. Several

of its properties are then set, including AutoSize, AutoSizeMode, WrapContents, and Dock. Note the call to

_panel.SuspendLayout() on line 20. Call the SuspendLayout() method anytime you are modifying several control

properties at a time or are adding multiple controls to a control. The SuspendLayout() method suspends the target

control’s layout logic for improved performance. A call to SuspendLayout() must eventually be followed by a call to

ResumeLayout().

The Dock property gets or sets how a control’s edges are docked to its containing control and determines how it

is resized. Note the use of the DockStyle enumeration to specify which edge to dock. The complete set of DockStyle

values include DockStyle.Bottom, DockStyle.Fill, DockStyle.Left, DockStyle.None, DockStyle.Right, and Dock-

Style.Top as I have used here.

The button array is created on line 26 followed by a for loop that creates and initializes each button. Note that

each button is added to the FlowLayoutPanel’s Controls array. The buttons will be “flowed” into the FlowLayout-

Panel from left to right by default in the order in which the buttons are added. You can change this behavior by setting

the panel’s FlowDirection property with the help of the FlowDirection enumeration whose values include FlowDirec-

tion.BottomUp, FlowDirection.LeftToRight, FlowDirection.RightToLeft, and FlowDirection.TopDown.

After all the buttons have been added to the FlowLayoutPanel, it’s time to add the _panel reference to the win-

dow’s Controls collection. This is done on line 36, and is preceded by a call to the window’s SuspendLayout()

method. Lastly, the ResumeLayout() method is called on both the _panel and the window.

Example 12.10 gives the code for the MainApp class.
12.10 MainApp.cs

1 using System;
2 using System.Windows.Forms;
3
4 public class MainApp {
5
6 private FlowLayoutGUI _gui;
7 private DateTime _appStart;
8
9 public MainApp(){
10 _gui = new FlowLayoutGUI(this);
11 _appStart = DateTime.Now;
12 Application.Run(_gui);
13 }
14
15 public void ButtonClickHandler(Object sender, EventArgs e){
16 ((Button)sender).Text = (DateTime.Now - _appStart).ToString();
17 }
18
19 public static void Main(){
20 new MainApp();
21 } // end Main()
22 } // end MyApp class definition

Referring to Example 12.10 — the MainApp class declares a FlowLayoutGUI field named _gui and a DateTime

field named _appStart. In the MainApp constructor, the _gui reference is initialized to an instance of the FlowLayout-
C# For Artists © 2008 Rick Miller — All Rights Reserved 309

Layout Managers Chapter 12: Windows Forms Programming
GUI class. The _appStart reference is initialized to DateTime.Now, which is simply a DateTime structure that repre-

sents the current date and time. The _appStart is then used in the body of the ButtonClickHandler() method to

calculate the time span between the time the application started and the time the button was clicked. Note how the

sender parameter is used to figure out which control generated the event. The result of subtracting one DateTime

object from another results in a TimeSpan object. Every time a button in the GUI is clicked, its text is updated with

the elapsed time the application has been running. Figure 12-15 shows the results of running this program.

TableLayoutPanel

The TableLayoutPanel lets you divvy up a panel into cells arranged by rows and columns. The order in which

controls are added to a TableLayoutPanel is, by default, left-to-right and top-to-bottom. For example, if you create a

TableLayoutPanel with two rows that each contain two columns and you add four buttons to it, the first button will go

into cell 0,0, the second onto cell 0,1, the third into cell 1,0, and the last into cell 1,1.

The following program adds a slew of buttons to a TableLayoutPanel. When each button is clicked, its Back-

Color property is changed along with its Image. The program consists of both Examples 12.11 and 12.12.
12.11 TableLayoutGUI.cs

1 using System;
2 using System.Windows.Forms;
3 using System.Drawing;
4
5 public class TableLayoutGUI : Form {
6
7 Button[,] _floor = new Button[10,10];
8 TableLayoutPanel _panel;
9
10 public TableLayoutGUI(MainApp ma){
11 InitializeComponents(ma);
12 }
13
14 public void InitializeComponents(MainApp ma){
15 _panel = new TableLayoutPanel();
16 _panel.SuspendLayout();
17 _panel.ColumnCount = 10;
18 _panel.RowCount = 10;
19 _panel.Dock = DockStyle.Top;
20 _panel.AutoSize = true;
21 _panel.AutoSizeMode = AutoSizeMode.GrowAndShrink;
22
23 for(int i = 0; i<_floor.GetLength(0); i++){
24 for(int j = 0; j<_floor.GetLength(1); j++){
25 _floor[i,j] = new Button();
26 _floor[i,j].Click += new EventHandler(ma.MarkSpace);
27 _panel.Controls.Add(_floor[i,j]);
28 }
29 }
30
31 this.SuspendLayout();
32 this.Text = "TableLayoutGUI Window";

Figure 12-15: Results of Running Example 12.10 — Buttons Adjust when Window is Resized

Window starts like this.

Buttons adjust when

window is resized.

Click the buttons to display elapsed time!
310
 © 2008 Rick Miller — All R
ights Reserved C# For Artists

Chapter 12: Windows Forms Programming Layout Managers
33 this.Width = 850;
34 this.Height = 325;
35 this.Controls.Add(_panel);
36 _panel.ResumeLayout();
37 this.ResumeLayout();
38 } // end InitializeComponents() method
39 } // end TableLayoutGUI class definition

Referring to Example 12.11 — this program declares and creates a two-dimensional array of buttons having 10

rows and 10 columns. In the InitializeComponents() method, the TableLayoutPanel is created and its RowCount and

ColumnCount properties are set to 10 x 10 to match the array’s dimensions. The buttons are created in the nested for

loop that starts on line 23, and added to the panel’s Controls collection. Each button’s Click event calls the Mark-

Space() event handler method located in the MainApp class. Example 12.12 gives the code for the MainApp class.
12.12 MainApp.cs

1 using System;
2 using System.Windows.Forms;
3 using System.Drawing;
4
5 public class MainApp {
6
7 private TableLayoutGUI _gui;
8 private Bitmap _bitmap;
9 public MainApp(){
10 _gui = new TableLayoutGUI(this);
11 _bitmap = new Bitmap("rat.gif");
12 Application.Run(_gui);
13 }
14
15 public void MarkSpace(Object sender, EventArgs e){
16 ((Button)sender).BackColor = Color.Blue;
17 ((Button)sender).Image = _bitmap;
18 }
19
20 public static void Main(){
21 new MainApp();
22 } // end Main()
23 } // end MainApp class definition

Referring to Example 12.12 — the MainApp class declares a TableLayoutGUI field named _gui and a BitMap

field named _bitmap. The MainApp constructor initializes the _gui and _bitmap references. The image used in this

example is named “rat.gif” and is expected to be in the program’s execution directory. (Note: The rat.gif image can

be downloaded from the PulpFreePress.com or Warrenworks.com websites, or you can use your own image.)

When a button is clicked in the TableLayoutGUI window, the MarkSpace() method sets its BackColor and Image

properties. Figure 12-16 shows the results of running this program.

Quick Review

Use the FlowLayoutPanel and TableLayoutPanel classes to automatically control the layout of controls in a win-

dow. Controls placed in a FlowLayoutPanel flow into the panel from left-to-right by default. Don’t forget to set the

panel’s Dock property.

Figure 12-16: Results of Running Example 12.12 after several Buttons have been Clicked
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 311

Menus Chapter 12: Windows Forms Programming
The TableLayoutPanel places controls into a grid arrangement, where each control occupies a cell that can be

accessed via x and y coordinates, much like a two-dimensional array.

You can add panels to panels to create complex GUIs.

Menus

Professional looking GUIs are usually controlled via menus. In this section, I am going to show you how to add

menus to your GUIs.

The .NET Framework provides several classes that make adding menus easy. These include the System.Win-

dows.Forms.MenuStrip and the System.Windows.Forms.ToolStripMenuItem. The example program used to demon-

strate the operation of these classes allows the user to dynamically add buttons and text boxes to a window via a

menu. The Add menu contains three menu items named Button, TextBox, and Exit. It also contains a menu item sep-

arator. Figure 12-17 shows the application’s window and menu structure.

Referring to Figure 12-17 — the MenuStrip control is docked at the top of the MenuGUI window. The Add menu

item is added to the MenuStrip, and the Button, TextBox, item separator, and Exit menu items are added as submenu

items to the Add menu item. Example 12.13 gives the code for this window.
12.13 MenuGUI.cs

1 using System;
2 using System.Windows.Forms;
3 using System.Drawing;
4
5 public class MenuGUI : Form {
6
7 private FlowLayoutPanel _panel;
8
9
10 public MenuGUI(MainApp ma, int x, int y, int width, int height){
11 this.Bounds = new Rectangle(x, y, width, height);
12 this.Text = "MenuGUI Window";
13 InitializeComponents(ma);
14 }
15
16 public MenuGUI(MainApp ma):this(ma, 125, 125, 300, 300){ }
17
18
19 private void InitializeComponents(MainApp ma){
20 MenuStrip ms = new MenuStrip();
21
22 ToolStripMenuItem addMenu = new ToolStripMenuItem("Add");
23 ToolStripMenuItem addButtonItem = new ToolStripMenuItem("Button", null,
24 new EventHandler(ma.AddButtonItemHandler));
25 ToolStripMenuItem addTextBoxItem = new ToolStripMenuItem("TextBox", null,
26 new EventHandler(ma.AddTextBoxItemHandler));

Figure 12-17: Window and Menu Structure of Menu Demo Program

MenuStrip

ToolStripMenuItems
Menu item separator
312
 © 2008 Rick Miller — All Rights Reserved
 C# For Artists

Chapter 12: Windows Forms Programming Menus
27 ToolStripMenuItem addExitItem = new ToolStripMenuItem("Exit", null,
28 new EventHandler(ma.AddExitItemHandler));
29
30 addMenu.DropDownItems.Add(addButtonItem);
31 addMenu.DropDownItems.Add(addTextBoxItem);
32 addMenu.DropDownItems.Add("-"); // <---- use a dash to add menu item separators
33 addMenu.DropDownItems.Add(addExitItem);
34
35 ms.Items.Add(addMenu);
36 ms.Dock = DockStyle.Top;
37 this.MainMenuStrip = ms;
38
39 _panel = new FlowLayoutPanel();
40 _panel.SuspendLayout();
41 _panel.AutoSize = true;
42 _panel.AutoSizeMode = AutoSizeMode.GrowAndShrink;
43 _panel.WrapContents = true;
44 _panel.Dock = DockStyle.Fill;
45
46
47 this.SuspendLayout();
48 this.Controls.Add(_panel);
49 this.Controls.Add(ms); // IMPORTANT: Add the MenuStrip last !!
50 _panel.ResumeLayout();
51 this.ResumeLayout();
52
53 }
54
55 public void AddButton(MainApp ma){
56 Button b = new Button();
57 b.Text = "C# Rocks";
58 b.Click += new EventHandler(ma.ButtonClickHandler);
59 _panel.SuspendLayout();
60 _panel.Controls.Add(b);
61 _panel.ResumeLayout();
62 }
63
64
65 public void AddTextBox(MainApp ma){
66 TextBox t = new TextBox();
67 t.Text = "Default Text";
68 t.Click += new EventHandler(ma.TextBoxClickHandler);
69 _panel.SuspendLayout();
70 _panel.Controls.Add(t);
71 _panel.ResumeLayout();
72 }
73 } // end MenuGUI class definition

Referring to Example 12.13 — the MenuGUI class declares one private FlowLayoutPanel field named _panel.

All of the menu items are declared locally within the InitializeComponents() method. You may be asking yourself at

this point why not all of the GUI components are declared as fields. The answer depends on which components you

need to have access to after the GUI is rendered. In this example, I am adding buttons and text boxes to the flow lay-

out panel. If I were designing an application that needed to add menu items to the menu strip, then I would most

likely declare a MenuStrip field for easy access.

Let’s step through the InitializeComponents() method. The first thing I do on line 20 is to declare and create the

MenuStrip. Next, on lines 22 through 28, I declare and create the four ToolStripMenuItems. Notice the naming con-

vention I have adopted here to help sort out which sub-items belong to which parent menu item.

The ToolStripMenuItem constructor is overloaded. I have used two versions in this code. The first version used

on line 22 takes the name of the menu item. The second type of constructor takes three arguments: name, image, and

event handler. I’ve used “null” to indicate no image. Notice how, by supplying an event handler, menu items are

enabled to perform work.

Next, on lines 30 through 33, I add the submenu items to the addMenu item by adding them with its DropDown-

Items.Add() method. Notice here how a menu item separator is added to a list of menu items by adding a dash “-”.

Once the submenu items are added to the parent menu item, the parent menu item is added to the MenuStrip by

calling its Items.Add() method. The MenuStrip is docked to the top of the window and then designated as the MenuS-

trip for this window.

Lines 39 through 44 prepare the FlowLayoutPanel by setting several of its properties. Then, on line 47 the win-

dow’s layout is suspended with a call to SuspendLayout(), then the panel is added to the window first, followed by the

MenuStrip. (Note: Always add the MenuStrip last to ensure it displays at the top of the form and does not hide other

controls.)
C# For Artists © 2008 Rick Miller — All Rights Reserved 313

Menus Chapter 12: Windows Forms Programming
Lastly, the ResumeLayout() method is called on both the panel and the window.

The MenuGUI class contains two other public methods named AddButton() and AddTextBox(). To see these

methods in action, let’s take a look at the MainApp class given in Example 12.14.

12.14 MainApp.cs

1 using System;
2 using System.Windows.Forms;
3
4 public class MainApp {
5
6 private MenuGUI _gui;
7 private DateTime _appStart;
8
9 public MainApp(){
10 _gui = new MenuGUI(this);
11 _appStart = DateTime.Now;
12 Application.Run(_gui);
13 }
14
15 public void AddButtonItemHandler(object sender, EventArgs e){
16 _gui.AddButton(this);
17 }
18
19 public void AddTextBoxItemHandler(object sender, EventArgs e){
20 _gui.AddTextBox(this);
21 }
22
23 public void AddExitItemHandler(object sender, EventArgs e){
24 Application.Exit();
25 }
26
27 public void ButtonClickHandler(Object sender, EventArgs e){
28 ((Button)sender).Text = (DateTime.Now - _appStart).ToString();
29 }
30
31 public void TextBoxClickHandler(Object sender, EventArgs e){
32 ((TextBox)sender).Text = (DateTime.Now - _appStart).ToString();
33 }
34
35 public static void Main(){
36 new MainApp();
37 }
38 }

Referring to Example 12.14 — this version of the MainApp class declares two fields, one of type MenuGUI

named _gui and the other of type DateTime named _appStart. Its constructor initializes the fields and kicks off the

program with a call to Application.Run().

This class also contains five event handler methods, three of which are used by the menu items. The ButtonClick-

Handler() method is used by all of the buttons that get added to the window, and the TextBoxClickHandler() method

is used by all the text boxes.

When this program runs, users can add as many buttons or text boxes as they want by selecting the appropriate

menu item. A click on either a button or a text box results in its text being set to the elapsed program run time. Figure

12-18 shows this program in action after several buttons and textboxes have been added to the window and then

clicked.

Figure 12-18: Results of Running Example 12.14 and Adding Several Buttons and Text Boxes
314
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 12: Windows Forms Programming A Little More About TextBoxes
Quick Review

Use menus to give your GUI a professional appearance. You can create menus using the MenuStrip and Tool-

StripMenuItem classes.

A Little More About TextBoxes

Up until now, I’ve only used TextBox controls in single line mode ideally suited to display one short line of text.

The TextBox, however, is a versatile control that can be used to edit multiline text or rich text content. In this section,

I want to show you how to display a multi-line TextBox and then, by double-clicking on a line of text in the box,

determine the text line number. You’ll find this to be a handy little trick to have up your sleeve.

The code for the example program is given in two files. Example 12.15 gives the code for the LineSelectGUI

class and Example 12.16 gives the code for the MainApp class.
12.15 LineSelectGUI.cs

1 using System;
2 using System.Windows.Forms;
3 using System.Drawing;
4 using System.Windows;
5
6 public class LineSelectGUI : Form {
7
8 private TextBox _tb1;
9 private TextBox _tb2;
10 private FlowLayoutPanel _flowLayoutPanel;
11
12 public LineSelectGUI(MainApp ma, int x, int y, int width, int height){
13 this.Bounds = new Rectangle(x, y, width, height);
14 this.Text = "LineSelectGUI Window";
15 InitializeComponents(ma);
16 }
17
18 public LineSelectGUI(MainApp ma):this(ma, 125, 125, 375, 200){ }
19
20 public void InitializeComponents(MainApp ma){
21
22 _flowLayoutPanel = new FlowLayoutPanel();
23 _flowLayoutPanel.SuspendLayout();
24 _flowLayoutPanel.Height = 56;
25 _flowLayoutPanel.Width = 20;
26 _flowLayoutPanel.AutoSize = true;
27 _flowLayoutPanel.AutoSizeMode = AutoSizeMode.GrowAndShrink;
28 _flowLayoutPanel.WrapContents = true;
29 _flowLayoutPanel.Dock = DockStyle.Top;
30
31 _tb1 = new TextBox();
32 _tb1.Multiline = true;
33 _tb1.Height = 150;
34 _tb1.Width = 200;
35 _tb1.DoubleClick += new EventHandler(ma.DoubleClickHandler);
36
37 _tb2 = new TextBox();
38 _flowLayoutPanel.Controls.Add(_tb1);
39 _flowLayoutPanel.Controls.Add(_tb2);
40
41 this.SuspendLayout();
42 this.Controls.Add(_flowLayoutPanel);
43
44 _flowLayoutPanel.ResumeLayout();
45 this.ResumeLayout();
46 }
47
48 public void ShowLineNumber(){
49 int index = _tb1.SelectionStart;
50 int line_number = _tb1.GetLineFromCharIndex(index);
51 _tb2.Text = ("Line Number is: " + line_number);
52 }
53
54 } // end LineSelectGUI class definition
C# For Artists © 2008 Rick Miller — All Rights Reserved 315

A Little More About TextBoxes Chapter 12: Windows Forms Programming
Referring to Example 12.15 — the LineSelectGUI class declares two TextBox fields named _tb1 and _tb2 and

one FlowLayoutPanel field named _flowLayoutPanel. In the InitializeComponents() method the FlowLayoutPanel is

created and initialized. Next, the first TextBox field, _tb1, is created and initialized to become a multiline TextBox by

setting its MultiLine property to true. Setting its WrapContents property to true makes text wrap automatically to the

next line. Finally, on line 29, the MainApp.DoubleClickHandler() method is registered with _tb1’s Click event.

The second TextBox is created on line 37, and on lines 38 and 39 both TextBoxes are added to the FlowLayout-

Panel.

The LineSelectGUI class defines a method named ShowLineNumber() starting on line 48. The ShowLineNum-

ber() method determines the text line number with the help of two TextBox methods. First, the index of the selected

text must be determined by calling the TextBox.SelectionStart() method. The index of the selected text is then used in

a call to the TextBox.GetLineFromCharIndex() method.

The ShowLineNumber() method is called within the body of the MainApp.DoubleClickHandler() method.

Example 12.16 gives the code for the MainApp class.

12.16 MainApp.cs

1 using System;

2 using System.Windows.Forms;

3

4 public class MainApp {

5

6 private LineSelectGUI _gui;

7

8 public MainApp(){

9 _gui = new LineSelectGUI(this);

10 Application.Run(_gui);

11 }

12

13 public void DoubleClickHandler(Object sender, EventArgs args){

14 _gui.ShowLineNumber();

15 }

16

17 public static void Main(){

18 new MainApp();

19 }

20 }

Referring to Example 12.16 — the MainApp class declares one field of type LineSelectGUI named _gui. The

MainApp constructor initializes the _gui field and passes it as an argument to the Application.Run() method. A dou-

ble-click within the multiline text box results in a call to the DoubleClickHandler() method, which in turn calls the

_gui.ShowLineNumber() method. Figure 12-19 shows the results of running this program.

Quick Review

TextBoxes can be used in single-line or multiline mode. To create a multiline text box set its Multiline property to

true. To determine the line number for a line of text in a text box, use the TextBox.SelectionStart() method to first get

the index of the selected character, then use the TextBox.GetLineFromCharIndex() method to get the text line.

Figure 12-19: Results of Running Example 12.16 — Double-clicking the First Line
316
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 12: Windows Forms Programming The Rhythm Of Coding GUIs
The Rhythm Of Coding GUIs

You may have noticed by now that there is a certain rhythm associated with writing GUI code by hand. Regard-

less of how complex you make your GUI, getting into the rhythm can make writing the code much less tedious and

lots of fun. The rhythm goes something like this:

• Start by sketching a layout of your GUI. This will be a tremendous help when you start coding.

• Declare components like dialog windows, panels, menus, buttons, text boxes, labels, etc.

• Initialize the components in a constructor or in another method that’s called by the constructor.

• If using absolute positioning, set the component’s placement upon the window.

• Register event handlers.

• Set other component properties as required.

• Add components to panels.

• Add panels to a form.

Summary

The Form class, found in the System.Windows.Forms namespace, serves as the basis for all types of windows

you might need to create in your application. These include standard, tool, borderless, or floating windows. The Form

class is also used to create dialog boxes and multiple-document interface (MDI) windows. A Form is a ContainerCon-

trol, a ScrollableControl, a Control, a Component, a MarshalByRefObject, and ultimately an Object.

The Form class provides a lot of functionality right out of the box. You can drag the window around the screen,

resize the window, minimize the window, maximize the window, and close the application by clicking the box with

the “X“ in the upper right corner.

Microsoft Windows applications are event-driven. When launched they wait patiently for an event such as a

mouse click or keystroke to occur. Events are delivered to the application in the form of messages. Messages can be

generated by the operating system in response to various types of stimuli, including direct user interaction (i.e.,

mouse movement, clicking, scrolling, keystrokes, etc.), or by other applications.

The majority of system generated messages are placed into a data structure referred to as the system message

queue. A queue is a data structure that has a first-in-first-out (FIFO) characteristic. Messages are placed into the queue

as they occur. Each message contains data that includes the type of event, target window, cursor coordinates, etc. The

system then examines each message and routes it to its target window.

There are two types of coordinates: screen coordinates and window coordinates. Window coordinates are also

referred to as client coordinates. The basic unit of measure for a screen is the pixel. The origin of the screen, or the

point where both the value of its x and y coordinates equal 0, is located in the upper left corner of the screen. The

value of the x coordinate increases to the right, while the value of the y coordinate increases down. Points upon the

screen are given in (x, y) pairs. Windows have a coordinate system similar to the screen, with their origin located in

the upper left hand corner of the window. Windows, and the components drawn within them, have height and width.

The bounds of a component are the location of its upper left corner together with its width and height.

The Form class provides many properties, methods, and events which make it easy to manipulate them in your

programs. The Form class gets most of its functionality via its inheritance hierarchy. What you can do to a form you

can also do, for the most part, to other controls, containers, and components.

Setting a control’s properties often requires the use of other classes, structures, or enumerations found in the

.NET Framework. A few of these include System.Drawing.Point, System.Drawing.Rectangle, System.Draw-

ing.Color, System.Drawing.Bitmap, and System.Drawing.Image. The type of property will determine what type of

object you must use to set the property.

To add a control like a Button or TextBox to a window, you must first declare and create the control, set its prop-

erties, and then add the control to the window’s Controls collection. The absolute placement of controls can be

tedious. Use the System.Drawing.Rectangle class to set a control’s Bounds property. You may alternatively set a con-

trol’s Top, Left, Width, and Height properties separately.
C# For Artists © 2008 Rick Miller — All Rights Reserved 317

Skill-Building Exercises Chapter 12: Windows Forms Programming
The whole point of creating a GUI is to have it respond to user interaction. All System.Windows.Forms GUI con-

trols have Event members. An event is something an object can respond to. For example, a Button can respond to a

mouse click via its Click event.

A delegate declares a new type in the form of a method signature. Events are class members declared to have a

certain delegate type, meaning that a method assigned to handle that event must have the specified delegate’s method

signature.

Use the ‘+=’ operator to assign an event handler method to a control’s event. Give your event handler methods

names that clarify their role as event handlers.

Knowing how to write code so that GUI events generated in one object are handled by event handler methods

located in another object is a critical programming skill. To do this you, must know how to do the following things: 1)

create a stand-alone, non-application GUI class that extends Form, 2) create a separate application class that uses the

services of the GUI class; this application class will also contain the required event handler code, 3) create GUI class

constructors that take a reference to the object that contains the event handler code, 4) register a component’s event

with the event handler code via the supplied reference, and 5) create appropriate methods or properties in the GUI

class that allows horizontal manipulation of private GUI components.

Use the FlowLayoutPanel and TableLayoutPanel classes to automatically control the layout of controls in a win-

dow. Controls placed in a FlowLayoutPanel flow into the panel from left-to-right by default. Don’t forget to set the

panel’s Dock property.

The TableLayoutPanel is used to place controls into a grid arrangement, where each control occupies a cell that

can be accessed via x and y coordinates, much like a two-dimensional array.

You can add panels to panels to create complex GUIs.

Use menus to give your GUI a professional appearance. You can create menus using the MenuStrip and Tool-

StripMenuItem classes.

TextBoxes can be used in single-line or multiline mode. To create a multiline text box set its Multiline property

to true. To determine the line number for a line of text in a text box use the TextBox.SelectionStart() method to first

get the index of the selected character, then use the TextBox.GetLineFromCharIndex() method to get the text line.

Getting into the rhythm of writing GUI code can make writing the code much less tedious and lots of fun.

Skill-Building Exercises

1. API Drill: Visit the .NET API documentation located on the MSDN website and explore the System.Win-

dows.Forms namespace. List and briefly describe the purpose of each class, structure, enumeration, and delegate.

2. API Drill: Visit the .NET API documentation located on the MSDN website and explore the System.Drawing

namespace. List and briefly describe the purpose of each class, structure, enumeration, and delegate.

3. API Drill: Visit the .NET API documentation located on the MSDN website and research the System.Win-

dows.Forms.Control class. List and briefly describe the purpose of each of its members.

4. Code Drill: Experiment with control docking. First, visit the MSDN website and research the purpose of the Con-

trol.Dock property. Write a short program that puts several buttons in a window. Set each button’s Dock property

using the DockStyle enumeration. Note the effects each different DockStyle location has upon the buttons.

5. Code Drill: Experiment with control anchoring. First, visit the MSDN website and research the purpose of the

Control.Anchor property. Write a short program that puts several buttons in a window. Set each button’s Anchor

property using the AnchorStyles enumeration. Note the effects that different AnchorStyles have upon the buttons.

6. Code Drill: Write a program that creates 10 buttons, puts them into a FlowLayoutPanel, and displays them in a

window. Experiment with setting the different FlowLayoutPanel properties and note the effects.

7. Code Drill: Practice creating complex GUI layouts by writing a program that uses a combination of FlowLayout-
318 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 12: Windows Forms Programming Suggested Projects
Panels and TableLayoutPanels. Add buttons to each panel and then add one type of panel to another.

8. Code Drill: Draw a complex user interface on a napkin or piece of paper. Include buttons, single-line and multiline

textboxes, and labels. Divide the user interface into different areas, where one area might have only the multiline

text box and another area the buttons, and still another area the labels and single-line textboxes. When you finish

your drawing write a program that displays the controls in a window according to your plan. You don’t need to

worry about responding to user events or functionality. This is just a control placement exercise.

9. API/Code Drill: Explore the System.Windows.Forms namespace and select several controls, like CheckBox or

RadioButton for example, that weren’t covered in this chapter. Research their functionality and write a short pro-

gram that uses them in a window.

Suggested Projects

1. Programming: Revisit the Robot Rat project presented in Chapter 3 and give it a graphical user interface. You

may take several approaches to this project. For example, you can represent the floor as an array of labels or but-

tons placed within a TableLayoutGrid. This grid of controls would appear in one section of the user interface.

Another section of the user interface would contain a set of buttons that allowed users to control the robot rat’s

movements. Separate the user interface code from the event handler code. Another approach would be to move an

image of a robot rat around a window. This would require you to research how to display images directly in a win-

dow and update the window via its Paint event when the image is moved.

2. Programming: Write a program that mimics the operation of a handheld calculator. At a minimum implement the

add, subtract, multiply, and divide operations. You may lay out the calculator’s user interface any way you want,

but one approach would be to put the display in the top section and a grid of buttons in the bottom section. You

might even have separate sections for the numbers and the function keys. Separate the user interface code from the

event handler code.

Self-Test Questions

1. How many different types of windows can be created with the Form class?

2. How are operating system messages generated and sent to a GUI application?

3. How are controls added to forms?

4. What are the differences between screen coordinates and client coordinates?

5. What does the term origin mean?

6. What four pieces of data define the bounds of a control?

7. What’s the purpose of a delegate type?

8. How are delegates and event-handler method signatures related? How are delegates and events related?

9. What operator do you use to assign an event handler method to a control’s event?

10. Briefly describe the general steps required to respond to a control’s event with an event handler located in a differ-
C# For Artists © 2008 Rick Miller — All Rights Reserved 319

References Chapter 12: Windows Forms Programming
ent object.

11. What’s the purpose of the Control.SuspendLayout() method? What method should be called to resume layout?

12. What’s the difference between the FlowLayoutPanel and TableLayoutPanel?

13. How can you change the direction in which controls flow into a FlowLayoutPanel?

14. How do controls flow into a TableLayoutPanel?

References

Microsoft Developer Network (MSDN) .NET Framework 3.0 Documentation [http://www.msdn.com]

Notes
320 © 2008 Rick Miller — All Rights Reserved C# For Artists

13 Custom Events

Learning Objectives
• List and describe the components required to implement custom events

• Describe the purpose and use of delegates

• Describe the purpose and use of events

• Use the “delegate” keyword to declare new delegate types

• Use the “event” keyword to declare new event members

• Create a custom event argument passing class

• Create event-argument objects and pass to event handler methods

• Describe the event processing cycle

• Create and use event publisher classes

• Create and use event subscriber classes

Chapter 13

Custom Events
Fairview Park

V
o
ig

tl
an

d
er

 B
es

sa
-L

 /
 1

5
m

m
 S

u
p
er

 W
id

e-
H

el
ia

r
C#
For Artists © 2008 Rick Miller — All Rights Reserved 321

Introduction Chapter 13: Custom Events
Introduction

Graphical User Interface (GUI) components are not the only type of objects that can have event members.

Indeed, you can add events to the classes you design, and that’s the subject of this chapter.

To add custom events to your programs, you’ll need to know a little something about the following topics: 1)

how to use the delegate keyword to declare new delegate types, 2) how to use the event keyword to declare new event

members using delegate types, 3) how to create a class that conveys event data between an event publisher and an

event subscriber, 4) how to create an event publisher, 5) how to create an event subscriber, 6) how to create event han-

dler methods, and 7) how to register event handlers with a particular event. If you have read Chapter 12, you already

know how to do items 6 and 7 on the list.

The information and programming techniques you learn from reading this chapter will open up a whole new

world of programming possibilities.

C# Event Processing Model: An Overview

C# is a modern programming language supported by an extensive Application Programming Interface (API)

referred to as the .NET Framework. And, as you learned in Chapter 12, C# also supports event-driven programming

normally associated with Microsoft Windows applications. One normally thinks of events as being generated exclu-

sively by GUI components, but any object can generate an event if it’s programmed to do so.

You need two logical components to implement the event processing model: 1) an event producer (or publisher),

and 2) an event consumer (or subscriber). Each component has certain responsibilities. Consider the following dia-

gram:

Referring to Figure 13-1 — each event in Object A has a specified delegate type. The delegate type specifies the

authorized method signature for event handler methods. However, the delegate does more than just specify a method

signature; a delegate object maintains a list of event subscribers in the form of references to event handler methods.

These references can point to an object and one of its instance methods or to a static method. The event’s subscriber

list is initially empty until the first subscriber has been added to it with the ‘+=’ operator. The EventHandler() method

defined in Object B must conform to the method signature specified by the event’s delegate type. If you attempt to use

an event handler method that does not conform to the delegate type’s method signature, you will receive a compiler

error. Let’s now substitute some familiar names for Object A and Object B. Figure 13-2 offers a revised diagram.

Figure 13-1: Event Publisher and Subscriber

Object A.Event += new DelegateType(Object B.EventHandler);

Event subscriber list

is initially empty.

An event has a specified

delegate type.

Assign event handler to

event with ‘+=’ operator.

Subscriber list now has

a reference to an event

subscriber.
322
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 13: Custom Events Custom Events Example: Minute Tick
Referring to Figure 13-2 — a button’s Click event has an EventHandler delegate type. As you learned in Chapter

12, event handler methods assigned to a button’s Click event must have the following signature:

void MethodName(object sender, EventArgs e)

The method’s name can be pretty much anything you want it to be, but it must declare two parameters, the first of

type object, and the second of type EventArgs, and it must return void. The names of the parameters can be anything

you want as well, but the names sender and e work just fine.

When the button’s Click event is fired, the Click event’s delegate instance calls each registered subscriber’s event

handler method in the order it appears in the event subscriber list. This is all handled behind the scenes as you will

soon see. In the case of a button and other controls, there exists an internal method that is called when a Click event

occurs that kicks off the subscriber notification process. Remember that when talking about GUI components, a

mouse click results in the generation of a message that is ultimately routed to the window in which the mouse click

occurred. This message is translated into a Click event. When writing custom events, you can intercept messages and

translate them into events or write a method that generates events out of thin air or in response to some other stimulus.

Quick Review

You need two logical components to implement the event processing model: 1) an event producer (publisher),

and 2) an event consumer (subscriber). A delegate type specifies the authorized method signature for event handler

methods. A delegate object maintains a list of event subscribers in the form of references to event handler methods.

An event’s subscriber list is initially empty until the first subscriber has been added to it with the ‘+=’ operator. Event

handler methods must conform to the method signature specified by an event’s delegate type.

Custom Events Example: Minute Tick

The best way to get your head around custom events is to study an example application. This section presents a

short program that implements custom events. The Minute Tick application consists of five source files, four of which

appear in the Unified Modeling Language (UML) class diagram shown in Figure 13-3. Referring to Figure 13-3 —

both the Publisher and Subscriber classes depend on the MinuteEventArgs class and the ElapsedMinuteEventHandler

delegate. The Publisher class contains a MinuteTick event, which is of type ElapsedMinuteEventHandler. The

Figure 13-2: Event Publisher and Subscriber

_button.Click += new EventHandler(ma.ButtonClickHandler);

Event subscriber list

is initially empty.

An event has a specified

delegate type.

Assign event handler to

event with ‘+=’ operator.

Subscriber list now has

a reference to an event

subscriber.

Button _button = new Button();
C# For A
rtists © 2008 Rick Miller — All Rights Reserved 323

Custom Events Example: Minute Tick Chapter 13: Custom Events
ElapsedMinuteEventHandler delegate depends on the MinuteEventArgs class because it is the type of one of its

parameters, as is shown in the diagram.

The complete Minute Tick application source code is given in Examples 13.1 through 13.5.
13.1 MinuteEventArgs.cs

1 using System;
2
3 public class MinuteEventArgs : EventArgs {
4 private DateTime date_time;
5
6 public MinuteEventArgs(DateTime date_time){
7 this.date_time = date_time;
8 }
9
10 public int Minute {
11 get { return date_time.Minute; }
12 }
13 }

Referring to Example 13.1 — the MinuteEventArgs class extends the EventArgs class and adds a private field

named date_time and one public read-only property named Minute, which simply returns the value of the Minute

property of the DateTime object.
13.2 ElapsedMinuteEventHandler.cs

1 using System;
2
3 public delegate void ElapsedMinuteEventHandler(Object sender, MinuteEventArgs e);

Referring to Example 13.2 — the ElapsedMinuteEventHandler delegate specifies a method signature that returns

void and takes two parameters, the first one an object, and the second one of type MinuteEventArgs.
13.3 Publisher.cs

1 using System;
2
3 public class Publisher {
4
5 public event ElapsedMinuteEventHandler MinuteTick;
6
7
8 public Publisher(){
9 Console.WriteLine("Publisher Created");
10 }
11
12 public void CountMinutes(){
13 int current_minute = DateTime.Now.Minute;
14 while(true){
15 if(current_minute != DateTime.Now.Minute){
16 Console.WriteLine("Publisher: {0}", DateTime.Now.Minute);
17 OnMinuteTick(new MinuteEventArgs(DateTime.Now));
18 current_minute = DateTime.Now.Minute;

Figure 13-3: Minute Tick UML Class Diagram
324
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 13: Custom Events Custom Events Example: Minute Tick
19 }//end if
20 } // end while
21 } // end CountMinutes method
22
23 public void OnMinuteTick(MinuteEventArgs e){
24 if(MinuteTick != null){
25 MinuteTick(this, e);
26 }
27 }// end OnMinuteTick method
28 } // end Publisher class definition

Referring to Example 13.3 — the Publisher class defines an event named MinuteTick. Notice that the MinuteTick

event is of type ElapsedMinuteEventHandler. The CountMinutes() method that starts on line 12 contains a while

loop that repeats forever and continuously compares the values of the current_minute with DateTime.Now.Minute.

As soon as a change is detected in the two values, a brief message is written to the console followed by a call to the

publisher’s OnMinuteTick() method on line 17. Notice that when this method is called, a new MinuteEventArgs

object is created and used as an argument to the method call. The OnMinuteTick() method definition begins on line

23. It takes the MinuteEventArgs parameter and passes it on to a call to the MinuteTick event. Note on line 24 how

the if statement checks to see if the MinuteTick reference is null. It will be null if no event handler methods have

been registered with the event.
13.4 Subscriber.cs

1 using System;
2
3 public class Subscriber {
4
5 public Subscriber(Publisher publisher){
6 publisher.MinuteTick += new ElapsedMinuteEventHandler(this.MinuteTickHandler);
7 Console.WriteLine("Subscriber Created");
8 }
9
10 public void MinuteTickHandler(Object sender, MinuteEventArgs e){
11 Console.WriteLine("Subscriber Handler Method: {0}", e.Minute);
12 }
13 } // end Subscriber class definition

Referring to Example 13.4 — the Subscriber class declares an event handler method on line 10 named Minute-

TickHandler(). The MinuteTickHandler() method defines two arguments of the types required by the ElapsedMinute-

EventHandler delegate type. The ElapsedMinuteEventHandler delegate is used on line 6 to register the subscriber’s

MinuteTickHandler() method with the publisher’s MinuteTick event.
13.5 MainApp.cs

1 using System;
2
3 public class MainApp {
4 public static void Main(){
5 Console.WriteLine("Custom Events are Cool!");
6
7 Publisher p = new Publisher();
8 Subscriber s = new Subscriber(p);
9 p.CountMinutes();
10
11 } // end main
12 } //end MainApp class definition

Referring to Example 13.5 — the MainApp class provides the Main() method. It simply creates a Publisher

object and a Subscriber object, and then makes a call to the publisher’s CountMinutes() method. Figure 13-4 shows

the results of running this application. Note that the actual minutes displayed when the program runs depend on when

you start the program.

Figure 13-4: Results of Running Example 13.5

Application started at

9 minutes past the

hour. Your time out-

puts will reflect the

time you run the pro-

gram.
C# For Arti
sts © 2008 Rick Miller — All Rights Reserved 325

Custom Events Example: Automated Water Tank System Chapter 13: Custom Events
Custom Events Example: Automated Water Tank System

In this section, I want to show you how you might model a complex system using custom events. The system

modeled here is a simple water tank that can be filled with water. Once the water reaches a certain level within the

tank, a pump is activated and drains the tank until it again reaches a certain level. The tank contains two water level

sensors. One acts as a high-level sensor and the other acts as a low-level sensor. The tank also has a pump that pumps

water at a certain rate or pumping capacity. The system comprises the following classes: Pump, WaterLevelEvent-

Args, WaterLevelEventHandler, WaterTank, and WaterSystemApp, which serves as the main application class. Figure

13-5 gives the UML class diagram for the water tank system.

Referring to Figure 13-5 — The WaterTank class extends the System.Windows.Forms.Panel class. This gives the

water tank a visual representation. When water is added to the tank, the panel is filled in with blue lines as the water

level rises. The lines are then overdrawn with a different color as the water level recedes. The WaterLevelEventArgs

class is used to pass water level information between event publisher and subscriber. In this example, the WaterLevel-

Sensor is the publisher and the Pump is the subscriber. The WaterLevelEventHandler delegate is used to declare the

WaterLevelSensor’s Fill, Full, Drain, and Empty events. Let’s take a look at the code.

Figure 13-5: Water Tank System UML Class Diagram
326
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 13: Custom Events Custom Events Example: Automated Water Tank System
13.6 WaterLevelEventArgs.cs

1 using System;
2
3 public class WaterLevelEventArgs : EventArgs {
4
5 private int _waterLevel;
6
7 public WaterLevelEventArgs(int waterLevel){
8 WaterLevel = waterLevel;
9 }
10
11 public int WaterLevel {
12 get { return _waterLevel; }
13 set { _waterLevel = value; }
14 }
15 }

Referring to Example 13.6 — the WaterLevelEventArgs class contains one private integer field named

_waterLevel and one public property named WaterLevel.
13.7 WaterLevelEventHandler.cs

1 using System;
2
3 public delegate void WaterLevelEventHandler(WaterLevelEventArgs e);

Referring to Example 13.7 — the WaterLevelEventHandler delegate specifies an event-handler method signature

that returns void and contains one parameter of type WaterLevelEventArgs.
13.8 WaterLevelSensor.cs

1 using System;
2
3 public class WaterLevelSensor {
4 private int _setPoint;
5 private int _currentLevel;
6 private bool _rising;
7 private Mode _mode = Mode.HighLevelIndicator;
8
9
10 public enum Mode { HighLevelIndicator, LowLevelIndicator };
11 public event WaterLevelEventHandler Full;
12 public event WaterLevelEventHandler Empty;
13 public event WaterLevelEventHandler Fill;
14 public event WaterLevelEventHandler Drain;
15
16 public int SetPoint {
17 get { return _setPoint; }
18 set { _setPoint = value; }
19 }
20
21 public int CurrentLevel {
22 get { return _currentLevel; }
23 set { _currentLevel = value; }
24 }
25
26 public Mode SensorMode {
27 get { return _mode; }
28 set { _mode = value; }
29 }
30
31 public WaterLevelSensor(int setPoint, int currentLevel){
32 SetPoint = setPoint;
33 CurrentLevel = currentLevel;
34 }
35
36 private WaterLevelSensor(){ }
37
38 public void WaterLevelChange(int amount){
39 int lastLevel = CurrentLevel;
40 CurrentLevel += amount;
41 _rising = (CurrentLevel >= lastLevel);
42
43 switch(_mode){
44 case Mode.HighLevelIndicator :
45 if(_rising){
46 if(CurrentLevel >= SetPoint){
47 WaterLevelEventArgs args = new WaterLevelEventArgs(CurrentLevel);
48 OnFull(args);
49 }else{
50 WaterLevelEventArgs args = new WaterLevelEventArgs(CurrentLevel);
51 OnFill(args);
C# For Artists © 2008 Rick Miller — All Rights Reserved 327

Custom Events Example: Automated Water Tank System Chapter 13: Custom Events
52 }
53 }
54 break;
55
56 case Mode.LowLevelIndicator :
57 if(!_rising){
58 if(CurrentLevel <= SetPoint){
59 WaterLevelEventArgs args = new WaterLevelEventArgs(CurrentLevel);
60 OnEmpty(args);
61 }else{
62 WaterLevelEventArgs args = new WaterLevelEventArgs(CurrentLevel);
63 OnDrain(args);
64 }
65 }
66 break;
67 } // end switch
68 }
69
70 public void OnFull(WaterLevelEventArgs e){
71 if(Full != null){
72 Full(e);
73 }
74 }
75
76 public void OnEmpty(WaterLevelEventArgs e){
77 if(Empty != null){
78 Empty(e);
79 }
80 }
81
82 public void OnFill(WaterLevelEventArgs e){
83 if(Fill != null){
84 Fill(e);
85 }
86 }
87
88 public void OnDrain(WaterLevelEventArgs e){
89 if(Drain != null){
90 Drain(e);
91 }
92 }
93 }// end WaterLevelClass definition

Referring to Example 13.8 — the WaterLevelSensor is a primary component of the water system. Essentially, its

purpose is to keep track of a tank’s water level. A WaterLevelSensor object functions in one of two modes of opera-

tion as defined by the Mode enumeration. It can be either a HighLevelIndicator or a LowLevelIndicator. If it’s operat-

ing as a HighLevelIndicator, it keeps track of rising water added via the WaterLevelChange() method. If the water

level is rising, it fires the Fill event. When the water level reaches the set point, it fires the Full event.

If a WaterLevelSensor is operating in the LowLevelIndicator mode, it responds to falling water levels by firing

the Drain event until the water reaches the low set point, at which time it fires the Empty event.

Each of the four events — Fill, Full, Drain, and Empty — are of type WaterLevelEventHander delegate. The

Pump class, shown in the following example, defines four event handler methods that respond to each of these events.
13.9 Pump.cs

1 using System;
2
3 public class Pump {
4
5 private int _pumpingCapacity;
6 private WaterTank _itsTank;
7
8 public int PumpingCapacity {
9 get { return _pumpingCapacity; }
10 set { _pumpingCapacity = value; }
11 }
12
13 public Pump(WaterTank tank, int pumpingCapacity){
14 PumpingCapacity = pumpingCapacity;
15 _itsTank = tank;
16 }
17
18 public void FullTankEventHandler(WaterLevelEventArgs e){
19 Console.WriteLine("FullTankEventHandler: Draining the water tank!");
20 _itsTank.ChangeWaterLevel(-PumpingCapacity);
21 }
22
23 public void EmptyTankEventHandler(WaterLevelEventArgs e){
24 Console.Write("EmptyTankEventHandler: ");
328 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 13: Custom Events Custom Events Example: Automated Water Tank System
25 Console.WriteLine("Water tank has been drained! The water tank contains " +
26 e.WaterLevel + " gallons!");
27 }
28
29 public void FillTankEventHandler(WaterLevelEventArgs e){
30 Console.Write("FillTankEventHandler: ");
31 Console.WriteLine("The water tank contains " + e.WaterLevel + " gallons!");
32 }
33
34 public void DrainTankEventHandler(WaterLevelEventArgs e){
35 Console.Write("DrainTankEventHandler: ");
36 Console.WriteLine("The water tank contains " + e.WaterLevel + " gallons!");
37 _itsTank.ChangeWaterLevel(-PumpingCapacity);
38
39 }
40 }

Referring to Example 13.9 — a Pump object is created with an associated WaterTank object and a pumping

capacity. Water added to the tank causes a Fill event to fire. The FillTankEventHandler() method responds by printing

the value of the tank’s current water level to the console. Note that the current water level is determined by reading

the WaterLevelEventArgs.WaterLevel property. When the water level reaches the high level sensor’s set point, the

sensor fires the Full event that calls the Pump’s FullTankEventHandler() method. This starts the automatic draining

process by calling the WaterTank.ChangeWaterLevel() method with a negative amount of water equal to the volume

of its pumping capacity. This in turn triggers a Drain event in a WaterLevelSensor object, which calls the pump’s

DrainTankEventHandler() method. This results in yet another call (recursive) to the WaterTank.ChangeWaterLevel()

method with a negative amount of water equal to the volume of its pumping capacity. Thus, the recursive calls to the

DrainTankEventHandler() method repeat until the low-level indicator reaches its set point.
13.10 WaterTank.cs

1 using System;
2 using System.Drawing;
3 using System.Windows.Forms;
4
5 public class WaterTank : Panel {
6
7 // Private fields
8 private WaterLevelSensor _highLevelSensor;
9 private WaterLevelSensor _lowLevelSensor;
10 private Pen _whitePen;
11 private Pen _bluePen;
12 private int _penWidth;
13 private int _currentWaterLevel;
14 private int _lastWaterLevel;
15 private int _tankCapacity;
16 private Point _bottomLeft;
17 private Point _bottomRight;
18 private Pump _itsPump;
19 private Graphics _graphics;
20
21 // Constants
22 private const int UPPER_LEFT_CORNER_X = 100;
23 private const int UPPER_LEFT_CORNER_Y = 100;
24 private const int WIDTH = 100;
25 private const int HEIGHT = 500;
26 private const int TANK_CAPACITY = 10000;
27 private const int PUMP_CAPACITY = 1000;
28 private const int ONE_PIXEL_WIDE = 1;
29 private const int EMPTY = 0;
30
31 public int WaterLevel {
32 get {return _currentWaterLevel; }
33 }
34
35 public int FillRate {
36 get {return _itsPump.PumpingCapacity; }
37 }
38
39 public int HighSetPoint {
40 get { return _highLevelSensor.SetPoint; }
41 set { _highLevelSensor.SetPoint = value; }
42 }
43
44 public int LowSetPoint {
45 get { return _lowLevelSensor.SetPoint; }
46 set { _lowLevelSensor.SetPoint = value; }
47 }
48
C# For Artists © 2008 Rick Miller — All Rights Reserved 329

Custom Events Example: Automated Water Tank System Chapter 13: Custom Events
49 public WaterTank(int x, int y, int width, int height, int tankCapacity, int pumpCapacity){
50 this.InitializeComponents(x, y, width, height, tankCapacity, pumpCapacity);
51 }
52
53 public WaterTank():this(UPPER_LEFT_CORNER_X, UPPER_LEFT_CORNER_Y, WIDTH, HEIGHT, TANK_CAPACITY,
54 PUMP_CAPACITY){ }
55
56 private void InitializeComponents(int x, int y, int width, int height, int tankCapacity,
57 int pumpCapacity){
58
59 this.Bounds = new Rectangle(x, y, width, height);
60 this.BackColor = Color.White;
61 this.BorderStyle = BorderStyle.Fixed3D;
62 _graphics = this.CreateGraphics();
63 _bottomLeft = new Point(0, height);
64 _bottomRight = new Point(width, height);
65 _tankCapacity = tankCapacity;
66 _currentWaterLevel = EMPTY;
67 _itsPump = new Pump(this, pumpCapacity);
68 _penWidth = this.Height/(_tankCapacity/_itsPump.PumpingCapacity);
69 if(_penWidth < 1) _penWidth = 1;
70 _whitePen = new Pen(Color.White, _penWidth);
71 _bluePen = new Pen(Color.Blue, _penWidth);
72 _highLevelSensor = new WaterLevelSensor(tankCapacity - pumpCapacity, EMPTY);
73 _highLevelSensor.SensorMode = WaterLevelSensor.Mode.HighLevelIndicator;
74 _highLevelSensor.Fill += new WaterLevelEventHandler(_itsPump.FillTankEventHandler);
75 _highLevelSensor.Full += new WaterLevelEventHandler(_itsPump.FullTankEventHandler);
76 _lowLevelSensor = new WaterLevelSensor(pumpCapacity, EMPTY);
77 _lowLevelSensor.SensorMode = WaterLevelSensor.Mode.LowLevelIndicator;
78 _lowLevelSensor.Drain += new WaterLevelEventHandler(_itsPump.DrainTankEventHandler);
79 _lowLevelSensor.Empty += new WaterLevelEventHandler(_itsPump.EmptyTankEventHandler);
80 }
81
82 public void ChangeWaterLevel(int amount){
83 _lowLevelSensor.WaterLevelChange(amount);
84 _highLevelSensor.WaterLevelChange(amount);
85 _currentWaterLevel += amount;
86 _lastWaterLevel = _currentWaterLevel;
87 this.ChangeVisualLevel(amount);
88 }
89
90 private void ChangeVisualLevel(int amount){
91 if(amount > 0){
92 _graphics.DrawLine(_bluePen, _bottomLeft, _bottomRight);
93 _bottomLeft.Y -= _penWidth;
94 _bottomRight.Y -= _penWidth;
95
96 }else{
97 _graphics.DrawLine(_whitePen, _bottomLeft, _bottomRight);
98 _bottomLeft.Y += _penWidth;
99 _bottomRight.Y += _penWidth;
100 Delay(30000000);
101 }
102
103 } // end ChangeVisualLevel method
104
105 private void Delay(long ticks){
106 for(long i = 0; i<ticks; i++){
107 ;
108 }
109 }
110 } // end class definition

Referring to Example 13.10 — the WaterTank class is an aggregate of a Pump and two WaterLevelSensors. It

also provides a visual representation of a water tank by animating the rising and falling water level via blue and white

lines drawn on a Panel. Most of the action occurs in three methods: InitializeComponents(), ChangeWaterLevel(),

and ChangeVisualLevel(). (Note: An attempt is made to keep the visual filling animation in step with the tank’s water

level, however, when the value of _penWidth reaches 1, the animation gets a little goofy!)

The WaterLevelSensor objects are created in the InitializeComponents() method. One is designated as the

_highLevelSensor and the other the _lowLevelSensor. Each sensor’s SetPoint is set via its constructor followed by its

SensorMode property. Next, the Pump’s event handler methods are registered with each sensor’s respective events.

Water is added to the tank via the ChangeWaterLevel() method. This in turn makes a call to each sensor’s Water-

LevelChange() method. The tank’s level values are adjusted and finally its visual state is changed with a call to its

ChangeVisualLevel() method. The Delay() method is used to slow down the draining animation so you can watch the

water level drop.
13.11 WaterSystemApp.cs
330 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 13: Custom Events Naming Conventions
1 using System;
2 using System.Windows.Forms;
3 using System.Drawing;
4
5 public class WaterSystemApp : Form {
6
7 private FlowLayoutPanel _panel;
8 private Button _button;
9 private WaterTank _tank;
10
11 public WaterSystemApp(){
12 this.InitializeComponents();
13 }
14
15 public void InitializeComponents(){
16 _tank = new WaterTank();
17 _button = new Button();
18 _button.Text = "Add Water";
19 _button.Click += new EventHandler(this.AddWaterButtonClick);
20 _button.Dock = DockStyle.Bottom;
21 _panel = new FlowLayoutPanel();
22 _panel.SuspendLayout();
23 _panel.FlowDirection = FlowDirection.TopDown;
24 _panel.AutoSize = true;
25 _panel.AutoSizeMode = AutoSizeMode.GrowAndShrink;
26 _panel.Height = _tank.Height + _button.Height + 75;
27 _panel.Controls.Add(_tank);
28 _panel.Controls.Add(_button);
29 this.SuspendLayout();
30 this.Text = "Water System";
31 this.Height = _panel.Height;
32 this.Width = _tank.Width;
33 this.Controls.Add(_panel);
34 _panel.ResumeLayout();
35 this.ResumeLayout();
36 }
37
38 public void AddWaterButtonClick(object sender, EventArgs e){
39 _tank.ChangeWaterLevel(_tank.FillRate);
40 }
41
42 public static void Main(){
43 Application.Run(new WaterSystemApp());
44 }
45 }// end WaterSystemApp class definition

Referring to Example 13.11 — the WaterSystemApp class extends Form and provides the user interface for the

water system application. It creates a FlowLayoutPanel and adds to it the WaterTank, which is itself a panel, and a

button. Each time the button is clicked, water is added to the tank in an amount equal to the tank’s FillRate property.

The WaterTank.FillRate property is read-only and equals the value of its pump’s PumpingCapacity. Figure 13-6

shows the results of running this program. However, you’ll learn more from the program by running it and seeing for

yourself how the events actually work. Experimenting with different tank dimensions and pumping capacities is left

as an exercise.

Naming Conventions

If you’ll pause for a moment to consider the previous two custom event examples, you’ll notice a few similarities

in the names given to certain components and methods. It helps to clarify the purpose of each component or method

by adopting the following or similar naming convention.

• Add the suffix “EventArgs” to your event argument class names.

• Add the suffix “EventHandler” to your event-handler delegate names.

• Add the prefix “On” to the event name for the method that fires the event. (i.e., OnFill())

• Add the suffix “Handler” or optionally “ClassName + EventName” to your event handler meth-

ods. (i.e., FillTankEventHandler() or AddWaterButtonClick())
C# For Artists © 2008 Rick Miller — All Rights Reserved 331

Final Thoughts On Extending The EventArgs Class Chapter 13: Custom Events
Final Thoughts On Extending The EventArgs Class

In the previous two programming examples, I created custom event argument classes by extending the Event-

Args class, but this was not strictly necessary, since I didn’t use any of the functionality provided by the EventArgs

class. In fact, the EventArgs class does nothing except provide a future evolutionary path for the .NET event API by

serving as the base class for all the .NET event argument classes.

Summary

You need two logical components to implement the event processing model: 1) an event producer (publisher),

and 2) an event consumer (subscriber). A delegate type specifies the authorized method signature for event handler

methods. A delegate object maintains a list of event subscribers in the form of references to event handler methods.

An event’s subscriber list is initially empty until the first subscriber has been added to it with the ‘+=’ operator. Event

handler methods must conform to the method signature specified by an event’s delegate type.

It helps to clarify the purpose of each component or method if you adopt the following or similar naming conven-

tion: add the suffix “EventArgs” to your event argument class name, add the suffix “EventHandler” to your event han-

dler delegate names, add the prefix “On” to the event name for the method that fires the event, and finally, add the

suffix “Handler” or optionally “ClassName + EventName” to your event handler methods.

It’s not necessary to extend the System.EventArgs class to create custom event argument classes. The EventArgs

class does nothing except provide a future evolutionary path for the .NET event API by serving as the base class for

all the .NET event argument classes.

Click the button to add water to the water tank.

The rising water level repeatedly triggers the Fill

event. When the water level reaches the high-level

indicator set point, it fires the Full event.

When the pump starts draining the tank, the

decreasing water level repeatedly triggers the

Drain event. When the water level reaches the

low-level set point, the Empty event fires and

stops the pump.

Figure 13-6: Results of Running Example 13.11
332
 ©
 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 13: Custom Events Skill-Building Exercises
Skill-Building Exercises

1. Compile and Execute Example Code: Compile and execute the MinuteTick code given in Examples 13.1

through 13.5.

2. Compile and Execute Example Code: Compile and execute the automated water tank system code given in

Examples 13.6 through 13.11.

3. Create UML Sequence Diagram: Create a UML sequence diagram for the Publisher.CountMinutes() method

given in Example 13.3.

4. Create UML Sequence Diagram: Create a UML sequence diagram for the WaterTank.ChangeWaterLevel()

method given in Example 13.10. You may actually need to create several diagrams to document the call to each

WaterLevelSensor’s WaterLevelChange() method. Pay particular attention to where the code starts to make recur-

sive calls when the water tank is being drained.

5. Have Some Fun: Experiment with the automated water tank system code. Change the value of the Pump’s pump-

ing capacity and note the effects of the animation.

6. API Drill: Explore the .NET API and find all the delegates. List each delegate and describe its purpose.

Suggested Projects

1. Oil Tanker Pumping System: Revisit the oil tanker pumping system project given in Chapter 11, suggested

project 5. Add a GUI that displays the tanks and their levels, the valves and their status (open or closed), and the

pumps and their status. Utilize events to help monitor tank levels and to automatically start and stop the pumps.

This will be a great project to let your imagination run wild!

2. Refactor Code: Using your knowledge of inheritance, redesign the WaterLevelSensor class given in Example 13.8

so that there are two separate classes called HighLevelSensor and LowLevelSensor. These two classes should

derive from a common base class. Make the necessary modifications to the automated water tank system applica-

tion.

3. Modify Code: Change the MinuteTick application presented in this chapter to respond to and display second ticks.

(i.e., every second vs. every minute).

Self-Test Questions

1. What two logical components are required to implement the event processing model?

2. What’s the purpose of a delegate type?

3. Which keyword declares a new delegate type?

4. What’s the relationship between delegates and events?

5. What’s the relationship between delegates and event handler methods?
C# For Artists © 2008 Rick Miller — All Rights Reserved 333

References Chapter 13: Custom Events
6. Which operator do you use register an event handler method with an object’s event?

7. In what type of data structure does a delegate maintain its subscriber list?

8. In what order does the delegate make calls to its registered event handler methods?

9. What’s the value of a delegate object that has no registered event handler methods?

10. Are you required to extend the EventArgs class to create custom event argument classes?

References

Microsoft Developer Network (MSDN) .NET Framework 3.0 Documentation [http://www.msdn.com]

Notes
334 © 2008 Rick Miller — All Rights Reserved C# For Artists

Part IV: Intermediate Concepts
C# For Artists © 2008 Rick Miller — All Rights Reserved 335

336 © 2008 Rick Miller — All Rights Reserved C# For Artists

14 Collections

Learning Objectives
• Describe the purpose of a collection
• List and describe the classes, interfaces, and structures contained in the System.Collections,

System.Collections.Generic, and System.Collections.ObjectModel namespaces
• State the general performance characteristics of arrays, lists, trees, and hash tables
• State the general operational characteristics of stacks and queues
• Choose a collection based on anticipated usage patterns
• Create custom collection classes by extending existing collection classes
• State the difference between non-generic and generic collections
• State the purpose of a class indexer member
• State the purpose of enumerators
• Use the foreach statement to iterate over a collection
• Utilize non-generic collections in your programs
• Utilize generic collections in your programs

Chapter 14

Collections
Jill & Ryan

P
en

ta
x
 6

7
 /

 S
M

C
 T

ak
u
m

ar
 1

5
0
/2

.8
 /

 I
lf

o
rd

 D
el

ta
 4

0
0

C#
For Artists © 2008 Rick Miller — All Rights Reserved 337

Introduction Chapter 14: Collections
Introduction

When considering all functional assets of the .NET API, none possess the extraordinary potential to save you

more time and hassle than its collections framework. Spanning four namespaces: System.Collections, System.Collec-

tions.Generic, System.Collections.ObjectModel, and System.Collections.Specialized, the interfaces, classes, and

structures belonging to the collections framework provide you with a convenient way to manipulate collections of

objects.

This chapter introduces you to the .NET collections framework and shows you how to employ its interfaces,

classes, and structures in your programs. Along the way, you will learn about the functional characteristics of arrays,

linked lists, hash tables, and red-black trees. Knowledge of these concepts sets the stage for understanding the inner

workings of collections framework classes.

From the beginning, the .NET Framework API has undergone continuous evolutionary improvement. Nowhere

is this more evident than in the collections framework. Each subsequent release of the .NET Framework introduces

improved collections capability.

The differences between the .NET 2.0 collections framework and the previous version are significant. Version

2.0 introduced generics. These changes reduce and sometimes eliminate the need to utilize certain coding styles pre-

viously required to manipulate collections in earlier platform versions. For example, earlier non-generic versions of

the collection classes stored object references. When the time came to access references stored in a collection, the

object reference retrieved had to be cast to the required type. Such use of casting renders code hard to read and proves

difficult for novice programmers to master.

I begin this chapter with a case study of a user-defined dynamic array class. The purpose of the case study is to

provide a motivational context that demonstrates the need for a collections framework. I follow the case study with an

overview of the collections framework, introducing you to its core interfaces and classes. I then show you how to

manipulate collections using non-generic collection classes and interfaces. You will find this treatment handy prima-

rily because you may find yourself faced with maintaining legacy .NET code. I then go on to discuss improvements

made to the collections framework introduced with .NET 2.0 and later versions of the collections framework.

Case Study: Building A Dynamic Array

Imagine for a moment that you are working on a project and you’re deep into the code. You’re in the flow, and

you don’t want to stop to read no stinkin’ API documentation. The problem at hand dictates the need for an array with

special powers — one that can automatically grow itself when one too many elements are inserted. To solve your

problem, you hastily crank out the code for a class named DynamicArray shown in Example 14.1 along with a short

test program shown in Example 14.2.
14.1 DynamicArray.cs

1 using System;
2
3 public class DynamicArray {
4 private Object[] _object_array = null;
5 private int _next_open_element = 0;
6 private int _growth_increment = 10;
7 private const int INITIAL_SIZE = 25;
8
9 public int Count {
10 get { return _next_open_element; }
11 }
12
13 public object this[int index] {
14 get {
15 if((index >= 0) && (index < _object_array.Length)){
16 return _object_array[index];
17 }else return null;
18 }
19 set {
20 if(_next_open_element < _object_array.Length){
21 _object_array[_next_open_element++] = value;
22 }else{
23 GrowArray();
338 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 14: Collections Case Study: Building A Dynamic Array
24 _object_array[_next_open_element++] = value;
25 }
26 }
27 }
28
29 public DynamicArray(int size){
30 _object_array = new Object[size];
31 }
32
33 public DynamicArray():this(INITIAL_SIZE){ }
34
35 public void Add(Object o){
36 if(_next_open_element < _object_array.Length){
37 _object_array[_next_open_element++] = o;
38 }else{
39 GrowArray();
40 _object_array[_next_open_element++] = o;
41 }
42 } // end add() method;
43
44 private void GrowArray(){
45 Object[] temp_array = _object_array;
46 _object_array = new Object[_object_array.Length + _growth_increment];
47 for(int i=0, j=0; i<temp_array.Length; i++){
48 if(temp_array[i] != null){
49 _object_array[j++] = temp_array[i];
50 }
51 _next_open_element = j;
52 }
53 temp_array = null;
54 } // end growArray() method
55 } // end DynamicArray class definition

Referring to Example 14.1 — the data structure used as the basis for the DynamicArray class is an ordinary array

of objects. Its initial size can be set via a constructor or, if the default constructor is called, the initial size is set to 25

elements. Its growth increment is 10 elements, meaning that when the time comes to grow the array, it will expand by

10 elements. In addition to its two constructors, the DynamicArray class has one property named Count, two addi-

tional methods named Add() and GrowArray(), and a class indexer member that starts on line 13. An indexer is a

member that allows an object to be indexed the same way as an array.

The Add() method inserts an object reference into the next available array element pointed to by the

_next_open_element variable. If the array is full, the GrowArray() method is called to grow the array. The GrowAr-

ray() method creates a temporary array of objects and copies each element to the temporary array. It then creates a

new, larger object array, and copies the elements to it from the temporary array.

The indexer member allows you to access each element of the array. If the index argument falls out of bounds,

the indexer returns null. The Count property simply returns the number of elements (references) contained in the

array, which is the value of the _next_open_element variable.

Example 14.2 shows the DynamicArray class in action.
14.2 ArrayTestApp.cs

1 using System;
2
3 public class ArrayTestApp {
4 public static void Main(){
5 DynamicArray da = new DynamicArray();
6 Console.WriteLine("The array contains " + da.Count + " objects.");
7 da.Add("Ohhh if you loved C# like I love C#!!");
8 Console.WriteLine(da[0].ToString());
9 for(int i = 1; i<26; i++){
10 da.Add(i);
11 }
12 Console.WriteLine("The array contains " + da.Count + " objects.");
13 for(int i=0; i<da.Count; i++){
14 if(da[i] != null){
15 Console.Write(da[i].ToString() + ", ");
16 }
17 }
18 Console.WriteLine();
19 }//end Main() method
20 }// end ArrayTestApp class definition

Referring to Example 14.2 — on line 5, an instance of DynamicArray is created using the default constructor.

This results in an initial internal array length of 25 elements. Initially, its Count is zero because no references have yet

been inserted. On line 7, a string object is added to the array and then printed to the console on line 8. The for state-
C# For Artists © 2008 Rick Miller — All Rights Reserved 339

Case Study: Building A Dynamic Array Chapter 14: Collections
ment on line 9 inserts enough integers to test the array’s growth capabilities. The for statement on line 13 prints all

the non-null elements to the console. Figure 14-1 shows the results of running this program.

Evaluating DynamicArray

The DynamicArray class works well enough for your immediate needs, but it suffers several shortcomings that

will cause serious problems should you try to use it in more demanding situations. For example, although you can

access each element of the array, you cannot remove elements. You could add a method called Remove(), but what

happens when the number of remaining elements falls below a certain threshold? You might want to shrink the array

as well.

Another point to consider is how to insert references into specific element locations. When this happens, you

must make room for the reference at the specified array index location and shift the remaining elements to the right. If

you plan to frequently insert elements into your custom-built DynamicArray class, you will have a performance issue

on your hands you did not foresee.

At this point, you would be well served to take a break from coding and dive into the API documentation to study

up on the collections framework. There you will find that all this work, and more, is already done for you!

The ArrayList Class To The Rescue

Let’s re-write the ArrayTestApp program with the help of the IList interface and the ArrayList class, both of

which belong to the .NET collections framework. Example 14.3 gives the code.
14.3 ArrayTestApp.cs (Mod 1)

1 using System;
2 using System.Collections;
3
4 public class ArrayTestApp {
5 public static void Main(){
6 IList da = new ArrayList();
7 Console.WriteLine("The array contains " + da.Count + " objects.");
8 da.Add("Ohhh if you loved C# like I love C#!!");
9 Console.WriteLine(da[0].ToString());
10 for(int i = 1; i<26; i++){
11 da.Add(i);
12 }
13 Console.WriteLine("The array contains " + da.Count + " objects.");
14 for(int i=0; i<da.Count; i++){
15 if(da[i] != null){
16 Console.Write(da[i].ToString() + ", ");
17 }
18 }
19 Console.WriteLine();
20 }//end Main() method
21 }// end ArrayTestApp class definition

Referring to Example 14.3 — I made only three changes to the original ArrayTestApp program: 1) I added

another using directive on line 2 to provide access to the System.Collections namespace, 2) I changed the da refer-

ence declared on line 6 from a DynamicArray type to an IList interface type, and 3) also on line 6, I created an

instance of ArrayList instead of an instance of DynamicArray.

Figure 14-2 shows the results of running this program. If you compare figures 14-1 and 14-2, you will see that

the output produced with an ArrayList is exactly the same as that produced using the DynamicArray. However, the

ArrayList class provides much more ready-made functionality.

Figure 14-1: Results of Testing DynamicArray
340
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 14: Collections Case Study: Building A Dynamic Array
You might be asking yourself, “Why does this code work?” As it turns out, I gamed the system. The DynamicAr-

ray class presented in Example 14.1 just happens to partially implement the IList interface. Later, in Example 14.3,

when I changed the type of the da reference from DynamicArray to IList and used the ArrayList collection class,

everything worked fine because the ArrayList class implements the IList interface as well. In fact, I could substitute

for ArrayList any collection class that implements the IList interface. Note: Unfortunately, not many do, as you’ll

learn when you dive deeper into the Collections namespace.

A Quick Peek At Generics

I can modify Example 14.1 once again to use a generic collection class. Example 14.4 gives the code.
14.4 ArrayTestApp.cs (Mod 2)

1 using System;
2 using System.Collections.Generic;
3
4 public class ArrayTestApp {
5 public static void Main(){
6 IList<Object> da = new List<Object>();
7 Console.WriteLine("The array contains " + da.Count + " objects.");
8 da.Add("Ohhh if you loved C# like I love C#!!");
9 Console.WriteLine(da[0].ToString());
10 for(int i = 1; i<26; i++){
11 da.Add(i);
12 }
13 Console.WriteLine("The array contains " + da.Count + " objects.");
14 for(int i=0; i<da.Count; i++){
15 if(da[i] != null){
16 Console.Write(da[i].ToString() + ", ");
17 }
18 }
19 Console.WriteLine();
20 }//end Main() method
21 }// end ArrayTestApp class definition

Referring to Example 14.4 — on line 6, I changed the da reference’s type to IList<Object> and created an

instance of the List<Object> generic collection class. (i.e., List<T> where you substitute for T the type of objects you

want the collection to contain.) Again, this code works because the IList<T> generic interface declares the same

methods as the non-generic IList interface does. Figure 14-3 shows the results of running this program.

Quick Review

The .NET collections framework can potentially save you a lot of time and hassle. It contains classes, structures,

and interfaces designed to make it easy to manipulate collections of objects. The .NET 2.0 framework introduced

generic collections and improved performance.

Figure 14-2: Results of Running Example 14.3

Figure 14-3: Results of Running Example 14.4
C# For
 Arti
sts © 2008 Rick Miller — All Rights Reserved 341

Data Structure Performance Characteristics Chapter 14: Collections
Data Structure Performance Characteristics

In this section, I want to introduce you to the performance characteristics of several different types of founda-

tional data structures. These include the array, linked list, hash table, and red-black binary tree. Knowing a little bit

about how these data structures work and behave will make it easier for you to select the .NET collection type that’s

best suited for your particular application.

Array Performance Characteristics

As you know already from reading Chapter 8, an array is a contiguous collection of homogeneous elements. You

can have arrays of value types or arrays of references to objects. The general performance issues to be aware of

regarding arrays concern inserting new elements into the array at some position prior to the last element, accessing

elements, and searching for particular values within the array.

When a new element is inserted into an array at a position other than the end, room must be made at that index

location for the insertion to take place by shifting the remaining references one element to the right. This series of

events is depicted in figures 14-4 through 14-6.

Figure 14-4: Array of Object References Before Insertion

Figure 14-5: New Reference to be Inserted at Array Element 3 (index 2)
342
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 14: Collections Data Structure Performance Characteristics
Referring to figures 14-4 through 14-6 — an array of object references contains references that may point to an

object or to null. In this example, array elements 1 through 4 (index values 0 through 3) point to objects while the

remaining array elements point to null.

A reference insertion is really just an assignment of the value of the reference being inserted to the reference

residing at the target array element. To accommodate the insertion, the values contained in references located to the

right of the target element must be reassigned one element to the right. (i.e., They must be shifted to the right.) It is

this shifting action that causes a performance hit when inserting elements into an array-based collection. If the inser-

tion triggers the array growth mechanism, then you’ll receive a double performance hit. The insertion performance

penalty, measured in time, grows with the length of the array. Element retrieval, on the other hand, takes place fairly

quickly because of the way array element addresses are computed. (Refer to Chapter 8 — Arrays)

Linked List Performance Characteristics

A linked list is a data structure whose elements stand alone in memory. (And may indeed be located anywhere in

the heap!) Each element is linked to another by a reference. Unlike the elements of an array, which are ordinary refer-

ences, each linked list node is a complex data structure that contains a reference to the previous node in the list, the

next node in the list, and a reference to an object payload, as Figure 14-7 illustrates.

Whereas an array’s elements are always located one right after the other in memory, and their memory addresses

quickly calculated, a linked list’s elements can be, and usually are, scattered in memory hither and yonder. The nice

thing about linked lists is that element insertions take place fairly quickly because no element shifting is required.

Figures 14-8 through 14-11 show the sequence of events for the insertion of a circular linked list node. Referring to

figures 14-8 through 14-11 — a linked list contains one or more non-contiguous nodes. A node insertion requires ref-

erence rewiring. This entails setting the previous and next references on the new node in addition to resetting the

affected references of its adjacent list nodes. If this looks complicated, guess what? It is! And if you take a data struc-

tures class you’ll get the chance to create a linked list from scratch!

Figure 14-6: Array After New Reference Insertion

These reference values

were copied to the right to

accommodate the insertion.

Figure 14-7: Linked List Node Organization
C# For Artis
ts
 © 2008 Rick Miller — All Rights Reserved 343

Data Structure Performance Characteristics Chapter 14: Collections
Figure 14-8: Linked List Before New Element Insertion

Figure 14-9: New Reference Being Inserted Into Second Element Position

Figure 14-10: References of Previous, New, and Next List Elements must be Manipulated
344
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 14: Collections Data Structure Performance Characteristics
Hash Table Performance Characteristics

A hash table is an array whose elements can point to a series of nodes. Structurally, as you’ll see, a hash table is

a cross between an array and a one-way linked list. In an ordinary array, elements are inserted by index value. If there

are potentially many elements to insert, the array space required to hold all the elements would be correspondingly

large as well. This may result in wasted memory space. The hash table addresses this problem by reducing the size of

the array used to point to its elements and assigning each element to an array location based on a hash function as Fig-

ure 14-12 illustrates.

Referring to Figure 14-12 — the purpose of the hash function is to transform the key value into a unique array

index value. However, sometimes two unique key values translate to the same index value. When this happens a col-

lision is said to have occurred. The problem is resolved by chaining together nodes that share the same hash table

index as is shown in Figure 14-13.

The benefits of a hash table include lower initial memory overhead and relatively fast element insertions. On the

other hand, if too many insertion collisions occur, the linked elements must be traversed to insert new elements or to

retrieve existing elements. List traversal extracts a performance penalty.

Chained Hash Table vs. Open-Address Hash Table

The hash table discussed above is referred to as a chained hash table. Another type of hash table, referred to as an

open-address hash table, uses a somewhat larger array and replaces the linking mechanism with a slot probe function

that searches for empty space when the table approaches capacity.

Figure 14-11: Linked List Insertion Complete

Figure 14-12: A Hash Function Transforms a Key Value into an Array Index
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 345

Data Structure Performance Characteristics Chapter 14: Collections
Red-Black Tree Performance Characteristics

A red-black tree is a special type of binary search tree with a self-balancing characteristic. Tree nodes have an

additional data element, color, that is set to either red or black. The data elements of a red-black tree node are shown

in Figure 14-14.

Insertions into a red-black tree are followed by a self-balancing operation. This ensures that all leaf nodes are the

same number of black nodes away from the root node. Figure 14-15 shows the state of a red-black tree after inserting

the integer values 1 through 9 in the following insertion order: 9, 3, 5, 6, 7, 2, 8, 4, 1. (Red nodes are shown lightly

shaded.)

Referring to Figure 14-15 — the numbers appearing to the left of each node represent the height of the tree in

black nodes. The primary benefit associated with a red-black tree is the generally overall good node search perfor-

Figure 14-13: Hash Table Collisions are Resolved by Linking Nodes Together

Figure 14-14: Red-Black Tree Node Data Elements

Figure 14-15: Red-Black Tree After Inserting Integer Values 9, 3, 5, 6, 7, 8, 4, 1
346
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 14: Collections Data Structure Performance Characteristics
mance regardless of the number of nodes the tree contains. However, because the tree reorders itself with each inser-

tion, an insertion into a tree that contains lots of nodes incurs a performance penalty.

Think of it in terms of a clean room versus a messy room. You can store things really fast in a messy room

because you just throw your stuff anywhere. Finding things in a messy room takes some time. You may have to look

high and low before finding what you’re looking for. Storing things in a clean room, conversely, takes a little while

longer, but when you need something, you can find if fast!

Stacks And Queues

Two additional data structures you’ll encounter in the collections API are stacks and queues. A stack is a data

structure that stores objects in a last-in-first-out (LIFO) basis. Objects are placed on the stack with a push operation

and removed from the stack with a pop operation. A stack operates like a plate dispenser, where you put in a stack of

plates and take plates off the stack one at a time. The last plate inserted into the plate dispenser is the first plate dis-

pensed when someone needs a plate. Figure 14-16 shows the state of a stack after several pushes and pops.

A queue is a data structure that stores objects in a first-in-first-out (FIFO) basis. A queue operates like a line of

people waiting for some type of service; the first person in line is the first person to be served. People arriving in line

must wait for service until they reach the front of the line. Objects are added to a queue with an enqueue operation

and removed with a dequeue operation. Figure 14-17 shows the state of a queue after several enqueues and dequeues.

Quick Review

An array is a contiguous allocation of objects in memory. An array-based collection offers quick element access

but slow element insertion, especially if the collection’s underlying array must be resized and its contents shifted to

accommodate the insertion.

A linked list consists of individual nodes linked to each other via references. To traverse a linked list, you must

start at the beginning, or the end (head or tail) and follow each element to the next. Linked list-based collections can

Figure 14-16: A Stack After Several Push and Pop Operations

Figure 14-17: A Queue After Several Enqueue and Dequeue Operations
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 347

Navigating The .NET Collections API Chapter 14: Collections
conserve memory space because memory need only be allocated on each object insertion. Insertions into linked list-

based collections are relatively quick but element access is relatively slow due to the need to traverse the list.

A chained hash table is a cross between an array and a linked list and allows element insertion with key/value

pairs. A hash function performed on the key determines the value’s location in the hash table. A collision is said to

occur when two keys produce the same hash code. When this happens, the values are chained together in a linked list-

like structure. A hash function that produces a uniform distribution over all the keys is a critical feature of a hash

table.

A red-black tree is a self-balancing binary tree. Insertions into a red-black tree take some time because of ele-

ment ordering and balancing operations. Element access times for a red-black tree-based collection is fairly quick.

Navigating The .NET Collections API

To the uninitiated, the .NET collections API presents a bewildering assortment of interfaces, classes, and struc-

tures spread over four namespaces. In this section, I provide an overview of some of the things you’ll find in each

namespace. Afterward, I present a different type of organization that I believe you’ll find more helpful.

One thing I will not do in this section is discuss every interface, class, or structure found in these namespaces. If

I did that, you would fall asleep quick and kill yourself as your head slammed against the desk on its way down!

Instead, I will only highlight the most important aspects of each namespace with an eye towards saving you time and

frustration.

One maddening aspect of the .NET collections framework is in the way Microsoft chose to name their collection

classes. For example, collection classes that contain the word List do not necessarily implement the IList or IList<T>

interfaces. This means you can’t substitute a LinkedList for an ArrayList without breaking your code. (In this regard I

believe the Java collections framework is much more robust and logically organized.)

In concert with this section you should explore the collections API and see for yourself what lies within each

namespace.

System.Collections

The System.Collections namespace contains non-generic versions of collection interfaces, classes, and struc-

tures. The contents of the System.Collections namespace represent the “old-school” way of collections programming.

By this I mean that the collections defined here store only object references. You can insert any type of object into a

collection like an ArrayList, Stack, etc., but, when you access an element in the collection and want to perform an

operation on it specific to a particular type, you must first cast the object to a type that supports the operation. (By

“performing an operation” I mean accessing an object member declared by its interface or class type.)

I recommend avoiding the System.Collections namespace altogether in favor of the generic versions of its mem-

bers found in the System.Collections.Generic namespace. In most cases, you’ll be trading cumbersome “old-school”

style programming for more elegant code and improved performance offered by the newer collection classes.

System.Collections.Generic

.NET 2.0 brought with it generics and the collection classes found in the System.Collections.Generic namespace.

In addition to providing generic versions of the “old-school” collections contained in the System.Collections

namespace, the System.Collections.Generic namespace added several new collection types, one of them being

LinkedList<T>.

Several collection classes within the System.Collections.Generic namespace can be used off-the-shelf, so to

speak, to store and manipulate strongly-typed collections of objects. These include List<T>, LinkedList<T>,

Queue<T>, Stack<T>.

Other classes such as Dictionary<TKey, TValue>, SortedDictionary<TKey, TValue>, and SortedList<TKey,

TValue> store objects (values) in the collection based on the hash values of keys. Special rules must be followed

when implementing a key class. These rules specify the types of interfaces a key class must implement in order to

perform equality comparisons. They also offer suggestions regarding the performance of hashing functions to opti-
348 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 14: Collections Navigating The .NET Collections API
mize insertion and retrieval. You can find these specialized instructions in the Remarks section of a collection class’s

API documentation page. I cover this topic in greater detail in Chapter 22 — Well Behaved Objects.

System.Collections.ObjectModel

The System.Collections.ObjectModel namespace contains classes that are meant to be used as the base classes

for custom, user-defined collections. For example, if you want to create a specialized collection, you can extend the

Collection<T> class. This namespace also includes the KeyedCollection<TKey, TItem>, ObservableCollection<T>,

ReadOnlyCollection<T>, and ReadOnlyObservableCollection<T> classes.

The KeyedCollection<TKey, TItem> is an abstract class and is a cross between an IList and an IDictionary-based

collection in that it is an indexed list of items. Each item in the list can also be accessed with an associated key. Col-

lection elements are not key/value pairs as is the case in a Dictionary, rather, the element is the value and the key is

extracted from the value upon insertion. The KeyedCollection<TKey, TItem> class must be extended and you must

override its GetKeyForItem() method to properly extract keys from the items you insert into the collection.

The ObservableCollection<T> collection provides an event named CollectionChanged that you can register

event handlers with to perform special processing when items are added or removed, or the collection is refreshed.

The ReadOnlyCollection<T> and ReadOnlyObservableCollection<T> classes implement read-only versions of

the Collection<T> and ObservableCollection<T> classes.

System.Collections.Specialized

As its name implies, the System.Collections.Specialized namespace contains interfaces, classes, and structures

that help you manage specialized types of collections. Some of these include the BitVector32 structure, the ListDic-

tionary, which is a Dictionary implemented as a singly linked list intended for storing ten items or less, StringCollec-

tion, which is a collection of strings, and StringDictionary, which is a Dictionary whose key/value pairs are strongly

typed to strings rather than objects.

Mapping Non-Generic To Generic Collections

In some cases, the System.Collection.Generic and System.Collections.ObjectModel namespaces provide a corre-

sponding replacement for a collection class in the System.Collections namespace. But sometimes they do not. Table

14-1 lists the non-generic collection classes and their generic replacements, if any, and the underlying data structure

implementation.

Non-Generic Generic Underlying Data Structure

ArrayList List<T> Array

BitArray No generic equivalent Array

CollectionBase Collection<T> Array

DictionaryBase KeyedCollection<TKey, TItem> Hash Table & Array

HashTable Dictionary<TKey, TValue> Hash Table

Queue Queue<T> Array

ReadOnlyCollectionBase ReadOnlyCollection<T> Array

SortedList SortedList<TKey, TValue> Red-Black Tree

Stack Stack<T> Array

No Non-Generic Equivalent LinkedList<T> Doubly Linked List

Table 14-1: Mapping Non-Generic Collections to Their Generic Counterparts
C# For Artists © 2008 Rick Miller — All Rights Reserved 349

Using Non-Generic Collection Classes - Pre .NET 2.0 Chapter 14: Collections
Quick Review

“Old-school” style .NET collections classes store only object references and require casting when elements are

retrieved. You should favor the use of generic collections as they offer strong element typing on insertion and

retrieval and improved performance. The classes found in the System.Collections.ObjectModel namespace can serve

as the basis for user-defined custom collections. The System.Collections.Specialized namespace contains classes and

structures you will find helpful to manage unique collections.

Using Non-Generic Collection Classes - Pre .NET 2.0

In this section, I demonstrate the use of a non-generic collection class. Whereas earlier I used an ArrayList class

to store various types of objects like strings and integers, here I use an ArrayList to store objects of type Person. I

want to show you how to do two things in particular: 1) cast objects retrieved from a collection to a specified type,

and 2) subclass ArrayList and override its methods to provide a strongly-typed collection. You’ll find this section

helpful if you’re tasked with maintaining legacy .NET code based on 1.0 collection classes.

Example 14.5 gives the code for the Person class.
14.5 Person.cs

1 using System;
2
3 public class Person {
4
5 //enumeration
6 public enum Sex {MALE, FEMALE};
7
8 // private instance fields
9 private String _firstName;
10 private String _middleName;
11 private String _lastName;
12 private Sex _gender;
13 private DateTime _birthday;
14
15
16 //private default constructor
17 private Person(){}
18
19 public Person(String firstName, String middleName, String lastName,
20 Sex gender, DateTime birthday){
21 FirstName = firstName;
22 MiddleName = middleName;
23 LastName = lastName;
24 Gender = gender;
25 BirthDay = birthday;
26 }
27
28 // public properties
29 public String FirstName {
30 get { return _firstName; }
31 set { _firstName = value; }
32 }
33
34 public String MiddleName {

No Non-Generic Equivalent SortedDictionary<TKey, TValue> Red-Black Tree

No Non-Generic Equivalent SynchronizedCollection<T> † Array

No Non-Generic Equivalent SynchonizedKeyedCollection<TKey, TItem> † Hash Table & Array

No Non-Generic Equivalent SynchronizedReadOnlyCollection<T> † Array

† Provides thread-safe operation

Non-Generic Generic Underlying Data Structure

Table 14-1: Mapping Non-Generic Collections to Their Generic Counterparts
350 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 14: Collections Using Non-Generic Collection Classes - Pre .NET 2.0
35 get { return _middleName; }
36 set { _middleName = value; }
37 }
38
39 public String LastName {
40 get { return _lastName; }
41 set { _lastName = value; }
42 }
43
44 public Sex Gender {
45 get { return _gender; }
46 set { _gender = value; }
47 }
48
49 public DateTime BirthDay {
50 get { return _birthday; }
51 set { _birthday = value; }
52 }
53
54 public int Age {
55 get {
56 int years = DateTime.Now.Year - _birthday.Year;
57 int adjustment = 0;
58 if(DateTime.Now.Month < _birthday.Month){
59 adjustment = 1;
60 }else if((DateTime.Now.Month == _birthday.Month) && (DateTime.Now.Day < _birthday.Day)){
61 adjustment = 1;
62 }
63 return years - adjustment;
64 }
65 }
66
67 public String FullName {
68 get { return FirstName + " " + MiddleName + " " + LastName; }
69 }
70
71 public String FullNameAndAge {
72 get { return FullName + " " + Age; }
73 }
74
75 public override String ToString(){
76 return FullName + " is a " + Gender + " who is " + Age + " years old.";
77 }
78 } // end Person class

Objects In — Objects Out: Casting 101

“Old school” collections programming is characterized by the need to cast objects to an appropriate type when

they are retrieved from a collection. Casting is required if you intend to perform an operation on an object other than

those defined by the System.Object class. Example 14.6 gives the code for a short program that stores Person objects

in an ArrayList.
14.6 MainApp.cs

1 using System;
2 using System.Collections;
3
4 public class MainApp {
5 public static void Main(){
6 ArrayList surrealists = new ArrayList();
7
8 Person p1 = new Person("Rick", "", "Miller", Person.Sex.MALE, new DateTime(1961, 02, 04));
9 Person p2 = new Person("Max", "", "Ernst", Person.Sex.MALE, new DateTime(1891, 04, 02));
10 Person p3 = new Person("Andre", "", "Breton", Person.Sex.MALE, new DateTime(1896, 02, 19));
11 Person p4 = new Person("Roland", "", "Penrose", Person.Sex.MALE, new DateTime(1900, 10, 14));
12 Person p5 = new Person("Lee", "", "Miller", Person.Sex.FEMALE, new DateTime(1907, 04, 23));
13 Person p6 = new Person("Henri-Robert-Marcel", "", "Duchamp", Person.Sex.MALE,
14 new DateTime(1887, 07, 28));
15
16 surrealists.Add(p1);
17 surrealists.Add(p2);
18 surrealists.Add(p3);
19 surrealists.Add(p4);
20 surrealists.Add(p5);
21 surrealists.Add(p6);
22
23 foreach(object o in surrealists){
24 Console.WriteLine(o.ToString());
25 }
C# For Artists © 2008 Rick Miller — All Rights Reserved 351

Using Non-Generic Collection Classes - Pre .NET 2.0 Chapter 14: Collections
26
27 Console.WriteLine("---");
28
29 foreach(Person p in surrealists){
30 Console.WriteLine(p.FirstName);
31 }
32
33 Console.WriteLine("---");
34
35 for(int i = 0; i<surrealists.Count; i++){
36 Console.WriteLine(((Person)surrealists[i]).FirstName + " " + ((Person)surrealists[i]).LastName);
37 }
38
39 } // end Main()
40 } // end MainApp class definition

Referring to Example 14.6 — an ArrayList reference named surrealists is initialized on line 6 followed by the

creation of six Person references on lines 8 through 13. Next, each Person reference is inserted into the collection

using the ArrayList.Add() method.

The foreach statement on line 23 demonstrates how objects can be retrieved from the collection without the

need for casting as long as you only intend to call methods defined by the System.Object class. In this case, the Per-

son class overrides the ToString() method.

The foreach statement on line 29 demonstrates how to extract a particular type of object from the collection

using an implicit cast. This works because all the objects in the ArrayList collection are indeed of type Person.

The for statement on line 35 iterates over the surrealists collection using array indexing. Each object in the col-

lection must be explicitly cast to type Person before accessing its FirstName and LastName properties.

Figure 14-18 shows the results of running this program.

Extending ArrayList To Create A Strongly-Typed Collection

You can avoid the need to cast by creating a custom collection. In this section, I show you how to extend the

ArrayList class to create a custom collection that stores Person objects. Example 14.7 gives the code for the custom

collection named PersonArrayList.
14.7 PersonArrayList.cs

1 using System;
2 using System.Collections;
3
4 public class PersonArrayList : ArrayList {
5
6 public PersonArrayList():base(){}
7
8 public new Person this[int index]{
9 get { return (Person) base[index];}
10
11 set { base[index] = (Person) value; }
12 }
13
14 public override int Add(object o){

Figure 14-18: Results of Running Example 14.6
352
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 14: Collections Using Non-Generic Collection Classes - Pre .NET 2.0
15 return base.Add((Person)o);

16 }

17 }// end PersonArrayList class definition

Referring to Example 14.7 — the PersonArrayList class extends ArrayList, overrides its Add() method, and pro-

vides a new implementation for its indexer. The PersonArrayList.Add() method accepts an object and casts it to Per-

son before inserting it into the collection using the ArrayList.Add() method. The indexer casts incoming objects

(value) to type Person before inserting them into the collection. It casts retrieved objects to type Person before their

return from the indexer call. The indexer cannot simply be overridden in this case because an overridden method

must return the same type as the base class method it overrides. Thus, a new indexer is declared with the help of the

new keyword.

Example 14.8 shows this custom collection in action.

14.8 MainApp.cs

1 using System;

2

3 public class MainApp {

4 public static void Main(){

5 PersonArrayList surrealists = new PersonArrayList();

6

7 Person p1 = new Person("Rick", "", "Miller", Person.Sex.MALE, new DateTime(1961, 02, 04));

8 Person p2 = new Person("Max", "", "Ernst", Person.Sex.MALE, new DateTime(1891, 04, 02));

9 Person p3 = new Person("Andre", "", "Breton", Person.Sex.MALE, new DateTime(1896, 02, 19));

10 Person p4 = new Person("Roland", "", "Penrose", Person.Sex.MALE, new DateTime(1900, 10, 14));

11 Person p5 = new Person("Lee", "", "Miller", Person.Sex.FEMALE, new DateTime(1907, 04, 23));

12 Person p6 = new Person("Henri-Robert-Marcel", "", "Duchamp", Person.Sex.MALE,

13 new DateTime(1887, 07, 28));

14

15 surrealists.Add(p1);

16 surrealists.Add(p2);

17 surrealists.Add(p3);

18 surrealists.Add(p4);

19 surrealists.Add(p5);

20 surrealists.Add(p6);

21

22 for(int i=0; i<surrealists.Count; i++){

23 Console.WriteLine(surrealists[i].FullNameAndAge);

24 }

25

26 surrealists.Remove(p1);

27 Console.WriteLine("---------------------------------------");

28

29 for(int i=0; i<surrealists.Count; i++){

30 Console.WriteLine(surrealists[i].FullNameAndAge);

31 }

32

33 } // end Main()

34 } // end MainApp

Referring to Example 14.8 — the important point to note here is there is no need to cast when using the Person-

ArrayList indexer in the bodies of the for statements that begin on lines 22 and 29. On line 26 the ArrayList.Re-

move() method is used to remove the object referenced by p1 from the collection. Figure 14-19 gives the results of

running this program.

Figure 14-19: Results of Running Example 14.8
C# For Artist
s © 2008 Rick Miller — All Rights Reserved 353

Using Generic Collection Classes — .NET 2.0 and Beyond Chapter 14: Collections
Using Generic Collection Classes — .NET 2.0 and Beyond

The release of the .NET 2.0 framework brought with it generics and generic collections. In this section I show

you how generic collection classes can help you write cleaner code and eliminate the need to cast objects upon their

retrieval from a collection. I start by showing you how to use the List<T> collection which, as you saw in Table 14-1,

is the generic replacement for the ArrayList class. I will also show you how to implement a custom KeyedCollection

class.

List<T>: Look Ma, No More Casting!

The List<T> generic collection class is the direct replacement for the ArrayList collection class. It’s easy to use

the List<T> generic collection. The T that appears between the left and right angle brackets represents the replace-

ment type. You can think of the T as acting like a placeholder for a field in a mail-merge document. Anywhere the T

appears, the type that’s actually substituted for T will appear in its place when the collection object is created. For

example, if you examine the List<T> class’s MSDN documentation, you’ll find that its Add() method signature is

declared to be:

public void Add(T item)
The parameter named item is of type T. So, if you want to create a List collection object that stores Person objects

you would do the following:

List<Person> person_list = new List<Person>();
The compiler substitutes the type Person everywhere in the List class the symbol T appears. Thus, its Add()

method now accepts only Person-type objects. Let’s see this in action. Example 14.9 gives the code for a program that

uses the List<T> collection class to store Person objects.
14.9 MainApp.cs (List<T> version)

1 using System;
2 using System.Collections.Generic;
3
4 public class MainApp {
5 public static void Main(){
6 List<Person> surrealists = new List<Person>();
7
8 Person p1 = new Person("Rick", "", "Miller", Person.Sex.MALE, new DateTime(1961, 02, 04));
9 Person p2 = new Person("Max", "", "Ernst", Person.Sex.MALE, new DateTime(1891, 04, 02));
10 Person p3 = new Person("Andre", "", "Breton", Person.Sex.MALE, new DateTime(1896, 02, 19));
11 Person p4 = new Person("Roland", "", "Penrose", Person.Sex.MALE, new DateTime(1900, 10, 14));
12 Person p5 = new Person("Lee", "", "Miller", Person.Sex.FEMALE, new DateTime(1907, 04, 23));
13 Person p6 = new Person("Henri-Robert-Marcel", "", "Duchamp", Person.Sex.MALE,
14 new DateTime(1887, 07, 28));
15
16 surrealists.Add(p1);
17 surrealists.Add(p2);
18 surrealists.Add(p3);
19 surrealists.Add(p4);
20 surrealists.Add(p5);
21 surrealists.Add(p6);
22
23 for(int i=0; i<surrealists.Count; i++){
24 Console.WriteLine(surrealists[i].FullNameAndAge);
25 }
26
27 surrealists.Remove(p1);
28 Console.WriteLine("---------------------------------------");
29
30 for(int i=0; i<surrealists.Count; i++){
31 Console.WriteLine(surrealists[i].FullNameAndAge);
32 }
33
34 } // end Main()
35 } // end MainApp

Referring to Example 14.9 — note the only differences between this example and the code shown in Example

14.8 is the addition of the using directive on line 2 to include the System.Collections.Generic namespace. Also, I

changed the type of the surrealists reference on line 6 from PersonArrayList to List<T>. Figure 14.20 shows the

results of running this program.
354 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 14: Collections Using Generic Collection Classes — .NET 2.0 and Beyond
Implementing KeyedCollection<TKey, TItem>

You will find the KeyedCollection<TKey, TItem> in the System.Collections.ObjectModel namespace. In this

section, I want to show you how to use this particular class because you can’t just use it directly like you can List<T>.

It is an abstract class and is meant to be used as the basis for a custom collection. It contains one abstract method,

GetKeyForItem(), that you must override in order to properly extract the key from the item being inserted into the

collection.

To briefly review, the KeyedCollection class functions like a cross between a list and a dictionary. When an item

is inserted into the collection, it gets put into an array, just like items inserted into List<T>. When the item is inserted,

a key is extracted from it and inserted into an internal dictionary collection. By default, the internal dictionary is cre-

ated upon the insertion of the first item into the collection, however, by using another version of the KeyedCollection

constructor, you can specify the number of items the collection must contain before the internal dictionary is created.

This may increase search performance when the collection contains a small number of items.

You can access individual elements in a KeyedCollection in two ways: 1) by array indexing using an integer like

you would normally do in an array or a collection that implements the IList<T> interface, or 2) by using an indexer

that takes a key as an argument.

Example 14.10 gives the code for a custom KeyedCollection class named PersonKeyedCollection.
14.10 PersonKeyedCollection.cs

1 using System;
2 using System.Collections.ObjectModel;
3
4 public class PersonKeyedCollection : KeyedCollection<String, Person> {
5
6 public PersonKeyedCollection():base(){ }
7
8 protected override String GetKeyForItem(Person person){
9 return person.BirthDay.ToString();
10 }
11 }

Referring to Example 14.10 — you might be surprised at how little coding it takes to implement the custom

KeyedCollection. Note the using directive on line 2 specifies the System.Collections.ObjectModel namespace. Also

note on line 4 how the class is declared by specifying the actual types of the keys and items. In this example, keys are

of type String and items are of type Person.

The overridden GetKeyForItem() method appears on line 8. It simply returns the string representation of a Per-

son object’s Birthday property. The GetKeyForItem() method is protected and as such is only used internally by the

KeyedCollection class when items are inserted into the collection.

Example 14.11 demonstrates how to use a KeyedCollection.
14.11 KeyedCollectionDemo.cs

1 using System;
2
3 public class KeyedCollectionDemo {
4 public static void Main(){
5 PersonKeyedCollection surrealists = new PersonKeyedCollection();
6
7 Person p1 = new Person("Rick", "", "Miller", Person.Sex.MALE, new DateTime(1961, 02, 04));
8 Person p2 = new Person("Max", "", "Ernst", Person.Sex.MALE, new DateTime(1891, 04, 02));

Figure 14-20: Results of Running Example 14.9
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 355

Using Generic Collection Classes — .NET 2.0 and Beyond Chapter 14: Collections
9 Person p3 = new Person("Andre", "", "Breton", Person.Sex.MALE, new DateTime(1896, 02, 19));
10 Person p4 = new Person("Roland", "", "Penrose", Person.Sex.MALE, new DateTime(1900, 10, 14));
11 Person p5 = new Person("Lee", "", "Miller", Person.Sex.FEMALE, new DateTime(1907, 04, 23));
12 Person p6 = new Person("Henri-Robert-Marcel", "", "Duchamp", Person.Sex.MALE,
13 new DateTime(1887, 07, 28));
14
15 surrealists.Add(p1);
16 surrealists.Add(p2);
17 surrealists.Add(p3);
18 surrealists.Add(p4);
19 surrealists.Add(p5);
20 surrealists.Add(p6);
21
22 for(int i=0; i<surrealists.Count; i++){
23 Console.WriteLine(surrealists[i].FullNameAndAge);
24 }
25
26 surrealists.Remove(p1);
27 Console.WriteLine("---------------------------------------");
28
29 for(int i=0; i<surrealists.Count; i++){
30 Console.WriteLine(surrealists[i].FullNameAndAge);
31 }
32
33 Console.WriteLine("---------------------------------------");
34 Console.WriteLine(surrealists[(new DateTime(1900, 10, 14)).ToString()]);
35 Console.WriteLine(surrealists[(new DateTime(1907, 04, 23)).ToString()]);
36
37 } // end Main()
38 } // end KeyedCollectionDemo class

Referring to Example 14.11 — this codes looks a whole lot like that given in Example 14.9 with a few notable

exceptions. The surrealists reference type is changed from List<T> to PersonKeyedCollection. Person objects are cre-

ated and inserted into the collection using the Add() method as usual. Individual collection elements are accessed via

an indexer in the fashion of a list.

Lines 34 and 35 demonstrate the use of the overloaded indexer to find elements by their key. In this case, we can

find a particular surrealist by his or her birthday string.

Figure 14.21 shows the results of running this program.

Quick Review

The List<T> generic collection class is the direct replacement for the ArrayList collection class. It’s easy to use

the List<T> generic collection. The T that appears between the left and right angle brackets represents the replace-

ment type. You can think of the T as acting like a placeholder for a field in a mail-merge document. Anywhere the T

appears, the type that’s actually substituted for T will appear in its place when the collection object is created.

You can find the KeyedCollection<TKey, TItem> in the System.Collections.ObjectModel namespace. It is an

abstract class and is meant to be used as the basis for a custom collection. It contains one abstract method, GetKey-

ForItem(), that you must override to properly extract the key from the item being inserted into the collection.

Figure 14-21: Results of Running Example 14.11
356
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 14: Collections Special Operations On Collections
Special Operations On Collections

Collections exist to make it easier for you to manipulate the objects they contain. In this section, I show you how

to sort a list using several different versions of its overloaded Sort() method. I then show you how to extract the con-

tents of a collection into an array.

Sorting A List

The List<T> collection provides a Sort() method that makes sorting its contents easy. However, before you call

the Sort() method, you need to be aware of what types of objects the list contains. You must do this because not all

objects are naturally sortable.

To make an object sortable, its class or structure type must implement the IComparable<T> interface. If you

don’t own the source code for a particular class or structure and wish to sort them using List<T>’s Sort() method, then

you can implement a Comparer<T> object that defines how such objects are to be compared with each other. I

explain how to do this in the following sections.

Implementing System.IComparable<T>

Fundamental data types provided by the .NET Framework implement the System.IComparable or System.ICom-

parable<T> interface and are therefore sortable. When you create a user-defined class or structure, you must ask your-

self, as part of the design process, “Will objects of this type be compared with each other or with other types of

objects?” If the answer is yes, then that class or structure should implement the IComparable<T> interface.

The IComparable<T> interface declares one method, CompareTo(). This method is automatically called during

collection or array sort operations. If you want your user-defined types to sort correctly, you must provide an imple-

mentation for the CompareTo() method. How one object is compared against another is entirely up to you since

you’re the programmer. It’s fun having all the power!

Example 14.12 shows the Person class modified to implement the IComparable<T> interface.
14.12 Person.cs (implementing IComparable<T>)

1 using System;
2
3 public class Person : IComparable<Person> {
4
5 //enumeration
6 public enum Sex {MALE, FEMALE};
7
8 // private instance fields
9 private String _firstName;
10 private String _middleName;
11 private String _lastName;
12 private Sex _gender;
13 private DateTime _birthday;
14
15
16 //private default constructor
17 private Person(){}
18
19 public Person(String firstName, String middleName, String lastName,
20 Sex gender, DateTime birthday){
21 FirstName = firstName;
22 MiddleName = middleName;
23 LastName = lastName;
24 Gender = gender;
25 BirthDay = birthday;
26 }
27
28 // public properties
29 public String FirstName {
30 get { return _firstName; }
31 set { _firstName = value; }
32 }
33
34 public String MiddleName {
35 get { return _middleName; }
36 set { _middleName = value; }
C# For Artists © 2008 Rick Miller — All Rights Reserved 357

Special Operations On Collections Chapter 14: Collections
37 }
38
39 public String LastName {
40 get { return _lastName; }
41 set { _lastName = value; }
42 }
43
44 public Sex Gender {
45 get { return _gender; }
46 set { _gender = value; }
47 }
48
49 public DateTime BirthDay {
50 get { return _birthday; }
51 set { _birthday = value; }
52 }
53
54 public int Age {
55 get {
56 int years = DateTime.Now.Year - _birthday.Year;
57 int adjustment = 0;
58 if((DateTime.Now.Month <= _birthday.Month) && (DateTime.Now.Day < _birthday.Day)){
59 adjustment = 1;
60 }
61 return years - adjustment;
62 }
63 }
64
65 public String FullName {
66 get { return FirstName + " " + MiddleName + " " + LastName; }
67 }
68
69 public String FullNameAndAge {
70 get { return FullName + " " + Age; }
71 }
72
73 public override String ToString(){
74 return FullName + " is a " + Gender + " who is " + Age + " years old.";
75 }
76
77 public int CompareTo(Person other){
78 return this.BirthDay.CompareTo(other.BirthDay);
79 }
80
81 } // end Person class

Referring to Example 14.12 — the Person class now implements the IComparable<T> interface. The Comp-

areTo() method, starting on line 77, defines how one person object is compared with another. In this case, I am com-

paring their BirthDay properties. Note that since the DateTime structure implements the IComparable<T> interface

(i.e., IComparable<DateTime>) one simply needs to call its version of the CompareTo() method to make the required

comparison. But what’s getting returned? Good question. I answer it in the next section.

Rules For Implementing The CompareTo(T other) Method

The rules for implementing the CompareTo(T other) method are laid out in Table 14-2.

What property, exactly, you compare between objects is strictly dictated by the program’s design. In the case of

the Person class, I chose to compare BirthDays. In the next section, I’ll show you how you would compare Last-

Names.

Return Value Returned When...

Less than Zero (-1) This object is less than the other parameter

Zero (0) This object is equal to the other parameter

Greater than Zero (1) This object is greater than the other parameter, or, the

other parameter is null

Table 14-2: Rules For Implementing IComparable<T>.CompareTo(T other) Method
358 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 14: Collections Special Operations On Collections
Now that the Person class implements the IComparable<T> interface, person objects can be compared against

each other. Example 14.13 shows the List<T>.Sort() method in action.
14.13 SortingListDemo.cs

1 using System;
2 using System.Collections.Generic;
3
4 public class SortingListDemo {
5 public static void Main(){
6 List<Person> surrealists = new List<Person>();
7
8 Person p1 = new Person("Rick", "", "Miller", Person.Sex.MALE, new DateTime(1961, 02, 04));
9 Person p2 = new Person("Max", "", "Ernst", Person.Sex.MALE, new DateTime(1891, 04, 02));
10 Person p3 = new Person("Andre", "", "Breton", Person.Sex.MALE, new DateTime(1896, 02, 19));
11 Person p4 = new Person("Roland", "", "Penrose", Person.Sex.MALE, new DateTime(1900, 10, 14));
12 Person p5 = new Person("Lee", "", "Miller", Person.Sex.FEMALE, new DateTime(1907, 04, 23));
13 Person p6 = new Person("Henri-Robert-Marcel", "", "Duchamp", Person.Sex.MALE,
14 new DateTime(1887, 07, 28));
15
16 surrealists.Add(p1);
17 surrealists.Add(p2);
18 surrealists.Add(p3);
19 surrealists.Add(p4);
20 surrealists.Add(p5);
21 surrealists.Add(p6);
22
23 for(int i=0; i<surrealists.Count; i++){
24 Console.WriteLine(surrealists[i].FullNameAndAge);
25 }
26
27 surrealists.Sort();
28 Console.WriteLine("---------------------------------------");
29
30 for(int i=0; i<surrealists.Count; i++){
31 Console.WriteLine(surrealists[i].FullNameAndAge);
32 }
33
34 } // end Main()
35 } // end SortingListDemo

Referring to Example 14.13 — the Sort() method is called on line 27. Figure 14-22 shows the results of running

this program.

Extending Comparer<T>

What if you don’t own the source code to the objects you want to compare? No problem. Simply implement a

custom comparer object by extending the System.Collections.Generic.Comparer<T> class and providing an imple-

mentation for its Compare(T x, T y) method. Example 14.14 shows how a custom comparer might look. This particu-

lar example compares two Person objects.
14.14 PersonComparer.cs

1 using System.Collections.Generic;
2
3 public class PersonComparer : Comparer<Person> {
4
5 /***********************************
6 Return -1 if p1 < p2 or p1 == null
7 Return 0 if p1 == p2

Figure 14-22: Results of Running Example 14.13
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 359

Special Operations On Collections Chapter 14: Collections
8 Return +1 if p1 > p2 or p2 == null
9 ************************************/
10 public override int Compare(Person p1, Person p2){
11 if(p1 == null) return -1;
12 if(p2 == null) return 1;
13
14 return p1.LastName.CompareTo(p2.LastName);
15 }
16 }

Referring to Example 14.14 — the PersonComparer class extends Comparer<T> (i.e., Comparer<Person>) and

provides an overriding implementation for its Compare(T x, T y) method. In this example, I have renamed the param-

eters p1 and p2. Note that since I am comparing strings, I can simply call the String.CompareTo() method to actually

perform the comparison.

Example 14.15 shows how the PersonComparer class is used to sort a list of Person objects.
14.15 ComparerSortDemo.cs

1 using System;
2 using System.Collections.Generic;
3
4 public class ComparerSortDemo {
5 public static void Main(){
6 List<Person> surrealists = new List<Person>();
7
8 Person p1 = new Person("Rick", "", "Miller", Person.Sex.MALE, new DateTime(1961, 02, 04));
9 Person p2 = new Person("Max", "", "Ernst", Person.Sex.MALE, new DateTime(1891, 04, 02));
10 Person p3 = new Person("Andre", "", "Breton", Person.Sex.MALE, new DateTime(1896, 02, 19));
11 Person p4 = new Person("Roland", "", "Penrose", Person.Sex.MALE, new DateTime(1900, 10, 14));
12 Person p5 = new Person("Lee", "", "Miller", Person.Sex.FEMALE, new DateTime(1907, 04, 23));
13 Person p6 = new Person("Henri-Robert-Marcel", "", "Duchamp", Person.Sex.MALE,
14 new DateTime(1887, 07, 28));
15
16 surrealists.Add(p1);
17 surrealists.Add(p2);
18 surrealists.Add(p3);
19 surrealists.Add(p4);
20 surrealists.Add(p5);
21 surrealists.Add(p6);
22
23 for(int i=0; i<surrealists.Count; i++){
24 Console.WriteLine(surrealists[i].FullNameAndAge);
25 }
26
27 surrealists.Sort(new PersonComparer());
28 Console.WriteLine("---------------------------------------");
29
30 for(int i=0; i<surrealists.Count; i++){
31 Console.WriteLine(surrealists[i].FullNameAndAge);
32 }
33
34 } // end Main()
35 } // end SortingListDemo

Referring to Example 14.15 — an overloaded version of the List<T>.Sort() method is called on line 27. This ver-

sion of the Sort() method takes a Comparer<T> object as an argument. Figure 14-23 shows the results of running this

program.

Figure 14-23: Results of Running Example 14.15
360
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 14: Collections Special Operations On Collections
Converting A Collection Into An Array

It’s often handy to convert the contents of a collection into an array. This holds especially true for collections that

cannot be manipulated like lists. (i.e., via indexers) Collection classes that implement the ICollection<T> interface

provide a CopyTo() method that copies the contents of the collection into an existing array whose length is equal to

that of the number of collection elements. Example 14.16 offers a short program that shows how to extract an array of

KeyValuePair<TKey, TValue> values from a SortedDictionary<TKey, TValue> collection.
14.16 ConvertToArrayDemo.cs

1 using System;
2 using System.Collections.Generic;
3
4 public class ConvertToArrayDemo {
5 public static void Main(){
6 String[] names = { "Rick",
7 "Sally",
8 "Joe",
9 "Bob",
10 "Steve" };
11
12 SortedDictionary<String, String> quotes = new SortedDictionary<String, String>();
13
14 quotes.Add(names[0], "How Do You Do?");
15 quotes.Add(names[1], "When are we going home?");
16 quotes.Add(names[2], "I said go faster, man!");
17 quotes.Add(names[3], "Turn now! Nowww!");
18 quotes.Add(names[4], "The rain in Spain falls mainly on the plain.");
19
20 KeyValuePair<String, String>[] quote_array = new KeyValuePair<String, String>[quotes.Count];
21 quotes.CopyTo(quote_array, 0);
22
23 for(int i = 0; i<quote_array.Length; i++){
24 Console.WriteLine(quote_array[i].Key + " said: \"" + quote_array[i].Value + "\"");
25 }
26
27 }// end Main()
28 } // end ConvertToArrayDemo class

Referring to Example 14.16 — first, the program creates an array of strings that’s used to store five names. The

SortedDictionary object is created on line 12. On lines 14 through 18, the names array provides the keys for each

quote. Note that as each key/value pair is inserted into the SortedDictionary, it is inserted into its proper sorted order

according to the key’s value. (Ergo, classes used as keys must implement IComparable<T>) On lines 20 and 21, the

array of sorted KeyValuePair elements is extracted into an array of KeyValuePairs equal in length to the collection’s

count. The quotes array is then used in the for statement beginning on line 23 to print the values of both the key and

its associated value. In this case they are both strings. Figure 14-24 shows the results of running this program.

Quick Review

To make an object sortable, its class or structure type must implement the IComparable<T> interface. If you

don’t own the source code for a particular class or structure and wish to sort them using List<T>’s Sort() method, then

you can implement a Comparer<T> object that defines how such objects are to be compared with each other.

It’s often handy to convert the contents of a collection into an array. Collection classes that implement the ICol-

lection<T> interface provide a CopyTo() method that is used to copy the contents of the collection into an existing

array whose length is equal to that of the number of collection elements.

Figure 14-24: Results of Running Example 14.16
C# For Arti
sts © 2008 Rick Miller — All Rights Reserved 361

Summary Chapter 14: Collections
Summary

The .NET collections framework can potentially save you a lot of time and hassle. It contains classes, structures,

and interfaces designed to make it easy to manipulate collections of objects. The .NET 2.0 framework introduced

generic collections and improved performance.

An array is a contiguous allocation of objects in memory. An array-based collection offers quick element access

but slow element insertion, especially if the collection’s underlying array must be resized and its contents shifted to

accommodate the insertion.

A linked list consists of individual nodes linked to each other via references. To traverse a linked list, you must

start at the beginning, or the end (head or tail) and follow each element to the next. Linked list-based collections can

conserve memory space because memory need only be allocated on each object insertion. Insertions into linked list-

based collections are relatively quick, but element access is relatively slow due to the need to traverse the list.

A chained hash table is a cross between an array and a linked list and allows element insertion with key/value

pairs. A hash function performed on the key determines the value’s location in the hash table. A collision is said to

occur when two keys produce the same hash code. When this happens, the values are chained together in a linked list-

like structure. A hash function that produces a uniform distribution over all the keys is a critical feature of a hash

table.

A red-black tree is a self-balancing binary tree. Insertions into a red-black tree take some time because of ele-

ment ordering and balancing operations. Element access time for a red-black tree-based collection is fairly quick.

“Old-school” style .NET collections classes store only object references and require casting when elements are

retrieved. You should favor the use of generic collections as they offer strong element typing on insertion and

retrieval as well as improved performance. The classes found in the System.Collections.ObjectModel namespace

serve as the basis for user-defined custom collections. The System.Collections.Specialized namespace contains

classes and structures designed to manage unique collections.

The List<T> generic collection class is the direct replacement for the ArrayList collection class. It’s easy to use

the List<T> generic collection. The T that appears between the left and right angle brackets represents the replace-

ment type. You can think of the T as acting like a placeholder for a field in a mail-merge document. Anywhere the T

appears, the type that’s actually substituted for T will appear in its place when the collection object is created.

You can find the KeyedCollection<TKey, TItem> in the System.Collections.ObjectModel namespace. It is an

abstract class and is meant to be used as the basis for a custom collection. It contains one abstract method, GetKey-

ForItem(), that you must override to properly extract the key from the item being inserted into the collection.

To make an object sortable, its class or structure type must implement the IComparable<T> interface. If you

don’t own the source code for a particular class or structure and wish to sort them using List<T>’s Sort() method, then

you can implement a Comparer<T> object that defines how such objects are to be compared with each other.

It’s often handy to convert the contents of a collection into an array. Collection classes that implement the ICol-

lection<T> interface provide a CopyTo() method that is used to copy the contents of the collection into an existing

array whose length is equal to that of the number of collection elements.

Skill-Building Exercises

1. API Drill: Access the MSDN online documentation and explore all four .NET collections namespaces. List each

class, structure, and interface you find there and write a brief description of its purpose and use.

2. API Drill: Research the ICollection<T> interface and answer the following question: What exception will be

thrown if the number of collection elements exceeds the size of the array supplied via the CopyTo() method?

3. API Drill: What methods are available in the List<T> class that let you extract its elements into an array?

4. Programming Drill: Compile and run all the example programs presented in this chapter and note the results.

Modify the programs as you see fit to utilize more of the methods provided by each collection class.
362 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 14: Collections Suggested Projects
5. Programming Drill: Explore the System.Collections.Generic and System.Collections.Specialized namespaces,

select several collections not discussed in this chapter and use each in a short program.

Suggested Projects

1. Employee Management Application: Create a GUI-based application that lets you create and manage Employ-

ees. Use the Person, IPayable, Employee, HourlyEmployee, and SalariedEmployee code originally presented in

Chapter 11. Modify the Employee class to implement the IComparable<T> interface or, alternatively, create a

Comparer<T> class that compares two Employee objects. Your program should allow you to create HourlyEm-

ployee and SalariedEmployee objects and insert them into a generic collection that holds Employee type objects.

Each time you create a new employee display a sorted list of employees.

2. Collectables Application: Are you a collector? Do you have lots of books, CDs, DVDs, or antique typewriters?

Do you have a tiny little spoon from every state of the Union, or a book of matches from every restaurant or night-

club you’ve visited? Whatever your passion, write a program that helps you manage your collection. Create a class

that captures the properties of your particular collectable. Create a GUI-based application that lets you enter infor-

mation about each item in your collection. Extra credit: Add the capability to upload an image of the item and

persist the collection object to disk so you don’t lose the data you entered. Note: The serialization of objects to disk

is discussed in Chapter 17 - File I/O.

Self-Test Questions

1. What must you do to elements retrieved from an “old-school” collection before accessing its members or perform-

ing an operation on it other than those defined by System.Object?

2. What are the general performance characteristics of an array-based collection?

3. What are the general performance characteristics of a linked list-based collection?

4. What are the general performance characteristics of a hash table-based collection?

5. What are the general performance characteristics of a red-black tree-based collection?

6. What does the T represent in a generic collection?

7. What interface must a class or structure implement before it can be sorted by the List<T>.Sort() method?

8. How can you sort objects using the List<T>.Sort() method if you don’t have access to a class’s source code?

9. Why would you want to use generic collections vs. earlier “old-school” collections?

10. What method do you use to extract a collection’s elements into an array?
C# For Artists © 2008 Rick Miller — All Rights Reserved 363

References Chapter 14: Collections
References

Microsoft Developer Network (MSDN) .NET Framework 3.0 Documentation [http://www.msdn.com]

John Franco. Red-Black Tree Demonstration Applet. [http://www.ececs.uc.edu/~franco/C321/html/RedBlack/

redblack.html]

Thomas H. Cormen, et. al. Introduction To Algorithms. The MIT Press, Cambridge, MA. ISBN: 0-262-03141-8

Donald E. Knuth. The Art of Computer Programming, Volume 1, Fundamental Algorithms, Third Edition. Addi-

son-Wesley, Reading, MA. ISBN: 0-201-89685-0

Donald E. Knuth. The Art of Computer Programming, Volume 3, Sorting and Searching, Second Edition. Addi-

son-Wesley, Reading, MA. ISBN: 0-201-89685-0

Rick Miller, Raffi Kasparian. Java For Artists: The Art, Philosophy, And Science Of Object-Oriented Program-

ming. Pulp Free Press, Falls Church, VA. ISBN: 1-932504-05-2

Notes
364 © 2008 Rick Miller — All Rights Reserved C# For Artists

15 Exceptions: Writing Fault-Tolerant Software

Learning Objectives
• Define the term “exception”
• Trace the Exception class hierarchy
• List and describe the runtime exceptions
• List and describe the properties of the Exception class
• Explain the difference between an application exception vs. a runtime exception
• Describe the exception handling mechanism supported by the .NET Common Language Runtime (CLR)
• Create your own custom exception classes
• Translate low-level exceptions into high-level exceptions
• State the purpose of a try/catch block
• State the purpose of a finally block
• Describe an appropriate use of a try/finally block
• State the proper order in which exceptions should be caught
• Determine what exceptions a method throws
• Create and throw an exception

Chapter 15

Exceptions:Happy Mom

C
o
n
ta

x
 T

 /
 K

o
d
ak

 T
ri

-X

Writing Fault-Tolerant Software
C#
 For Artists © 2008 Rick Miller — All Rights Reserved 365

Introduction Chapter 15: Exceptions
Introduction

C# and the .NET Common Language Runtime use exceptions to indicate that an error condition has occurred

during program execution. You have been informally exposed to exceptions since Chapter 3; the code examples pre-

sented thus far have minimized the need to explicitly handle exceptions. However, C# programs are under a constant

threat of running into some kind of trouble. As program complexity grows, so does the possibility that something will

go wrong during its execution.

This chapter dives deep into the explanation of exceptions to show you how to properly handle existing excep-

tions (i.e., those already defined by the .NET API) and how to create your own custom exceptions. You will be for-

mally introduced to the Exception class, try/catch/finally blocks, and the throw keyword. You will also learn the

difference between application and runtime exceptions. After reading this chapter, you will be well prepared to prop-

erly handle exception conditions in your programs. You will also know how to create your own custom exception

classes to better fit your abstraction requirements.

Why is this chapter placed at this point in this book? The answer is simple: you will soon reach the chapters that

cover topics like network and file I/O programming. In these two areas especially, you will be required to explicitly

handle many types of exception conditions. As you write increasingly complex programs, you will come to rely on

the information conveyed by a thrown exception to help you debug your code. Now is the time to dive deep into the

topic of exceptions!

What Is An Exception

An exception is an error condition or abnormal event that occurs during program execution. By error condition, I

mean a fault in the technical execution of a particular statement within your program, not bad programming logic or

poor algorithms. (Although these may ultimately result in an exception!) Some examples of error conditions include

the following:

• Trying to access an element beyond the bounds of an array.

• Running out of memory during program execution.

• Network communications problems.

• Unverifiable executable code modules.

Exceptions can occur in the code you write or in external code that your program calls during execution. Such

code might be located in a dynamic link library (dll).

.NET CLR Exception Handling Mechanism

When an exception occurs in a program, the .NET runtime handles the problem by creating an exception object,

populating it with information related to the error condition that occurred, and then passing it on to any fault-handling

code that has been designated to respond to that particular type of exception. This process is referred to as throwing

an exception.

Any code that may result in an exception condition is placed in a protected block. (i.e., a try block) That is, if you

want to provide fault handler code, (i.e., a catch block) then you must place the suspect code in a try block and

then handle or catch the thrown exception in a catch block.

Unhandled Exceptions

C# does not force you to use try/catch blocks. Unlike Java, there are no checked exceptions. The .NET run-

time will try its best to find a fault handler for an exception thrown in an unprotected block of code. It does this by

passing the exception object up the method call stack to see if the calling method provided a fault handler. If none is
366 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 15: Exceptions Exception Class Hierarchy
found, the .NET runtime generates an UnhandledException event. If there are no event handlers for this Unhandled-

Exception event, the .NET runtime writes a dump of the stack trace to the console and the program exits

The Exception Information Table

The .NET runtime keeps track of an executable’s exception information in a data structure referred to as an

exception information table as Figure 15-1 illustrates.

Referring to Figure 15-1 — all methods in an executable (i.e., a .exe managed assembly) have an entry in this

table that contains an array of exception-handling information. This array will be empty if the method does not have

any try/catch/finally blocks. Each entry of this array contains the following information:

• A protected code block description.

• Associated exception filters.

• Exception handlers (i.e., catch blocks, finally blocks, and type-filter handlers)

When an exception occurs, the .NET runtime searches the array for the first protected block of code that contains

the currently executing instruction and that also has an associated exception handler. If it finds a match, the .NET run-

time creates the appropriate exception-type object and then executes any finally or fault statements before passing

the exception on to the appropriate catch block.

Quick Review

An exception is an error condition or abnormal event that occurs during program execution.

The .NET runtime handles exceptions by creating an exception object, populating it with information related to

the error condition that occurred, and then passing it on to any fault-handling code that has been designated to

respond to that particular type of exception. This process is referred to as throwing an exception.

Protected code is located in a try block. Error handlers are placed in a catch block.

Each executable file loaded into the .NET runtime contains an exception information table. All methods con-

tained within the executable file have an entry in the exception information table. When an exception occurs, a

method’s corresponding handler information array is searched for any associated error handlers. If none are found,

the exception is propagated up the method call stack to search the calling method’s handler information array. If no

handler methods are found, the .NET runtime dumps the stack trace to the console and the program terminates.

Exception Class Hierarchy

The .NET Framework provides a hierarchy of exception classes that derive from the System.Exception class as

Figure 15-2 illustrates. Referring to Figure 15-2 — two primary types of exceptions derive from the Exception class:

SystemException and ApplicationException. You’ll find these exception types in the System namespace.

Figure 15-1: Exception Information Table
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 367

Exception Class Hierarchy Chapter 15: Exceptions
Application vs. Runtime Exceptions

Runtime exceptions derive from the SystemException class. Runtime exceptions can occur for two primary rea-

sons: 1) failed runtime checks such as trying to access an element past the bounds of an array (IndexOutOfRangeEx-

ception) or trying to access members via a reference that points to a null value (NullReferenceException), and 2)

severe error conditions that occur within the runtime execution environment such as running out of memory (Out-

OfMemoryException) or when the execution engine has been corrupted or encounters missing data (EngineExecu-

tionException) to name two examples. You can easily recover gracefully from an exception thrown due to a failed

runtime check by catching and handling the exception, but there’s not much you can do to recover from a fatal run-

time exception. This is mainly because you don’t know when or where in your code such an exception may occur.

An application exception is any exception thrown by a running program that’s not a runtime exception. Applica-

tion exceptions derive from either the ApplicationException class or directly from the Exception class itself. In fact,

Microsoft admits that deriving custom exceptions from the ApplicationClass doesn’t provide any benefit over deriv-

ing directly from Exception, so they suggest deriving all custom exceptions directly from the Exception class.

Runtime Exception Listing

Table 15-1 lists a few of the standard runtime exceptions you’ll need to consider and handle.

Runtime Exception Description

IndexOutOfRangeException This exception is thrown if you try to access an array element that lies outside the

bounds of the array. For example, assume you have an array of integers with

Length 5. The array has 5 elements, 0 through Length-1. Any attempt to access

an array element less than 0 or greater than 4 causes an IndexOutOfRangeExcep-

tion.

NullReferenceException This exception is thrown if you try to access an object’s members via a null ref-

erence. A null reference is a reference that points to nothing.

AccessViolationException This exception is thrown if you try to access memory via an invalid pointer in un-

managed code.

InvalidOperationException This exception is thrown if the object upon which you call a method has entered

an invalid state. This usually occurs if you modify a collection and then call the

Enumerator.GetNext() method on that collection. You can easily and unknowing-

ly make this mistake by attempting to modify a collection in the body of a

foreach loop where enumerator semantics are hidden from you.

Table 15-1: Runtime Exceptions — Partial Listing

Figure 15-2: Exception Class Hierarchy
368
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 15: Exceptions Exception Class Hierarchy
Determining What Exceptions A .NET Framework Method Throws

To determine what exceptions a .NET Framework method throws, you need to consult the documentation.

Referring to Figure 15-3 — you’ll find a list of the exceptions a method can throw in the Exceptions section of

the method’s description page. In most cases, methods can potentially throw many different types of exceptions. It’s

always a good idea to check the Exception section to ensure you’re properly handling any exceptions that may be

thrown during a method’s execution.

Quick Review

Two primary types of exceptions derive from the Exception class: SystemException and ApplicationException.

Runtime exceptions can occur for two primary reasons: 1) failed runtime checks, and 2) severe error conditions that

occur within the runtime execution environment. An application exception is any exception thrown by a running pro-

gram that’s not a runtime exception. Application exceptions derive from either the ApplicationException class or

directly from the Exception class itself. Consult the Exceptions section of a method’s MSDN documentation page to

learn what exceptions the method might throw.

ArgumentNullException This exception is thrown if a method does not allow one or more of its parameters

to be null when the method is called.

ArgumentOutOfRangeException This exception is thrown if one or more of a method’s parameter’s value falls out-

side of its valid value range.

Runtime Exception Description

Table 15-1: Runtime Exceptions — Partial Listing

Figure 15-3: Getting Exception Information from MSDN

Exceptions the method

may throw are listed in

the Exceptions section.
C# For Arti
sts © 2008 Rick Miller — All Rights Reserved 369

Exception Class Properties Chapter 15: Exceptions
Exception Class Properties

A thrown exception conveys a lot of helpful information. In this section, I want to describe the properties of the

Exception class. Understanding what information an exception object contains helps you to better understand what

went wrong in your program. Table 15-2 lists the Exception class’s public properties.

Referring to Table 15-2 — in most cases, a property is readonly and is used to get information about a particular

exception. Initializing a readonly exception property is usually done via one of the Exception class’s overloaded con-

structors when the exception object is created. The Data property returns a dictionary collection which will always

initially be empty. Populating the Data collection with relevant information is left to your discretion. The InnerExcep-

tion property is used when translating from one exception type to another or from low-level exceptions to higher-

level exception abstractions that you create for your particular application. I cover this topic in more detail in the Cre-

ating Custom Exceptions section. The TargetSite property returns a MethodBase object, which conveys a lot of infor-

mation about the method that threw the exception. You will see all of these properties in action in the next two

sections.

Quick Review

The Exception class contains seven properties that are used to get information about why an exception was

thrown. Most of the properties are readonly and can only be set via a constructor call when an exception object is cre-

ated.

Property Read/Write Type Description

Data Readonly Dictionary The Data property is readonly and gets a collection that imple-

ments the IDictionary interface. The Data collection is by default

empty. You are free to store additional information about an ex-

ception in the Data collection in the form of key/value pairs.

HelpLink Read/Write String The HelpLink property is read/write and is used to get or set a

string that represents a link to a help file or other resource that pro-

vides information about the exception.

InnerException Readonly Exception The InnerException property is readonly and gets the exception

that caused the current exception. The InnerException property is

set via a constructor at the time the exception object is created.

Message Readonly String Message is a readonly property that gets a string containing in-

formation about the current exception. The Message property is

set via a constructor.

Source Read/Write String The Source property is read/write and is used to get and set the

name of the application or object that caused the exception.

StackTrace Readonly String The StackTrace property is readonly and is used to get a string

representation of the call stack at the moment the exception was

generated. The StackTrace property is set automatically by the

.NET runtime.

TargetSite Readonly MethodBase The TargetSite property is readonly and is used to get informa-

tion about the method that threw the exception. The TargetSite

property returns a MethodBase object. The MethodBase class

contains properties that describe all aspects of a particular method

Table 15-2: Exception Class Public Properties
370 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 15: Exceptions Creating Exception Handlers: Using Try/Catch/Finally Blocks
Creating Exception Handlers: Using Try/Catch/Finally Blocks

To catch and handle exceptions, you need to place exception-throwing code in a try block and catch the result-

ing exception, if and when it gets thrown, in one or more catch blocks where error-handling code is placed to prop-

erly deal and recover from the exception. Optionally, you can add a finally block whose code will always be

executed regardless of whether or not an exception is thrown. This section explains the use of try/catch/
finally blocks in detail, offers a few pointers on defensive coding, and explains in what order you must catch

exceptions when using multiple catch blocks.

Using A Try/Catch Block

The use of a try/catch block is straightforward. You place any code that may throw an exception within the

body of the try block and follow it with one or more catch blocks. The code that resides within the body of a try

block is referred to as protected code.

A catch block contains error-handling code that is executed if an exception of the type the catch block is

waiting for is thrown. Example 15.1 demonstrates the use of a try/catch block to protect against possible prob-

lems associated with processing console arguments.

15.1 ConsoleArgs.cs

1 using System;

2

3 public class ConsoleArgs {

4 public static void Main(String[] args){

5 try{

6

7 Console.WriteLine(args[0]);

8

9 }catch(IndexOutOfRangeException e){

10 Console.WriteLine("HelpLink:" + e.HelpLink);

11 Console.WriteLine("Message:" + e.Message);

12 Console.WriteLine("Source:" + e.Source);

13 Console.WriteLine("TargetSite:" + e.TargetSite.Name);

14 Console.WriteLine("StackTrace:" + e.StackTrace);

15 }

16 }

17 }

Referring to Example 15.1 — this program prints to the console the first argument of the args array. The problem

with this program is that it may be run without any arguments and therefore the args array will be empty. Any attempt

to access an element of an args array that contains no elements results in an IndexOutOfRangeException. To handle

this possibility, the code on line 7 is placed within the protection of a try block.

The catch block that begins on line 9 specifically targets the IndexOutOfRangeException. A parameter of this

type named e is declared for use within the body of the catch block. The code within the body of the catch block

demonstrates the use of the various Exception properties. In practice, you don’t always need to print this much infor-

mation about an exception to the console.

Figure 15-4 shows the results of running this program.

Figure 15-4: Results of Running Example 15.1
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 371

Creating Exception Handlers: Using Try/Catch/Finally Blocks Chapter 15: Exceptions
First Line of Defense: Use Defensive Coding

It’s often a good idea to avoid the possibility of throwing an exception in the first place. It’s good coding practice

to apply defensive coding techniques to detect the possibility of an exception condition and handle the situation

accordingly. Note that this is not always possible, especially for certain types of runtime exceptions.

Example 15.2 shows how a slight modification to the ConsoleArgs code can avoid the possibility of throwing an

IndexOutOfRangeException altogether.
15.2 ConsoleArgs.cs (Mod 1)

1 using System;
2
3 public class ConsoleArgs {
4 public static void Main(String[] args){
5 try{
6
7 if(args.Length > 0){
8 Console.WriteLine(args[0]);
9 }
10
11 }catch(IndexOutOfRangeException e){
12 Console.WriteLine("HelpLink:" + e.HelpLink);
13 Console.WriteLine("Message:" + e.Message);
14 Console.WriteLine("Source:" + e.Source);
15 Console.WriteLine("TargetSite:" + e.TargetSite.Name);
16 Console.WriteLine("StackTrace:" + e.StackTrace);
17 }
18 }
19 }

Referring to Example 15.2 — the if statement beginning on line 7 checks to see if args.Length is greater than

zero. If it is, it must contain at least one argument string, otherwise, it’s not accessed.

Figure 15-5 shows the results of running this program.

Using Multiple Catch Blocks

If your code can potentially throw several types of exceptions you can add multiple catch blocks, one for each

exception type. The rule to follow when using multiple catch blocks is to catch the most specific exception(s) first,

and catch the most general exception(s) last. Example 15.3 offers an example of using multiple catch blocks. This

program converts command-line arguments to integers, adds them, and prints the sum to the console.
15.3 CommandLineAdder.cs

1 using System;
2
3 public class CommandLineAdder {
4 public static void Main(String[] args){
5 try{
6 int total = 0;
7 for(int i=0; i<args.Length; i++){
8 total += Int32.Parse(args[i]);
9 }
10 Console.WriteLine("You entered {0} arguments and their total comes to {1}", args.Length, total);
11 }catch(FormatException){
12 Console.WriteLine("One or more arguments failed to convert to an integer!");
13 }catch(IndexOutOfRangeException){
14 Console.WriteLine("No command line arguments entered!");
15 }catch(Exception){
16 Console.WriteLine("The program encountered an unknown problem...");
17 }
18 }
19 }

Figure 15-5: Results of Running Example 15.2
372
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 15: Exceptions Creating Exception Handlers: Using Try/Catch/Finally Blocks
Referring to Example 15.3 — the try block in this example has three accompanying catch blocks which han-

dle a range of possible exceptions including the granddaddy of them all, Exception. Note that you’re not required to

declare a formal parameter in the catch block if you’re not planning on manipulating the exception object. Figure

15.6 shows the results of running this program.

Using A Finally Block

Referring to Example 15.3 and Figure 15-6 above, note that when a bad string (i.e., one that does not parse to an

integer) is entered on the command line, an exception is thrown and line 10 is skipped. All code that comes after an

exception-throwing statement in a try block is skipped. Depending on the nature of the application, this may or may

not be acceptable.

In certain programming situations, you will want to ensure that a certain piece of code executes in all cases

regardless of whether or not an exception is thrown. A finally block is used for just this purpose. Example 15.4

demonstrates the use of a finally block.

15.4 CommandLineAdder.cs (Mod 1)

1 using System;

2

3 public class CommandLineAdder {

4 public static void Main(String[] args){

5 try{

6 int total = 0;

7 for(int i=0; i<args.Length; i++){

8 total += Int32.Parse(args[i]);

9 }

10 Console.WriteLine("You entered {0} arguments and their total comes to {1}", args.Length, total);

11 }catch(FormatException){

12 Console.WriteLine("One or more arguments failed to convert to an integer!");

13 }catch(IndexOutOfRangeException){

14 Console.WriteLine("No command line arguments entered!");

15 }catch(Exception){

16 Console.WriteLine("The program encountered an unknown problem...");

17 }finally{

18 Console.WriteLine("Thank you for using Command Line Adder!");

19 }

20 }

21 }

Referring to Example 15.4 — the finally block starts on line 17 and simply ensures that no matter what hap-

pens when the program runs, the “Thank you...” message gets printed to the console. You will see plenty of good uses

for a finally block when you study file input/output (I/O) and network programming. Figure 15-7 shows the

results of running this program.

Figure 15-6: Results of Running Example 15.3

Figure 15-7: Results of Running Example 15.4
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 373

Creating Custom Exceptions Chapter 15: Exceptions
Quick Review

To catch and handle exceptions, you need to place exception-throwing code in a try block and catch the result-

ing exception, if and when it gets thrown, in one or more catch blocks where error-handling code is placed to prop-

erly deal and recover from the exception. Optionally, you can add a finally block whose code will always be

executed regardless of if an exception is thrown.

All code within a try block that follows an exception-throwing statement is skipped. Place critical resource

releasing code in a finally block.

If code can potentially throw several types of exception, add multiple catch blocks, one for each exception

type. The rule to follow when using multiple catch blocks is to catch the most specific exception(s) first, and catch

the most general exception(s) last.

Creating Custom Exceptions

Although the .NET Framework API offers lots of different types of exception classes, you’ll eventually have a

need to create your own custom exceptions to better model the types of things that can go wrong in your application.

This section shows you how to create custom exception classes by extending the Exception class. I also show you

how to manually throw an exception and how to translate low-level exceptions into higher-level exceptions.

Extending The Exception Class

As you learned previously in this chapter, although there exists an ApplicationException class, Microsoft sug-

gests that you instead derive custom exception classes directly from the Exception class. At a minimum, you’ll want

to end the name of your custom exception class with the word “Exception” and provide an implementation for each

of the three common Exception constructors. Example 15.5 gives the code for a custom exception named Surrealist-

NotFoundException, which is used later in this section to demonstrate how to manually throw an exception.
15.5 SurrealistNotFoundException.cs

1 using System;
2
3 public class SurrealistNotFoundException : Exception {
4
5 public SurrealistNotFoundException() : base("Surrealist not found!") { }
6
7 public SurrealistNotFoundException(String message) : base(message) { }
8
9 public SurrealistNotFoundException(String message, Exception inner_exception)
10 : base(message, inner_exception) { }
11
12 }

Referring to Example 15.5 — this custom exception provides implementations for the three basic Exception con-

structors. The default constructor that begins on line 3 supplies a default message. The rest of the code is fairly

straightforward and easy to follow. Let’s now see how this custom exception might be used in a program. Examples

15.6 and 15.7 give the code for a short program that allows users to look up the names of famous surrealists.
15.6 SurrealistBank.cs

1 /***
2 This program depends on the Person class.
3 **/
4
5 using System;
6 using System.Collections.Generic;
7
8 public class SurrealistBank {
9 Dictionary<String, Person> surrealists;
10
11 public SurrealistBank() {
12 surrealists = new Dictionary<String, Person>();
13 InitializeDictionary();
14 }
15
16 private void InitializeDictionary() {
17 Person p1 = new Person("Max", "", "Ernst", Person.Sex.MALE, new DateTime(1891, 04, 02));
18 Person p2 = new Person("Andre", "", "Breton", Person.Sex.MALE, new DateTime(1896, 02, 19));
374 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 15: Exceptions Creating Custom Exceptions
19 Person p3 = new Person("Roland", "", "Penrose", Person.Sex.MALE, new DateTime(1900, 10, 14));
20 Person p4 = new Person("Lee", "", "Miller", Person.Sex.FEMALE, new DateTime(1907, 04, 23));
21 Person p5 = new Person("Henri-Robert-Marcel", "", "Duchamp", Person.Sex.MALE,
22 new DateTime(1887, 07, 28));
23 surrealists.Add(p1.LastName, p1);
24 surrealists.Add(p2.LastName, p2);
25 surrealists.Add(p3.LastName, p3);
26 surrealists.Add(p4.LastName, p4);
27 surrealists.Add(p5.LastName, p5);
28 }
29
30 public Person LookUp(String last_name) {
31 Person p = null;
32 try {
33 if (surrealists.TryGetValue(last_name, out p)) {
34 return p;
35 }
36 else {
37 throw new SurrealistNotFoundException("That name is not in the surrealist collection!");
38 }
39 }
40 catch (ArgumentNullException ane) {
41 throw new SurrealistNotFoundException("A null string name was entered!", ane);
42 }
43 }
44 } // end SurrealistBank class definition

Referring to Example 15.6 — as stated in the comments at the top of the source file, this class depends on the

Person class. When you compile this example, be sure to copy over the Person class from one of the examples given

in Chapter 14.

The SurrealistBank class creates a Dictionary and populates it with Person objects. Its LookUp() method

searches the dictionary for a matching key value via the Dictionary.TryGetValue() method. Note how the Person ref-

erence p is passed as an out parameter to the method call. The TryGetValue() method returns the boolean value true

if there’s a key match; false otherwise. If there’s a match, the LookUp() method returns p.
15.7 MainApp.cs

1 using System;
2
3 public class MainApp {
4 public static void Main() {
5 SurrealistBank sb = new SurrealistBank();
6 String input = "Go";
7 while (!input.Equals("Quit")) {
8 Console.Write("Please enter a name to lookup or 'Quit' to exit the program: ");
9 input = Console.ReadLine();
10 try {
11 Console.WriteLine();
12 Console.WriteLine(sb.LookUp(input));
13 } catch (SurrealistNotFoundException snfe) {
14 Console.WriteLine(snfe.Message);
15 }
16 }//end while
17 }
18 }

Referring to Example 15.7 — when the program executes, the input string is initialized to “Go”. The while

loop beginning on like 7 repeats until the user enters “Quit”. All strings read from the console are presented to the

sb.LookUp() method, which may throw a SurrealistNotFoundException. Figure 15-8 shows the results of running

this program.

Manually Throwing An Exception With The throw Keyword

Referring to Example 15.6 — note again that if there’s a match, the LookUp() method returns p, otherwise, it

throws the SurrealistNotFoundException. It does this by using the throw keyword in conjunction with the creation

of a new SurrealistNotFoundException object.

Translating Low-Level Exceptions Into High-Level Exceptions

Referring again to Example 15.6 — the second catch block beginning on line 40 handles the ArgumentNullEx-

ception. This exception may be thrown by the Dictionary.TryGetValue() method if the supplied key object is null. In

this example, the ArgumentNullException supplied by the .NET Framework is translated into a higher-level excep-
C# For Artists © 2008 Rick Miller — All Rights Reserved 375

Documenting Exceptions Chapter 15: Exceptions
tion abstraction by throwing a SurrealistNotFoundException and using the ArgumentNullException object to set its

InnerException property via the constructor call.

Quick Review

Create a custom exception by extending the Exception class and providing implementations for each of its three

common constructors. End the name of your custom exception with the word “Exception”. Use the throw keyword

to throw an exception object.

Documenting Exceptions

You must consult the MSDN, or your locally generated documentation, to learn what exceptions, if any, a

method might throw upon execution. To document an exception use the <exception> tag. Example 15.8 shows how

the <exception> tag is used to document the exception thrown by the SurrealistBank.LookUp() method.

15.8 Documented SurrealistBank.LookUp() Method

1 /// <summary>

2 /// Searches the SurrealistBank's dictionary for the given name. Returns a populated

3 /// Person object if there's a match. Throws a SurrealistNotFoundException if no

4 /// match is found or if a null string is used as an argument.

5 /// </summary>

6 /// <param name="last_name"> A string representing a surrealist's last name.</param>

7 /// <returns>Fully populated Person object.</returns>

8 /// <exception cref="SurrealistNotFoundException"></exception>

9 public Person LookUp(String last_name) {

10 Person p = null;

11 try {

12 if (surrealists.TryGetValue(last_name, out p)) {

13 return p;

14 }

15 else {

16 throw new SurrealistNotFoundException("That name is not in the surrealist collection!");

17 }

18 } catch (ArgumentNullException ane) {

19 throw new SurrealistNotFoundException("A null string name was entered!", ane);

20 }

21 }

Referring to Example 15.8 — on line 8, the <exception> tag is used to document the possibility that the

LookUp() method may throw the SurrealistNotFoundException. The cref attribute provides a link to the Surrealist-

NotFoundException class. The name of the class should be fully namespace qualified.

Figure 15-8: Results of Running Example 15.7
376
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 15: Exceptions Summary
Summary

An exception is an error condition or abnormal event that occurs during program execution.

The .NET runtime handles exceptions by creating an exception object, populating it with information related to

the error condition that occurred, and then passing it on to any fault-handling code that has been designated to

respond to that particular type of exception. This process is referred to as “throwing” an exception.

Protected code is located in a try block. Error handlers are placed in a catch block.

Each executable file loaded into the .NET runtime contains an exception information table. All methods con-

tained within the executable file have an entry in the exception information table. When an exception occurs, a

method’s corresponding handler information array is searched for any associated error handlers. If none are found,

the exception is propagated up the method call stack to search the calling method’s handler information array. If no

handler methods are found, the .NET runtime dumps the stack trace to the console and the program terminates.

Two primary types of exceptions derive from the Exception class: SystemException and ApplicationException.

Runtime exceptions occur for two primary reasons: 1) failed runtime checks, and 2) severe error conditions that occur

within the runtime execution environment. An application exception is any exception thrown by a running program

that’s not a runtime exception. Application exceptions derive from either the ApplicationException class or directly

from the Exception class itself. Consult the Exceptions section of a method’s MSDN documentation page to learn

what exceptions a method might throw.

To catch and handle exceptions, you need to place exception-throwing code in a try block and catch the result-

ing exception in one or more catch blocks where error-handling code is placed to properly deal and recover from

the exception. Optionally, you can add a finally block whose code is always executed regardless of if an excep-

tion is thrown or not.

All code within a try block that follows an exception-throwing statement is skipped. Place critical resource

releasing code in a finally block.

If your code can throw several types of exceptions, you can add multiple catch blocks, one for each exception

type. The rule to follow when using multiple catch blocks is to catch the most specific exception(s) first, and catch

the most general exception(s) last.

Create a custom exception by extending the Exception class and providing implementations for each of its three

common constructors. End the name of your custom exception with the word “Exception”. Use the throw keyword

to throw an exception object.

Skill-Building Exercises

1. API Drill: Access the MSDN online documentation and explore the exception classes defined within the System

namespace. Note their purpose and under what circumstances they might be thrown.

2. API Drill: Access the MSDN online documentation and explore the exception classes defined within the Sys-

tem.Collection and System.Collection.Generic namespaces. Note their purpose and under what circumstances they

might be thrown.

3. API Drill: Access the MSDN online documentation and explore the exception classes defined within the Sys-

tem.IO namespace. Note their purpose and under what circumstances they might be thrown.

4. API Drill: Access the MSDN online documentation and explore the exception classes defined within the Sys-

tem.Net namespace. Note their purpose and under what circumstances they might be thrown.
C# For Artists © 2008 Rick Miller — All Rights Reserved 377

Suggested Projects Chapter 15: Exceptions
Suggested Projects

1. None

Self-Test Questions

1. What are the two meanings of the term exception?

2. How does the .NET runtime deal with exceptions?

3. How does the .NET runtime keep track of protected code and associated exception handlers?

4. What are the two primary types of exceptions defined my the .NET Framework?

5. What’s the difference between a RuntimeException and an ApplicationException?

6. In what cases might a RuntimeException be thrown?

7. (T/F) Microsoft recommends extending the ApplicationException class to create a custom exception?

8. What happens to the code in a try block that follows a statement that just threw an exception?

9. Where should you place critical resource-freeing code or code that must be executed regardless of whether or not

an exception is thrown?

10. What document tag do you use to indicate what exceptions a method can throw?

References

Microsoft Developer Network (MSDN) .NET Framework 3.0 Documentation [http://www.msdn.com]

ECMA-335 Common Language Infrastructure (CLI), 4th Edition, June 2006 [http://www.ecma-international.org/

publications/standards/Ecma-335.htm]

ECMA-334 C# Language Specification, 4th Edition, June 2006 [http://www.ecma-international.org/publications/

standards/Ecma-334.htm]
378 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 15: Exceptions Notes
Notes
C# For Artists © 2008 Rick Miller — All Rights Reserved 379

Notes Chapter 15: Exceptions
380 © 2008 Rick Miller — All Rights Reserved C# For Artists

16 Multithreaded Programming

Learning Objectives
• Define the terms “process” and “thread”
• Explain the difference between a process and a thread
• Explain how time-slicing works
• State the definition of the term “multithreading”
• List and describe the steps and components required to create a multithreaded program
• Create and start threads in a program with the Thread class
• Pass arguments to managed threads using ParameterizedThreadStart delegates
• Explain the difference between foreground and background threads
• Use the BackgroundWorker class to create multithreaded programs
• Use delegates to make asynchronous method calls
• Pass arguments to and obtain results from asynchronous method calls
• Create background threads using the ThreadPool class
• Demonstrate your ability to create multithreaded programs

Chapter 16

MultithreadedOperation — USS Norfolk SSN 714

N
ik

o
n
 F

3
H

P
 /

 Z
o
o
m

-N
ik

k
o
r

3
5
-1

0
5
 /

 K
o
d
ak

 T
ri

-X

Programming
C#
 For Artists © 2008 Rick Miller — All Rights Reserved 381

Introduction Chapter 16: Multithreaded Programming
Introduction

It’s time now to add another invaluable tool to your programming toolbelt, and that is the ability to write multi-

threaded programs. While the term multithreaded programming may sound complicated, it is in reality quite easy to

do in C# .NET.

In this chapter, I will explain how multithreading works on your typical, general-purpose computer. You’ll learn

about the relationship between a process and its threads and how an operating system manages thread execution. I’ll

then show you how to use the Thread class in your programs to create and start managed threads. Next, I’ll show you

how you can simplify the creation and management of multiple threads with the help of the BackgroundWorker class.

Also, I’ll show you how to use ThreadPool threads and how to run any method asynchronously with the help of dele-

gates.

As is the case with any tool, there’s a right way to use it and a wrong way. Multithreading, applied thoughtlessly,

will render your programs overly complicated, sluggish, unresponsive, and buggy. But, when used with care, multi-

threading can significantly increase your application’s performance, giving it that hard-to-describe-but-you-know-it-

when-you-see-it feeling of professionalism.

Before getting started I need to add a caveat. While I present a lot of material in this chapter, I make no attempt to

cover all aspects of multithreaded programming. To do so would bore you to death, and in fact, as it turns out, a lot of

what you can do with threads you shouldn’t do. Instead, I will focus on those topics that give you a lot of bang for

your buck to get you up and running as quickly as possible with multithreaded programming. In some cases, I have

postponed the discussion of more obscure threading topics until later in the book where their presentation is more

appropriate.

As usual, I recommend that if you want to dive deeper into threads and multithreaded programming consult one

of the excellent references I’ve listed at the end of the chapter.

Multithreading Overview: The Tale Of Two Vacations

As I write this it’s approaching the end of October in Northern Virginia. I always get a hankering to go on a vaca-

tion right about now. Let’s take a look at the concept of vacation from a thread’s point of view.

Single-Threaded Vacation

Imagine for a moment you’re on vacation, trying to relax on the squeaky white sand of a sun-drenched tropical

beach. Your job, since you are on vacation, is to relax, and as you start to drift off for a snooze you get thirsty. You are

the only one on the beach and the bar is a mile away! You get up and walk to the bar and buy a drink, no, better make

that two drinks, and walk back to your lounge chair. Now you start to relax again, until you get hungry. The grill is a

mile in the other direction, so you get up again and walk to the grill. What you really want to do is relax and enjoy the

beach, but what you ended up doing was a little relaxing, some drink fetching, and some food hunting. Eventually

you’ll get back to relaxing. After all, you’re on single-threaded vacation.

Multithreaded Vacation

Now imagine that you’re on multithreaded vacation. Again, your job is to relax on the beach. This time, however,

when you get thirsty, you ask the wait staff to please bring you a drink, which they immediately set out to do, while

you immediately return to relaxing. When you get hungry, you again summon the wait staff and off they go to fetch

you a little somethin’ somethin’ from the grill. You immediately return to relaxing. Multithreaded vacation is so much

better! If you’ve ever returned from a vacation and felt like you needed a vacation, you probably didn’t take a multi-

threaded vacation because you were never allowed to relax!
382 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 16: Multithreaded Programming Multithreading Overview: The Tale Of Two Vacations
The Relationship Between A Process And Its Threads

In the tale of two vacations above, you could think of yourself as being a process: the “Relax” process. On a

computer, the operating system loads and starts services and applications. Each service or application runs as a sepa-

rate process on the machine. (Note: A service is a special type of Windows application that runs solely in the back-

ground with limited or no user interaction.) Figure 16-1 shows a list of applications running on my machine as I write

these words. Figure 16-2 shows a list of processes.

Referring to figures 16-1 and 16-2 — there are quite a few more processes actually running than there are appli-

cations. Many of the processes are background operating system processes that are started automatically when the

computer powers up. There are two databases running: MS/SQL Server Express and Oracle 10G. You can also see in

the process list that Java (java.exe) and a Perl interpreter (perl.exe) are running along with the Windows Desktop

Explorer (explorer.exe) and two instances of Internet Explorer (iexplore.exe). Each one of these processes is isolated

Figure 16-1: List of Running Applications

3 applications

42 processes

Click CTRL-ALT-

DELETE to display the

Windows Task Manager

window.

Figure 16-2: Partial List of Processes Running on the Same Computer
C# For Artists
 © 2008 Rick Miller — All Rights Reserved
 383

Multithreading Overview: The Tale Of Two Vacations Chapter 16: Multithreaded Programming
from the others meaning that each process has an allocated memory space all to itself. The management of this pro-

cess memory space is left to the operating system.

A process consists of one or more threads of execution, referred to simply as threads. A process always consists

of at least one thread, the Main thread, (the Main() method’s thread of execution) which starts running when the pro-

cess begins execution. A single-threaded process contains only one thread of execution. A multithreaded process con-

tains more than one thread. Figure 16-3 offers a representation of processes and threads in a single-processor system.

Referring to Figure 16-3 — two processes A and B are executing. Process A contains three threads: Main, Thread

1 and Thread 2. Process B contains four threads: Main, Thread 1, Thread 2, and Thread 3. A thread is the smallest unit

of code to which the operating system assigns processing time. A thread executes within the context of its containing

or owning process and application domain.

As you can see in Figure 16-3, the operating system thread scheduler coordinates thread execution. Waiting

threads sit in a thread queue until they are loaded into the processor. Each thread has a data structure known as a

thread context. The thread context is a snapshot of the state of the processor and other execution details that must be

preserved so that the thread can pick up execution where it left off when next loaded into the processor.

In a single-processor system, the operating system allocates processor time with a time-slicing scheme. Each

thread gets a little bit of time to execute before being preempted by the next waiting thread, at which point, if it’s not

finished with its business, it takes its place in the thread queue to wait another turn at the processor. This diagram

makes clear that in a single-processor system, the notion of concurrently executing applications is just an illusion

pulled off by the operating system quickly switching threads in and out of the processor. Figure 16-4 shows how

things might look on a multiprocessor system. Referring to Figure 16-4 — now we can really get some work done. In

a multiprocessor system, two threads can actually execute concurrently, but the operating system still uses time-slic-

ing to manage their execution and keep the whole show running smoothly.

Returning once again to my earlier vacation analogy, when you’re on single-threaded vacation, the relax process

does everything related to the vacation in one thread of execution. That’s why you must stop relaxing and fetch your-

self a drink and something to eat. When you’re on multithreaded vacation, the relax process concentrates on relaxing

and hands off the chores of drink and food fetching to separate threads, You come away from a multithreaded vaca-

tion feeling a lot more relaxed! (Well, at least until you arrive at the airport anyway.)

Vacation Gone Bad

There is a possibility, even on multithreaded vacation, for you to return home tense and frustrated. This can occur

if the drink and food fetching threads misbehave. How might this happen? Assume for a moment, if you will, that you

are not the only process on the beach. Laying next to you is a nasty little someone named “create-hate-and-discon-

tent”. He told his food and drink fetching threads they were special and gave them an order to cut in front of the line

whenever possible. Your threads get booted from the bar and grill counters more frequently because of the higher pri-

ority of create-hate-and-discontent’s threads. You suffer because your threads take longer to fetch food and drink.

This is only one example of how ill-behaved threads can bring one or more processes to a halt.

Figure 16-3: Processes and their Threads Executing in a Single-Processor Environment
384
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 16: Multithreaded Programming Creating Managed Threads With The Thread Class
Quick Review

A process consists of one or more threads of execution, referred to simply as threads. A process always consists

of at least one thread, the Main thread, which starts running when the process begins execution. A single-threaded

process contains only one thread of execution. A multithreaded process contains more than one thread.

A thread is the smallest unit of code to which the operating system assigns processing time. A thread executes

within the context of its containing or owning process and application domain.

Waiting threads sit in a thread queue until they are loaded into the processor. Each thread has a data structure

known as a thread context. The thread context is a snapshot of the state of the processor and other execution details

that must be preserved so that the thread can pick up execution where it left off when next loaded into the processor.

In a single-processor system the operating system allocates processor time with a time-slicing scheme. Each

thread gets a little bit of time to execute before being preempted by the next waiting thread, at which point, if it’s not

finished with its business, it takes its place in the thread queue to wait another turn at the processor.

In a multiprocessor system, two threads can actually execute concurrently, but the operating system still uses

time-slicing to manage their execution and keep the whole show running smoothly.

Creating Managed Threads With The Thread Class

In this section I will show you how to use the Thread class to create and manage the execution of threads in your

programs. You’ll find the Thread class, along with a whole lot of other useful stuff, in the System.Threading

namespace. The Thread class allows you to create what are referred to as managed threads. They are called managed

threads because you can directly manipulate each thread you create. You gain a lot of flexibility and power when you

manage your own threads. However, with power and flexibility comes the responsibility of ensuring your threads

behave well and properly handle exceptional conditions that may arise during their execution lifetime. This aspect of

thread management gained increased importance in .NET 2.0 because, in most cases, unhandled exceptions lead to

application termination.

The material in this section lays the foundation for the rest of the chapter. Once you understand the issues

involved with creating and managing your own threads, you’ll better understand why, in most cases, it’s a good idea

to let the runtime environment manage threads for you. However, before getting started, let’s see just how little relax-

ing one does while on single-threaded vacation.

Figure 16-4: Processes and their Threads Executing in a Multiprocessor Environment
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 385

Creating Managed Threads With The Thread Class Chapter 16: Multithreaded Programming
Single-Threaded Vacation Example

How might the single-threaded vacation analogy be implemented in source code? Example 16.1 offers one possi-

ble solution.
16.1 SingleThreadedVacation.cs

1 using System;
2
3 public class SingleThreadedVacation {
4
5 private bool hungry;
6 private bool thirsty;
7
8 public SingleThreadedVacation(){
9 hungry = true;
10 thirsty = true;
11 }
12
13 public void FetchDrink(){
14 int steps_to_the_bar = 1000;
15 for(int i=0; i<steps_to_the_bar*2; i++){
16 if((i%100) == 0){
17 Console.WriteLine();
18 Console.Write("Fetching Drinks");
19 }else{
20 Console.Write(".");
21 }
22 }
23 Console.WriteLine();
24 thirsty = false;
25 }
26
27 public void FetchFood(){
28 int steps_to_the_grill = 1000;
29 for(int i=0; i<steps_to_the_grill*2; i++){
30 if((i%100)==0){
31 Console.WriteLine();
32 Console.Write("Fetching Food");
33 }else{
34 Console.Write(".");
35 }
36 }
37 Console.WriteLine();
38 hungry = false;
39 }
40
41 public static void Main(){
42 SingleThreadedVacation stv = new SingleThreadedVacation();
43 Console.WriteLine("Relaxing!");
44 while(stv.hungry && stv.thirsty){
45 stv.FetchDrink();
46 stv.FetchFood();
47 Console.WriteLine("Relaxing!");
48 }
49 }
50 }

Referring to Example 16.1 — the SingleThreadedVacation class contains two fields: hungry and thirsty, of type

bool, which are initially set to true. It has two methods: FetchDrink() and FetchFood(). When each method is called,

the for loop contained in each kills some time by “walking” the number of steps to the bar or grill and back again.

Each method prints to the console a status message every 100 steps it takes.

The Main() method starting on line 41 starts by printing a message to the console saying it’s “Relaxing!”. It then

enters the while loop where calls are made to FetchDrink() and FetchFood(). Since the whole program executes in a

single thread of execution (i.e., the Main() method’s thread,) the FetchDrink() method must run to conclusion before

the call to FetchFood() can be made. The FetchFood() method must then execute and return before the message

“Relaxing!” can again be printed to the screen. Figure 16-5 shows SingleThreadedVacation in action.

Multithreaded Vacation Example

Let’s now see how much more relaxing you can do on a multithreaded vacation. Example 16.2 gives the code for

the MultiThreadedVacation class.
386 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 16: Multithreaded Programming Creating Managed Threads With The Thread Class
16.2 MultiThreadedVacation.cs

1 using System;
2 using System.Threading;
3
4 public class MultiThreadedVacation {
5
6 private bool hungry;
7 private bool thirsty;
8
9 public MultiThreadedVacation(){
10 hungry = true;
11 thirsty = true;
12 }
13
14 public void FetchDrink(){
15 int steps_to_the_bar = 1000;
16 for(int i=0; i<steps_to_the_bar*2; i++){
17 if((i%100) == 0){
18 Console.WriteLine();
19 Console.Write("Fetching Drinks");
20 }else{
21 Console.Write(".");
22 }
23 }
24 Console.WriteLine();
25 thirsty = false;
26 }
27
28 public void FetchFood(){
29 int steps_to_the_grill = 1000;
30 for(int i=0; i<steps_to_the_grill*2; i++){
31 if((i%100)==0){
32 Console.WriteLine();
33 Console.Write("Fetching Food");
34 }else{
35 Console.Write(".");
36 }
37 }
38 Console.WriteLine();

Figure 16-5: SingleThreadedVacation Program Output
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 387

Creating Managed Threads With The Thread Class Chapter 16: Multithreaded Programming
39 hungry = false;

40 }

41

42 public static void Main(){

43 MultiThreadedVacation mtv = new MultiThreadedVacation();

44 Thread drinkFetcher = new Thread(mtv.FetchDrink);

45 Thread foodFetcher = new Thread(mtv.FetchFood);

46 Console.WriteLine("Relaxing!");

47

48 while(mtv.hungry && mtv.thirsty){

49 if(!drinkFetcher.IsAlive) drinkFetcher.Start();

50 if(!foodFetcher.IsAlive) foodFetcher.Start();

51 Console.Write("Relaxing!");

52 }

53 }

54 }

Referring to Example 16.2 — this code is structurally very similar to the previous example. The only changes

made were to the insides of the Main() method where two thread objects are created on lines 44 and 45 named drink-

Fetcher and foodFetcher respectively. Note that to create a thread in this fashion, you supply to the Thread constructor

the name of a method you want to execute in the separate thread. (Here the method signatures conform to the Thread-

Start delegate signature.) The drinkFetcher thread executes the FetchDrink() method while the foodFetcher thread

executes the FetchFood() method.

A check is made in the body of the while loop to see if each thread is alive, meaning “Has it been started?” If

not, it is started by calling its Thread.Start() method. As soon as these threads are started, the Main() thread can go

back to printing the message “Relaxing!” to the console. Figure 16-6 shows a partial listing of the MultiThreadedVa-

cation program’s output. As you’ll note from looking at Figure 16-6 there’s a lot more relaxing going on!

Figure 16-6: MultiThreadedVacation Program Output - Partial Listing
388
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 16: Multithreaded Programming Creating Managed Threads With The Thread Class
Thread States

A thread can assume several different states during its execution lifetime, as shown in Figure 16-7.

Referring to Figure 16-7 — important points to note include the following: A call to a thread’s Start() method

does not immediately put the thread into the Running state. A call to Start() only notifies the operating system that the

thread can now be started. Also, a thread can be in multiple states simultaneously. For example, a Running thread can

also be a Background thread, or a Suspended thread can also be in the AbortRequested state.

It’s tricky at best to personally manage multiple threads by directly manipulating their states. In fact, Microsoft

recommends you don’t do it because it’s hard to tell precisely what state a thread is actually in, or more importantly,

at what point in the code the thread is at when you attempt to move it from one state to another. It’s usually never a

good idea to call Abort() on an executing thread, especially if you didn’t start the thread. Another thing to consider is

that the Suspend() and Resume() methods are now obsolete.

So where does that leave you with regards to managing your own threads? Well, you can start a thread with the

Start() method and block its operation with the Monitor.Wait(), Thread.Sleep() and Thread.Join() methods. You can

change a foreground thread into a background thread by setting its IsBackground property to true. As it turns out, this

amount of control is really all you need to write well-behaved, multithreaded code. The following sections discuss

and demonstrate the use of the more helpful Thread properties and methods.

Creating And Starting Managed Threads

To create a managed thread, pass in to the Thread constructor either a ThreadStart delegate or a Parameter-

izedThreadStart delegate. The ParameterizedThreadStart delegate lets you pass an argument object when you call the

thread’s Start() method.

ThreadStart Delegate

The ThreadStart delegate specifies a method signature that returns void and takes no arguments. There are two

ways to pass a ThreadStart delegate into the Thread constructor: the longhand way and the shorthand way. The long-

hand way entails explicitly creating a new ThreadStart delegate object as the following code fragment suggests.

Thread thread1 = new Thread(new ThreadStart(Run)); // longhand
The shorthand method of creating a thread entails just passing the name of the method to the Thread constructor

and letting it figure out if what you supplied conforms to the ThreadStart delegate as the following code fragment

demonstrates:

Thread thread2 = new Thread(Run); // shorthand
Example 16.3 demonstrates the longhand and shorthand way of creating threads.

Figure 16-7: Thread States and Transition Initiators
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 389

Creating Managed Threads With The Thread Class Chapter 16: Multithreaded Programming
16.3 ThreadStartDemo.cs

1 using System;
2 using System.Threading;
3
4 public class ThreadStartDemo {
5
6 private const int COUNT = 200;
7
8 public static void Run(){
9 for(int i=0; i<COUNT; i++){
10 Console.Write(Thread.CurrentThread.Name);
11 }
12 }
13
14 public static void Main(){
15 Thread thread1 = new Thread(new ThreadStart(Run)); // longhand way
16 Thread thread2 = new Thread(Run); // shorthand way
17 thread1.Name = "1";
18 thread1.Start();
19 thread2.Name = "2";
20 thread2.Start();
21 }
22 }

Referring to Example 16.3 — two thread objects are created in the Main() method. The first, thread1, is created

the longhand way by passing the name of the Run() method to the ThreadStart constructor. The second, thread2, is

created the shorthand way by passing the name of the Run() method directly to the Thread constructor. Each thread’s

Name property is set before calling its Start() method. The name of the thread is printed to the console in the body of

the Run() method. Note that in this example the Run() method is static, but it could just as well have been an instance

method. Figure 16-8 shows the results of running this program.

ParameterizedThreadStart Delegate: Passing Arguments To Threads

If you need to pass in an argument when you start a thread, your thread’s execution method must conform to the

ParameterizedThreadStart delegate signature. The ParameterizedThreadStart delegate method signature is shown in

following code fragment:

public void MethodName(object obj)
Like its ThreadStart delegate cousin, you can create threads the longhand or shorthand way. Example 16.4 shows

the ParameterizedThreadStart delegate in action.
16.4 ParameterizedThreadStartDemo.cs

1 using System;
2 using System.Threading;
3
4 public class ParameterizedThreadStartDemo {
5
6 private const int COUNT = 200;
7
8 public static void Run(object value){
9 for(int i=0; i<COUNT; i++){
10 Console.Write(value);
11 }
12 }
13
14 public static void Main(){
15 Thread thread1 = new Thread(new ParameterizedThreadStart(Run)); // longhand way
16 Thread thread2 = new Thread(Run); // shorthand way
17 thread1.Start("Hello ");
18 thread2.Start("World! ");
19 }
20 }

Figure 16-8: Results of Running Example 16.3
390
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 16: Multithreaded Programming Creating Managed Threads With The Thread Class
Referring to Example 16.4 — The static Run() method has been modified to conform to the Parameter-

izedThreadStart delegate method signature. In this case I am passing the parameter named “value” directly to the

Console.Write() method, which will automatically call the Object.ToString() method. (Note: Here I’m only targeting

the interface as specified by the Object class. If I expect some other type of object I must cast to the expected type.)

Pass the argument to the thread when you call its Start() method, as is shown on lines 17 and 18. Figure 16-9 shows

the results of running this program.

Blocking A Thread With Thread.Sleep()

If all goes well, a thread, once started, charges forward and executes until it completes its assigned task. If it can’t

finish its assigned task in the allotted time slice, the operating system preempts the thread and swaps it out with

another waiting thread. This swapping continues until the thread in question finishes its business or until something

dreadful happens and it ends prematurely. Take a good look at Figure 16-9 and you’ll see how thread1 prints the mes-

sage “Hello” over and over until it’s swapped out with thread2, which then starts to print “World!”.

In many situations, you’ll want a thread to do something and then take a short break to let other threads have a go

at the processor. Example 16.5 adds a call to Thread.Sleep() to the body of the Run() method.

16.5 ParameterizedThreadStart.cs (With call to Sleep())

1 using System;

2 using System.Threading;

3

4 public class ParameterizedThreadStartDemo {

5

6 private const int COUNT = 200;

7

8 public static void Run(object value){

9 for(int i=0; i<COUNT; i++){

10 Console.Write(value);

11 Thread.Sleep(10);

12 }

13 }

14

15 public static void Main(){

16 Thread thread1 = new Thread(new ParameterizedThreadStart(Run)); // longhand way

17 Thread thread2 = new Thread(Run); // shorthand way

18 thread1.Start("Hello ");

19 thread2.Start("World! ");

20 }

21 }

Referring to Example 16.5 — the call to Thread.Sleep() is made after the value is written to the console. Pass an

integer argument to the Sleep() method indicating the time in milliseconds you want the thread to block. You can also

pass in a TimeSpan object. Figure 16-10 shows the results of running this program. Note how different the output

appears and how much slower the application seems to run because of the increased thread swapping that occurs.

Figure 16-9: Results of Running Example 16.4
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 391

Creating Managed Threads With The Thread Class Chapter 16: Multithreaded Programming
Blocking A Thread With Thread.Join()

Another way to coordinate thread interaction is to explicitly block one thread until another thread completes exe-

cution. You can to this by calling the Thread.Join() method via the thread reference you want to yield to. For example,

if you want the Main thread to block until thread2 completes execution, then in the Main thread you would call

thread2.Join(). I want to show you two examples to demonstrate the use of the Join() method. The first, Example 16.6,

builds on the previous example and adds a for loop in the Main() method that prints a message to the console. I’ve

put the call to the thread2.Join() in the body of the for loop but it’s commented out in this example.
16.6 JoinDemo.cs (Version 1)

1 using System;
2 using System.Threading;
3
4 public class JoinDemo {
5
6 private const int COUNT = 100;
7
8 public static void Run(object value){
9 for(int i=0; i<COUNT; i++){
10 Console.Write(value);
11 Thread.Sleep(10);
12 }
13 }
14
15 public static void Main(){
16 Thread thread1 = new Thread(new ParameterizedThreadStart(Run)); // longhand way
17 Thread thread2 = new Thread(Run); // shorthand way
18 thread1.Start("Hello ");
19 thread2.Start("World! ");
20 for(int i = 0; i< 10; i++){
21 Console.Write("\n------- Main Thread Message --------");
22 //if(i==1) thread2.Join();
23 }
24 }
25 }

Referring to Example 16.6 — I’ve added a for loop to the end of the Main() method that loops ten times print-

ing a message to the console. I’ve commented out line 22 for now so you can compare the output of this program with

the output of the next example. Figure 16-11 shows the results of running this program. Referring to Figure 16-11 —

note how thread1 and thread2 each print a message before sleeping. When the Main thread gets its chance to execute,

it runs to completion.

Example 16.7 gives the JoinDemo program with line 22 in action. Figure 16-12 shows the results of running the

program. Note the difference in the output between figures 16-11 and 16-12. The for loop in the Main thread makes

it through two loops before being told to block until thread2 completes execution. (i.e., thread2.Join())

Figure 16-10: Results of Running Example 16.5
392
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 16: Multithreaded Programming Creating Managed Threads With The Thread Class
16.7 JoinDemo.cs (Version 2)

1 using System;

2 using System.Threading;

3

4 public class JoinDemo {

5

6 private const int COUNT = 100;

7

8 public static void Run(object value){

9 for(int i=0; i<COUNT; i++){

10 Console.Write(value);

11 Thread.Sleep(10);

12 }

13 }

14

15 public static void Main(){

16 Thread thread1 = new Thread(new ParameterizedThreadStart(Run)); // longhand way

17 Thread thread2 = new Thread(Run); // shorthand way

18 thread1.Start("Hello ");

19 thread2.Start("World! ");

20 for(int i = 0; i< 10; i++){

21 Console.Write("\n------- Main Thread Message --------");

22 if(i==1) thread2.Join(); // the Main thread will block on thread2 after second loop

23 }

24 }

25 }

Figure 16-11: Results of Running Example 16.6

Figure 16-12: Results of Running Example 16.7
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 393

Creating Managed Threads With The Thread Class Chapter 16: Multithreaded Programming
Foreground vs. Background Threads

A thread can be either a foreground thread or a background thread. The difference being that a foreground thread

will keep the .NET runtime alive so long as it is running. A background thread, however, will be shutdown by the

.NET runtime when it shuts down.

Managed threads are created as foreground threads. Example 16.8 gives an example of a foreground thread.
16.8 ForegroundThreadDemo.cs

1 using System;
2 using System.Threading;
3
4 public class ForegroundThreadDemo {
5
6 public static void Run(){
7 bool keepgoing = true;
8 while(keepgoing){
9 Console.Write("Please enter a letter or 'Q' to exit: ");
10 String s = Console.ReadLine();
11 switch(s[0]){
12 case 'Q': keepgoing = false;
13 break;
14 default: break;
15 }
16 }
17 }
18
19 public static void Main(){
20 Thread thread1 = new Thread(Run);
21 thread1.Start();
22 }
23 }

Referring to Example 16.8 — the Main() method exits right after calling thread1.Start(). The Run() method loops

continuously reading input from the console until the user enters the letter ‘Q’. Since thread1 is a foreground thread,

it keeps the .NET runtime running as long as it’s executing. Figure 16-13 shows the results of running this program.

To change a foreground thread to a background thread, set the thread’s IsBackground property to true. Example

16.9 provides a slight modification to the previous example and makes thread1 a background thread.
16.9 BackgroundThreadDemo.cs

1 using System;
2 using System.Threading;
3
4 public class BackgroundThreadDemo {
5
6 public static void Run(){
7 bool keepgoing = true;
8 while(keepgoing){
9 Console.Write("Please enter a letter or 'Q' to exit: ");
10 String s = Console.ReadLine();
11 switch(s[0]){
12 case 'Q': keepgoing = false;
13 break;
14 default: break;
15 }
16 }
17 }
18
19 public static void Main(){
20 Thread thread1 = new Thread(Run);
21 thread1.IsBackground = true;
22 thread1.Start();
23 }
24 }

Figure 16-13: Results of Running Example 16.8
394
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 16: Multithreaded Programming Creating Managed Threads With The Thread Class
Referring to Example 16.9 — on line 21, thread1’s IsBackground property is set to true. Its Start() method is

called on the next line and the Main() method exits. Thus, thread1 is stopped along with the .NET runtime execution

environment. Figure 16-14 shows the very brief results of running this program.

Quick Review

A thread can assume several different states during its execution lifetime. These states include: Unstarted, Run-

ning, Background, SuspendRequested, Suspended, WaitSleepJoin, StopRequested, Stopped, AbortRequested, and

Aborted.

A call to a thread’s Start() method does not immediately put the thread into the Running state. A call to Start()

only notifies the operating system that the thread can now be started. Also, a thread can be in multiple states simulta-

neously. For example, a Running thread can also be a Background thread, or a Suspended thread can also be in the

AbortRequested state.

It’s tricky at best to personally manage multiple threads by directly manipulating their states. In fact, Microsoft

recommends you don’t do it because it’s hard to tell precisely what state a thread is actually in or, more importantly,

at what point in the code the thread is at when you attempt to move it from one state to another. It’s usually never a

good idea to call Abort() on an executing thread, especially if you didn’t start the thread. Another thing to consider is

that the Suspend() and Resume() methods are now obsolete.

To create a managed thread, pass to the Thread constructor either a ThreadStart delegate or a Parameter-

izedThreadStart delegate.

The ThreadStart delegate specifies a method signature that returns void and takes no arguments. There are two

ways to pass the ThreadStart delegate to the Thread constructor: the longhand way and the shorthand way. The long-

hand way entails explicitly creating a new ThreadStart delegate object as the following code fragment suggests.

Thread thread1 = new Thread(new ThreadStart(Run)); // longhand

The shorthand method of creating a thread entails just passing the name of the method to the Thread constructor

and letting it figure out if what you supplied conforms to the ThreadStart delegate as the following code fragment

demonstrates:

Thread thread2 = new Thread(Run); // shorthand

If you need to pass in an argument when you start a thread, the thread’s execution method must conform to the

ParameterizedThreadStart delegate signature. The ParameterizedThreadStart delegate method signature is shown in

following code fragment:

public void MethodName(object obj)

Like its ThreadStart delegate cousin, you can create threads the longhand or shorthand way. Pass the argument to

the thread via its Start() method. Remember to cast the argument to the appropriate type in the body of the thread’s

execution method.

If all goes well, a thread, once started, charges forward and executes until it completes its assigned task. If it can’t

finish its assigned task in the allotted time slice, the operating system preempts the thread and swaps it out with

another waiting thread. This swapping continues until the thread in question finishes its business or until something

dreadful happens and it ends prematurely. Call the Thread.Sleep() method to force your thread to block and give other

threads a chance to execute.

Another way to coordinate thread interaction is to explicitly block one thread until another thread completes exe-

cution. You can to this by calling the Thread.Join() method via the thread reference you want to yield to. For example,

if you want the Main thread to block until thread2 completes execution, then in the Main thread you would call

thread2.Join().

Figure 16-14: Results of Running Example 16.9
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 395

Creating Threads With The BackgroundWorker Class Chapter 16: Multithreaded Programming
A thread can be either a foreground thread or a background thread. The difference being that a foreground thread

will keep the .NET runtime alive so long as it is running. A background thread, however, will be shutdown by the

.NET runtime when it shuts down.

Creating Threads With The BackgroundWorker Class

Background threads are especially helpful when used with GUI applications as they allow time-intensive activi-

ties to proceed while minimizing the impact to the user interface experience. The System.ComponentModel.Back-

groundWorker class makes it easy and convenient to create background threads that do heavy lifting behind the

scenes while relieving you of the burden of explicitly managing those threads.

The BackgroundWorker class provides this convenience and ease of use by allowing you to assign event handler

methods to its various events. These events include DoWork, ProgressChanged, and RunWorkerCompleted. Example

16.10 shows the BackgroundWorker class in action. This program displays a small window with three buttons and

three labels. When you click one of the buttons it fires the background worker to do that particular task. The tasks, in

this case, are to simply print a short message to the console and update the color of the label when the task starts run-

ning and when it completes.
16.10 BackgroundWorkerDemo.cs

1 using System;
2 using System.Drawing;
3 using System.Threading;
4 using System.Windows.Forms;
5 using System.ComponentModel;
6
7 public class BackgroundWorkerDemo : Form {
8
9 private Button button1;
10 private Button button2;
11 private Button button3;
12 private Label label1;
13 private Label label2;
14 private Label label3;
15 private BackgroundWorker bw1;
16 private BackgroundWorker bw2;
17 private BackgroundWorker bw3;
18
19 public BackgroundWorkerDemo(){
20 InitializeComponents();
21 }
22
23 private void InitializeComponents(){
24 button1 = new Button();
25 button2 = new Button();
26 button3 = new Button();
27 label1 = new Label();
28 label2 = new Label();
29 label3 = new Label();
30 bw1 = new BackgroundWorker();
31 bw2 = new BackgroundWorker();
32 bw3 = new BackgroundWorker();
33
34 button1.Text = "Do Something";
35 button1.AutoSize = true;
36 button1.Click += ButtonOne_Click;
37 label1.BackColor = Color.Green;
38 bw1.DoWork += DoWorkOne;
39 bw1.RunWorkerCompleted += ResetLabelOne;
40
41 button2.Text = "Do Something Else";
42 button2.AutoSize = true;
43 button2.Click += ButtonTwo_Click;
44 label2.BackColor = Color.Green;
45 bw2.DoWork += DoWorkTwo;
46 bw2.RunWorkerCompleted += ResetLabelTwo;
47
48 button3.Text = "Do Something Different";
49 button3.AutoSize = true;
50 button3.Click += ButtonThree_Click;
51 label3.BackColor = Color.Green;
52 bw3.DoWork += DoWorkThree;
53 bw3.RunWorkerCompleted += ResetLabelThree;
396 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 16: Multithreaded Programming Creating Threads With The BackgroundWorker Class
54
55 TableLayoutPanel tlp1 = new TableLayoutPanel();
56 tlp1.RowCount = 2;
57 tlp1.ColumnCount = 3;
58 tlp1.SuspendLayout();
59 this.SuspendLayout();
60 tlp1.AutoSize = true;
61 tlp1.Dock = DockStyle.Left;
62 tlp1.Controls.Add(button1);
63 tlp1.Controls.Add(button2);
64 tlp1.Controls.Add(button3);
65 tlp1.Controls.Add(label1);
66 tlp1.Controls.Add(label2);
67 tlp1.Controls.Add(label3);
68 this.Controls.Add(tlp1);
69 this.AutoSize = true;
70 this.AutoSizeMode = AutoSizeMode.GrowOnly;
71 this.Height = tlp1.Height;
72 tlp1.ResumeLayout();
73 this.ResumeLayout();
74 }
75
76 private void ButtonOne_Click(Object sender, EventArgs e){
77 if(!bw1.IsBusy){
78 bw1.RunWorkerAsync(((Button)sender).Text);
79 }
80 }
81
82 private void ButtonTwo_Click(Object sender, EventArgs e){
83 if(!bw2.IsBusy){
84 bw2.RunWorkerAsync(((Button)sender).Text);
85 }
86 }
87
88 private void ButtonThree_Click(Object sender, EventArgs e){
89 if(!bw3.IsBusy){
90 bw3.RunWorkerAsync(((Button)sender).Text);
91 }
92 }
93
94 private void DoWorkOne(Object sender, DoWorkEventArgs e){
95 label1.BackColor = Color.Black;
96 for(int i=0; i<30000; i++){
97 Console.Write(e.Argument + “ “);
98 }
99 }
100
101 private void DoWorkTwo(Object sender, DoWorkEventArgs e){
102 label2.BackColor = Color.Black;
103 for(int i=0; i<30000; i++){
104 Console.Write(e.Argument + “ “);
105 }
106 }
107
108 private void DoWorkThree(Object sender, DoWorkEventArgs e){
109 label3.BackColor = Color.Black;
110 for(int i=0; i<30000; i++){
111 Console.Write(e.Argument + “ “);
112 }
113 }
114
115 private void ResetLabelOne(Object sender, RunWorkerCompletedEventArgs e){
116 label1.BackColor = Color.Green;
117 }
118
119 private void ResetLabelTwo(Object sender, RunWorkerCompletedEventArgs e){
120 label2.BackColor = Color.Green;
121 }
122
123 private void ResetLabelThree(Object sender, RunWorkerCompletedEventArgs e){
124 label3.BackColor = Color.Green;
125 }
126
127
128 [STAThread]
129 public static void Main(){
130 Application.Run(new BackgroundWorkerDemo());
131 }// end Main
132
133 } // end class definition
C# For Artists © 2008 Rick Miller — All Rights Reserved 397

Creating Threads With The BackgroundWorker Class Chapter 16: Multithreaded Programming
Referring to Example 16.10 — in this code I create three buttons, three labels, and three BackgroundWorker

objects named bw1, bw2, and bw3 respectively. To each background worker’s DoWork event I assign a method that

conforms to the DoWorkEventHandler delegate. These methods are named DoWorkOne(), DoWorkTwo(), and

DoWorkThree(). To each background worker’s RunWorkerCompleted event I assign a method that conforms to the

RunWorkerCompletedEventHandler delegate. I named these methods ResetLabelOne(), ResetLabelTwo(), and Reset-

LabelThree().

To each button’s Click event I assign methods that conform to the EventHandler delegate. I’ve named these

methods ButtonOne_Click(), ButtonTwo_Click(), and ButtonThree_Click(). A click on each button calls its assigned

event handler method. The event handler method kicks off a background worker thread by calling its Run-

WorkAsync() method. In this case, I’m passing in to the call to the RunWorkAsync() method the text of the clicked

button.

A call to a background worker’s RunWorkAsync() method fires its DoWork event. Any DoWorkEventHandlers

assigned to the background worker’s DoWork event are then called. Before actually making the call to RunWorkerA-

sync(), I check to see if the background worker is busy by polling its IsBusy property. If the background worker is

currently running an asynchronous operation, the IsBusy property returns true.

When the background worker thread completes, its RunWorkerCompleted event fires resulting in a call to any

assigned RunWorkerCompletedEventHandler methods. Figure 16-15 shows the results of running this program.

Click the Do Something

button.

Then click the Do Something

Different button.

When both threads complete,

each label’s color is reset to

green.

Figure 16-15: One Particular Result of Running Example 16.10
398 ©
 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 16: Multithreaded Programming Thread Pools
Quick Review

Background threads are especially helpful when used with GUI applications as they allow time-intensive activi-

ties to proceed while minimizing the impact to the user interface experience. The System.ComponentModel.Back-

groundWorker class makes it easy and convenient to create background threads that do heavy lifting behind the

scenes while relieving you of the burden of explicitly managing those threads. The BackgroundWorker class provides

this convenience and ease of use by allowing you to assign event handler methods to its various events. These events

include DoWork, ProgressChanged, and RunWorkerCompleted. A call to a BackgroundWorker’s RunWorkAsync()

method fires its DoWork event.

Thread Pools

The .NET runtime execution environment maintains and manages a pool of background threads for each applica-

tion. You have access to these threads via the static methods of the ThreadPool class.

Beginning with .NET 2.0 Service Pack 1, each application’s thread pool contains, by default, 250 worker threads

per processor and 500 I/O completion port threads per processor. In this section, I will only show you how to use

thread pool worker threads.

Important things to know about the application thread pool include the following:

• The ThreadPool class is static; its functionality is meant only to be used via its static methods.

• You can adjust the maximum number of threads in the pool via the ThreadPool.SetMaxThreads()

method.

• To start a thread, pass the name of an execution method to the ThreadPool.QueueUserWorkItem()

method.

• The thread pool contains a certain number of idle threads that are ready to execute. This number is

adjusted via the ThreadPool.SetMinThreads() method. Too many idle threads extract a perfor-

mance penalty because each idle thread requires stack space and other resources.

• The creation of new ThreadPool threads is throttled to one every 500 milliseconds. If you are

spawning a large number of threads, you’ll need to keep this throttling activity in mind.

• ThreadPool managed threads are background threads and will be terminated when your applica-

tion exits.

• You have no control over a ThreadPool thread other than its initial creation.

Example 16.11 shows how easy it is to use ThreadPool threads. In this example, I spawn 45 separate threads with

the help of the ThreadPool class. Following the creation of each thread, I print out the number of available threads.
16.11 ThreadPoolDemo.cs

1 using System;
2 using System.Threading;
3
4 public class ThreadPoolDemo {
5
6 private const int COUNT = 20000;
7
8 public static void Run(object stateInfo){
9 for(int i=0; i<COUNT; i++){
10 Console.Write(stateInfo + " ");
11 Thread.Sleep(100);
12 }
13 }
14
15 public static void Main(){
16 int workerThreads = 0;
17 int completionPortThreads = 0;
18 ThreadPool.GetMinThreads(out workerThreads, out completionPortThreads);
19 Console.WriteLine("Minimum number of worker threads in thread pool: {0} ", workerThreads);
20 Console.WriteLine("Minimum number of completion port threads in thread pool: {0} ",
21 completionPortThreads);
22 ThreadPool.GetAvailableThreads(out workerThreads, out completionPortThreads);
23 Console.WriteLine("Available worker threads in thread pool: {0} ", workerThreads);
24 Console.WriteLine("Available completion port threads in thread pool: {0} ", completionPortThreads);
25
26 for(int i = 0; i<45; i++){
27 ThreadPool.QueueUserWorkItem(new WaitCallback(Run), i);
C# For Artists © 2008 Rick Miller — All Rights Reserved 399

Asynchronous Method Calls Chapter 16: Multithreaded Programming
28 Thread.Sleep(1000); // sleep twice as long as it takes to start a threadpool thread
29 ThreadPool.GetAvailableThreads(out workerThreads, out completionPortThreads);
30 Console.Write("\nAvailable worker threads in thread pool: {0} ", workerThreads);
31 Console.WriteLine("\nAvailable completion port threads in thread pool: {0}", completionPortThreads);
32 }
33 } // end Main() method
34 } // end class definition

Referring to Example 16.11 — each new thread is created in the body of the for loop that begins on line 26.

Note on line 27 that the ThreadPool.QueueUserWorkItem() method requires a WaitCallBack object. I have supplied

the name of the thread execution method to the WaitCallBack constructor and pass the resulting object as an argu-

ment to the QueueUserWorkItem() method. On line 28, I put the Main() method thread to sleep for twice as long as it

takes to create a new ThreadPool thread, and then print the number of available threads to the console.

In this example, I have modified the signature of the Run() method to conform to the WaitCallBack delegate.

This allows me to pass arguments to the Run() method when I kick off each thread with the QueueUserWorkItem()

method.

Figure 16.16 shows a partial result of running this program.

Quick Review

The .NET runtime execution environment maintains and manages a pool of background threads for each applica-

tion. You have access to these threads via the static methods of the ThreadPool class. By default, each application’s

thread pool contains 250 worker threads per processor and 500 I/O completion port threads per processor. Pass the

name of your thread execution method to the WaitCallBack constructor; pass the WaitCallBack object to the Thread-

Pool.QueueUserWorkItem() method.

Asynchronous Method Calls

Multithreading is built into the very core of the .NET runtime execution environment. You can call any method

asynchronously with the help of a delegate. You can do this via a delegate’s BeginInvoke() and EndInvoke() methods.

Don’t go looking for these methods in the System.Delegate documentation; the .NET runtime environment creates

them automatically when you declare and define a new delegate type. The thread that executes an asynchronous

method comes from the application thread pool and is therefore a background thread.

To make an asynchronous method call follow these steps:

• Create a new delegate type that specifies the method signature of your thread execution method.

• Create your thread execution method making sure its method signature matches that of the dele-

gate you created in the first step.

• Create an instance of the delegate, passing the name of the thread execution method to its con-

structor.

Figure 16-16: Partial Result of Running Example 16.11
400
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 16: Multithreaded Programming Asynchronous Method Calls
• Call the BeginInvoke() method on the delegate object, supplying any necessary thread execution

method arguments and two additional arguments of type AsyncCallback and an Object respec-

tively. I will discuss the purpose of the AsyncCallback and Object parameters shortly.

• The call to BeginInvoke() returns an IAsyncResult object that can be used to query the state of the

asynchronous method call’s execution progress. The IAsyncResult.AsyncState property is a ref-

erence to the last object supplied in the call to the BeginInvoke() method.

• Do any required work in the calling method while the asynchronous method call executes.

• Call the EndInvoke() method to properly wrap-up the asynchronous method call and fetch the

results.

Example 16.12 shows the asynchronous call mechanism in action.
16.12 AsynchronousCallDemo.cs

1 using System;
2 using System.Threading;
3
4 public class AsynchronousCallDemo {
5
6 private const int COUNT = 100;
7 public delegate void RunDelegate(String message);
8
9 public static void Run(String message){
10 for(int i=0; i<COUNT; i++){
11 Console.Write(message + " ");
12 Thread.Sleep(100);
13 }
14 }
15
16 public static void Main(){
17 RunDelegate runDelegate1 = new RunDelegate(Run);
18 RunDelegate runDelegate2 = new RunDelegate(Run);
19 IAsyncResult result1 = runDelegate1.BeginInvoke("Hello", null, null);
20 IAsyncResult result2 = runDelegate2.BeginInvoke("World!", null, null);
21 while(!result1.IsCompleted && !result2.IsCompleted){
22 Console.Write(" - ");
23 Thread.Sleep(1000);
24 }
25 runDelegate1.EndInvoke(result1);
26 runDelegate2.EndInvoke(result2);
27 Console.WriteLine("\nMain thread exiting now...bye!");
28 } // end Main() method
29 } // end class definition

Referring to Example 16.12 — on line 7, a new delegate type is declared named RunDelegate. The RunDelegate

specifies a method that takes one String argument. The Run() method on line 9 conforms to the RunDelegate method

signature specification. In the Main() method, I created two RunDelegate instances named runDelegate1 and

runDelegate2. In the call to the RunDelegate constructor, I pass the name of the Run() method. I start the asynchro-

nous methods by calling the BeginInvoke() method on each delegate instance passing in the required string argument

and two null values representing the AsyncCallback and AsyncState objects, which are not being used in this case.

The while statement on line 21 loops until both IAsyncResult.IsCompleted properties are true. It prints the ‘-’

character to the console and then sleeps for 1000 milliseconds to let the other two threads have a go at the processor.

On lines 25 and 26, the EndInvoke() method is called on each delegate instance, passing in the appropriate

IAsyncResult reference. Figure 16-17 shows the results of running this program.

Figure 16-17: Results of Running Example 16.12
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 401

Asynchronous Method Calls Chapter 16: Multithreaded Programming
Obtaining Results From An Asynchronous Method Call

The are several ways to obtain results from an asynchronous method call. If the method returns a value, the call

to the delegate’s EndInvoke() method returns that value. If the method takes one or more out or ref parameters,

these will be included in the EndInvoke() method’s parameter list as well. (Note: Remember, a delegate’s BeginIn-

voke() and EndInvoke() methods are automatically generated.) Example 16.13 demonstrates the use of the EndIn-

voke() method to retrieve an asynchronous method call’s return value.
16.13 AsyncCallWithResultsDemo.cs

1 using System;
2 using System.Threading;
3
4 public class AsyncCallWithResultsDemo {
5
6 private const int COUNT = 100;
7 public delegate int SumDelegate(int a, int b);
8
9 public static int Sum(int a, int b){
10 return a + b;
11 }
12
13 public static void Main(){
14 SumDelegate sumDelegate1 = new SumDelegate(Sum);
15 SumDelegate sumDelegate2 = new SumDelegate(Sum);
16 IAsyncResult result1 = sumDelegate1.BeginInvoke(1, 2, null, null);
17 IAsyncResult result2 = sumDelegate2.BeginInvoke(3, 4, null, null);
18 while(!result1.IsCompleted && !result2.IsCompleted){
19 Thread.Sleep(100);
20 }
21 int sum1 = sumDelegate1.EndInvoke(result1);
22 int sum2 = sumDelegate2.EndInvoke(result2);
23 Console.WriteLine("The result of the first async method call is: {0}", sum1);
24 Console.WriteLine("The result of the second async method call is: {0}", sum2);
25 Console.WriteLine("\nMain thread exiting now...bye!");
26 } // end Main() method
27 } // end class definition

Referring to Example 16.13 — I defined a delegate on line 7 named SumDelegate that takes two integer argu-

ments and returns an integer value. The Sum() method on line 9 conforms to the SumDelegate signature. In the

Main() method, two SumDelegate objects are created named sumDelegate1 and sumDelegate2. The BeginInvoke()

method is called on each delegate. Note how the multiple arguments are passed to the asynchronous method call. On

line 18, the while loop spins until both method calls complete, which in this case doesn’t take too long because of

the simplicity of the Sum() method. On lines 21 and 22, the results of each method call are obtained via the call to

each delegate’s EndInvoke() method and the values written to the console. Figure 16-18 shows the results of running

this program.

Providing A CallBack Method To BeginInvoke()

The BeginInvoke() method allows you to pass in a callback method that is automatically called when the asyn-

chronous method completes execution. It also allows you to pass in an object argument to that callback method. Note

that up until now I have been calling the BeginInvoke() method with the last two arguments set to null. (i.e.,

sumDelegate1.BeginInvoke(1, 2, null, null)) To pass in a callback method, you’ll need to write a method that con-

forms to the AsyncCallBack delegate method signature, which returns void and takes one argument of type IAsyn-

cResult as the following code snippet shows:

void MethodName(IAsyncResult result)

Figure 16-18: Results of Running Example 16.13
402
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 16: Multithreaded Programming Asynchronous Method Calls
The IAsyncResult interface specifies an AsyncState property of type Object, meaning it can contain any type of

object. You can pass in whatever your heart desires! To use this object in the callback method, you’ll need to access

the IAsyncResult.AsyncState property and cast it to the expected type. Example 16.14 demonstrates the use of a call-

back method.
16.14 AsyncCallWithCallBackDemo.cs

1 using System;
2 using System.Threading;
3
4 public class AsyncCallWithCallBackDemo {
5
6 private const int COUNT = 100;
7 public delegate int SumDelegate(int a, int b);
8
9 public static int Sum(int a, int b){
10 return a + b;
11 }
12
13 public static void WrapUp(IAsyncResult result){
14 SumDelegate sumDelegate = (SumDelegate)result.AsyncState;
15 int sum = sumDelegate.EndInvoke(result);
16 Console.WriteLine("The result is: {0} ", sum);
17 }
18
19 public static void Main(){
20 SumDelegate sumDelegate1 = new SumDelegate(Sum);
21 SumDelegate sumDelegate2 = new SumDelegate(Sum);
22 IAsyncResult result1 = sumDelegate1.BeginInvoke(1, 2, new AsyncCallback(WrapUp), sumDelegate1);
23 IAsyncResult result2 = sumDelegate2.BeginInvoke(3, 4, new AsyncCallback(WrapUp), sumDelegate2);
24 while(!result1.IsCompleted && (!result2.IsCompleted)){
25 Console.WriteLine(" - ");
26 Thread.Sleep(10);
27 }
28 Console.WriteLine("\nMain thread exiting now...bye!");
29 } // end Main() method
30 } // end class definition

Referring to Example 16.14 — I have added a method on line 13 named WrapUp() that conforms to the Async-

CallBack delegate method signature. In this example, I’m using the WrapUp() method to make the call to a SumDel-

egate’s EndInvoke() method. To do this, I must pass in a reference to a SumDelegate, which I do as the last argument

to each SumDelegate’s BeginInvoke() method call shown on lines 22 and 23.

So, what’s going on here? I’m executing two asynchronous method calls via two SumDelegate references. When

each asynchronously executed method returns, the method supplied as the callback method is automatically called.

It’s a nice way to call and forget. However, since this is a simple console application, and the threads being created to

execute the asynchronous method calls are thread pool background threads, the Main() method must hang on for a

while and do some stuff, for if it exits right away, the background threads will be destroyed before they get a chance

to execute. You generally don’t have this problem when you’re writing a GUI application. Figure 16-19 shows the

results of running this program.

Quick Review

Multithreading is built into the very core of the .NET runtime execution environment. You can call any method

asynchronously with the help of a delegate. You can do this via a delegate’s BeginInvoke() and EndInvoke() methods.

Don’t go looking for these methods in the System.Delegate documentation; the .NET runtime environment creates

them automatically when you declare and define a new delegate type. The thread that executes an asynchronous

method comes from the application thread pool and is therefore a background thread.

Figure 16-19: Results of Running Example 16.14
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 403

Summary Chapter 16: Multithreaded Programming
Summary

A process consists of one or more threads of execution, referred to simply as threads. A process always consists

of at least one thread, the Main thread, which starts running when the process begins execution. A single-threaded

process contains only one thread of execution. A multithreaded process contains more than one thread.

A thread is the smallest unit of code to which the operating system assigns processing time. A thread executes

within the context of its containing or owning process and application domain.

Waiting threads sit in a thread queue until they are loaded into the processor. Each thread has a data structure

known as a thread context. The thread context is a snapshot of the state of the processor and other execution details

that must be preserved so that the thread can pick up execution where it left off when next loaded into the processor.

In a single-processor system the operating system allocates processor time with a time-slicing scheme. Each

thread gets a little bit of time to execute before being preempted by the next waiting thread, at which point, if it’s not

finished with its business, it takes its place in the thread queue to wait another turn at the processor.

In a multiprocessor system, two threads can actually execute concurrently, but the operating system still uses

time-slicing to manage their execution and keep the whole show running smoothly.

A thread can assume several different states during its execution lifetime. These states include: Unstarted, Run-

ning, Background, SuspendRequested, Suspended, WaitSleepJoin, StopRequested, Stopped, AbortRequested, and

Aborted.

A call to a thread’s Start() method does not immediately put the thread into the Running state. A call to Start()

simply notifies the operating system that the thread can now be started. Also, a thread can be in multiple states simul-

taneously. For example, a Running thread can also be a Background thread, or a Suspended thread can also be in the

AbortRequested state.

It’s tricky at best to personally manage multiple threads by directly manipulating their states. In fact, Microsoft

recommends you don’t do it because it’s hard to tell precisely what state a thread is actually in, or more importantly,

at what point in the code the thread is at when you attempt to move it from one state to another. It’s usually never a

good idea to call Abort() on an executing thread, especially if you didn’t start the thread. Another thing to consider is

that the Suspend() and Resume() methods are obsolete.

To create a managed thread, pass to the Thread constructor either a ThreadStart delegate or a Parameter-

izedThreadStart delegate.

The ThreadStart delegate specifies a method signature that returns void and takes no arguments. There are two

ways to pass the ThreadStart delegate to the Thread constructor: the longhand way and the shorthand way. The long-

hand way entails explicitly creating a new ThreadStart delegate object as the following code fragment suggests.

Thread thread1 = new Thread(new ThreadStart(Run)); // longhand
The shorthand method of creating a thread entails just passing the name of the method to the Thread constructor

and letting it figure out if what you supplied conforms to the ThreadStart delegate as the following code fragment

demonstrates:

Thread thread2 = new Thread(Run); // shorthand
If you need to pass in an argument when you start a thread, the thread’s execution method must conform to the

ParameterizedThreadStart delegate signature. The ParameterizedThreadStart delegate method signature is shown in

following code fragment:

public void MethodName(object obj)
Like its ThreadStart delegate cousin, you can create threads the longhand or shorthand way. Pass the argument to

the thread via its Start() method. Remember to cast the argument to the appropriate type in the body of the thread’s

execution method.

If all goes well, a thread, once started, charges forward and executes until it completes its assigned task. If it can’t

finish its assigned task in the allotted time slice, the operating system preempts the thread and swaps it out with

another waiting thread. This swapping continues until the thread in question finishes its business or until something

dreadful happens and it ends prematurely. Call the Thread.Sleep() method to force a thread to block and give other

threads a chance to execute.

Another way to coordinate thread interaction is to explicitly block one thread until another thread completes exe-

cution. You can to this by calling the Thread.Join() method via the thread reference you want to yield to. For example,
404 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 16: Multithreaded Programming Skill-Building Exercises
if you want the Main thread to block until thread2 completes execution then in the Main thread you would call

thread2.Join().

A thread can be either a foreground thread or a background thread. The difference being that a foreground thread

keeps the .NET runtime alive so long as it is running. A background thread, however, will be shutdown by the .NET

runtime when it shuts down.

Background threads are especially helpful when used with GUI applications as they allow time-intensive activi-

ties to proceed while minimizing the impact to the user interface experience. The System.ComponentModel.Back-

groundWorker class makes it easy and convenient to create background threads that do heavy lifting behind the

scenes while relieving you of the burden of explicitly managing those threads. The BackgroundWorker class provides

this convenience and ease of use by allowing you to assign event handler methods to its various events. These events

include DoWork, ProgressChanged, and RunWorkerCompleted. A call to a BackgroundWorker’s RunWorkAsync()

method fires its DoWork event.

The .NET runtime execution environment maintains and manages a pool of background threads for each applica-

tion. You have access to these threads via the static methods of the ThreadPool class. By default, each application’s

thread pool contains 250 worker threads per processor and 500 I/O completion port threads per processor. Pass the

name of the thread execution method to the WaitCallBack constructor; pass the WaitCallBack object to the Thread-

Pool.QueueUserWorkItem() method.

Multithreading is built into the very core of the .NET runtime execution environment. You can call any method

asynchronously with the help of a delegate. You can do this via a delegate’s BeginInvoke() and EndInvoke() methods.

Don’t go looking for these methods in the System.Delegate documentation; the .NET runtime environment creates

them automatically when you declare and define a new delegate type. The thread that executes an asynchronous

method comes from the application thread pool and is therefore a background thread.

Skill-Building Exercises

1. API Drill: Explore the System.Threading namespace. List each class and describe its purpose.

2. API Drill: Explore the .NET Framework documentation and search for information about thread synchronization

mechanisms. Pay particular attention to the Interlocked class, the lock keyword, the Monitor class, the Mutex class,

and the Semaphore class. Describe in your own words how each synchronization mechanism works.

4. Web Research: Search the web for information about deadlock and race conditions. Briefly explain how each of

the thread synchronization mechanisms you learned about in the previous exercise can be used to avoid either

deadlock or race conditions.

5. Web Research: Procure and read the paper titled Race Conditions: A Case Study by Steve Carr, et. al.

6. Programming Exercise: Compile and run the sample programs presented in this chapter. Experiment by making

various modifications to the programs and note the results of their execution.

7. API Drill: Explore the System.Collections.Generic namespace. Study each class and note how to use it in a multi-

threaded program.

Suggested Projects

1. Multithreaded Water Tank: Revisit the Automated Water Tank program given in Chapter 13, Examples 13.6

through 13.11, and make it a multithreaded program.
C# For Artists © 2008 Rick Miller — All Rights Reserved 405

Self-Test Questions Chapter 16: Multithreaded Programming
Self-Test Questions

1. (True/False) An application always has at least one thread.

2. What happens to background threads when an application exits?

3. What’s the difference between a background thread and a foreground thread?

4. (True/False) A managed thread immediately starts running when you call its Start() method.

5. Which two Thread methods are considered obsolete?

6. (True/False) It’s generally considered a good idea to try to manage multiple threads by manipulating their states.

7. Beginning with .NET 2.0 Service Pack 1, how many ThreadPool worker threads are available per processor?

8. What’s the difference between a ThreadStart delegate and a ParameterizedThreadStart delegate?

9. Which two delegate methods are used together to run methods asynchronously?

10. What’s the difference between a process and a thread?

11. How does the typical operating system coordinate thread execution?

12. What term is used to describe what happens when one thread is removed from the processor in favor of another?

References

Atul Gupta, How Many Threads Have I Got?, [http://infosysblogs.com/microsoft/2007/04/

how_many_threads_have_i_got.html]

Steve Carr, et. al, Race Conditions: A Case Study

Microsoft Developer Network (MSDN) .NET Framework 3.0 Documentation [http://www.msdn.com]

ECMA-335 Common Language Infrastructure (CLI), 4th Edition, June 2006 [http://www.ecma-international.org/

publications/standards/Ecma-335.htm]

ECMA-334 C# Language Specification, 4th Edition, June 2006 [http://www.ecma-international.org/publications/

standards/Ecma-334.htm]
406 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 16: Multithreaded Programming Notes
Notes
C# For Artists © 2008 Rick Miller — All Rights Reserved 407

Notes Chapter 16: Multithreaded Programming
408 © 2008 Rick Miller — All Rights Reserved C# For Artists

17 File I/O

Learning Objectives
• Create and manipulate directories and files

• Create and manipulate text files

• Make a class serializable by using the Serializable attribute

• Serialize/deserialize objects to/from disk with the BinaryFormatter class

• Serialize/deserialize objects to/from disk with the XMLSerializer class

• Append data to existing files

• Properly handle file I/O exceptions

• List and describe the contents of the System.IO namespace

• Create and read log files using classes from the System.IO.Log namespace

• Use FileDialogs to graphically locate and open/save files

Chapter 17

File I/O
Champs Elysées — Paris

C
o
n
ta

x
 T

 /
 K

o
d
ak

 T
ri

-X
C#
 For Artists © 2008 Rick Miller — All Rights Reserved 409

Introduction Chapter 17: File I/O
Introduction

All but the most trivial software applications must preserve their data in some form or another. This chapter

shows you how to preserve your application data to local files. These files might be located on a hard drive, a floppy

disk, a USB drive, or some other type of media connected to your computer. In most cases, the type of media is of no

concern to you because the operating system, and the storage device’s driver software, handle the machine-specific

details. All you need to know to conduct file Input/Output (I/O) operations is a handful of .NET Framework classes.

The operating system does the rest.

You’re going to learn a lot of cool things in this chapter, like how to manipulate files and directories, how to seri-

alize and deserialize objects to disk, how to read and write text files, how to perform random access file I/O, how to

write log files, and finally, how to use an OpenFileDialog to locate and open files. You will be surprised to learn you

can do all these things with only a small handful of classes, structures, and enumerations, most of which are found in

the System.IO namespace.

When you finish this chapter, you will have reached an important milestone in your C# programming career —

you will be able to write applications that save data to disk. You will find this to be a critical skill to have in your pro-

grammer’s toolbox.

Manipulating Directories And Files

In most all cases, data generated by an application and stored on an auxiliary storage device such as a hard disk,

is saved as an organized, related collection of data in a structure commonly referred to as a file. I say “in most cases”

because it is entirely possible to write data to an absolute or random position on a device, depending of course on

what type of storage medium you’re talking about. (i.e., A disk drive works differently than a tape drive.)

It is the operating system’s responsibility to manage the organization, reading, and writing of files. When you add

a new storage device to your computer, it must first be formatted in a way that allows the operating system to access

its data. The file management services provided by the operating system are part of a set of layered services that make

it possible to build complex computing systems, as Figure 17-1 partially illustrates.

Referring to Figure 17-1 — attached storage devices interact with the operating system via an associated soft-

ware interface referred to as a driver. Each device will have its own particular software driver that must be installed

and recognized by the operating system before it will work. This applies not only to storage devices but to network

cards, display devices, printers, etc. The operating system dictates the rules by which attached storage devices must

play, and it is the responsibility of the storage device manufacturer to implement these rules in the device driver.

The operating system makes the services offered by its various device drivers available to running applications.

Well-behaved applications target the operating system and do not directly interact with attached storage devices.

(Note: .NET applications target the .NET runtime environment.)

Figure 17-1: Simplified View of Service Layers
410
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 17: File I/O Manipulating Directories And Files
Files, Directories, And Paths

The Microsoft Windows operating system assigns each attached storage device a letter. On computers with only

one hard drive, the letter assigned is ‘C’ and is referred to as your “C drive”. If you have a 3.5 inch floppy drive, its

assigned letter is ‘A’. The operating system assigns the next available letter to the next available storage device. Thus,

if you also have a CD/ROM or DVD drive, its letter will most likely be ‘D’. If you plug in a removable USB drive,

the operating system will assign to it the letter ‘E’ for as long as it’s attached to the machine.

The file, from the operating system’s point of view, is the fundamental storage organizational element. An appli-

cation’s associated data can be stored in one or more files. A file is located in another organizational element called a

directory. A directory is a special type of file that contains a list of files and directories. A directory contained inside

another directory is called a subdirectory. In modern operating systems like Windows or Apple’s OS X, the metaphors

folder and subfolder are used to refer to a directory and a subdirectory respectively.

The topmost directory structure on a storage device is referred to as the root directory. A particular drive’s root

directory is indicated by the name of the drive followed by a colon ‘:’, followed by a backward slash character ‘\’.

The root directory of the C drive would be “C:\”. Figure 17-2 illustrates these concepts.

The location of a particular file within a directory structure is indicated by a string of characters called a path.

The path to the file’s location can be absolute or relative. An absolute path includes the name or letter of the drive and

all directory and subdirectory names required to pinpoint the file’s location. For example, referring to Figure 17-2 —

the absolute path to the Microsoft Excel spreadsheet file named Q2.xls located in the East directory, which is located

in the Reports directory, which is located in the root directory of the C drive would be:

“C:\Reports\East\Q2.xls”.

Figure 17-3 illustrates the concept of an absolute path.

A relative path is the path to a file from some arbitrary starting point, usually a working directory.

Manipulating Directories And Files

You can easily create and manipulate directories and files with the help of several classes provided by the .NET

Framework System.IO namespace. These include the Path, File, FileInfo, Directory, DirectoryInfo, and DriveInfo

classes. The difference between the Directory/File classes vs. DirectoryInfo/FileInfo classes is that the former are

static classes while the latter are non-static, meaning you can create instances of FileInfo and DirectoryInfo. Use the

Figure 17-2: Typical Directory Structure

Figure 17-3: The Absolute Path to the Reports\East\Q2.xls File
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 411

Manipulating Directories And Files Chapter 17: File I/O
static class versions when you need to perform one or two operations on a directory or file. If you need to do more

robust directory or file processing use the -Info versions.

The use of these classes is fairly straightforward. Example 17.1 offers a short program that prints out information

about the current directory, the files it contains, and the drives available on the computer.
17.1 DirectoryClassDemo.cs

1 using System;
2 using System.IO;
3
4 public class DirectoryClassDemo {
5 public static void Main(){
6 Console.WriteLine("The full path name of the current directory is...");
7 Console.WriteLine("\t" + Directory.GetCurrentDirectory());
8 Console.WriteLine("The current directory has the following files...");
9 String[] files = Directory.GetFiles(Directory.GetCurrentDirectory());
10 foreach(String s in files){
11 FileInfo file = new FileInfo(s);
12 Console.WriteLine("\t" + file.Name);
13 }
14 Console.WriteLine("The computer has the following attached drives...");
15 String[] drives = Directory.GetLogicalDrives();
16 foreach(String s in drives){
17 Console.WriteLine("\t" + s);
18 }
19 }
20 }

Referring to Example 17.1 — this example actually demonstrates the use of both the static Directory class and

the non-static FileInfo class. On line 7, the Directory.GetCurrentDirectory() method is used to get the absolute path to

the current, or working, directory. (i.e., The directory in which the program executes.) On line 9, the Directory.Get-

Files() method returns an array of strings representing each of the files in the current working directory. (Note: The

Directory.GetFileSystemEntries() method would return a string array with the names of all files and directories in the

current working directory.)

Given the array of filename strings, the foreach statement on line 10 iterates over each entry, creates a new

FileInfo object for each filename, and prints its name in the console. You could have simply printed out the array of

strings, but that would give you the complete path name of each file. The FileInfo.Name property only returns the

name of the file, not its complete path name.

Finally, on line 15, the Directory.GetLogicalDrives() method returns a string array containing the names of all

drives connected to the computer. Figure 17-4 shows the results of running this program.

Verbatim String Literals

From now on, you will find it more convenient to use verbatim string literals rather than ordinary strings when

formulating path names. When using ordinary strings, you must precede special characters with the escape character

‘\’. For example, a path name formulated as an ordinary string would look like this:

String path = “c:\\Reports\\East\\Q1.xls”; //ordinary string
Verbatim strings are formulated by preceding the string with the ‘@’ character, which signals the compiler to

“...interpret the following string literally, including special characters and line breaks.” The path string given above

would look like this as a verbatim string:

String path = @”c:\Reports\East\Q1.xls”; // verbatim string

Figure 17-4: Results of Running Example 17.1
412
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 17: File I/O Serializing Objects To Disk
Quick Review

In most all cases, data generated by an application and stored on an auxiliary storage device such as a hard disk,

is saved as an organized, related collection of data in a structure commonly referred to as a file.

It is the operating system’s responsibility to manage the organization, reading, and writing of files. When you add

a new storage device to your computer, it must first be formatted in a way that allows the operating system to access

its data.

The file, from the operating system’s point of view, is the fundamental storage organizational element. An appli-

cation’s associated data can be stored in one or more files. A file is located in another organizational element called a

directory. A directory is a special type of file that contains a list of files and directories. A directory contained inside

another directory is called a subdirectory.

The topmost directory structure is referred to as the root directory. The root directory of a particular drive is indi-

cated by the name of the drive followed by a colon ‘:’, followed by a backward slash character ‘\’. The root directory

of the C drive would be “C:\”.

The location of a particular file within a directory structure is indicated by a string of characters called a path.

The path to the file’s location can be absolute or relative. An absolute path includes the name or letter of the drive and

all directory and subdirectory names required to pinpoint the file’s location. A relative path is the path to a file from

some arbitrary starting point, usually a working directory.

You can easily create and manipulate directories and files with the help of several classes provided in the .NET

Framework System.IO namespace. These include the Path, File, FileInfo, Directory, DirectoryInfo, and DriveInfo

classes.

Verbatim strings are formulated by preceding the string with the ‘@’ character which signals the compiler to

“...interpret the following string literally, including special characters and line breaks.”

Serializing Objects To Disk

The easiest way to save data to a file is via serialization. Serialization is the term used to describe the process of

encoding objects in such a way as to facilitate their transmission out of the computer and into or onto some other type

of media. Objects can be serialized to disk and then later deserialized and reconstituted into objects. The same objects

can be serialized for transmission across a network and deserialized at the other end.

While powerful and convenient for you the programmer, serialization is the least flexible way to store data to

disk because doing so ties you to the .NET platform. You can’t edit the resulting data file. Well, you could edit the file,

but because object information is encoded, it’s not an ordinary text file, so it’s highly likely that you’d screw some-

thing up if you did try to edit the file with, say, an ordinary text editor. One way around this is to serialize objects into

an XML file.

The nice thing about serialization is that you can serialize single objects, or collections of objects. In this section

I will show you how to serialize collections of objects using ordinary serialization with the help of the BinaryFormat-

ter class, and XML serialization with the help of the XMLSerializer class.

Serializable Attribute

Before any object can be serialized it must be tagged as being serializable. You do this by tagging the class with

the Serializable attribute. When dealing with collections of objects, not only must the collection itself be serializable

— all the objects contained within the collection must be serializable as well. However, you need not worry about

collections, and this includes arrays, as they are already tagged as being serializable. Example 17.2 demonstrates the

use of the Serializable attribute to make the Dog class serializable.
17.2 Dog.cs

1 using System;
2
3 [Serializable]
4 public class Dog {
5
6 private String name = null;
7 private DateTime birthday;
C# For Artists © 2008 Rick Miller — All Rights Reserved 413

Serializing Objects To Disk Chapter 17: File I/O
8
9 public Dog(String name, DateTime birthday){
10 this.name = name;
11 this.birthday = birthday;
12 }
13
14 public Dog():this("Dog Joe", new DateTime(2005,01,01)){ }
15
16 public Dog(String name):this(name, new DateTime(2005,01,01)){ }
17
18
19 public int Age {
20 get {
21 int years = DateTime.Now.Year - _birthday.Year;
22 int adjustment = 0;
23 if(DateTime.Now.Month < _birthday.Month){
24 adjustment = 1;
25 }else if((DateTime.Now.Month == _birthday.Month) && (DateTime.Now.Day < _birthday.Day)){
26 adjustment = 1;
27 }
28 return years - adjustment;
29 }
30 }
31
32 public DateTime Birthday {
33 get { return birthday; }
34 set { birthday = value; }
35
36 }
37
38 public String Name {
39 get { return name; }
40 set { name = value; }
41 }
42
43
44 public override String ToString(){
45 return (name + "," + Age);
46 }
47
48 } // end class definition

Referring to Example 17.2 — the Serializable attribute appears on line 3 just above the start of the class defini-

tion in square brackets. That’s it! This tells the compiler that instances of the Dog class can be serialized. In the next

section I’ll show you how to serialize an array of Dog objects with the help of the BinaryFormatter class.

Serializing Objects With BinaryFormatter

To serialize an object to disk, you’ll need to perform the following steps:

Step 1: Create a FileStream object with the name of the file you want to create on disk.

Step 2: Create a BinaryFormatter object and call its Serialize() method, passing in a reference to a

FileStream object and a reference to the object you want to serialize.

Deserialization is the opposite of serialization. Deserialization is the process of reconstituting an object that has

been previously serialized and turning it back into an object. To deserialize an object from disk, you must perform the

following steps:

Step 1: Create a FileStream object that opens the file that contains the object you want to deserial-

ize.

Step 2: Create a BinaryFormatter object and call its Deserialize() method passing in a reference to

the FileStream object.

Step 3: The BinaryFormatter.Deserialize() method returns an object. This object must be cast to the

appropriate type.

Example 17.3 offers a short program that serializes and deserializes an array of Dog objects. This program

depends on the Dog class presented in Example 17.2.
17.3 MainApp.cs

1 using System;
2 using System.IO;
3 using System.Runtime.Serialization.Formatters.Binary;
4 using System.Runtime.Serialization;
5
6 public class MainApp {
7 public static void Main(String[] args){
414 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 17: File I/O Serializing Objects To Disk
8 /***
9 Create an array of Dogs and populate
10 ***/
11 Dog[] dog_array = new Dog[3];
12
13 dog_array[0] = new Dog("Rick Miller", new DateTime(1965, 07, 08));
14 dog_array[1] = new Dog("Coralie Powell", new DateTime(1973, 08, 10));
15 dog_array[2] = new Dog("Kyle Miller", new DateTime(1990, 05, 01));
16
17 /**
18 Iterate over the dog_array and print values
19 **/
20 Console.WriteLine("-----Original Dog Array Contents---------------------");
21 for(int i = 0; i<dog_array.Length; i++){
22 Console.WriteLine(dog_array[i].Name + ", " + dog_array[i].Age);
23 }
24
25 /**
26 Serialize the array of dog objects to a file
27 **/
28 FileStream fs = null;
29 try{
30 fs = new FileStream("DogFile.dat", FileMode.Create);
31 BinaryFormatter bf = new BinaryFormatter();
32 bf.Serialize(fs, dog_array);
33
34 }catch(IOException e){
35 Console.WriteLine(e.Message);
36 }catch(SerializationException se){
37 Console.WriteLine(se.Message);
38 }finally{
39 fs.Close();
40 }
41
42 /**
43 Deserialize the array of dogs and print values
44 ***/
45 fs = null; //start fresh
46 Dog[] another_dog_array = null; //here too!
47 try{
48 fs = new FileStream("DogFile.dat", FileMode.Open);
49 BinaryFormatter bf = new BinaryFormatter();
50 another_dog_array = (Dog[])bf.Deserialize(fs);
51 Console.WriteLine("-----After Serialization and Deserialization---------");
52 for(int i = 0; i<another_dog_array.Length; i++){
53 Console.WriteLine(another_dog_array[i].Name + ", " + another_dog_array[i].Age);
54 }
55
56 }catch(IOException e){
57
58 Console.WriteLine(e.Message);
59 }catch(SerializationException se){
60 Console.WriteLine(se.Message);
61 }finally{
62 fs.Close();
63 }
64 } // end Main() definition
65 } // end MainApp class definition

Referring to Example 17.3 — note the namespaces you must use to serialize objects to disk with a BinaryFor-

matter. These include System.IO, System.Runtime.Serialization, and System.Runtime.Serialization.Format-

ters.Binary. The first thing the program does is create an array of Dogs on line 11 and populate it with references to

three Dog objects. The for loop starting on line 21 iterates over the dog_array and prints each dog’s name and age to

the console. The serialization process starts on line 28 with the declaration of the FileStream reference named fs. In

the body of the try block that begins on line 29, the FileStream object is created using the filename “DogFile.dat”

and a FileMode of Create. (Note: You can name your files anything you like within the rules of the operating system.)

The BinaryFormatter is created on line 31 and on the next line the Serialize() method is called passing in the ref-

erence to the FileStream (fs) and the reference to the array of dogs (dog_array). The appropriate exceptions are han-

dled should something go wrong.

The deserialization process begins on line 45 by setting the reference fs to null and creating a completely new

array to house the deserialized array of Dog objects. On line 48, a new FileStream object is created given the appro-

priate file name and a FileMode of Open. A new BinaryFormatter object is created on the following line and its Dese-

rialize() method is called passing in a reference to the FileStream object. Note how the deserialized object is cast to an
C# For Artists © 2008 Rick Miller — All Rights Reserved 415

Serializing Objects To Disk Chapter 17: File I/O
array of Dogs (i.e. Dog[]). The for loop on line 52 iterates over another_dog_array and prints each dog’s name and

age to the console. Figure 17-5 shows the results of running this program.

Serializing Objects With XMLSerializer

You can serialize objects to disk in XML format with the help of the XMLSerializer class. The steps required to

serialize objects to an XML file are similar to those of ordinary serialization:

Step 1: Create a StreamWriter object passing in the name of the file where you want to save the

object.

Step 2: Create an XMLSerializer object and call its Serialize() method passing in a reference to the

file and to the object you want to serialize.

To deserialize an XML file you would do the following:

Step 1: Create a FileStream object passing in the name of the file you want to read.

Step 2: Create an XMLSerializer object and call its Deserialize() method.

Step 3: The Deserialize() method returns an object. You must cast this object to the appropriate

type.

Example 17.4 gives a modified version of MainApp.cs that serializes an array of Dog objects to disk in an XML

file.
17.4 MainApp.cs (Mod 1)

1 using System;
2 using System.IO;
3 using System.Xml;
4 using System.Xml.Serialization;
5
6 public class MainApp {
7 public static void Main(String[] args){
8 /***
9 Create an array of Dogs and populate
10 ***/
11 Dog[] dog_array = new Dog[3];
12
13 dog_array[0] = new Dog("Rick Miller", new DateTime(1965, 07, 08));
14 dog_array[1] = new Dog("Coralie Powell", new DateTime(1973, 08, 10));
15 dog_array[2] = new Dog("Kyle Miller", new DateTime(1990, 05, 01));
16
17 /**
18 Iterate over the dog_array and print values
19 **/
20 Console.WriteLine("-----Original Dog Array Contents---------------------");
21 for(int i = 0; i<dog_array.Length; i++){
22 Console.WriteLine(dog_array[i].Name + ", " + dog_array[i].Age);
23 }
24
25 /**
26 Serialize the array of dog objects to a file
27 **/
28 TextWriter writer = null;
29 try{
30 writer = new StreamWriter("dogfile.xml");
31 XmlSerializer serializer = new XmlSerializer(typeof(Dog[]));
32 serializer.Serialize(writer, dog_array);
33
34
35 }catch(IOException ioe){
36 Console.WriteLine(ioe.Message);

Figure 17-5: Results of Running Example 17.3
416
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 17: File I/O Serializing Objects To Disk
37 }catch(Exception ex){
38 Console.WriteLine(ex.Message);
39 }finally{
40 writer.Close();
41 }
42
43 /**
44 Deserialize the array of dogs and print values
45 ***/
46 FileStream fs = null; //start fresh
47 Dog[] another_dog_array = null; //here too!
48 try{
49 fs = new FileStream("dogfile.xml", FileMode.Open);
50 XmlSerializer serializer = new XmlSerializer(typeof(Dog[]));
51 another_dog_array = (Dog[])serializer.Deserialize(fs);
52 Console.WriteLine("-----After Serialization and Deserialization---------");
53 for(int i = 0; i<another_dog_array.Length; i++){
54 Console.WriteLine(another_dog_array[i].Name + ", " + another_dog_array[i].Age);
55 }
56
57 }catch(IOException ioe){
58
59 Console.WriteLine(ioe.Message);
60 }catch(Exception ex){
61 Console.WriteLine(ex.Message);
62 }finally{
63 fs.Close();
64 }
65 } // end Main() definition
66 } // end MainApp class definition

Referring to Example 17.4 — note now that the namespaces required to serialize objects to an XML file include

System.IO, System.XML, and System.XML.Serialization. The serialization process begins on line 28 with the decla-

ration of a TextWriter reference. In the body of the try block, a StreamWriter object is actually created passing in the

name of the file that will be used to hold the serialized dog_array. On line 31, an XMLSerializer object is created.

Note that what gets passed as an argument to the constructor is the type of object that will be serialized. The Serial-

ize() method is called on the following line passing in the reference to the output file (writer) and the object to be seri-

alized (dog_array).

The deserialization process starts on line 46 with the declaration of the FileStream reference fs. Another dog

array is declared named another_dog_array. In the body of the try block starting on line 48, the FileStream object is

created passing in the name of the input file and a FileMode of Open. Next, an XMLSerializer object is created again

passing to its constructor the type of object that will be deserialized. Lastly, the Deserialize() method is called passing

in the name of the input file. The resulting object must be cast to the type Array of Dog (Dog[]). The for loop then

iterates over the contents of another_dog_array and prints the name and age of each dog to the console. Figure 17-6

gives the results of running this program.

At this point you’ll find it interesting to explore the contents of both the DogFile.dat and the dogfile.xml files.

The DogFile.dat file appears to contain a log of gibberish, while the XML file is a readable text file that contains

XML tags corresponding to the object or objects that were serialized. Example 17.5 gives the listing of dogfile.xml.
17.5 Contents of dogfile.xml

1 <?xml version="1.0" encoding="utf-8"?>
2 <ArrayOfDog xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
3 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
4 <Dog>
5 <Birthday>1965-07-08T00:00:00</Birthday>
6 <Name>Rick Miller</Name>
7 </Dog>

Figure 17-6: Results of Running Example 17.4
C# For Artist
s © 2008 Rick Miller — All Rights Reserved 417

Working With Text Files Chapter 17: File I/O
8 <Dog>
9 <Birthday>1973-08-10T00:00:00</Birthday>
10 <Name>Coralie Powell</Name>
11 </Dog>
12 <Dog>
13 <Birthday>1990-05-01T00:00:00</Birthday>
14 <Name>Kyle Miller</Name>
15 </Dog>
16 </ArrayOfDog>

Quick Review

Object serialization provides an easy, convenient way for you to persist application data to disk. Object serializa-

tion is also the least flexible way to store application data because you can’t edit the resulting file. Use a FileStream

object and a BinaryFormatter to serialize objects to disk. Before an object can be serialized it must be tagged as being

serializable with the Serializable attribute. Place the Serializable attribute above the class declaration line.

When serializing a collection of objects, remember that all objects contained within the collection must be serial-

izable. You don’t have to worry about the collections themselves, including ordinary arrays, as they are already

tagged as being serializable.

You can get around the limitation of ordinary serialization by serializing objects to disk in XML format. Use the

StreamWriter and XMLSerializer classes to serialize objects to disk in XML format. Use a FileStream and XMLSeri-

alizer to deserialize objects from an XML file.

Working With Text Files

One of the best ways to store data in a way that can be easily shared between different applications or different

computer platforms is in a text file. The System.IO namespace provides two classes that make it easy to process text

files: StreamReader and StreamWriter. The StreamReader class extends the abstract TextReader class; the Stream-

Writer extends the abstract TextWriter class.

Some Issues You Must Consider

Before you start writing code to process text files, you’ll need to spend some time in the design phase working on

exactly what format the text within your text file will have. By format I mean how the text is organized within the file.

The decisions you make regarding this issue will vary according to your application’s data storage needs. For exam-

ple, a small database application might store records as separate lines of text. These lines may be, and usually are,

separated by special characters referred to as carriage-return/line-feed (\r\n). Individual fields within each record may

be further separated or delimited with another type of character. One character that’s commonly used to delimit fields

is the comma ‘,’.

Another critically important point to consider is, “What data needs to be preserved in the text file?” For example,

if you are working with Person objects within your program, and you want to save this data to a file, what data about

each Person object must you save to allow the creation of Person objects later when the data is read from the file?

Also, how might the data be treated later in its life? Will it be read by another program? If so, what type of appli-

cation is it and how will the data’s format affect the application’s performance.

Saving Dog Data To A Text File

Example 17.6 offers a short program that saves the data for an array of Dog objects to a text file. After the file is

written, the program reads and parses the text file and recreates the array of Dog objects.
17.6 TextFileDemo.cs

1 using System;
2 using System.IO;
3
4 public class TextFileDemo {
5 public static void Main(){
6 /***
418 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 17: File I/O Working With Text Files
7 Create an array of Dogs and populate
8 ***/
9 Dog[] dog_array = new Dog[3];
10
11 dog_array[0] = new Dog("Rick Miller", new DateTime(1965, 07, 08));
12 dog_array[1] = new Dog("Coralie Powell", new DateTime(1973, 08, 10));
13 dog_array[2] = new Dog("Kyle Miller", new DateTime(1990, 05, 01));
14
15 /**
16 Iterate over the dog_array and print values
17 **/
18 Console.WriteLine("-----Original Dog Array Contents---------------------");
19 foreach(Dog d in dog_array){
20 Console.WriteLine(d.Name + ", " + d.Age);
21 }
22
23 /**
24 Save data to textfile
25 **/
26 TextWriter writer = null;
27 try{
28 writer = new StreamWriter("dogfile.txt");
29 foreach(Dog d in dog_array){
30 writer.WriteLine(d.Name + "," + d.Birthday.Year + "-" + d.Birthday.Month + "-" + d.Birthday.Day);
31 }
32 writer.Flush();
33 }catch(Exception e){
34 Console.WriteLine(e);
35 }finally{
36 writer.Close();
37 }
38
39 /**
40 Read data from text file and create objects...
41 **/
42 TextReader reader = null;
43 Dog[] another_dog_array = new Dog[3];
44 try{
45 reader = new StreamReader("dogfile.txt");
46 String s = String.Empty;
47 int count = 0;
48 while((s = reader.ReadLine()) != null){
49 String[] line = s.Split(',');
50 String name = line[0];
51 String[] dob = line[1].Split('-');
52 another_dog_array[count++] = new Dog(name, new DateTime(Int32.Parse(dob[0]), Int32.Parse(dob[1]),
53 Int32.Parse(dob[2])));
54 }
55 }catch(Exception e){
56 Console.WriteLine(e);
57 }finally{
58 reader.Close();
59 }
60
61 Console.WriteLine("-----------After writing to and reading from text file------------");
62 foreach(Dog d in another_dog_array){
63 Console.WriteLine(d.Name + ", " + d.Age);
64 }
65
66 } // end Main()
67 } // end class definition

Referring to Example 17-6 — the array of Dog reference is created as before and each dog’s name and age is

printed to the console. The start of the text file save process begins on line 26 with the declaration of the TextWriter

reference named writer. In the body of the try block, a new StreamWriter is created passing in the name of the file in

which to save the Dog object data. (dogfile.txt) The foreach loop iterates over each element of the array and calls

the writer.WriteLine() method to write each dog’s name and birthday information to disk. Note that in this case I am

separating the name field from the birthday field with a comma.

To create a DateTime object later when I read the file, I will need to have the year, month, and day of the dog’s

birthday. I delimit each piece of the birthday with a hyphen ‘-’. When I have finished writing all the lines, I call the

writer.Flush() method to actually write the data to disk.

The file read process begins on line 42 with the declaration of a TextReader reference. In the body of the try

block, I create a StreamReader object passing in the name of the text file to read. I then process the text file according

to the following algorithm:

• Declare a string variable in which will be stored each line as it is read from the text file.
C# For Artists © 2008 Rick Miller — All Rights Reserved 419

Working With Binary Data Chapter 17: File I/O
• Declare a count variable to control the process loop.

• Read the next line of the file and if it’s not null, process the line like so:

 Declare a string array to hold the individual fields of the string when it is split.

 Call the String.Split() method to split the line into tokens based on the field delimiter ‘,’.

 Create a string variable called “name” and assign to it the first token of the split string.

 Create another string array named dob (short for date of birth) to hold the split date field.

 Call the String.Split() method on the second line token (i.e., line[1]) to split the dob.

 Create the Dog object using the extracted fields.

As you can see, there is considerably more work involved with manipulating lines of text files. Figure 17-7 gives

the results of running this program. Example 17.7 shows the contents of the dogfile.txt file.

17.7 Contents of dogfile.txt

1 Rick Miller,1965-7-8
2 Coralie Powell,1973-8-10
3 Kyle Miller,1990-5-1

Quick Review

The StreamReader and StreamWriter classes let you read and write text files. Text files are usually processed

line-by-line. Lines of text are terminated with the special characters carriage-return and line-feed (\r\n). Each line

can contain one or more fields delimited by some character. The comma ‘,’ is a commonly used field delimiter. Indi-

vidual fields can be further delimited as required.

Look to the objects in your program to determine the type of information your text file(s) must contain. You’ll

need to save enough data to recreate objects.

Process a text file by reading each line and breaking it into tokens with the String.Split() method. If one or more

fields are also delimited, use the String.Split() method to tokenize the data as required.

Working With Binary Data

You can read and write binary data to a file with the help of the BinaryReader and BinaryWriter classes. The

BinaryWriter class provides an overloaded Write() method that is used to write each of the simple types including

strings and arrays of bytes and characters. The BinaryReader class provides an assortment of ReadTypename() meth-

ods where Typename may be any one of the simple types to include strings and arrays of bytes and characters.

Example 17.8 shows the BinaryWriter and BinaryReader classes in action.
17.8 BinaryDataDemo.cs

1 using System;
2 using System.IO;
3
4 public class BinaryDataDemo {
5 public static void Main(){
6
7 int record_count = 5;
8 int record_number = 0;
9 int int_val = 125;
10 double double_val = -4567.00;
11 String string_val = "I love C#!";
12 bool bool_val = true;
13

Figure 17-7: Results of Running Example 17.6
420
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 17: File I/O Working With Binary Data
14 /**

15 Create the file and write the data with a BinaryWriter

16 **/

17 BinaryWriter writer = null;

18 try{

19 writer = new BinaryWriter(File.Open("binaryfile.dat", FileMode.Create));

20 writer.Write(record_count);

21 for(int i=0; i<record_count; i++){

22 writer.Write(++record_number);

23 writer.Write(int_val);

24 writer.Write(double_val);

25 writer.Write(string_val);

26 writer.Write(bool_val);

27 }

28

29 }catch(Exception e){

30 Console.WriteLine(e);

31 }finally{

32 writer.Close();

33 }

34

35 /**

36 Open the file and read the data with a BinaryReader

37 **/

38 BinaryReader reader = null;

39 record_count = 0; // reset record count

40 try{

41 reader = new BinaryReader(File.Open("binaryfile.dat", FileMode.Open));

42 record_count = reader.ReadInt32();

43 for(int i=0; i<record_count; i++){

44 Console.WriteLine("Record #: " + reader.ReadInt32());

45 Console.WriteLine("Int value: " + reader.ReadInt32());

46 Console.WriteLine("Double value: " + reader.ReadDouble());

47 Console.WriteLine("String value: " + reader.ReadString());

48 Console.WriteLine("Bool value: " + reader.ReadBoolean());

49 Console.WriteLine("---");

50 }

51

52 }catch(Exception e){

53 Console.WriteLine(e);

54 }finally{

55 reader.Close();

56 }

57 } // end Main()

58 } // end class definition

Referring to Example 17.8 — on lines 7 through 12 I declare a set of variables of various different types. I use

the variable named record_count to indicate the number of records I’ll be writing to and reading from the file. The

variable named record_number is incremented for each record that is written to the file and will thus be different for

each record. The rest of the variables remain unchanged for the duration of the program.

The BinaryWriter reference named writer is declared on line 17 and is used to write the various simple-type vari-

able values to a file named binaryfile.dat. The for loop starting on line 21 writes five records to the file. In this case

the boundary of each record, or set of binary values, is demarcated only by the combined length of data written to the

file during each iteration of the for loop. Also, in this case, the combined length of data written to the file with each

iteration of the for loop is constant because I don’t modify the length of the string variable. If I did, then you’d have

variable length records.

The BinaryReader reference named reader is declared on line 38 and is used to read the binary values from the

file. How does the reader object know where to read? This is where the concept of a file position pointer comes into

play. The file position pointer is a variable within the reader object that keeps track of the start of the next read loca-

tion. It is advanced to the next location based on the length of the type that was just read. For example, if you read an

integer value, the file position pointer is advanced 4 bytes. If the next value read is a string, the pointer is advanced to

a point equal to the length of the string. That’s why it’s important to know exactly what type you are reading and

where in the file you are reading it from. In the case of Example 17.8 above, the for loop starting on line 43 simply

reads the values from the file in the order in which they were written. Figure 17-8 shows the results of running this

program.
C# For Artists © 2008 Rick Miller — All Rights Reserved 421

Random Access File I/O Chapter 17: File I/O
Quick Review

Use the BinaryReader and BinaryWriter classes to read and write binary data to disk. The BinaryWriter class

provides an overloaded Write() method that is used to write each of the simple types including strings and arrays of

bytes and characters. The BinaryReader class provides an assortment of ReadTypename() methods where Typename

may be any one of the simple types to include strings and arrays of bytes and characters.

Random Access File I/O

You can conduct random access file operations with the help of the BinaryReader, BinaryWriter, and FileStream

classes. The FileStream class provides a Seek() method that allows you to position the file pointer at any point within

a file. As you learned in the previous section, the BinaryReader and BinaryWriter classes provide methods for reading

and writing binary, string, byte, and character array data.

There are many ways to go about random access file operations, but generally speaking, you must know a little

something about how data is organized in a file so that you know where to find what you are looking for. When seek-

ing a specific record location, you must know where one record ends and another begins. This is not the same as read-

ing lines of text where line terminators provide clues as to where one line ends and a new one begins. In most random

access file situations, record length is fixed. (i.e., fixed-length records) A fixed-length record can contain a mixture of

binary and character data, but each field within the record is a known size. Seeking the location of a particular record

within the file requires the setting of the file position pointer value to a multiple of the record length. The number of

records a file contains can be calculated by dividing the file length in bytes by the record length in bytes. You could,

of course, randomly seek to any position in a file, but who knows what data you will find there!

In this section I’m going to show you a rather extended example of random access file operations. The example

code and resulting application provides a solution to the legacy datafile adapter project specification given in Figure

17-9. Please take some time now to review the project specification before proceeding to the next section.

Towards An Approach To The Adapter Project

Given the project specification and the three supporting artifacts, you may be wondering where to begin. Using

the guidance offered by the project-approach strategy in Chapter 1, I recommend devoting some time to studying the

Figure 17-8: Results of Running Example 17.8
422
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 17: File I/O Random Access File I/O
schema definition and compare it to what you see in the example data file. You will note that although some of the

text appears to read OK, there are a few characters here and there that seem out of place. For instance, you can make

out the header information, but the header appears to start with a letter ‘z’. Studying the schema definition closely you

note that the data file begins with a two-byte file identifier number. But what’s the value of this number?

Start Small And Take Baby Steps

One way to find out is to write a short program that reads the first two bytes of the file and converts it to a num-

ber. The BinaryReader class has a method named ReadInt16(). The method name derives from the System.Int16

structure that represents the short data type in the .NET Framework. A short is a two-byte value. The ReadInt16()

method would be an excellent method to use to read the first two bytes of the file in an effort to determine their value.

The next phase of your discovery would be to try and read the rest of the file, or at least try and read the complete

header and one complete record using the schema definition as a guide. You may find that a more detailed analysis of

the header and record lengths are in order. Figure 17-10 shows a simple analysis performed with a spreadsheet.

Legacy Datafile Adapter
Project Specification

Objectives:
- Demonstrate your ability to conduct random access file I/O operations using the BinaryReader, Binary-

Writer, and FileStream classes
- Demonstrate your ability to implement a non-trivial interface
- Demonstrate your ability to translate low-level exceptions into higher-level, user-defined, applica-

tion-specific exception abstractions
- Demonstrate your ability to coordinate file I/O operations via object synchronization

Tasks:
- You are a junior programmer working in the IT department of a retail bookstore. The CEO wants to begin

migrating legacy systems to the web using .NET technology. A first step in this initiative is to create
C# adapters to existing legacy data stores. Given an interface definition, example legacy data file,
and legacy data file schema definition, write a C# class that serves as an adapter object to a legacy
data file.

Given:
- C# interface file specifying adapter operations
- Legacy data file schema definition
- Example legacy data file

Legacy Data File Schema Definition:

The legacy data file contains three sections:

1) The file identification section is a two-byte value that identifies the file as a data file.

2) The schema description section immediately follows the first section and contains the field text name
 and two-byte field length for each field in the data section.

3) The data section contains fixed-field-length record data elements arranged according to the following
 schema: (length is in bytes)

 Field Name Length Description

 --------------|---------|--
deleted	1	numeric - 0 if valid, 1 if deleted
 title | 50 | text - book title
 --------------|---------|--
 author | 50 | text - author full name
 --------------|---------|--
 pub_code | 4 | numeric - publisher code
 --------------|---------|--
 ISBN | 13 | text - International Standard Book Number
 --------------|---------|--
 price | 8 | text - retail price in following format: $nnnn.nn
 --------------|---------|--
 qoh | 4 | numeric - quantity on hand
 --------------|---------|--

Figure 17-9: Legacy Datafile Adapter Project Specification
C# F
or Artists © 2008 Rick Miller — All Rights Reserved 423

Random Access File I/O Chapter 17: File I/O
Referring to Figure 17-10 — the simple analysis reveals that the length of the header section of the legacy data

file is 54 bytes long and each record is 130 bytes long. These figures, as well as the individual field lengths, will come

in handy when you write the adapter.

Armed with some knowledge about the structure of the legacy data file and having gained some experience writ-

ing a small test program that reads all or portions of the file, you can begin to create the adapter class incrementally. A

good method to start with is the ReadRecord() method specified in the LegacyDatafileInterface.

Other Project Considerations

This section briefly discusses additional issues which must be considered during the project implementation

phase. These considerations include 1) record locking during updates and deletes, and 2) translating low-level I/O

exceptions into higher level exceptions as specified in the interface.

Locking A Record For Updates And Deletes

The LegacyDatafileInterface specifies that a record must be locked when it is being updated or deleted. The lock-

ing is done via a lock token, which is nothing more that a long value. How might the locking mechanism be imple-

mented? How is the lock_token generated?

To implement the locking mechanism, you must thoroughly understand threads and thread synchronization.

(These topics are covered in detail in Chapter 16.) An object can be used as a synchronization point by using the C#

lock keyword or the Monitor.Enter() and Monitor.Exit() methods. The adapter must ensure that if one thread

attempts to update or delete a record (by calling the UpdateRecord() or DeleteRecord() methods), it cannot do so

while another thread is in the process of calling either of those methods.

You can adopt several strategies as a means to an ends here. You can 1) apply the synchronized attribute to the

entire method in question (UpdateRecord() and DeleteRecord()) or 2) control access only to the critical section of

code within each method. Within the locked block, you implement logic to check for a particular condition. If the

condition holds, you can proceed with whatever it is you need to do. If the condition does not hold, you will have to

wait until it does by calling the Monitor.Wait() method. The Wait() method blocks the current thread and adds it to a

list of threads waiting to get a lock on that object.

Conversely, when a thread has obtained a lock on an object and it concludes its business and is ready to release

the lock, it can notify other waiting threads to wake up by calling the Monitor.Pulse() method. I have used the lock

keyword along with Monitor.Wait() and Monitor.Pulse() methods to synchronize access to critical code sections

within the DatafileAdapter class.

Figure 17-10: Header and Record Length Analysis
424
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 17: File I/O Random Access File I/O
Monitor.Enter()/Monitor.Exit() vs. The lock Keyword

The lock keyword is equivalent to the Monitor.Enter()/Monitor.Exit() method combination. You certainly could

use the Monitor.Enter()/Monitor.Exit() combination to control access to a critical code section, but you must take

measures to ensure the Monitor.Exit() method gets called at some point. To do this, Microsoft recommends that you

use them within the body of a try/finally block. The lock keyword automatically wraps the Monitor.Enter()

and Monitor.Exit() methods in a try/finally block for you. Figure 17-11 shows you how the use of the Moni-

tor.Enter()/Monitor.Exit() methods compares to the use of the lock keyword.

Translating Low-Level Exceptions Into Higher-Level Exception Abstractions

The System.IO package defines several low-level exceptions that can occur when conducting file I/O operations.

These exceptions must be handled in the adapter, however, the LegacyDatafileInterface specifies that several higher-

level exceptions may be thrown when its methods are called.

To create custom exceptions, extend the Exception class and add any customized behavior required. (Exceptions

are discussed in detail in Chapter 15.) In your adapter code, you catch and handle the low-level exception when it

occurs, repackage the exception within the context of a custom exception, and then throw the custom exception. Any

objects utilizing the services of the adapter class must handle your custom exceptions, not the low-level I/O excep-

tions.

Where To Go From Here

The previous sections attempted to address some of the development issues you will typically encounter when

attempting this type of project. The purpose of the project is to demonstrate the use of the FileStream, BinaryReader,

and BinaryWriter classes in the context of a non-trivial example. I hope also that I have sufficiently illustrated the

reality that rarely can one class perform its job without the help of many other classes.

The next section gives the code for the completed project. Keep in mind that the examples listed here represent

one particular approach and solution to the problem. As an exercise, I will invite you to attempt a solution on your

own terms using the knowledge gained here as a guide.

Explore and study the code. Compile the code and observe its operation. Experiment — make changes to areas

you feel can use improvement.

Complete RandomAccessFile Legacy Datafile Adapter Source Code Listing

This section gives the complete listing for the code that satisfies the requirements of the Legacy Datafile Adapter

project.
17.9 FailedRecordCreationException.cs

1 using System;
2
3 public class FailedRecordCreationException : Exception {
4
5 public FailedRecordCreationException() : base("Failed Record Creation Exception") { }
6
7 public FailedRecordCreationException(String message) : base(message) { }
8
9 public FailedRecordCreationException(String message, Exception inner_exception) :

Figure 17-11: Monitor.Enter()/Monitor.Exit() vs. the lock Keyword
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 425

Random Access File I/O Chapter 17: File I/O
10 base(message, inner_exception) { }
11 }

17.10 InvalidDataFileExcepton.cs

1 using System;
2
3 public class InvalidDataFileException : Exception {
4
5 public InvalidDataFileException() : base("Invalid Data File Exception") { }
6
7 public InvalidDataFileException(String message) : base(message) { }
8
9 public InvalidDataFileException(String message, Exception inner_exception) :
10 base(message, inner_exception) { }
11 }

17.11 NewDatafileException.cs

1 using System;
2
3 public class NewDataFileException : Exception {
4
5 public NewDataFileException() : base("New Data File Exception") { }
6
7 public NewDataFileException(String message) : base(message) { }
8
9 public NewDataFileException(String message, Exception inner_exception) :
10 base(message, inner_exception) { }
11 }

17.12 RecordNotFoundException.cs

1 using System;
2
3 public class RecordNotFoundException : Exception {
4
5 public RecordNotFoundException() : base("Record Not Found Exception") { }
6
7 public RecordNotFoundException(String message) : base(message) { }
8
9 public RecordNotFoundException(String message, Exception inner_exception) :
10 base(message, inner_exception) { }
11 }

17.13 SecurityException.cs

1 using System;
2
3 public class SecurityException : Exception {
4
5 public SecurityException() : base("Security Exception") { }
6
7 public SecurityException(String message) : base(message) { }
8
9 public SecurityException(String message, Exception inner_exception) :
10 base(message, inner_exception) { }
11 }

17.14 LegacyDatafileInterface.cs

1 using System;
2
3 public interface LegacyDatafileInterface {
4
5
6 /// <summary>
7 /// Read the record indicated by the rec_no and return a string array
8 /// were each element contains a field value.
9 /// </summary>
10 /// <param name="rec_no"></param>
11 /// <returns>A string array containing the record fields</returns>
12 /// <exception cref="RecordNotFoundException"</exception>
13 String[] ReadRecord(long rec_no);
14
15
16 /// <summary>
17 /// Update a record's fields. The record must be locked with the lockRecord()
18 /// method and the lock_token must be valid. The value for field n appears in
426 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 17: File I/O Random Access File I/O
19 /// element record[n].
20 /// </summary>
21 /// <param name="rec_no"></param>
22 /// <param name="record"></param>
23 /// <param name="lock_token"></param>
24 /// <exception cref="RecordNotFoundException"></exception>
25 /// <exception cref="SecurityException"></exception>
26 void UpdateRecord(long rec_no, String[] record, long lock_token);
27
28
29 /// <summary>
30 /// Marks a record for deletion by setting the deleted field to 1. The lock_token
31 /// must be valid otherwise a SecurityException is thrown.
32 /// </summary>
33 /// <param name="rec_no"></param>
34 /// <param name="lock_token"></param>
35 /// <exception cref="RecordNotFoundException" ></exception>
36 /// <exception cref="SecurityException"></exception>
37 void DeleteRecord(long rec_no, long lock_token);
38
39 /// <summary>
40 /// Creates a new datafile record and returns the record number.
41 /// </summary>
42 /// <param name="record"></param>
43 /// <returns>The record number of the newly created record</returns>
44 /// <exception cref="FailedRecordCreationException"></exception>
45 long CreateRecord(String[] record);
46
47
48 /// <summary>
49 /// Locks a record for updates and deletes and returns an integer
50 /// representing a lock token.
51 /// </summary>
52 /// <param name="rec_no"></param>
53 /// <returns>Lock token</returns>
54 /// <exception cref="RecordNotFoundException"></exception>
55 long LockRecord(long rec_no);
56
57
58 /// <summary>
59 /// Unlocks a previously locked record. The lock_token must be valid or a
60 /// SecurityException is thrown.
61 /// </summary>
62 /// <param name="rec_no"></param>
63 /// <param name="lock_token"></param>
64 /// <exception cref="SecurityException"></exception>
65 void UnlockRecord(long rec_no, long lock_token);
66
67
68 /// <summary>
69 /// Searches the records in the datafile for records that match the String
70 /// values of search_criteria. search_criteria[n] contains the search value
71 /// applied against field n.
72 /// </summary>
73 /// <param name="search_criteria"></param>
74 /// <returns>An array of longs containing the matched record numbers</returns>
75 long[] SearchRecords(String[] search_criteria);
76
77 }//end interface definition

17.15 DataFileAdapter.cs

1 using System;
2 using System.IO;
3 using System.Text;
4 using System.Threading;
5 using System.Collections;
6 using System.Collections.Generic;
7
8
9 public class DataFileAdapter : LegacyDatafileInterface {
10
11 /**************************************
12 * Constants
13 ***************************************/
14
15 private const short FILE_IDENTIFIER = 378;
16 private const int HEADER_LENGTH = 54;
17 private const int RECORDS_START = 54;
18 private const int RECORD_LENGTH = 130;
19 private const int FIELD_COUNT = 7;
C# For Artists © 2008 Rick Miller — All Rights Reserved 427

Random Access File I/O Chapter 17: File I/O
20
21 private const short DELETED_FIELD_LENGTH = 1;
22 private const short TITLE_FIELD_LENGTH = 50;
23 private const short AUTHOR_FIELD_LENGTH = 50;
24 private const short PUB_CODE_FIELD_LENGTH = 4;
25 private const short ISBN_FIELD_LENGTH = 13;
26 private const short PRICE_FIELD_LENGTH = 8;
27 private const short QOH_FIELD_LENGTH = 4;
28
29 private const String DELETED_STRING = "deleted";
30 private const String TITLE_STRING = "title";
31 private const String AUTHOR_STRING = "author";
32 private const String PUB_CODE_STRING = "pub_code";
33 private const String ISBN_STRING = "ISBN";
34 private const String PRICE_STRING = "price";
35 private const String QOH_STRING = "qoh";
36
37 private const int TITLE_FIELD = 0;
38 private const int AUTHOR_FIELD = 1;
39 private const int PUB_CODE_FIELD = 2;
40 private const int ISBN_FIELD = 3;
41 private const int PRICE_FIELD = 4;
42 private const int QOH_FIELD = 5;
43
44 private const int VALID = 0;
45 private const int DELETED = 1;
46
47 /**
48 * Private Instance Fields
49 ***/
50 private String _filename = null;
51 private BinaryReader _reader = null;
52 private BinaryWriter _writer = null;
53 private long _record_count = 0;
54 private Hashtable _locked_records_map = null;
55 private Random _token_maker = null;
56 private long _current_record_number = 0;
57 private bool _debug = false;
58
59 /***
60 * Properties
61 **/
62 public long RecordCount {
63 get { return _record_count; }
64 }
65
66 /**
67 * Instance Methods
68 **/
69
70 /// <summary>
71 /// Constructor
72 /// </summary>
73 /// <param name="filename"></param>
74 /// <exception cref="InvalidDataFileException"></exception>
75 public DataFileAdapter(String filename) {
76 try {
77 _filename = filename;
78 if(File.Exists(_filename)){
79 _reader = new BinaryReader(File.Open(filename, FileMode.Open));
80 if ((_reader.BaseStream.Length >= HEADER_LENGTH) && (_reader.ReadInt16() == FILE_IDENTIFIER)) {
81 // it's a valid data file
82 Console.WriteLine(_filename + " is a valid data file...");
83 _record_count = ((_reader.BaseStream.Length - HEADER_LENGTH) / RECORD_LENGTH);
84 Console.WriteLine("Record count is: " + _record_count);
85 InitializeVariables();
86 _reader.Close();
87 } else if (_reader.BaseStream.Length == 0) { // The file's empty - make it a data file
88 _reader.Close();
89 WriteHeader(FileMode.Open);
90 InitializeVariables();
91 } else {
92 _reader.BaseStream.Seek(0, SeekOrigin.Begin);
93 if (_reader.ReadInt16() != FILE_IDENTIFIER) {
94 _reader.Close();
95 Console.WriteLine("Invalid data file. Closing file.");
96 throw new InvalidDataFileException("Invalid data file identifier...");
97 }
98 }
99 }else {
100 CreateNewDataFile(_filename);
428 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 17: File I/O Random Access File I/O
101 }
102 }catch (ArgumentException e) {
103 if(_debug){ Console.WriteLine(e.ToString()); }
104 throw new InvalidDataFileException("Invalid argument.",e);
105 }
106 catch (EndOfStreamException e) {
107 if(_debug){ Console.WriteLine(e.ToString()); }
108 throw new InvalidDataFileException("End of stream exception.",e);
109 }
110 catch (ObjectDisposedException e) {
111 if(_debug){ Console.WriteLine(e.ToString()); }
112 throw new InvalidDataFileException("BinaryReader not initialized.",e);
113 }
114 catch (IOException e) {
115 if(_debug){ Console.WriteLine(e.ToString()); }
116 throw new InvalidDataFileException("General IOException",e);
117 }
118 catch (Exception e) {
119 if(_debug){ Console.WriteLine(e.ToString()); }
120 throw new InvalidDataFileException("General Exception",e);
121 }
122 finally {
123 if (_reader != null) {
124 _reader.Close();
125 }
126 }
127 } // end constructor
128
129
130 /// <summary>
131 /// Default Constructor
132 /// </summary>
133 /// <exception cref="InvalidDataFileException"></exception>
134 public DataFileAdapter():this("books.dat"){ }
135
136
137 /// <summary>
138 /// Create new file
139 /// </summary>
140 /// <param name="filename"></param>
141 /// <exception cref="NewDataFileException"></exception>
142 public void CreateNewDataFile(String filename) {
143 try {
144 _filename = filename;
145 WriteHeader(FileMode.Create);
146 InitializeVariables();
147 } catch (Exception e) {
148 if(_debug) { Console.WriteLine(e); }
149 throw new NewDataFileException(e.ToString());
150 }
151 } // end createNewDataFile method
152
153
154 /// <summary>
155 /// Read the record indicated by the rec_no and return a string array
156 /// were each element contains a field value.
157 /// </summary>
158 /// <param name="rec_no"></param>
159 /// <returns>A populated string array containing record field values</returns>
160 /// <exception cref="RecordNotFoundException"></exception>
161 public String[] ReadRecord(long rec_no) {
162 String[] temp_string = null;
163 if ((rec_no < 0) || (rec_no > _record_count)) {
164 if(_debug){ Console.WriteLine("From ReadRecord(): Requested record out of range!"); }
165 throw new RecordNotFoundException("From ReadRecord(): Requested record out of range");
166 } else {
167 try {
168 _reader = new BinaryReader(File.Open(_filename, FileMode.Open));
169 GotoRecordNumber(_reader, rec_no);
170 if (_reader.ReadByte() == DELETED) {
171 if(_debug){ Console.WriteLine("From ReadRecord(): Record number " + rec_no +
172 " has been deleted!"); }
173 throw new RecordNotFoundException("Record " + rec_no + " deleted!");
174 } else {
175 temp_string = RecordBytesToStringArray(_reader, rec_no);
176 }
177 } catch (ArgumentException e) {
178 if(_debug){ Console.WriteLine(e.ToString()); }
179 throw new RecordNotFoundException("Invalid argument.",e);
180 }
181 catch (EndOfStreamException e) {
C# For Artists © 2008 Rick Miller — All Rights Reserved 429

Random Access File I/O Chapter 17: File I/O
182 if(_debug){ Console.WriteLine(e.ToString()); }
183 throw new RecordNotFoundException("End of stream exception.",e);
184 }
185 catch (ObjectDisposedException e) {
186 if(_debug){ Console.WriteLine(e.ToString()); }
187 throw new RecordNotFoundException("BinaryReader not initialized.",e);
188 }
189 catch (IOException e) {
190 if(_debug){ Console.WriteLine(e.ToString()); }
191 throw new RecordNotFoundException("General IOException",e);
192 }
193 catch (Exception e) {
194 if(_debug){ Console.WriteLine(e.ToString()); }
195 throw new RecordNotFoundException("General Exception",e);
196 }
197 finally {
198 if (_reader != null) {
199 _reader.Close();
200 }
201 }
202 } // end else
203 return temp_string;
204 } // end readRecord()
205
206
207 /// <summary>
208 /// Update a record's fields. The record must be locked with the lockRecord()
209 /// method and the lock_token must be valid. The value for field n appears in
210 /// element record[n]. The call to updateRecord() MUST be preceeded by a call
211 /// to lockRecord() and followed by a call to unlockRecord()
212 /// </summary>
213 /// <param name="rec_no"></param>
214 /// <param name="record"></param>
215 /// <param name="lock_token"></param>
216 /// <exception cref="RecordNotFoundException"></exception>
217 /// <exception cref="SecurityException"></exception>
218 public void UpdateRecord(long rec_no, String[] record, long lock_token) {
219 if (lock_token != ((long)_locked_records_map[rec_no])) {
220 if(_debug){ Console.WriteLine("From UpdateRecord(): Invalid update record lock token."); }
221 throw new SecurityException("From UpdateRecord(): Invalid update record lock token.");
222 } else {
223 try {
224 _writer = new BinaryWriter(File.Open(_filename, FileMode.Open));
225 GotoRecordNumber(_writer, rec_no); //i.e., goto indicated record
226 _writer.Write((byte)0);
227 _writer.Write(StringToPaddedByteField(record[TITLE_FIELD], TITLE_FIELD_LENGTH));
228 _writer.Write(StringToPaddedByteField(record[AUTHOR_FIELD], AUTHOR_FIELD_LENGTH));
229 _writer.Write(Int16.Parse(record[PUB_CODE_FIELD]));
230 _writer.Write(StringToPaddedByteField(record[ISBN_FIELD], ISBN_FIELD_LENGTH));
231 _writer.Write(StringToPaddedByteField(record[PRICE_FIELD], PRICE_FIELD_LENGTH));
232 _writer.Write(Int16.Parse(record[QOH_FIELD]));
233 _current_record_number = rec_no;
234 } catch (ArgumentException e) {
235 if(_debug){ Console.WriteLine(e.ToString()); }
236 throw new RecordNotFoundException("Invalid argument.",e);
237 }
238 catch (EndOfStreamException e) {
239 if(_debug){ Console.WriteLine(e.ToString()); }
240 throw new RecordNotFoundException("End of stream exception.",e);
241 }
242 catch (ObjectDisposedException e) {
243 if(_debug){ Console.WriteLine(e.ToString()); }
244 throw new RecordNotFoundException("BinaryReader not initialized.",e);
245 }
246 catch (IOException e) {
247 if(_debug){ Console.WriteLine(e.ToString()); }
248 throw new RecordNotFoundException("General IOException",e);
249 }
250 catch (Exception e) {
251 if(_debug){ Console.WriteLine(e.ToString()); }
252 throw new RecordNotFoundException("General Exception",e);
253 }
254 finally {
255 if (_writer != null) {
256 _writer.Close();
257 }
258 }
259 }// end else
260 }// end updateRecord()
261
262
430 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 17: File I/O Random Access File I/O
263 /// <summary>
264 /// Marks a record for deletion by setting the deleted field to 1. The lock_token
265 /// must be valid otherwise a SecurityException is thrown.
266 /// </summary>
267 /// <param name="rec_no"></param>
268 /// <param name="lock_token"></param>
269 /// <exception cref="RecordNotFoundException"></exception>
270 /// <exception cref="SecurityException"></exception>
271 public void DeleteRecord(long rec_no, long lock_token) {
272 if (lock_token != (long)_locked_records_map[rec_no]) {
273 Console.WriteLine("From DeleteRecord(): Invalid delete record lock token.");
274 throw new SecurityException("From DeleteRecord(): Invalid delete record lock token.");
275 } else {
276 try {
277 _writer = new BinaryWriter(File.Open(_filename, FileMode.Open));
278 GotoRecordNumber(_writer, rec_no); // goto record indicated
279 _writer.Write((byte)1); // mark for deletion
280 } catch (ArgumentException e) {
281 if(_debug){ Console.WriteLine(e.ToString()); }
282 throw new RecordNotFoundException("Invalid argument.",e);
283 }
284 catch (EndOfStreamException e) {
285 if(_debug){ Console.WriteLine(e.ToString()); }
286 throw new RecordNotFoundException("End of stream exception.",e);
287 }
288 catch (ObjectDisposedException e) {
289 if(_debug){ Console.WriteLine(e.ToString()); }
290 throw new RecordNotFoundException("BinaryReader not initialized.",e);
291 }
292 catch (IOException e) {
293 if(_debug){ Console.WriteLine(e.ToString()); }
294 throw new RecordNotFoundException("General IOException",e);
295 }
296 catch (Exception e) {
297 if(_debug){ Console.WriteLine(e.ToString()); }
298 throw new RecordNotFoundException("General Exception",e);
299 }
300 finally {
301 if (_writer != null) {
302 _writer.Close();
303 }
304 }
305 }// end else
306 }// end deleteRecord()
307
308
309 /// <summary>
310 /// Creates a new datafile record and returns the record number.
311 /// </summary>
312 /// <param name="record"></param>
313 /// <returns> The record number of the newly created record</returns>
314 /// <exception cref="FailedRecordCreationException"></exception>
315 public long CreateRecord(String[] record) {
316 try {
317 _writer = new BinaryWriter(File.Open(_filename, FileMode.Open));
318 GotoRecordNumber(_writer, _record_count); //i.e., goto end of file
319 _writer.Write((byte)0);
320 _writer.Write(StringToPaddedByteField(record[TITLE_FIELD], TITLE_FIELD_LENGTH));
321 _writer.Write(StringToPaddedByteField(record[AUTHOR_FIELD], AUTHOR_FIELD_LENGTH));
322 _writer.Write(Int16.Parse(record[PUB_CODE_FIELD]));
323 _writer.Write(StringToPaddedByteField(record[ISBN_FIELD], ISBN_FIELD_LENGTH));
324 _writer.Write(StringToPaddedByteField(record[PRICE_FIELD], PRICE_FIELD_LENGTH));
325 _writer.Write(Int16.Parse(record[QOH_FIELD]));
326 _current_record_number = ++_record_count;
327 } catch (ArgumentException e) {
328 if(_debug){ Console.WriteLine(e.ToString()); }
329 throw new FailedRecordCreationException("Invalid argument.",e);
330 }
331 catch (EndOfStreamException e) {
332 if(_debug){ Console.WriteLine(e.ToString()); }
333 throw new FailedRecordCreationException("End of stream exception.",e);
334 }
335 catch (ObjectDisposedException e) {
336 if(_debug){ Console.WriteLine(e.ToString()); }
337 throw new FailedRecordCreationException("BinaryReader not initialized.",e);
338 }
339 catch (IOException e) {
340 if(_debug){ Console.WriteLine(e.ToString()); }
341 throw new FailedRecordCreationException("General IOException",e);
342 }
343 catch (Exception e) {
C# For Artists © 2008 Rick Miller — All Rights Reserved 431

Random Access File I/O Chapter 17: File I/O
344 if(_debug){ Console.WriteLine(e.ToString()); }
345 throw new FailedRecordCreationException("General Exception",e);
346 }
347 finally {
348 if (_writer != null) {
349 _writer.Close();
350 }
351 }
352 return _current_record_number;
353 } // end CreateRecord()
354
355
356 /// <summary>
357 /// Locks a record for updates and deletes - returns an integer
358 /// representing a lock token.
359 /// </summary>
360 /// <param name="rec_no"></param>
361 /// <returns></returns>
362 /// <exception cref="RecordNotFoundException"></exception>
363 public long LockRecord(long rec_no) {
364 long lock_token = 0;
365 if ((rec_no < 0) || (rec_no > _record_count)) {
366 if(_debug){ Console.WriteLine("Record cannot be locked. Not in valid range."); }
367 throw new RecordNotFoundException("Record cannot be locked. Not in valid range.");
368 } else {
369 lock (_locked_records_map) {
370 while (_locked_records_map.ContainsKey(rec_no)) {
371 try {
372 Monitor.Wait(_locked_records_map);
373 } catch (Exception) { }
374 }
375 lock_token = (long)_token_maker.Next();
376 _locked_records_map.Add(rec_no, lock_token);
377 } // end lock
378 } // end else
379 return lock_token;
380 } // end LockRecord()
381
382
383 /// <summary>
384 /// Unlocks a previously locked record. The lock_token must be valid or a
385 /// SecurityException is thrown.
386 /// </summary>
387 /// <param name="rec_no"></param>
388 /// <param name="lock_token"></param>
389 /// <exception cref="SecurityException"></exception>
390 public void UnlockRecord(long rec_no, long lock_token) {
391 lock (_locked_records_map) {
392 if (_locked_records_map.Contains(rec_no)) {
393 if (lock_token == ((long)_locked_records_map[rec_no])) {
394 _locked_records_map.Remove(rec_no);
395 Monitor.Pulse(_locked_records_map);
396 } else {
397 if(_debug){ Console.WriteLine("From UnlockRecord(): Invalid lock token."); }
398 throw new SecurityException("From UnlockRecord(): Invalid lock token");
399 }
400 } else {
401 if(_debug){ Console.WriteLine("From UnlockRecord(): Invalid record number."); }
402 throw new SecurityException("From UnlockRecord(): Invalid record number.");
403 }
404 }
405 }// end UnlockRecord()
406
407
408 /// <summary>
409 /// Searches the records in the datafile for records that match the String
410 /// values of search_criteria. search_criteria[n] contains the search value
411 /// applied against field n. Data files can be searched for Title & Author.
412 /// </summary>
413 /// <param name="search_criteria"></param>
414 /// <returns>An array of long values each indicating a record number match</returns>
415 public long[] SearchRecords(String[] search_criteria) {
416 List<long> hit_list = new List<long>();
417 for (long i = 0; i < _record_count; i++) {
418 try {
419 if (ThereIsAMatch(search_criteria, ReadRecord(i))) {
420 hit_list.Add(i);
421 }
422 } catch (RecordNotFoundException) { } // ignore deleted records
423 } // end for
424 long[] hits = new long[hit_list.Count];
432 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 17: File I/O Random Access File I/O
425 for (int i = 0; i < hits.Length; i++) {
426 hits[i] = hit_list[i];
427 }
428 return hits;
429 } // end SearchRecords()
430
431
432 /// <summary>
433 /// ThereIsAMatch() is a utility method that actually performs
434 /// the record search. Implements an implied OR/AND search by detecting
435 /// the first character of the Title criteria element.
436 /// </summary>
437 /// <param name="search_criteria"></param>
438 /// <param name="record"></param>
439 /// <returns>A boolean value indicating true if there is a match or false otherwise.</returns>
440 private bool ThereIsAMatch(String[] search_criteria, String[] record) {
441 bool match_result = false;
442 int TITLE = 0;
443 int AUTHOR = 1;
444 for (int i = 0; i < search_criteria.Length; i++) {
445 if ((search_criteria[i].Length == 0) || (record[i + 1].StartsWith(search_criteria[i]))) {
446 match_result = true;
447 break;
448 } //end if
449 } //end for
450
451 if (((search_criteria[TITLE].Length > 1) && (search_criteria[AUTHOR].Length >= 1)) &&
452 (search_criteria[TITLE][0] == '&')) {
453 if (record[TITLE + 1].StartsWith(search_criteria[TITLE].Substring(1,
454
search_criteria[TITLE].Length).Trim())
455 && record[AUTHOR + 1].StartsWith(search_criteria[AUTHOR])) {
456 match_result = true;
457 } else {
458 match_result = false;
459 }
460 } // end outer if
461 return match_result;
462 } // end thereIsAMatch()
463
464
465 /// <summary>
466 /// GotoRecordNumber - utility function that handles the messy
467 /// details of seeking a particular record.
468 /// </summary>
469 /// <param name="record_number"></param>
470 /// <exception cref="RecordNotFoundException"></exception>
471 private void GotoRecordNumber(BinaryReader reader, long record_number) {
472 if ((record_number < 0) || (record_number > _record_count)) {
473 throw new RecordNotFoundException();
474 } else {
475 try {
476 reader.BaseStream.Seek(RECORDS_START + (record_number * RECORD_LENGTH), SeekOrigin.Begin);
477 } catch (EndOfStreamException e) {
478 if(_debug){ Console.WriteLine(e.ToString()); }
479 throw new RecordNotFoundException("End of stream exception.",e);
480 }
481 catch (ObjectDisposedException e) {
482 if(_debug){ Console.WriteLine(e.ToString()); }
483 throw new RecordNotFoundException("BinaryReader not initialized.",e);
484 }
485 catch (IOException e) {
486 if(_debug){ Console.WriteLine(e.ToString()); }
487 throw new RecordNotFoundException("General IOException",e);
488 }
489 catch (Exception e) {
490 if(_debug){ Console.WriteLine(e.ToString()); }
491 throw new RecordNotFoundException("General Exception",e);
492 }
493 }// end else
494 } // end GotoRecordNumber()
495
496
497 /// <summary>
498 /// GotoRecordNumber - overloaded utility function that handles the messy
499 /// details of seeking a particular record.
500 /// </summary>
501 /// <param name="record_number"></param>
502 /// <exception cref="RecordNotFoundException"></exception>
503 private void GotoRecordNumber(BinaryWriter writer, long record_number) {
504 if ((record_number < 0) || (record_number > _record_count)) {
C# For Artists © 2008 Rick Miller — All Rights Reserved 433

Random Access File I/O Chapter 17: File I/O
505 throw new RecordNotFoundException();
506 } else {
507 try {
508 writer.BaseStream.Seek(RECORDS_START + (record_number * RECORD_LENGTH), SeekOrigin.Begin);
509 } catch (EndOfStreamException e) {
510 if(_debug){ Console.WriteLine(e.ToString()); }
511 throw new RecordNotFoundException("End of stream exception.",e);
512 }
513 catch (ObjectDisposedException e) {
514 if(_debug){ Console.WriteLine(e.ToString()); }
515 throw new RecordNotFoundException("BinaryReader not initialized.",e);
516 }
517 catch (IOException e) {
518 if(_debug){ Console.WriteLine(e.ToString()); }
519 throw new RecordNotFoundException("General IOException",e);
520 }
521 catch (Exception e) {
522 if(_debug){ Console.WriteLine(e.ToString()); }
523 throw new RecordNotFoundException("General Exception",e);
524 }
525 }// end else
526 } // end GotoRecordNumber()
527
528
529 /// <summary>
530 /// stringToPaddedByteField - pads the field to maintain fixed
531 /// field length.
532 /// </summary>
533 /// <param name="s"></param>
534 /// <param name="field_length"></param>
535 /// <returns>A populated byte array containing the string value padded with spaces</returns>
536 protected byte[] StringToPaddedByteField(String s, int field_length) {
537 byte[] byte_field = new byte[field_length];
538 if (s.Length <= field_length) {
539 for (int i = 0; i < s.Length; i++) {
540 byte_field[i] = (byte)s[i];
541 }
542 for (int i = s.Length; i < field_length; i++) {
543 byte_field[i] = (byte)' '; //pad the field
544 }
545 } else {
546 for (int i = 0; i < field_length; i++) {
547 byte_field[i] = (byte)s[i];
548 }
549 }
550 return byte_field;
551 } // end StringToPaddedByteField()
552
553
554 /// <summary>
555 /// RecordBytesToStringArray - reads an array of bytes from a data file
556 /// and converts them to an array of Strings. The first element of the
557 /// returned array is the record number. The length of the byte array
558 /// argument is RECORD_LENGTH -1.
559 /// </summary>
560 /// <param name="record_number"></param>
561 /// <returns></returns>
562 private String[] RecordBytesToStringArray(BinaryReader reader, long record_number) {
563 String[] string_array = new String[FIELD_COUNT];
564 char[] title = new char[TITLE_FIELD_LENGTH];
565 char[] author = new char[AUTHOR_FIELD_LENGTH];
566 char[] isbn = new char[ISBN_FIELD_LENGTH];
567 char[] price = new char[PRICE_FIELD_LENGTH];
568 try {
569 string_array[0] = record_number.ToString();
570 reader.Read(title, 0, title.Length);
571 string_array[TITLE_FIELD + 1] = new String(title).Trim();
572 reader.Read(author, 0, author.Length);
573 string_array[AUTHOR_FIELD + 1] = new String(author).Trim();
574 string_array[PUB_CODE_FIELD + 1] = (reader.ReadInt16()).ToString();
575 reader.Read(isbn, 0, isbn.Length);
576 string_array[ISBN_FIELD + 1] = new String(isbn);
577 reader.Read(price, 0, price.Length);
578 string_array[PRICE_FIELD + 1] = new String(price).Trim();
579 string_array[QOH_FIELD + 1] = (reader.ReadInt16()).ToString();
580 } catch (IOException e) {
581 Console.WriteLine(e.ToString());
582 }
583 return string_array;
584 } // end recordBytesToStringArray()
585
434 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 17: File I/O Random Access File I/O
586
587 /// <summary>
588 /// Writes the header information into a data file
589 /// </summary>
590 /// <exception cref="InvalidDataFileException"></exception>
591 private void WriteHeader(FileMode file_mode) {
592 try {
593 if (_writer != null) {
594 _writer.Close();
595 }
596 _writer = new BinaryWriter(File.Open(_filename, file_mode));
597 _writer.Seek(0, SeekOrigin.Begin);
598 _writer.Write(FILE_IDENTIFIER);
599 _writer.Write(DELETED_STRING.ToCharArray());
600 _writer.Write(DELETED_FIELD_LENGTH);
601 _writer.Write(TITLE_STRING.ToCharArray());
602 _writer.Write(TITLE_FIELD_LENGTH);
603 _writer.Write(AUTHOR_STRING.ToCharArray());
604 _writer.Write(AUTHOR_FIELD_LENGTH);
605 _writer.Write(PUB_CODE_STRING.ToCharArray());
606 _writer.Write(PUB_CODE_FIELD_LENGTH);
607 _writer.Write(ISBN_STRING.ToCharArray());
608 _writer.Write(ISBN_FIELD_LENGTH);
609 _writer.Write(PRICE_STRING.ToCharArray());
610 _writer.Write(PRICE_FIELD_LENGTH);
611 _writer.Write(QOH_STRING.ToCharArray());
612 _writer.Write(QOH_FIELD_LENGTH);
613 _writer.Flush();
614 }catch (ArgumentException e) {
615 if(_debug){ Console.WriteLine(e.ToString()); }
616 throw new InvalidDataFileException("Invalid argument.",e);
617 }
618 catch (EndOfStreamException e) {
619 if(_debug){ Console.WriteLine(e.ToString()); }
620 throw new InvalidDataFileException("End of stream exception.",e);
621 }
622 catch (ObjectDisposedException e) {
623 if(_debug){ Console.WriteLine(e.ToString()); }
624 throw new InvalidDataFileException("BinaryReader not initialized.",e);
625 }
626 catch (IOException e) {
627 if(_debug){ Console.WriteLine(e.ToString()); }
628 throw new InvalidDataFileException("General IOException",e);
629 }
630 catch (Exception e) {
631 if(_debug){ Console.WriteLine(e.ToString()); }
632 throw new InvalidDataFileException("General Exception",e);
633 }
634 finally {
635 if (_writer != null) {
636 _writer.Close();
637 }
638 }
639 } // end WriteHeader()
640
641
642 /// <summary>
643 /// readHeader - reads the header bytes and converts them to
644 /// a string
645 /// </summary>
646 /// <returns> A String containing the file header information</returns>
647 /// <exception cref="InvalidDataFileException"></exception>
648 public String ReadHeader() {
649 StringBuilder sb = new StringBuilder();
650 char[] deleted = new char[DELETED_STRING.Length];
651 char[] title = new char[TITLE_STRING.Length];
652 char[] author = new char[AUTHOR_STRING.Length];
653 char[] pub_code = new char[PUB_CODE_STRING.Length];
654 char[] isbn = new char[ISBN_STRING.Length];
655 char[] price = new char[PRICE_STRING.Length];
656 char[] qoh = new char[QOH_STRING.Length];
657 try {
658 _reader = new BinaryReader(File.Open(_filename, FileMode.Open));
659 _reader.BaseStream.Seek(0, SeekOrigin.Begin);
660 sb.Append(_reader.ReadInt16() + " ");
661 _reader.Read(deleted, 0, deleted.Length);
662 sb.Append(new String(deleted) + " ");
663 sb.Append(_reader.ReadInt16() + " ");
664 _reader.Read(title, 0, title.Length);
665 sb.Append(new String(title) + " ");
666 sb.Append((_reader.ReadInt16()) + " ");
C# For Artists © 2008 Rick Miller — All Rights Reserved 435

Random Access File I/O Chapter 17: File I/O
667 _reader.Read(author, 0, author.Length);
668 sb.Append(new String(author) + " ");
669 sb.Append((_reader.ReadInt16()) + " ");
670 _reader.Read(pub_code, 0, pub_code.Length);
671 sb.Append(new String(pub_code) + " ");
672 sb.Append((_reader.ReadInt16()) + " ");
673 _reader.Read(isbn, 0, isbn.Length);
674 sb.Append(new String(isbn) + " ");
675 sb.Append((_reader.ReadInt16()) + " ");
676 _reader.Read(price, 0, price.Length);
677 sb.Append(new String(price) + " ");
678 sb.Append((_reader.ReadInt16()) + " ");
679 _reader.Read(qoh, 0, qoh.Length);
680 sb.Append(new String(qoh) + " ");
681 sb.Append((_reader.ReadInt16()) + " ");
682 } catch (ArgumentException e) {
683 if(_debug){ Console.WriteLine(e.ToString()); }
684 throw new InvalidDataFileException("Invalid argument.",e);
685 }
686 catch (EndOfStreamException e) {
687 if(_debug){ Console.WriteLine(e.ToString()); }
688 throw new InvalidDataFileException("End of stream exception.",e);
689 }
690 catch (ObjectDisposedException e) {
691 if(_debug){ Console.WriteLine(e.ToString()); }
692 throw new InvalidDataFileException("BinaryReader not initialized.",e);
693 }
694 catch (IOException e) {
695 if(_debug){ Console.WriteLine(e.ToString()); }
696 throw new InvalidDataFileException("General IOException",e);
697 }
698 catch (Exception e) {
699 if(_debug){ Console.WriteLine(e.ToString()); }
700 throw new InvalidDataFileException("General Exception",e);
701 }
702 finally {
703 if (_reader != null) {
704 _reader.Close();
705 }
706 }
707 return sb.ToString();
708 } // end ReadHeader()
709
710
711 /// <summary>
712 /// Utility method used to initialize several important instance fields
713 /// </summary>
714 private void InitializeVariables() {
715 _current_record_number = 0;
716 _locked_records_map = new Hashtable();
717 _token_maker = new Random();
718 }
719
720 } // end DataFileAdapter class definition

17.16 AdapterTestApp.cs

1 using System;
2
3 public class AdapterTesterApp {
4 public static void Main(){
5 try{
6 DataFileAdapter adapter = new DataFileAdapter("books.dat");
7 String[] rec_1 = {"C++ For Artists", "Rick Miller", "0001", "1-932504-02-8", "$59.95", "80"};
8 String[] rec_2 = {"Java For Artists", "Rick Miller", "0002", "1-932504-04-X", "$69.95", "100"};
9 String[] rec_3 = { "C# For Artists", "Rick Miller", "0003", "1-932504-07-9", "$76.00", "567" };
10 String[] rec_4 = { "White Saturn", "Rick Miller", "0004", "1-932504-08-7", "$45.00", "234" };
11
12 String[] search_string = {"Java", " "};
13
14 String[] temp_string = null;
15
16 adapter.CreateRecord(rec_1);
17 adapter.CreateRecord(rec_2);
18 adapter.CreateRecord(rec_3);
19 adapter.CreateRecord(rec_1);
20 adapter.CreateRecord(rec_2);
21 adapter.CreateRecord(rec_3);
22 adapter.CreateRecord(rec_1);
436 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 17: File I/O Random Access File I/O
23 adapter.CreateRecord(rec_2);
24 adapter.CreateRecord(rec_3);
25
26
27 long lock_token = adapter.LockRecord(2);
28
29 adapter.UpdateRecord(2, rec_2, lock_token);
30 adapter.UnlockRecord(2, lock_token);
31
32 lock_token = adapter.LockRecord(1);
33 adapter.DeleteRecord(1, lock_token);
34 adapter.UnlockRecord(1, lock_token);
35
36 lock_token = adapter.LockRecord(4);
37 adapter.UpdateRecord(4, rec_4, lock_token);
38 adapter.UnlockRecord(4, lock_token);
39
40 long[] search_hits = adapter.SearchRecords(search_string);
41
42 Console.WriteLine(adapter.ReadHeader());
43
44 for(int i=0; i<search_hits.Length; i++){
45 try{
46 temp_string = adapter.ReadRecord(search_hits[i]);
47 for(int j = 0; j<temp_string.Length; j++){
48 Console.Write(temp_string[j] + " ");
49 }
50 Console.WriteLine();
51 }catch(RecordNotFoundException){ }
52 }
53
54 Console.WriteLine("--");
55 for (int i = 0; i < adapter.RecordCount; i++) {
56 try {
57 temp_string = adapter.ReadRecord(i);
58 for (int j = 0; j < temp_string.Length; j++) {
59 Console.Write(temp_string[j] + " ");
60 }
61 Console.WriteLine();
62 }
63 catch (RecordNotFoundException) { }
64 }
65 }
66 catch (Exception e) { Console.WriteLine(e.ToString()); }
67 } // end Main()
68 } // end class definition

Figure 17-11 shows the results of running the AdapterTestApp program one time. Running it several times back-

to-back results in additional records being inserted into the book.dat data file.

Quick Review

You can conduct random access file I/O with the BinaryReader, BinaryWriter, and FileStream classes. The

FileStream class provides a Seek() method that allows you to position the file pointer at any point within a file. As you

learned in the previous section, the BinaryReader and BinaryWriter classes provide methods for reading and writing

binary, string, byte, and character array data.

Figure 17-12: Results of Running Example 17.16 Once
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 437

Working With Log Files Chapter 17: File I/O
Working With Log Files

The System.IO.Log namespace contains classes, structures, interfaces, and enumerations designed to help you

create robust event logging services for your programs. Some of the functionality provided by the contents of the Sys-

tem.IO.Log namespace is only available on Microsoft Windows 2003r2 and Windows Vista or later operating sys-

tems. These operating systems come with the Common Log File System (CLFS).

The following three examples together implement a simple logging system. It consists of three classes. The first,

LogEntry, given in Example 17.17, represents the type of data that will be saved in the log file. The second, Logger,

given in Example 17.18, implements the logging functionality with the help of several classes in the System.IO.Log

namespace. The third class, LoggerTestApp, given in Example 17.19, tests the Logger class by writing several entries

to the log and then reading the log and writing its contents to the console.
17.17 LogEntry.cs

1 using System;
2
3 [Serializable]
4 public class LogEntry {
5 private string _subsystem;
6 private int _severity;
7 private string _text;
8 private DateTime _timestamp;
9
10 public DateTime TimeStamp {
11 get { return _timestamp; }
12 set { _timestamp = value; }
13 }
14
15 public string SubSystem {
16 get { return _subsystem; }
17 set { _subsystem = value; }
18 }
19
20 public int Severity {
21 get { return _severity; }
22 set { _severity = value; }
23 }
24
25 public string Text {
26 get { return _text; }
27 set { _text = value; }
28 }
29
30 public LogEntry(DateTime timestamp, string subsystem, int severity, string text){
31 TimeStamp = timestamp;
32 SubSystem = subsystem;
33 Severity = severity;
34 Text = text;
35 }
36
37 public override String ToString(){
38 return TimeStamp.ToString() + " " + SubSystem + " " + Severity + " " + Text;
39 }
40 } // end LogEntry class definition

Referring to Example 17-17 — the LogEntry class represents the data that will be captured and written to the log.

A log entry will contain a TimeStamp property indicating when the event occurred, a SubSystem property indicating

the subsystem of origin, Severity property indicating the severity of the event, and a Text property that contains the

string with a detailed description of the event.
17.18 Logger.cs

1 using System;
2 using System.IO;
3 using System.IO.Log;
4 using System.Collections.Generic;
5 using System.Text;
6 using System.Runtime.Serialization.Formatters.Binary;
7
8 public class Logger {
9 private string _logfilename;
10 private FileRecordSequence _sequence;
11 private SequenceNumber _previous;
12
13
14 public Logger(string logfilename){
438 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 17: File I/O Working With Log Files
15 _logfilename = logfilename;
16 _sequence = new FileRecordSequence(logfilename, FileAccess.ReadWrite);
17 _previous = SequenceNumber.Invalid;
18 }
19
20 public Logger():this("logfile.log"){ }
21
22 public void Append(LogEntry entry){
23 _previous = _sequence.Append(ToArraySegment(entry), SequenceNumber.Invalid,
24 _previous, RecordAppendOptions.ForceFlush);
25 }
26
27 public ArraySegment<byte> ToArraySegment(LogEntry entry) {
28 MemoryStream stream = new MemoryStream();
29 BinaryFormatter formatter = new BinaryFormatter();
30 formatter.Serialize(stream, entry);
31 stream.Flush();
32 return new ArraySegment<byte>(stream.GetBuffer());
33 }
34
35 public String GetLogRecords() {
36 StringBuilder sb = new StringBuilder();
37 BinaryFormatter formatter = new BinaryFormatter();
38 IEnumerable<LogRecord> records = _sequence.ReadLogRecords(_sequence.BaseSequenceNumber,
39 LogRecordEnumeratorType.Next);
40 foreach (LogRecord record in records) {
41 LogEntry entry = (LogEntry) formatter.Deserialize(record.Data);
42 sb.Append(entry.ToString() + "\r\n");
43 }
44 return sb.ToString();
45 }
46
47 public void Dispose(){
48 _sequence.Dispose();
49 }
50 } // end class definition

Referring to the Example 17.18 — note that the Logger class uses a host of classes found in other namespaces.

From the System.IO.Log namespace it uses the FileRecordSequence and SequenceNumber classes. The FileRecord-

Sequece represents a sequence of log records stored in a simple file. SequenceNumbers are not numbers per se. They

represent unique pointers from one log entry to the next within a sequence of log entries.

The Logger.Append() method on line 22 takes a LogEntry reference and in turn calls the FileRecordSe-

quence.Append() method, which actually does the heavy lifting. The FileRecordSequence.Append() method has sev-

eral overloaded variations. The one I use here requires that the log data being written be presented to it in the first

argument as an array segment of bytes. (i.e., ArraySegment<byte>) You’ll find the ArraySegment generic structure in

the System namespace. The Logger.ToArraySegment() method beginning on line 27 does the dirty work of convert-

ing a LogEntry object to a ArraySegment<byte> object.

The Logger.GetLogRecords() method on line 35 uses the FileRecordSequence.ReadLogRecords() method to

read the records, converts them back into LogEntry objects, appends their string representation to a StringBuilder

object, and ultimately returns the whole lot of them as one long string.
17.19 LoggerTestApp.cs

1 using System;
2 using System.Collections.Generic;
3 using System.Text;
4
5 public class LoggeTestApp {
6 static void Main(string[] args) {
7 Logger logger = new Logger();
8 LogEntry entry1 = new LogEntry(DateTime.Now, "Reactor Coolant", 3, "Main coolant pump speed limited");
9 LogEntry entry2 = new LogEntry(DateTime.Now, "Main Engine", 3, "Main condenser loss of vacuum");
10 LogEntry entry3 = new LogEntry(DateTime.Now, "Reactor Coolant", 3, "Main coolant pump speed limited");
11 LogEntry entry4 = new LogEntry(DateTime.Now, "Reactor", 1, "Loss of control rod control");
12 LogEntry entry5 = new LogEntry(DateTime.Now, "Reactor Coolant", 3, "Main coolant pump speed limited");
13
14 logger.Append(entry1);
15 logger.Append(entry2);
16 logger.Append(entry3);
17 logger.Append(entry4);
18 logger.Append(entry5);
19 Console.Write(logger.GetLogRecords());
20 logger.Dispose();
21 } // end Main()
22 } // end class definition
C# For Artists © 2008 Rick Miller — All Rights Reserved 439

Using FileDialogs Chapter 17: File I/O
Referring to Example 17.19 — the LoggerTestApp creates five LogEntry objects and calls the Logger.Append()

method to insert each entry into the log. It then calls the Logger.GetLogRecords() and prints the results to the console.

To compile this program on Windows XP you’ll need to do a couple of things. First, you’ll need to have installed

the .NET Framework 3.0 Redistributable. Second, locate the System.IO.Log.dll in the C:\Program Files\Reference

Assemblies\Microsoft\Framework\v3.0 directory and add this path to your path environment variable. (See Creating

Environment Variables in Chapter 2.) Once you set your path you’ll need to compile the source files with the /
reference switch to compile the files along with the System.IO.Log.dll like so:

csc /r:System.IO.Log.dll *.cs
Figure 17-13 shows the results of running the LoggerTestApp program one time. Running the program multiple

times results in repeated log entries.

Quick Review

The System.IO.Log namespace contains classes, structures, interfaces, and enumerations designed to help you

create robust event logging services for your programs. Some of the functionality provided by the contents of the Sys-

tem.IO.Log namespace is only available on Microsoft Windows 2003r2 and Windows Vista or later operating sys-

tems. These operating systems come with the Common Log File System (CLFS).

Using FileDialogs

As you know by now, the .NET Framework provides a large collection of GUI components that make program-

ming rich graphical user interfaces relatively painless. Most of these classes can be found in the System.Win-

dows.Forms namespace. Two of those classes: OpenFileDialog and SaveFileDialog make it easy to graphically select

and open or save files. The following example uses the OpenFileDialog class to select one or more files to open and

display several file properties in a TextBox. The example consists of two classes: GUI and MainApp.cs.
17.20 GUI.cs

1 using System;
2 using System.Windows.Forms;
3 using System.Drawing;
4
5 public class GUI : Form {
6
7 private SplitContainer _splitContainer1;
8 private TextBox _textBox1;
9 private Button _button1;
10
11 public String TextBoxText {
12 get { return _textBox1.Text; }
13 set { _textBox1.Text = value; }
14 }
15
16 public GUI(MainApp ma){
17 this.InitializeComponent(ma);
18 }
19
20 private void InitializeComponent(MainApp ma) {
21 _splitContainer1 = new SplitContainer();
22 _textBox1 = new TextBox();
23 _button1 = new Button();
24 _splitContainer1.Panel1.SuspendLayout();
25 _splitContainer1.Panel2.SuspendLayout();

Figure 17-13: Results of Running Example 17.19
440
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 17: File I/O Using FileDialogs
26 _splitContainer1.SuspendLayout();
27 this.SuspendLayout();
28
29 _splitContainer1.Dock = DockStyle.Fill;
30 _splitContainer1.Location = new Point(0, 0);
31 _splitContainer1.Panel1.Controls.Add(_textBox1);
32 _splitContainer1.Panel2.Controls.Add(_button1);
33 _splitContainer1.Size = new Size(292, 273);
34 _splitContainer1.SplitterDistance = 161;
35 _splitContainer1.TabIndex = 0;
36
37 _textBox1.Location = new Point(3, 3);
38 _textBox1.AutoSize = true;
39 _textBox1.Anchor = (AnchorStyles.Top | AnchorStyles.Bottom | AnchorStyles.Left | AnchorStyles.Right);
40 _textBox1.Multiline = true;
41 _textBox1.Name = "textBox1";
42 _textBox1.Size = new Size(155, 267);
43 _textBox1.TabIndex = 0;
44
45 _button1.Location = new Point(27, 12);
46 _button1.Size = new System.Drawing.Size(75, 23);
47 _button1.TabIndex = 0;
48 _button1.Text = "Open File";
49 _button1.UseVisualStyleBackColor = true;
50 _button1.Click += new System.EventHandler(ma.Button1_Click);
51
52 this.AutoScaleMode = AutoScaleMode.None;
53 this.ClientSize = new System.Drawing.Size(292, 273);
54 this.Controls.Add(_splitContainer1);
55
56 this.Text = "FileDialog Demo";
57 _splitContainer1.Panel1.ResumeLayout(false);
58 _splitContainer1.Panel1.PerformLayout();
59 _splitContainer1.Panel2.ResumeLayout(false);
60 _splitContainer1.ResumeLayout(false);
61 this.ResumeLayout(false);
62 } // End InitializeComponent()
63 } // End class definition

Referring to Example 17.20 — the GUI class inherits from Form and uses a SplitContainer to hold a TextBox

and a Button. The TextBox.MultiLine property is set to true and its Anchor property is set to anchor to all four sides

of its containing panel. The button’s Click event is set to invoke the MainApp.Button1_Click() method.
17.21 MainApp.cs

1 using System;
2 using System.Windows.Forms;
3 using System.Text;
4 using System.IO;
5
6 public class MainApp {
7 private OpenFileDialog _fileDialog;
8 private GUI _gui;
9
10 public MainApp(){
11 _gui = new GUI(this);
12 _fileDialog = new OpenFileDialog();
13 _fileDialog.Multiselect = true;
14 Application.Run(_gui);
15 }
16
17 public void Button1_Click(Object o, EventArgs e){
18 _fileDialog.ShowDialog();
19 String[] filenames = _fileDialog.FileNames;
20 StringBuilder sb = new StringBuilder();
21 foreach(String s in filenames){
22 FileInfo file = new FileInfo(s);
23 sb.Append("FileName:" + file.Name + "\r\n");
24 sb.Append("Directory:" + file.DirectoryName + "\r\n");
25 sb.Append("Size:" + file.Length + " Bytes\r\n");
26 sb.Append("\r\n");
27 }
28 _gui.TextBoxText = sb.ToString();
29 }
30
31 public static void Main(){
32 new MainApp();
33 }
34 } // end class definition
C# For Artists © 2008 Rick Miller — All Rights Reserved 441

Using FileDialogs Chapter 17: File I/O
Referring to Example 17.21 — the MainApp class plays host to the Main() method and the Button1_Click()

event handler method. In the body of the MainApp constructor the OpenFileDialog object is created and it’s Multise-

lect property is set to true. This allows the user to select multiple files to open at the same time.

When the button is clicked in the GUI, the Button1_Click() event handler method calls the OpenFileDialog’s

ShowDialog() method. This displays the dialog and lets users select the file(s) they wish to open. At this point the

program effectively blocks until the user clicks the Open button on the OpenFileDialog window.

The OpenFileDialog.FileNames property returns a string array containing the names of the file(s) selected by the

user. The foreach statement starting on line 21 iterates over each filename, creates a FileInfo object, extracts the

required information about each file, and appends it to a StringBuilder object. When the foreach statement finishes,

the file information contained in the StringBuilder object is written to the GUI.TextBoxText property, which in turn

sets its TextBox’s Text property.

Figure 17-14 shows the results of running this program and selecting three files named GUI.cs, MainApp.cs, and

MainApp.exe. Your results will differ depending on what files you select.

Quick Review

Use the OpenFileDialog and SaveFileDialog classes to graphically select and open/save files. The OpenFileDia-

log can be used to select multiple files simultaneously. When used in this manner, the OpenFileDialog.FileNames

property returns a string array containing the names of the files selected.

Figure 17-14: Results of Running Example 17.21 and Selecting Three Files
442
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 17: File I/O Summary
Summary

In most all cases, data generated by an application and stored on an auxiliary storage device such as a hard disk,

is saved as an organized, related collection of bits in a structure commonly referred to as a file.

It is the operating system’s responsibility to manage the organization, reading, and writing of files. When a new

storage device is added to your computer, it must first be formatted in a way that allows the operating system to

access its data.

The file, from the operating system’s point of view, is the fundamental storage organizational element. An appli-

cation’s associated data can be stored in one or more files. A file is located in another organizational element called a

directory. A directory is a special type of file that contains a list of files and directories. A directory contained inside

another directory is called a subdirectory.

The topmost directory structure is referred to as the root directory. The root directory of a particular drive is indi-

cated by the name of the drive followed by a colon ‘:’, followed by a backward slash character ‘\’. The root directory

of the C drive would be “C:\”.

The location of a particular file within a directory structure is indicated by a string of characters called a path.

The path to the file’s location can be absolute or relative. An absolute path includes the name or letter of the drive and

all directory and subdirectory names required to pinpoint the file’s location. A relative path is the path to a file from

some arbitrary starting point, usually a working directory.

You can easily create and manipulate directories and files with the help of several classes provided in the .NET

Framework System.IO namespace. These include the Path, File, FileInfo, Directory, DirectoryInfo, and DriveInfo

classes.

Verbatim strings are formulated by preceding the string with the ‘@’ character which signals the compiler to

interpret the string literally, including special characters and line breaks.

Object serialization provides an easy, convenient way for you to persist application data to disk. Object serializa-

tion is also the least flexible way to store application data because you can’t edit the resulting file. Use a FileStream

object and a BinaryFormatter to serialize objects to disk. Before an object can be serialized it must be tagged as being

serializable with the serializable attribute. Place the serializable attribute above the class declaration line.

When serializing a collection of objects, remember that all objects contained within the collection must be serial-

izable. You don’t have to worry about the collections themselves, including ordinary arrays, as they are already

tagged as being serializable.

You can get around the limitation of ordinary serialization by serializing objects to disk in XML format. Use the

StreamWriter and XMLSerializer classes to serialize objects to disk in XML format. Use a FileStream and XMLSeri-

alizer to deserialize objects from an XML file.

The StreamReader and StreamWriter classes let you read and write text files. Text files are usually processed

line-by-line. Lines of text are terminated with the special characters carriage-return and line-feed (\r\n). Each line

can contain one or more fields delimited by some character. The comma ‘,’ is a commonly used field delimiter. Indi-

vidual fields can be further delimited as required.

Look to the objects in your program to determine the type of information your text file(s) must contain. You’ll

need to save enough data to recreate objects.

Process a text file by reading each line and breaking it into tokens with the String.Split() method. If one or more

fields are also delimited, use the String.Split() method to tokenize the data as required.

Use the BinaryReader and BinaryWriter classes to read and write binary data to disk. The BinaryWriter class

provides an overloaded Write() method that is used to write each of the simple types including strings and arrays of

bytes and characters. The BinaryReader class provides an assortment of ReadTypename() methods where Typename

may be any one of the simple types to include strings and arrays of bytes and characters.

You can conduct random access file I/O with the BinaryReader, BinaryWriter, and FileStream classes. The

FileStream class provides a Seek() method that allows you to position the file pointer at any point within a file. As you

learned in the previous section, the BinaryReader and BinaryWriter classes provide methods for reading and writing

binary, string, byte, and character array data.

Use the OpenFileDialog and SaveFileDialog classes to graphically select and open/save files. The OpenFileDia-

log can be used to select multiple files simultaneously. When used in this manner the OpenFileDialog.FileNames

property returns a string array containing the names of the files selected.
C# For Artists © 2008 Rick Miller — All Rights Reserved 443

Skill-Building Exercises Chapter 17: File I/O
Skill-Building Exercises

1. API Drill: Explore the contents of the System.IO namespace. List each entry and note its purpose.

2. API Drill: Explore the contents of the System.Runtime.Serialization and System.Runtime.Serialization.Format-

ters.Binary namespaces. List each entry and note its purpose.

3. Programming Exercise: Compile and run the examples in this chapter. Note their behavior. Experiment by mak-

ing changes to each program to get different results.

4. Create Sequence Diagrams: Step through the code examples in this chapter and follow the paths of execution.

Select a part of each program and create a detailed UML sequence diagram that shows objects used, method calls,

and return values.

5. API Drill: Research the System.ArraySegment<T> generic class and note its purpose.

Suggested Projects

1. Employee Database: Write a GUI application that lets users create a database of employees. Use the Employee

code given in Chapter 11. Users should be able to create employees and save their information to a file. Your appli-

cation should have fields for entering employee information and some way of displaying a list of employees cur-

rently in the data base.

2. Robot Rat: Write a version of the robot rat program that records each movement the rat makes to disk. Create a

feature called Auto-Playback that lets the robot rat read and execute a series of stored movements from a file.

3. File Lister: Write a GUI application that recursively traverses a directory and any subdirectories it might contain.

Write to file a list of all the files contained within the directories along with any other data about each file users

have selected from a set of menu options.

4. Picture Display: Write a GUI application that opens image files and displays their contents in a PictureBox.

5. Asynchronous File I/O: The FileStream class supports asynchronous file I/O with its BeginRead()/EndRead() and

BeginWrite()/ EndWrite() methods. Research these methods and review asynchronous method calling in Chapter

16. Modify the Picture Display program described in suggested project 4 above to asynchronously read large

image files.

Self-Test Questions

1. Before an object can be serialized, with what attribute must it be tagged?

2. (True/False) Before a collection of objects can be serialized, all objects contained within that collection must be

serializable.

3. What must be done to a freshly deserialized object before being used in a program?

4. What three classes can be used together to perform random access file I/O?
444 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 17: File I/O References
5. What’s the difference between the File class and the FileInfo class?

6. What’s the difference between the Directory class and the DirectoryInfo class?

7. What must be done to a new storage device before the computer can use it to read and write data?

8. Describe in your own words the definition of the term file.

9. What term is used to describe the topmost directory?

10. Another word that’s synonymous with directory is ________________.

11. The location of a particular file within a directory structure is indicated by a string of characters called a ______.

12. What’s the difference between an absolute path and a relative path?

13. What’s the advantage of using a verbatim string to formulate file paths?

14. A character used to separate individual fields in a text file record is called a _______________.

References

Microsoft Developer Network (MSDN) .NET Framework 3.0 Documentation [http://www.msdn.com]

Notes
C# For Artists © 2008 Rick Miller — All Rights Reserved 445

Notes Chapter 17: File I/O
446 © 2008 Rick Miller — All Rights Reserved C# For Artists

Part V: Network & Database Programming
C# For Artists © 2008 Rick Miller — All Rights Reserved 447

448 © 2008 Rick Miller — All Rights Reserved C# For Artists

18 Network Programming Fundamentals

Learning Objectives
• Demonstrate your understanding of basic networking concepts

• State the definition of the term “server hardware”

• State the definition of the term “server application”

• Describe the difference between server hardware and a server application

• State the definition of the term “client application”

• List and describe the different ways server and client applications can be physically and logically
distributed

• Describe the properties of a multitiered application

• State the definition of the terms “protocol”, “port”, “packet”, “datagram”, “TCP/IP” and “UDP”

• List the requirements for testing both client and server applications on one computer

Chapter 18

Fundamentals

Gerogetown Walkabout

C
o
n
ta

x
 T

 /
 K

o
d
ak

 T
ri

-X

Network Programming
C#
 For Artists © 2008 Rick Miller — All Rights Reserved 449

Introduction Chapter 18: Network Programming Fundamentals
Introduction

Network applications pervade today’s modern computing environment. If you use email, a web browser, or a

chat program like Windows Live Messenger, you’re using software applications powered by network technology.

This chapter serves two primary purposes. First, it gives you a broad understanding of key networking concepts

and terminology. Here you will learn the difference between server software and server hardware, the meanings of the

terms network, packet, datagram, TCP/IP and UDP, and how applications can be physically and logically distributed

in a networked environment.

The second purpose of this chapter is to introduce you to the concepts of multitiered, distributed applications.

Modern network applications are often logically tiered, with one or more of their logical tiers physically deployed on

different computers. It will be important for you to understand the terminology associated with these concepts as you

learn to write network-enabled applications.

Upon completion of this chapter, you will have a solid foundation upon which to successfully approach Chapter

19 - Networked Client-Server Applications, and Chapter 20 - Database Access & Multitiered Applications. This

chapter is not, however, a compendium on the topic of network programming or distributed applications. The subject

is much too rich to adequately cover in one chapter and is quite beyond the scope of this book. If you are interested in

pursuing something you learn here in more detail then I recommend you select one of the excellent sources listed in

the references section and follow your interests. An excellent place to learn more about Internet programming is the

Internet FAQ Archives: [http://www.faqs.org/faqs/]

What Is A Computer Network?

A computer network is an interconnected collection of computing devices. A computing device, for the purposes

of this rather broad definition, can be any piece of equipment that exists to participate in or support a network in some

fashion. Examples of computing devices include general purpose computers, special purpose computers, routers,

switches, hubs, printers, etc.

Purpose Of A Network

Computer networks are built with a specific purpose in mind. The primary purpose of a computer network is

resource sharing. A resource can be physical (i.e., a printer or a computer) or metaphysical (i.e., knowledge or data).

Figure 18-1 shows a diagram for a simple computer network. This type of simple network is referred to as a local

area network (LAN).

Referring to Figure 18-1 — the computing devices participating in this simple network include the workstations,

the servers, the printer, and the switch. The switch facilitates network interconnection. In this configuration the work-

Figure 18-1: A Simple Computer Network
450
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 18: Network Programming Fundamentals What Is A Computer Network?
stations and servers can share the computational resources offered by each computer on the network as well as the

printing services offered by the printer. Data can also be offered up for sharing on each computer as well.

The Role Of Network Protocols

A protocol is a specification of rules that govern the conduct of a particular activity. Entities that implement or

adhere to the protocol(s) for a given activity can participate in that activity. For example, Robert’s Rules of Order

specify a set of protocols for efficiently and effectively conducting meetings. A similar analogy applies to computer

networking.

Homogeneous Vs. Heterogeneous Networks

Computers participating in a computer network communicate with each other via a set of networking protocols.

There are generally two types of network environments: 1) homogeneous - where all the computers are built by the

same company and can talk to each other via that company’s proprietary networking protocol, or 2) heterogeneous -

where the computers are built by different companies, have different operating systems, and therefore different pro-

prietary networking protocols. An example of a homogenous network would be one comprised entirely of Apple

Macintosh computers and Apple peripherals. The Macintosh computers could communicate perfectly fine with each

other via AppleTalk which is an Apple networking protocol. In a perfect world, we would all use Apple Macintosh

computers but the world is, alas, imperfect, and almost every network in existence is heterogeneous in nature. Apple

Macs running OS X must communicate with computers running Sun Solaris, Microsoft Windows, Linux, and a host

of other hardware and operating system combinations.

The Unifying Network Protocols: TCP/IP

In today’s heterogeneous computer network environment, the protocols that power the Internet — Transmission

Control Protocol (TCP) and Internet Protocol (IP) — collectively referred to as TCP/IP, have emerged as the standard

network protocols through which different types of computers can talk to each other. Figure 18-2 shows the local area

network connected to the Internet via a router. So long as the computers on the LAN utilize an operating system that

implements TCP/IP, then they can access the computational and data resources made available both internally and via

the Internet. If the LAN does not utilize TCP/IP, then a bridge or gateway device would be required to perform the

necessary internetwork protocol translation.

Figure 18-2: Local Area Network Connected to the Internet

The terms router and

gateway are synony-

mous. A router sits at

the edge of a local

area network (LAN)

and routes IP data-

grams toward their

destination on the

Internet wide area

network (WAN).
C# For Artists
 © 2008 Rick Miller — All Rights Reserved
 451

What Is A Computer Network? Chapter 18: Network Programming Fundamentals
What’s So Special About The Internet?

What makes the Internet so special? The answer is — TCP/IP. The Internet is a vast network of computer net-

works. All of the networks on the Internet communicate with each other via TCP/IP. The TCP/IP protocols were

developed with Department of Defense (DoD) funding. What the DoD wanted was a computer and communications

network that was resilient to attack. If a piece of the Internet was destroyed by a nuclear blast, then data would be

automatically routed through the surviving network connections. When one computer communicates with another

computer via the Internet, the data it sends is separated into packets and transmitted one packet at a time to the desig-

nated computer. TCP/IP provides packet routing and guaranteed packet delivery. Because of the functionality pro-

vided by the TCP/IP protocols, the Internet is considered to be a robust and reliable way to transmit and receive data.

Figure 18-3 shows how the simple network of Agency A can share resources with other agencies via the Internet.

Quick Review

A computer network is an interconnected collection of computing devices. Examples of computing devices

include general purpose computers, special purpose computers, routers, switches, hubs, printers, etc. The primary

purpose of a computer network is resource sharing. A resource can be physical (i.e., a printer) or metaphysical (i.e.,

data).

A protocol is a specification of rules that govern the conduct of a particular activity. Entities that implement or

adhere to the protocol(s) for a given activity can participate in that activity. Computers participating in a computer

network communicate with each other via a set of networking protocols. There are generally two types of network

environments: 1) homogeneous - where all the computers are built by the same company and can talk to each other

via that company’s proprietary networking protocol, or 2) heterogeneous - where the computers are built by different

companies, have different operating systems, and therefore different proprietary networking protocols. In today’s het-

erogeneous computer network environment, the protocols that power the Internet — Transmission Control Protocol

(TCP) and Internet Protocol (IP) — collectively referred to as TCP/IP, have emerged as the standard network proto-

cols through which different types of computers can talk to each other.

Figure 18-3: The Internet — A Network of Networks Communicating via Internet Protocols
452
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 18: Network Programming Fundamentals Servers & Clients
What makes the Internet so special? The answer — TCP/IP. When one computer communicates with another

computer via the Internet, the data it sends is separated into packets and transmitted a packet at a time to the desig-

nated computer. TCP/IP provides for packet routing and guaranteed packet delivery. Because of the functionality pro-

vided by the TCP/IP protocols, the Internet is considered to be a robust and reliable way to transmit and receive data.

Servers & Clients

The terms server and client each have both a hardware and software connotation. This section briefly discusses

these terms in both aspects in greater detail to provide you with a foundation for the material presented in the next

section.

Server Hardware And Software

The term server is often used to refer both to a piece of computing hardware on which a server application runs

and to the server application itself. I will use the term server to refer to hardware. I will use the term server applica-

tion to refer to a software component whose job is to provide some level of service to another entity.

As Figure 18-4 illustrates, it is the job of a server to host server applications. However, as desktop computing

power increases, the lines between client and server hardware become increasingly blurry. A good definition for a

server then is any computer used to host one or more server applications as its primary job. A server is usually (should

be) treated as a critical piece of capital equipment within an organization. Server operating requirements are used to

specify air conditioning, electrical, and flooring requirements for data centers. Servers are supported by data backup

and recovery procedures and, if they are truly agency critical, will have some form of fault tolerance and redundancy

designed in as well.

A server running a server application is also referred to as a host. The term host extends to any computer running

any application.

Client Hardware And Software

The term client is also used to describe both hardware and software. Client hardware is any computing device

that hosts an application that requires or uses the services of a server application. Client software is any application

that requires or uses the services provided by a server application. For example, when you run Microsoft Internet

Explorer on your home computer, you are running a client application. You use Internet Explorer to access web sites

via the Internet. These web sites are served up by a web server (i.e., an HTTP server), which is a server application

hosted on a server somewhere out there in Internet land.

Figure 18-4: Client and Server Hardware and Applications
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 453

Application Distribution Chapter 18: Network Programming Fundamentals
Quick Review

The terms server and client each have both a hardware and software aspect. The term server is often used to refer

both to a piece of computing hardware on which a server application runs and to the server application itself. A good

definition for a server then is any computer used to run one or more server applications as its primary job. A server

running a server application is also referred to as a host. The term host extends to any computer running any applica-

tion. The term client is also used to describe both hardware and software. Client hardware is any computing device

that hosts an application that requires or uses the services of a server application. Client software is any application

that requires or uses the services provided by a server application.

Application Distribution

The term application distribution refers to where (i.e., on what physical computer) one or more pieces of a net-

work application reside. This section discusses the concepts of physically distributing client and server applications.

Server applications themselves can be further divided into multiple application layers with each distinct application

layer being physically deployed to one or more computers. The concepts associated with multilayered applications

are presented and discussed in the next section.

Physical Distribution On One Computer

Client and server applications can both be deployed on the same computer. This is most often done for the pur-

poses of testing during development. When you write client-server applications in Chapter 19, you will test them on

your development machine. If you are fortunate enough to have a home network that includes multiple computers,

you can test your client-server applications in a more real world setting. Figure 18-5 illustrates the concept of running

client and server applications on the same physical hardware.

Running Multiple Clients On The Same Computer

You can run multiple client applications on the same computer. To do this, your server application must be capa-

ble of handling multiple concurrent client requests for service. A server application with this capability is generally

referred to as being multithreaded. Each incoming client connection is passed off to a unique thread for processing.

The execution of multiple client applications, in addition to the server application, on the same hardware, is common

practice during a software project’s development and testing phases. Figure 18-6 illustrates the concept of running

multiple client applications and the server application on the same hardware.

Figure 18-5: Client and Server Applications Physically Deployed to the Same Computer
454
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 18: Network Programming Fundamentals Application Distribution
Addressing The Local Machine

When testing client-server applications on your local machine, you can use the localhost IP address of 127.0.0.1

as the server application’s host address.

Physical Distribution Across Multiple Computers

Although client and server applications can be co-located on the same hardware, it is more often the case that

they are physically deployed on different machines geographically separated by great distance. Figure 18-7 illustrates

this concept.

Quick Review

The term application distribution refers to where (i.e., on what physical computer) one or more pieces of a net-

work application reside. Client and server applications can be deployed to the same physical computer or to different

physical computers. These computers may be in the same room or located a great distance from each other.

Figure 18-6: Running Multiple Clients on Same Hardware

Figure 18-7: Client and Server Applications Deployed on Different Computers

These computers

may be in the same

room on the same

local area network

(LAN) or each may

be located half-way

around the planet

from the other con-

nected via the Inter-

net.
C# For Artists
 © 2008 Rick Miller — All Rights Reserved
 455

Multitiered Applications Chapter 18: Network Programming Fundamentals
Multitiered Applications

Up until now I have referred to client and server applications as if they were monolithic components. In reality,

modern client-server applications are logically segmented into functional layers. These layers are also referred to as

application tiers. An application composed of more than one tier is referred to as a multitiered application. This sec-

tion discusses the concepts related to multitiered applications in greater detail.

Logical Application Tiers

Figure 18-8 illustrates the concept of a multitiered application.

Referring to Figure 18-8 — in this example the application comprises three functional tiers: 1) presentation tier,

2) mission logic tier, and 3) data persistence tier. As their names suggest, each tier has a distinct responsibility for

delivering specific application functionality. The presentation tier is concerned with rendering the user interface. The

mission logic tier (a.k.a. business logic tier) contains the code that implements the application’s services. (i.e., data

processing algorithms, mission-oriented processes, etc.) (I use the term mission logic tier interchangeably with the

term business logic tier when referring to multitiered applications written for Department of Defense clients.) The

data persistence tier is responsible for servicing the data needs (i.e., data storage and retrieval) of the mission logic

layer as quickly and reliably as possible.

Another way to think about each tier’s responsibilities is as a separation of concerns:

• the presentation tier is concerned with how a user interacts with an application

• the mission logic tier is concerned with implementing mission support processes

• the data persistence tier is concerned with reliable data storage and retrieval in support of mission

processes

Physical Tier Distribution

The logical application tiers may be physically deployed on the same computer, as is illustrated in Figure 18-9.

It is more likely the case, however, that logical application tiers are physically deployed to separate and distinct

computing nodes located some distance apart. Figure 18-10 illustrates this concept by showing each logical tier

deployed to a different computer. In between this extreme lies any combination of logical tier deployments as best

supports an agency’s mission requirements

Quick Review

Client and server applications can be logically separated into distinct functional areas called tiers. Applications

logically segmented in this fashion are referred to as multitiered applications.

Three possible logical application tiers include: 1) the presentation tier, which is concerned with rendering the

application’s user interface, 2) the mission logic tier, which is concerned with implementing mission process logic,

Figure 18-8: A Multitiered Application
456
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 18: Network Programming Fundamentals Internet Networking Protocols: Nuts & Bolts
and 3) the data persistence tier, which is concerned with the quick and reliable delivery of data to the mission logic

tier. A multitiered application can be physically deployed on one computer or across several computers geographi-

cally separated by great distances.

Internet Networking Protocols: Nuts & Bolts

This section discusses the concepts associated with the Internet protocols and related terminology in greater

detail. You’ll find this background information helpful when navigating your way through the System.Net namespace

looking for a solution to your network programming problem.

The Internet Protocols: TCP, UDP, And IP

The Internet protocols facilitate the transmission and reception of data between participating client and server

applications in a packet-switched network environment. The term packet-switched network means that data traveling

along network pathways is divided into small, routable packages referred to as packets. If a communication link

between two points on a network goes down, the packets are routed through remaining network connections to their

intended destination.

The Internet protocols work together as a layered protocol stack as is shown in Figure 18-11.

Figure 18-9: Physically Deploying Logical Application Tiers on Same Computer

Figure 18-10: Logical Application Tiers Physically Deployed to Different Computers
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 457

Internet Networking Protocols: Nuts & Bolts Chapter 18: Network Programming Fundamentals
The layered protocol stack consists of the application layer, the transport layer, the network layer, the data link

layer, and the physical layer. Each protocol stack layer provides a set of services to the layer above it. Several exam-

ples of protocols that may be employed at each level in the application stack are also shown in Figure 18-11. For

more information on protocols not discussed in this chapter, please consult the sources listed in the references section.

The Application Layer

The application layer represents any internet enabled application that requires the services of the transport layer.

Typical applications you may be familiar with include File Transfer Protocol (FTP), Hypertext Transfer Protocol

(HTTP), TELNET, or a custom internet application such as one you might write. The application layer relies on ser-

vices provided by the transport layer.

Transport layer

The purpose of the transport layer is to provide host-to-host, connection-oriented, data transmission service to

the application layer. Two internet protocols that function at the transport layer include the Transmission Control Pro-

tocol (TCP) and the User Datagram Protocol (UDP). The .NET Framework supports both of these protocols directly

in that normal network communication takes place using TCP, but UDP can be utilized if required.

Transmission Control Protocol (TCP)

The purpose of TCP is to provide highly reliable, host-to-host communication. To achieve this, TCP manages

several important issues including basic data transfer, reliability, flow control, multiplexing, connections, and prece-

dence and security.

The sending and receiving TCP modules work together to achieve the level of service mandated by the TCP pro-

tocol. The sending TCP module packages octets of data into segments, which it forwards to the network layer and the

Internet Protocol (IP) for further transmission. TCP tags each octet with a sequence number. The receiving TCP mod-

ule signals an acknowledgement when it receives each segment and orders the octets according to sequence number,

eliminating duplicates and properly handling those that may have been received out of order.

In short — TCP guarantees data delivery and saves you the worry.

User Datagram Protocol (UDP)

UDP is used to send and receive data as quickly as possible without the overhead incurred when using TCP. UDP

is an extremely lightweight protocol when compared with TCP. It provides direct access to the IP datagram level.

However, the quick data transmission provided by UDP comes at a price. Data is not guaranteed to arrive at its

intended destination when sent via UDP.

Now, you might ask yourself, “Self, what’s UDP good for?” Generally speaking, any application that needs to

send data quickly and doesn’t particularly care about lost datagrams might stand to benefit from using UDP. Exam-

ples include data streams where previously sent data is of little or no use because of its age. (i.e., stock market quote

streams, voice transmissions, etc.)

Figure 18-11: TCP/IP Protocol Stack

HTTP, SMTP, FTP, SSH, IRC, etc.

TCP, UDP, SCTP, RTP, DCCP, etc.

IPv4, IPv6, ARP, ICMP, etc.

Ethernet, 802.11 WiFi, etc.

10BaseT, 10Base2, 100BaseT, etc.
458
 © 2008 Rick Miller — All Rights Reserved
 C# For Artists

Chapter 18: Network Programming Fundamentals Internet Networking Protocols: Nuts & Bolts
In short — UDP is faster than TCP but unreliable.

Network Layer

The network layer is responsible for the routing of data traffic between internet hosts. These hosts may be located

on a local area network or on another network somewhere on the Internet. The Internet Protocol (IP) resides at this

layer and provides data routing services to the transport layer protocols TCP or UDP.

Internet Protocol (IP)

The Internet Protocol (IP) is a connectionless service that permits the exchange of data between hosts without a

prior call setup. (Hence the term connectionless.) It packages data submitted by TCP or UDP into blocks called data-

grams. IP uses IP addresses and routing tables to properly route datagrams to their intended destination networks.

Data Link And Physical Layers

The data link and physical layers are the lowest layers of the networking protocol stack. It is here that data is

placed “on the wire” for transmission across the LAN or across the world.

The Data Link Layer

The data link layer sits below the network layer and is responsible for the transmission of data across a particular

communications link. It provides for flow control and error correction of transmitted data. An example protocol that

operates at the data link layer is Ethernet.

The Physical Layer

The physical layer is responsible for the actual transmission of data across the physical communication lines.

Physical layer protocols concern themselves with the types of signals used to transmit data. (i.e., electrical, optical,

etc.) and the type of media used to convey the signals (i.e., fiber optic, twisted pair, coaxial, etc.).

Putting It All Together

Computers that participate in a TCP/IP networking environment must be running an instance of the TCP/IP pro-

tocol stack as is illustrated in Figure 18-12.

Figure 18-12: Internet Protocol Stack Operations
C# For Arti
sts © 2008 Rick Miller — All Rights Reserved 459

Summary Chapter 18: Network Programming Fundamentals
Referring to Figure 18-12 — when Host Computer A sends data to Host Computer B via the Internet, the data is

passed from the application layer to the physical layer on Host Computer A and sent to the gateway that links the two

subnetworks. At the gateway the packets are passed back up to the network layer to determine the forwarding

address, then repackaged and sent to the destination computer. When the packets arrive at Host Computer B they are

passed back up the protocol stack and the original data is presented to the application layer.

What You Need To Know

Now that you have some idea of what’s involved with moving data between host computers on the Internet or on

a local area network using the Internet protocols, you can pretty much forget about all these nasty details. The .NET

Framework provides a set of classes in the System.Net namespace that makes network programming easy.

Quick Review

The Internet protocols facilitate the transmission and reception of data between participating client and server

applications in a packet-switched network environment. The term packet-switched network means that data traveling

along network pathways is divided into small, routable packages referred to as packets. If a communication link

between two points on a network goes down, the packets can be routed through remaining network connections to

their intended destination.

The Internet protocols work together as a layered protocol stack. The layered protocol stack consists of the appli-

cation layer, the transport layer, the network layer, the data link layer, and the physical layer. Each layer in the proto-

col stack provides a set of services to the layer above it.

The application layer represents any Internet enabled application that requires the services of the transport layer.

The purpose of the transport layer is to provide host-to-host, connection-oriented, data transmission service to the

application layer. Two Internet protocols that function at the transport layer include the Transmission Control Proto-

col (TCP) and the User Datagram Protocol (UDP). TCP guarantees data delivery and saves you the worry. UDP is

faster than TCP but unreliable.

The network layer is responsible for the routing of data traffic between Internet hosts. The Internet Protocol (IP)

is a connectionless service that permits the exchange of data between hosts without a prior call setup. (Hence the term

connectionless.) It packages data submitted by TCP or UDP into blocks called datagrams. IP uses IP addresses and

routing tables to properly route datagrams to their intended destination networks.

The data link and physical layers are the lowest layers of the networking protocol stack. The data link layer sits

below the network layer and is responsible for the transmission of data across a particular communications link. The

physical layer is responsible for the actual transmission of data across the physical communication lines.

Computers that participate in a TCP/IP networking environment must be running an instance of the TCP/IP pro-

tocol stack. The TCP/IP protocol stack is part of a computer’s operating system.

Summary

A computer network is an interconnected collection of computing devices. Examples of computing devices

include general purpose computers, special purpose computers, routers, switches, hubs, printers, personal digital

assistants (PDAs), etc. The primary purpose of a computer network is resource sharing. A resource can be physical

(i.e., a printer) or metaphysical (i.e., data).

A protocol is a specification of rules that govern the conduct of a particular activity. Entities that implement the

protocol(s) for a given activity can participate in that activity. Computers participating in a computer network com-

municate with each other via a set of networking protocols. There are generally two types of network environments:

1) homogeneous - where all the computers are built by the same company and can talk to each other via that com-

pany’s proprietary networking protocol, or 2) heterogeneous - where the computers are built by different companies,

have different operating systems, and therefore different proprietary networking protocols. In today’s heterogeneous

computer network environment the protocols that power the Internet — Transmission Control Protocol (TCP) and
460 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 18: Network Programming Fundamentals Skill-Building Exercises
Internet Protocol (IP) — collectively referred to as TCP/IP, have emerged as the standard network protocols through

which different types of computers can talk to each other.

What makes the Internet so special? The answer — TCP/IP. When one computer communicates with another

computer via the Internet the data it sends is separated into packets and transmitted a packet at a time to the desig-

nated computer. TCP/IP provides for packet routing and guaranteed packet delivery. Because of the functionality pro-

vided by the TCP/IP protocols the Internet is considered to be a robust and reliable way to transmit and receive data.

The terms server and client each have both a hardware and software aspect. The term server is often used to refer

both to a piece of computing hardware on which a server application runs and to the server application itself. A good

definition for a server then is any computer used to host one or more server applications as its primary job. A server

running a server application is also referred to as a host. The term host extends to any computer running any applica-

tion. The term client is also used to describe both hardware and software. Client hardware is any computing device

that hosts an application that requires or uses the services of a server application. Client software is any application

that requires or uses the services provided by a server application.

The term application distribution refers to where (i.e., on what physical computer) one or more pieces of a net-

work application reside. Client and server applications can be deployed to the same physical computer, but most

likely they are deployed to different machines.

Client and server applications can be logically separated into distinct functional areas called tiers. Applications

logically segmented in this fashion are referred to as multitiered applications. Three possible logical application tiers

include: 1) the presentation tier, which is concerned with rendering the application’s user interface, 2) the mission

logic tier, which is concerned with implementing mission process logic, and 3) the data persistence tier, which is

concerned with the quick and reliable delivery of data to the mission logic tier. A multitiered application can be phys-

ically deployed on one computer or across several computers geographically separated by great distances.

The Internet protocols facilitate the transmission and reception of data between participating client and server

applications in a packet-switched network environment. The term packet-switched network means that data traveling

along network pathways is divided into small, routable packages referred to as packets. If a communication link

between two points on a network goes down the packets can be routed through remaining network connections to

their intended destination.

The Internet protocols work together as a layered protocol stack. The layered protocol stack consists of the appli-

cation layer, the transport layer, the network layer, the data link layer, and the physical layer. Each layer in the proto-

col stack provides a set of services to the layer above it.

The application layer represents any internet enabled application that requires the services of the transport layer.

The purpose of the transport layer is to provide host-to-host, connection-oriented, data transmission service to the

application layer. Two internet protocols that function at the transport layer include the Transmission Control Proto-

col (TCP) and the User Datagram Protocol (UDP). TCP guarantees data delivery and saves you the worry. UDP is

faster than TCP but unreliable.

The network layer is responsible for routing data traffic between internet hosts. The Internet Protocol (IP) is a

connectionless service that permits the exchange of data between hosts without a prior call setup. It packages data

submitted by TCP or UDP into blocks called datagrams. IP uses IP addresses and routing tables to properly route

datagrams to their intended destination networks.

The data link and physical layers are the lowest layers of the networking protocol stack. The data link layer sits

below the network layer and is responsible for the transmission of data across a particular communications link. The

physical layer is responsible for the actual transmission of data across the physical communication lines.

Computers that participate in a TCP/IP networking environment must be running an instance of the TCP/IP pro-

tocol stack. The TCP/IP protocol stack is provided by a computer’s operating system.

Skill-Building Exercises

1. Web Research: Expand your understanding of the TCP/IP protocols. Search the web for the Internet RFCs used as

references for this chapter.

2. Web Research: Expand your understanding of network applications. Search the web for material related to packet-
C# For Artists © 2008 Rick Miller — All Rights Reserved 461

Suggested Projects Chapter 18: Network Programming Fundamentals
switched networks, distributed applications, and multitiered applications.

Suggested Projects

1. None

Self-Test Questions

1. What is a computer network? What is the primary purpose of a computer network?

2. Describe the two types of computer networking environments.

3. Describe the purpose of the TCP/IP Internet networking protocols.

4. What’s the difference between the terms server and server application? Client and client application?

5. Describe the relationship between a server application and client application.

6. List and describe at least two ways network applications can be distributed.

7. What term is used to describe a server application that can handle multiple simultaneous client connections?

8. What term is used to describe a network application logically divided into more than one functional layer? List and

describe the purpose of three possible functional layers.

9. List and describe the purpose of the layers of the Internet protocol stack. Describe how data is transmitted from one

computer to another via the Internet protocols.

10. What’s the difference between TCP and UDP?

11. What services does IP provide?

References

RFC 791 - Internet Protocol

RFC 2396 - Uniform Resource Identifiers (URI): General Syntax

RFC 793 - Transmission Control Protocol

RFC 768 - User Datagram Protocol

Uyless Black. Advanced Internet Technologies. Prentice Hall Series In Advanced Communications Technolo-

gies. Prentice Hall PTR, Upper Saddle River, NJ. ISBN: 0-13-759515-8
462 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 18: Network Programming Fundamentals Notes
Notes
C# For Artists © 2008 Rick Miller — All Rights Reserved 463

Notes Chapter 18: Network Programming Fundamentals
464 © 2008 Rick Miller — All Rights Reserved C# For Artists

19 Networked Client -Server Applications

Learning Objectives
• Demonstrate your ability to create networked client-server applications
• Utilize .NET Remoting to create client-server applications
• State the three things you must do to create a .NET Remoting application
• Create .NET Remoting applications with and without configuration files
• Create .NET Remoting applications using remote object interfaces
• Create client-server applications using the TcpListener and TcpClient classes
• Create a multithreaded TCP/IP server application
• Use a ParameterizedThreadStart delegate method to create a multithreaded client-server application
• Create a TCP/IP client application
• Send serialized objects between networked client-server applications
• Create a custom application protocol for use in a client-server application
• Use StreamReader and StreamWriter objects to send and receive data in a client-server application
• Use the NetworkStream to serialize/deserialize objects between client-server applications

Chapter 19

Client-Server Applications

Rosslyn, VA & Key Bridge From Washington Canoe Club

P
en

ta
x
 6

7
 /

 S
M

C
 T

ak
u
m

ar
 5

5
/2

.8
 /

 K
o
d
ak

 T
ri

-X
 P

ro
fe

ss
io

n
al

Networked
C#
 For Artists © 2008 Rick Miller — All Rights Reserved 465

Introduction Chapter 19: Networked Client-Server Applications
Introduction

You’re going to have a lot of fun in this chapter. It is here that you’ll put into practical use many of the network-

ing concepts discussed in the previous chapter.

You will start by learning how to build client-server applications using Microsoft’s .NET remoting technology.

.NET remoting makes it possible to utilize the services of an object hosted on a remote computer or locally across

applications boundaries. I’ll show you how to create .NET remoting applications using programmatic configuration

and configuration files. I’ll also show you how to call the services of a remote object via one of its implemented inter-

faces.

Once you’ve mastered the art of .NET remoting, you’ll learn how to create client-server applications using the

TcpListener, TcpClient, and other classes found in the System.Net namespace. I’ll show you how to create a multi-

threaded server application that can service requests from multiple clients. I’ll also show you how to create a custom

application protocol so your client-server applications can talk to each other.

If you are timid about the thought of building a networked application, don’t be. I will show you what to do and

how to compile your project files every step of the way. When you’ve finished this chapter, you will have the confi-

dence to build your own networked client-server applications.

Also, what you learn here will be put to good use in Chapter 20: Database Access & Multitiered Applications.

Building Client-Server Applications With .NET Remoting

.NET remoting makes it possible to access the services of an object hosted locally but in a different application

domain or hosted remotely on another computer located somewhere in network land. The .NET remoting infrastruc-

ture hides many of the nasty details normally associated with network programming, letting you focus on building

value-added applications. You’ll find .NET remoting to be an easy and powerful way to build client-server applica-

tions.

The Three Required Components of A .NET Remoting Application

All .NET remoting applications have three common components regardless of their complexity: a remotable

object, a server application that hosts the remotable object and handles incoming service requests, and a client appli-

cation that utilizes the services of the remotely-hosted object. Figure 19-1 illustrates these concepts.

Referring to Figure 19-1 — the three components of a typical .NET remoting application include a remotable

object, a server application that coordinates method calls to the remote object and makes its services available on a

particular channel, and a client application that accesses the services of the remote object via the appropriate channel.

A remotable object is created from a class that inherits from System.MarshalByRefObject. This enables the

object to be shared across application domains in .NET remoting applications. Note that the remotable object can be

Figure 19-1: .NET Remoting Architecture

Remotable

object
466
 © 2008 Rick Miller — All Rights Reserved
 C# For Artists

Chapter 19: Networked Client-Server Applications Building Client-Server Applications With .NET Remoting
simple or complex. In this section, I’ll keep the remotable objects simple, but at the end of this section you’ll see how

a remote object can serve as a façade to a complex data-driven application.

The remoting server application hosts the remotable object and makes its services available via a channel. There

are three primary channel types: TcpChannel, HttpChannel, and IpcChannel. The IpcChannel is used for inter-pro-

cess communication between client and server applications hosted on the same machine.

The remoting client application accesses the services of the remote object via a proxy created by the .NET remot-

ing infrastructure. The .NET remoting infrastructure is responsible for creating the proxy object, setting up and tear-

ing down network communications between client and server applications, and marshaling and unmarshaling remote

method calls and any returned objects between client and server. All this is done under the covers as you will soon

see.

A Simple .NET Remoting Application

In this section I’ll show you how to create a simple .NET remoting application. It all starts with the creation of a

remotable class type you can use to create remotable objects. Example 19.1 gives the code for a class named

TestClass.
19.1 TestClass.cs

1 using System;
2
3 public class TestClass : MarshalByRefObject{
4
5 private string _text;
6
7 public string Text {
8 get { return _text; }
9 set {
10 _text = value;
11 Console.WriteLine("Property changed --> " + _text);
12 }
13 }
14
15 public TestClass():this("This is the default text message!"){}
16
17 public TestClass(string s){
18 _text = s;
19 }
20 }

Referring to Example 19.1 — TestClass extends System.MarshalByRefObject. This tags objects of type

TestClass as being remotable. TestClass has two constructors and one property named Text. Setting the Text property

causes a short message to be written to the console. This is not normally a good thing to do in a property but in this

case it will help to demonstrate some important remoting concepts.

Compile TestClass into a dynamically linked library (dll) by issuing the following compiler command at the

command line:

csc /t:library TestClass.cs
The reason you need to compile this into a dll is that you’ll need to share this code with both the server and client

applications.

Next, let’s create the server application that will host an instance of TestClass. Example 19.2 gives the code for a

class named RemotingServer.
19.2 RemotingServer.cs

1 using System;
2 using System.Runtime.Remoting;
3 using System.Runtime.Remoting.Channels;
4 using System.Runtime.Remoting.Channels.Tcp;
5
6 public class RemotingServer {
7 public static void Main(){
8
9 try{
10 TcpChannel channel = new TcpChannel(8080);
11 ChannelServices.RegisterChannel(channel, false);
12 RemotingConfiguration.RegisterWellKnownServiceType(typeof(TestClass), "TestClass",
13 WellKnownObjectMode.SingleCall);
14 Console.WriteLine("Listening for remote requests. Press any key to exit...");
15 Console.ReadLine();
16 }catch(ArgumentNullException ane){
17 Console.WriteLine("Channel argument was null!");
C# For Artists © 2008 Rick Miller — All Rights Reserved 467

Building Client-Server Applications With .NET Remoting Chapter 19: Networked Client-Server Applications
18 Console.WriteLine(ane);
19 }catch(RemotingException re){
20 Console.WriteLine("Channel has already been registered!");
21 Console.WriteLine(re);
22 }catch(Exception e){
23 Console.WriteLine(e);
24 }
25 } // end Main()
26 } // end class definition

Referring to Example 19.2 — notice first the list of namespaces you must rely upon. These include System.Runt-

ime.Remoting, System.Runtime.Remoting.Channels, and System.Runtime.Remoting.Channels.Tcp. I am using the

System.Runtime.Remoting.Channels.Tcp namespace because I’m going to make available the services of a TestClass

object via a TcpChannel.

The first thing the server does is create the TcpChannel object to listen on port 8080. Be sure this port is not in

use or the TcpChannel() constructor call will throw an exception.

Next, on line 11, the newly created channel is registered with the help of the ChannelServices.RegisterChannel()

method. The second argument to the RegisterChannel() method specifies whether or not to enforce security on the

channel. In this case I have opted not to enforce security by supplying a value of false.

The meat of the server comes on line 12 where an object of type TestClass is registered. The RemotingConfigu-

ration.RegisterWellKnownServiceType() method takes three arguments: The first is the type of the object to be

hosted, the second is a string indicating the service name by which the object can be accessed, and the third argument

specifies whether calls to the remote object’s methods are handled by a new instance of the object (SingleCall) or by

one object that persists across multiple service requests (Singleton). In this example, I am using the SingleCall mode.

To compile this program I recommend putting the TestClass.dll in the same directory as the RemotingServer.cs

class code and issuing the following compiler command:

csc /r:TestClass.dll RemotingServer.cs
The /r switch tells the compiler to include the indicated resource during compilation. When you’ve compiled

the server give it a whirl. Figure 19-2 shows the RemotingServer running and waiting for an incoming connection.

Finally, we need a client application that makes calls to the remote TestClass object hosted on the running

RemotingServer application. Example 19.3 gives the code for the RemotingClient application.
19.3 RemotingClient.cs

1 using System;
2 using System.Runtime.Remoting;
3 using System.Runtime.Remoting.Channels;
4 using System.Runtime.Remoting.Channels.Tcp;
5
6 public class RemotingClient {
7 public static void Main(){
8 try {
9 TcpChannel channel = new TcpChannel();
10 ChannelServices.RegisterChannel(channel, false);
11 TestClass test = (TestClass)Activator.GetObject(typeof(TestClass), "tcp://localhost:8080/TestClass");
12 Console.WriteLine(test.Text);
13 test.Text = "This is a new string sent from the client application!";
14 Console.WriteLine(test.Text);
15 }catch(ArgumentNullException ane){
16 Console.WriteLine(ane);
17 }catch(RemotingException re){
18 Console.WriteLine(re);
19 }catch(Exception e){
20 Console.WriteLine(e);
21 }
22 }
23 }

Figure 19-2: RemotingServer Waiting for Something to do
468
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 19: Networked Client-Server Applications Building Client-Server Applications With .NET Remoting
Referring to Example 19.3 — on lines 9 and 10, a TcpChannel object is created and registered. The heavy lifting

occurs on line 11 when an instance of the remote TestClass object is created with the help of the System.Activa-

tor.GetObject() method. This method takes two arguments: the type of object to create, and a string representing the

URL of the remote service. In this example, as you’ll recall from the RemotingServer code, the remote TestClass

object is hosted on the server and is made available via a service named “TestClass” on port 8080. Thus, the URL

given here must reflect that reality. Notice that the retrieved object must be cast to its proper type. Once this line of

code executes, the client application can use the reference test as though the object it pointed to was on the local

machine. All the network calls to the remote object are handled automatically by the .NET remoting infrastructure.

In this example, on line 12, I write the value of the Text property to the console. I then attempt to change the Text

property by setting it to a new string value.

To compile this program, you’ll need to make a copy of the TestClass.dll, put it in the same folder where you

have the RemotingClient.cs code and issue the following compiler command:

csc /r:TestClass.dll RemotingClient.cs
Figure 19-3 shows the results of running the RemotingClient application several times. Make sure to start the

RemotingServer before running RemotingClient. Also, I have assumed you’re testing this application on the local

machine (localhost). If you have two computers on a network, change localhost to the appropriate IP address and

recompile the programs before you start the server and run the client application.

SingleCall vs. Singleton

Referring to Figure 19-3 — notice that each time the RemotingClient application executes it gets the original, or

default, remote object’s Text property message, even though it sets the remote object’s Text property to a new value.

This is because all requests to the remote object are handled by a new object instance. (Note that the remote object’s

Text property is being changed by examining the RemotingServer’s console output.) This behavior was set when I

registered the remote object in the server code by using the WellKnownObjectMode.SingleCall mode.

If you want the remote object to persist and maintain state between client service requests, use the

WellKnownObjectMode.Singleton mode. Example 19.4 gives the code for a slightly modified version of Remoting-

Server that registers the TestClass object in Singleton mode.
19.4 RemotingServer.cs (Mod 1)

1 using System;
2 using System.Runtime.Remoting;
3 using System.Runtime.Remoting.Channels;
4 using System.Runtime.Remoting.Channels.Tcp;
5
6 public class RemotingServer {
7 public static void Main(){
8

Figure 19-3: Results of Running RemotingServer and RemotingClient with a SingleCall Mode Remote Object
C# Fo
r Artists © 2008 Rick Miller — All Rights Reserved 469

Building Client-Server Applications With .NET Remoting Chapter 19: Networked Client-Server Applications
9 try{
10 TcpChannel channel = new TcpChannel(8080);
11 ChannelServices.RegisterChannel(channel, false);
12 RemotingConfiguration.RegisterWellKnownServiceType(typeof(TestClass), "TestClass",
13 WellKnownObjectMode.Singleton);
14 Console.WriteLine("Listening for remote requests. Press any key to exit...");
15 Console.ReadLine();
16 }catch(ArgumentNullException ane){
17 Console.WriteLine("Channel argument was null!");
18 Console.WriteLine(ane);
19 }catch(RemotingException re){
20 Console.WriteLine("Channel has already been registered!");
21 Console.WriteLine(re);
22 }catch(Exception e){
23 Console.WriteLine(e);
24 }
25
26 }
27 }

Referring to Example 19.4 — the only difference between this and the previous version of RemotingServer

appears on line 13 where I’ve registered the TestClass object in the WellKnownObjectMode.Singleton mode. The

TestClass and RemotingClient code remain unchanged. Recompile the RemotingServer class and restart the server.

Figure 19-4 shows the results of running the RemotingClient application several times. Note the different behavior.

The remote object’s Text property persists across service requests.

Accessing A Remote Object Via An Interface

In the previous remoting examples, the TestClass.dll file was deployed with both the client and server applica-

tions. This is required because you’re accessing a class by name and the compiler must resolve that name by having

access to the code where that name is defined.

As it turns out, because the .NET remoting infrastructure creates a proxy to the remote object, the proxy is, in

effect, only an interface to the remote object. (The .NET remoting infrastructure builds the proxy from the TestClass

definition contained within the TestClass.dll.) You can make internal changes to TestClass, recompile it, and deploy

the dll on the server side, and the client will still run fine. If, however, you wanted to swap out the TestClass remote

object with a remote object of a different type, you’d have to deploy the new dll to both the client and server applica-

tions and recompile them both. There is a better way — have TestClass implement an interface and deploy the inter-

face to the remote client. That way, you can change the type of remote object anytime you need to, so long as it

implements the interface expected by the remote client.

Let’s see how this is done. I’m going to make a few changes to the code base. It all begins with the definition of

an interface I’ll call ITest, which is given in Example 19.5.
19.5 ITest.cs

1 using System;
2
3 public interface ITest {
4 string Text{
5 get;
6 set;
7 }
8 }

Figure 19-4: Results of Hosting TestClass Remote Object in Singleton Mode
470
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 19: Networked Client-Server Applications Building Client-Server Applications With .NET Remoting
Referring to Example 19.5 — the ITest interface is quite simple. It simply declares the read/write property named

Text. Compile this interface into a dll using the following compiler command:

csc /t:library ITest.cs
Example 19.6 gives the code for the modified TestClass.

19.6 TestClass.cs (Mod 1)

1 using System;
2
3 public class TestClass : MarshalByRefObject, ITest {
4
5 private string _text;
6
7 public string Text {
8 get { return _text; }
9 set {
10 _text = value;
11 Console.WriteLine("Property changed --> " + _text);
12 }
13 }
14
15 public TestClass():this("This is the new default text message!"){}
16
17 public TestClass(string s){
18 _text = s;
19 }
20 }

Referring to Example 19.6 — note now on line 3 that TestClass, in addition to extending MarshalByRefObject,

implements the ITest interface. That’s the only change to the TestClass code. Compile TestClass into a dll by using

the following compiler command:

csc /t:library /r:ITest.dll TestClass.cs
Now, the RemotingServer code remains unchanged. The only thing you must do at this point is recompile

RemotingServer and include a reference to both the TestClass.dll and ITest.dll files like so:

csc /r:TestClass.dll;ITest.dll RemotingServer.cs
The biggest changes are made to the RemotingClient application. Its code is given in Example 19.7.

19.7 RemotingClient.cs (Mod 1)

1 using System;
2 using System.Runtime.Remoting;
3 using System.Runtime.Remoting.Channels;
4 using System.Runtime.Remoting.Channels.Tcp;
5
6 public class RemotingClient {
7 public static void Main(){
8 try {
9 TcpChannel channel = new TcpChannel();
10 ChannelServices.RegisterChannel(channel, false);
11 ITest test = (ITest)Activator.GetObject(typeof(ITest), "tcp://localhost:8080/TestClass");
12 Console.WriteLine(test.Text);
13 test.Text = "This is a new string sent from the client application";
14 Console.WriteLine(test.Text);
15 }catch(ArgumentNullException ane){
16 Console.WriteLine("Channel argument was null!");
17 Console.WriteLine(ane);
18 }catch(RemotingException re){
19 Console.WriteLine("Channel has already been registered!");
20 Console.WriteLine(re);
21 }catch(Exception e){
22 Console.WriteLine(e);
23 }
24 }
25 }

Referring to Example 19.7 — note the changes made to line 11. The RemotingClient application is getting an

instance of a remote object of type ITest. Also note that the URL to the remote object remains unchanged, and this is

fine. What matters in the code is that you’re referencing ITest, not TestClass. To compile this program you’ll need to

copy the ITest.dll file to the client directory (and delete the TestClass.dll) and use the following compiler command:

csc /r:ITest.dll RemotingClient.cs
Now, start up the server and run the RemotingClient application several times. You’ll see that outwardly it

behaves like the previous version of the program as is shown in Figure 19-5. Inwardly, however, you’ve built yourself

a .NET remoting application that can more flexibly respond to object changes on the back-end. And we’re going to

take this flexibility one step further in the following section when I show you how to configure both the server and

client applications with configuration files.
C# For Artists © 2008 Rick Miller — All Rights Reserved 471

Building Client-Server Applications With .NET Remoting Chapter 19: Networked Client-Server Applications
Using Configuration Files

Both remote client and server applications can be configured via configuration files. A configuration file contains

information about channels, remote object types, service names, etc. Using configuration files simplifies code and

increases application flexibility by eliminating the need to recompile code when you want to make simple changes to

certain application properties.

The use of configuration files requires changes to both the client and server remoting application code. The code

for ITest and TestClass remains unchanged. Example 19.8 gives the code for the RemotingServer application modi-

fied to use a configuration file.
19.8 RemotingServer.cs (Mod 2)

1 using System;
2 using System.Runtime.Remoting;
3 using System.Runtime.Remoting.Channels;
4 using System.Runtime.Remoting.Channels.Tcp;
5
6 public class RemotingServer {
7 public static void Main(){
8 try {
9 RemotingConfiguration.Configure("server.config", false);
10 Console.WriteLine("Listening for remote requests. Press any key to exit...");
11 Console.ReadLine();
12 }catch(Exception e){
13 Console.WriteLine(e);
14 }
15 }
16 }

Referring to Example 19.8 — the RemotingConfiguration.Configure() method specifies a configuration file

named server.config. The content of the server.config configuration file is listed in Example 19.9.
19.9 server.config

1 <configuration>
2 <system.runtime.remoting>
3 <application>
4 <service>
5 <wellknown mode="Singleton" type="TestClass, TestClass" objectUri="TestClass" />
6 </service>
7 <channels>
8 <channel ref="tcp" port="8080" />
9 </channels>
10 </application>
11 </system.runtime.remoting>
12 </configuration>

Referring to Example 19.9 — the server.config file contains XML tags that represent remoting configuration set-

tings. (A full description of the remoting configuration file schema can be found on the MSDN website.) Configura-

tion settings for one or more services hosted on one or more channels appear within the <application></application>

tags. In this example the TestClass remote object type is hosted on a TcpChannel on port 8080 with a service URI

named TestClass. Note on line 5 the type attribute is set to “TestClass, TestClass”. The first TestClass refers to the

type name; the second TestClass refers to the application domain where TestClass can be found. (The typename and

application domain are the same in this case.)

Use the following compiler command to compile the RemotingServer code:

csc /r:TestClass.dll;ITest.dll RemotingServer.cs

Figure 19-5: Results of Accessing a Remote Object via an Interface
472
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 19: Networked Client-Server Applications Building Client-Server Applications With .NET Remoting
To run the RemotingServer application, make sure the server.config file is located in the same directory. (Other-

wise, provide an absolute path name to the server.config file when you specify it in the call to the Configure()

method.)

I made a few changes to the RemotingClient application as well. The modified code appears in Example 19.10.

19.10 RemotingClient.cs

1 using System;
2 using System.Runtime.Remoting;
3 using System.Runtime.Remoting.Channels;
4 using System.Runtime.Remoting.Channels.Tcp;
5
6 public class RemotingClient {
7 public static void Main(){
8 try {
9 RemotingConfiguration.Configure("client.config", false);
10 WellKnownClientTypeEntry[] client_types = RemotingConfiguration.GetRegisteredWellKnownClientTypes();
11 ITest test = (ITest)Activator.GetObject(typeof(ITest), client_types[0].ObjectUrl);
12 Console.WriteLine(test.Text);
13 test.Text = "This is a new string sent from the client application";
14 Console.WriteLine(test.Text);
15 }catch(Exception e){
16 Console.WriteLine(e);
17 }
18 }
19 }

Referring to Example 19.10 — the RemotingConfiguration.Configure() method is used to load a configuration

file named client.config. Now, for maximum flexibility, on line 10, I have used the GetRegisteredWellKnowClient-

Types() method to retrieve an array of registered client types. (In this example there is only one, as you’ll see when

you examine the client.config file.) I then use the client_types array to access the URL for the first registered client

type, which in this case refers to the TestClass remote object service hosted on localhost port 8080. By doing this, and

using the Activator.GetObject() method, I can change the client to access different remote objects without recompil-

ing, provided those remote objects implement the ITest interface.

Example 19.11 lists the content of the client.config file.

19.11 client.config

1 <configuration>
2 <system.runtime.remoting>
3 <application>
4 <client>
5 <wellknown type="ITest, ITest" url="tcp://localhost:8080/TestClass" />
6 </client>
7 </application>
8 </system.runtime.remoting>
9 </configuration>

Use the following compiler command to compile the RemotingClient application:

csc /r:ITest.dll RemotingClient.cs
To run the RemotingClient application, ensure the client.config file is in the same directory as the application.

Figure 19-6 shows the results of running the RemotingServer and RemotingClient applications having been config-

ured with configuration files.

Figure 19-6: Results of Running RemotingServer and RemotingClient with Configuration Files
C# For
Artists © 2008 Rick Miller — All Rights Reserved 473

Building Client-Server Applications With .NET Remoting Chapter 19: Networked Client-Server Applications
Passing Objects Between Client And Server

Remote object method calls can take parameters and return object’s just like ordinary objects. A user-defined

type intended for transmission across a network must be tagged with the Serializable attribute. Let’s see how this is

done. The following extended example shows how a remoting client can access a remoting server to get a list of Per-

son objects. To keep things relatively simple, the remote object creates and populates a collection of Person objects.

(These Person objects could easily be retrieved from a database, which you’ll see done in the following chapter!)

Example 19.12 gives the code for the Person class, which is used in this application.
19.12 Person.cs

1 using System;
2
3 [Serializable]
4 public class Person {
5
6 //enumeration
7 public enum Sex {MALE, FEMALE};
8
9 // private instance fields
10 private String _firstName;
11 private String _middleName;
12 private String _lastName;
13 private Sex _gender;
14 private DateTime _birthday;
15
16
17 //private default constructor
18 private Person(){}
19
20 public Person(String firstName, String middleName, String lastName,
21 Sex gender, DateTime birthday){
22 FirstName = firstName;
23 MiddleName = middleName;
24 LastName = lastName;
25 Gender = gender;
26 BirthDay = birthday;
27 }
28
29 // public properties
30 public String FirstName {
31 get { return _firstName; }
32 set { _firstName = value; }
33 }
34
35 public String MiddleName {
36 get { return _middleName; }
37 set { _middleName = value; }
38 }
39
40 public String LastName {
41 get { return _lastName; }
42 set { _lastName = value; }
43 }
44
45 public Sex Gender {
46 get { return _gender; }
47 set { _gender = value; }
48 }
49
50 public DateTime BirthDay {
51 get { return _birthday; }
52 set { _birthday = value; }
53 }
54
55 public int Age {
56 get {
57 int years = DateTime.Now.Year - _birthday.Year;
58 int adjustment = 0;
59 if(DateTime.Now.Month < _birthday.Month){
60 adjustment = 1;
61 }else if((DateTime.Now.Month == _birthday.Month) && (DateTime.Now.Day < _birthday.Day)){
62 adjustment = 1;
63 }
64 return years - adjustment;
65 }
66 }
67
68 public String FullName {
474 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 19: Networked Client-Server Applications Building Client-Server Applications With .NET Remoting
69 get { return FirstName + " " + MiddleName + " " + LastName; }
70 }
71
72 public String FullNameAndAge {
73 get { return FullName + " " + Age; }
74 }
75
76 public override String ToString(){
77 return FullName + " is a " + Gender + " who is " + Age + " years old.";
78 }
79
80 } // end Person class

Referring to Example 19.12 — the Person class has been tagged as being serializable by the addition on line 3 of

the Serializable attribute. Compile this class into a dll using the following compiler command:

csc /t:library Person.cs
Example 19.13 gives the code for the ISurrealistServer interface.

19.13 ISurrealistServer.cs

1 using System;
2 using System.Collections.Generic;
3
4 public interface ISurrealistServer {
5 List<Person> GetSurrealists();
6 }

Referring to Example 19.13 — the ISurrealistServer interface declares one method named GetSurrealists(),

which returns a list of Person objects. Compile this code into a dll by using the following compiler command:

csc /t:library /r:Person.dll ISurrealistServer.cs
Example 19.14 gives the code for the SurrealistServer class.

19.14 SurrealistServer.cs

1 using System;
2 using System.Collections.Generic;
3
4 public class SurrealistServer : MarshalByRefObject, ISurrealistServer {
5
6 private List<Person> surrealists = null;
7
8 public SurrealistServer(){
9 this.InitializeSurrealists();
10 }
11
12 public List<Person> GetSurrealists(){
13 Console.WriteLine("Request for surrealists received!");
14 return surrealists;
15 }
16
17 private void InitializeSurrealists(){
18 surrealists = new List<Person>();
19 Person p1 = new Person("Rick", "", "Miller", Person.Sex.MALE, new DateTime(1961, 02, 04));
20 Person p2 = new Person("Max", "", "Ernst", Person.Sex.MALE, new DateTime(1891, 04, 02));
21 Person p3 = new Person("Andre", "", "Breton", Person.Sex.MALE, new DateTime(1896, 02, 19));
22 Person p4 = new Person("Roland", "", "Penrose", Person.Sex.MALE, new DateTime(1900, 10, 14));
23 Person p5 = new Person("Lee", "", "Miller", Person.Sex.FEMALE, new DateTime(1907, 04, 23));
24 Person p6 = new Person("Henri-Robert-Marcel", "", "Duchamp", Person.Sex.MALE,
25 new DateTime(1887, 07, 28));
26
27 surrealists.Add(p1);
28 surrealists.Add(p2);
29 surrealists.Add(p3);
30 surrealists.Add(p4);
31 surrealists.Add(p5);
32 surrealists.Add(p6);
33 }
34
35 }

Referring to Example 19.14 — the SurrealistServer class extends MarshalByRefObject and implements the ISur-

realistServer interface. It declares a private field named surrealists. It actually creates the list object and populates it

with six Person objects in the body of the InitializeSurrealists() method. The GetSurrealists() method simply returns

the list object. So, over the network, the entire list of Person objects is returned to the client application when it calls

this method.

Next, let’s make some changes to the server.config file, as are shown in Example 19.15
19.15 server.config

1 <configuration>
2 <system.runtime.remoting>
3 <application>
C# For Artists © 2008 Rick Miller — All Rights Reserved 475

Building Client-Server Applications With .NET Remoting Chapter 19: Networked Client-Server Applications
4 <service>
5 <wellknown mode="Singleton" type="SurrealistServer, SurrealistServer"
6 objectUri="SurrealistServer" />
7 </service>
8 <channels>
9 <channel ref="tcp" port="8080" />
10 </channels>
11 </application>
12 </system.runtime.remoting>
13 </configuration>

Referring to Example 19.15 — the changes made to the server.config file reflect the new name of the remote

object class and the name of the service by which it can be accessed. These changes appear in lines 5 and 6.

Finally, the code for RemotingServer remains unchanged from the last example, but I repeat it here for continuity

in Example 19.16.
19.16 RemotingServer.cs

1 using System;
2 using System.Runtime.Remoting;
3 using System.Runtime.Remoting.Channels;
4 using System.Runtime.Remoting.Channels.Tcp;
5
6 public class RemotingServer {
7 public static void Main(){
8 try {
9 RemotingConfiguration.Configure("server.config", false);
10 Console.WriteLine("Listening for remote requests. Press any key to exit...");
11 Console.ReadLine();
12 }catch(Exception e){
13 Console.WriteLine(e);
14 }
15 }
16 }

To compile this application, make sure the Person.dll, ISurrealistServer.dll, and SurrealistServer.dll files are in

the same directory and use the following compiler command:

csc /r:Person.dll;ISurrealistServer.dll;SurrealistServer.dll
RemotingServer.cs

When you have finished compiling the RemotingServer application you can start the server. It’s time now to

write the code for the RemotingClient application. The RemotingClient code is given in Example 19.17.
19.17 RemotingClient.cs

1 using System;
2 using System.Collections.Generic;
3 using System.Runtime.Remoting;
4 using System.Runtime.Remoting.Channels;
5 using System.Runtime.Remoting.Channels.Tcp;
6
7 public class RemotingClient {
8 public static void Main(){
9 try {
10 RemotingConfiguration.Configure("client.config", false);
11 WellKnownClientTypeEntry[] client_types = RemotingConfiguration.GetRegisteredWellKnownClientTypes();
12 ISurrealistServer surrealist_server =
13 (ISurrealistServer)Activator.GetObject(typeof(ISurrealistServer), client_types[0].ObjectUrl);
14
15 List<Person> surrealists = surrealist_server.GetSurrealists();
16 foreach(Person p in surrealists){
17 Console.WriteLine(p);
18 }
19 }catch(Exception e){
20 Console.WriteLine(e);
21 }
22 }
23 }

Referring to Example 19.17 — the RemotingClient gets its configuration from the client.config file, which is

given in the next example. It then gets a reference to an ISurrealistServer object and calls its GetSurrealists() method.

It then iterates over the list of Person objects in the body of the foreach statement on line 16 and writes each

object’s ToString() data to the console.

Example 19.18 gives the contents of the client.config file.
19.18 client.config

1 <configuration>
2 <system.runtime.remoting>
3 <application>
4 <client>
5 <wellknown type="ISurrealistServer, ISurrealistServer"
476 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 19: Networked Client-Server Applications Building Client-Server Applications With .NET Remoting
6 url="tcp://localhost:8080/SurrealistServer" />

7 </client>

8 </application>

9 </system.runtime.remoting>

10 </configuration>

Referring to Example 19.18 — the changes to the client.config file appear on lines 5 and 6 and reflect the name of

the remote object type and the service where it can be found.

To compile the RemotingClient application, make copies of the Person.dll and ISurrealistServer.dll, place them

in the client code directory, and use the following compiler command:

csc /r:Person.dll;ISurrealistServer.dll RemotingClient.cs

Figure 19-7 shows the results of running the RemotingServer and RemotingClient applications.

Quick Review

All .NET remoting applications have three common components, regardless of their complexity: a remotable

object, a server application that hosts the remotable object and handles incoming service requests, and a client appli-

cation that utilizes the services of the remotely-hosted object.

A remotable object is created from a class that inherits from System.MarshalByRefObject. This enables the

object to be shared across application domains in .NET remoting applications. The remotable object can be simple or

complex.

The remoting server application hosts the remotable object and makes its services available via a channel. There

are three primary channel types: TcpChannel, HttpChannel, and IpcChannel. The IpcChannel is used for inter-pro-

cess communication between client and server applications hosted on the same machine.

The remoting client application accesses the services of the remote object via a proxy created automatically by

the .NET remoting infrastructure. Once a remoting client application creates a reference to a remote object, it uses the

services of the remote object, via the remote object’s proxy, as if the remote object were a local object. The underly-

ing complexities associated with calling the remote object’s methods or properties are handled automatically by the

.NET remoting infrastructure. Remote objects accessed in this manner must extend MarshalByRefObject and any

other interfaces as required.

Remote objects can be hosted in SingleCall or Singleton mode. In SingleCall mode, a new remote object is used

to respond to each client service request. In Singleton mode, remote objects persist and maintain state across multiple

client service requests.

Remoting client applications can access the services of remote objects via one or more of the remote object’s

interfaces. This makes changing the implementation of the remote object easier, as long as the new object implements

one of the interfaces expected by the client application.

For maximum deployment flexibility, place .NET remoting application deployment data in configuration files.

Complex objects sent between remoting client and server applications must be tagged as being serializable by

using the Serializable attribute.

Figure 19-7: Results of Sending a Collection of Person Objects to a Remoting Client
C# For
Artists © 2008 Rick Miller — All Rights Reserved 477

Client-Server Applications With TcpListener And TcpClient Chapter 19: Networked Client-Server Applications
Client-Server Applications With TcpListener And TcpClient

In this section you’ll get a little more down in the weeds with network programming by using the TcpListener

and TcpClient classes to create client-server applications. Unlike .NET remoting, you’ll need to know how to handle

the details of establishing a network connection between client and server applications, how to send data between the

client and server so they can perform useful work, and how to use threads to enable a server to handle multiple client

requests simultaneously.

TCP/IP Client-Server Overview

The steps required to write a TCP/IP client-server application using the System.Net.TcpListener and Sys-

tem.Net.TcpClient classes are highlighted in the following illustrations.

Referring to Figure 19-8 — a server application uses a TcpListener object to listen for incoming TcpClient con-

nections on a particular IP address (or multiple IP addresses) and port number. The client application uses a TcpClient

object to connect to a particular machine, given its IP address or DNS name (i.e., www.warrenworks.com) which is

then mapped to an IP address, and specified port number.

Referring to Figure 19-9 — when the TcpListener object detects an incoming TcpClient connection, it “accepts”

the connection, which results in the creation of a server-side TCPclient object. Client-server communication takes

place between the server-side and client-side TcpClient objects, as is shown in Figure 19-10.

Both the TcpListener and TcpClient objects provide wrappers around socket objects. You could use socket

objects directly to conduct client-server communication, but doing so is beyond the scope of this book. To learn more

about socket programming check out the excellent book TCP/IP Sockets In C#: Practical Guide for Programers by

David B. Makofske, et. al., ISBN-13: 978-0-12-466051-9.

Figure 19-8: Server Application Listens on a Host and Port for Incoming TcpClient Connections

Figure 19-9: TcpListener Accepts Incoming TcpClient Connection
478
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 19: Networked Client-Server Applications Client-Server Applications With TcpListener And TcpClient
A Simple Client-Server Application

OK, let’s put some of what you just learned in the previous section into practical use. The following examples

implement a simple client-server application using the TcpListener and TcpClient classes. The application consists of

two parts: an EchoServer, which listens for incoming TcpClient connections, and an EchoClient which connects to an

EchoServer. When a connection between the EchoServer and EchoClient is established, messages sent from the client

to the server are written to the server console and then sent back to the client for display on the client console. Exam-

ple 19.19 gives the code for the EchoServer application.
19.19 EchoServer.cs

1 using System;
2 using System.IO;
3 using System.Net;
4 using System.Net.Sockets;
5
6 public class EchoServer {
7 public static void Main(){
8 TcpListener listener = null;
9 try {
10 listener = new TcpListener(IPAddress.Parse("127.0.0.1"), 8080);
11 listener.Start();
12 Console.WriteLine("EchoServer started...");
13 while(true){
14 Console.WriteLine("Waiting for incoming client connections...");
15 TcpClient client = listener.AcceptTcpClient();
16 Console.WriteLine("Accepted new client connection...");
17 StreamReader reader = new StreamReader(client.GetStream());
18 StreamWriter writer = new StreamWriter(client.GetStream());
19 String s = String.Empty;
20 while(!(s = reader.ReadLine()).Equals("Exit")){
21 Console.WriteLine("From client -> " + s);
22 writer.WriteLine("From server -> " + s);
23 writer.Flush();
24 }
25 reader.Close();
26 writer.Close();
27 client.Close();
28 }
29 }catch(Exception e){
30 Console.WriteLine(e);
31 }finally{
32 if(listener != null){
33 listener.Stop();
34 }
35 }
36 } // end Main()
37 } // end class definition

Referring to Example 19.19 — notice first the list of namespaces required for this particular application. It

includes System.IO, System.Net, and System.Net.Sockets. The EchoServer application starts by creating an instance

of TcpListener, which listens on the local machine IP address of 127.0.0.1 port 8080. (Make sure the port you choose

is not in use.) The listener is then started on line 11 by a call to its Start() method. Incoming client connections are

processed in the body of the while loop, which begins on line 13. On line 15, the listener.AcceptTcpClient() method

blocks at that point until it detects an incoming TcpClient connection, at which time it unblocks and returns an

instance of TcpClient and assigns it to the client reference. The term block refers to a blocking I/O operation. The

Figure 19-10: TcpClients Communicate via a NetworkStream using StreamReader and StreamWriter Objects
C# Fo
r Artists © 2008 Rick Miller — All Rights Reserved 479

Client-Server Applications With TcpListener And TcpClient Chapter 19: Networked Client-Server Applications
EchoServer application effectively stops everything until the AcceptTcpClient() method returns, at which time pro-

cessing continues.

When the listener detects the incoming TcpClient connection, the application prints a short message stating so to

the console, and then, on lines 17 and 18, it creates StreamReader and StreamWriter objects using the client.Get-

Stream() method. The server uses these StreamReader and StreamWriter objects to communicate with the client. On

line 19, the application creates a string variable named s and uses it to store incoming client strings. The body of the

while loop, which begins on line 20, processes client-server communication by reading the incoming client string,

printing it to the server’s console, and then sending it back to the client via the writer.WriteLine() method. Note on

line 23 the writer.Flush() method must be called to actually send the string on its way. The while loop repeats until

the incoming string equals “Exit”, at which time the EchoServer returns to listening for new incoming TcpClient con-

nections.

Example 19.20 gives the code for the EchoClient application.
19.20 EchoClient.cs

1 using System;
2 using System.IO;
3 using System.Net;
4 using System.Net.Sockets;
5
6 public class EchoClient {
7 public static void Main(){
8 try {
9 TcpClient client = new TcpClient("127.0.0.1", 8080);
10 StreamReader reader = new StreamReader(client.GetStream());
11 StreamWriter writer = new StreamWriter(client.GetStream());
12 String s = String.Empty;
13 while(!s.Equals("Exit")){
14 Console.Write("Enter a string to send to the server: ");
15 s = Console.ReadLine();
16 Console.WriteLine();
17 writer.WriteLine(s);
18 writer.Flush();
19 String server_string = reader.ReadLine();
20 Console.WriteLine(server_string);
21 }
22 reader.Close();
23 writer.Close();
24 client.Close();
25 } catch(Exception e){
26 Console.WriteLine(e);
27 }
28 } // end Main()
29 } // end class definition

Referring to Example 19.20 — the EchoClient application creates a TcpClient object that connects to the IP

address 127.0.0.1 port 8080. If all goes well, lines 10 and 11 execute and the application creates the StreamReader

and StreamWriter objects, which it uses to communicate with the server. On line 12, a string variable named s is cre-

ated and used to send data to the server and to control the processing of the while loop, which starts on the follow-

ing line. On line 15, the Console.ReadLine() method reads a line of text from the console and assigns it to s. On lines

17 and 18, it sends the string s to the server with calls to writer.WriteLine() and writer.Flush(). It then immediately

reads the server’s response with a call to the reader.ReadLine() method, which assigns the incoming string to the

string variable named server_string and then prints the value of server_string to the console. The EchoServer applica-

tion repeats this processing loop until the user enters the string “Exit” at the console.

To run this application, compile the EchoServer.cs and EchoClient.cs files, start the EchoServer, then run the

EchoClient application. Figure 19-11 shows the results of running these applications.

Building A Multithreaded Server

While the previous example served well to illustrate basic client-server principles, the server application in its

current form is only able to communicate with one client at a time. In this section, I’ll show you how to make a few

modifications to EchoServer that will enable it to serve multiple clients simultaneously. A server application that can

process multiple simultaneous client connections is referred to as a multithreaded server.

The following general steps are required to turn EchoServer into a MultiThreadedEchoServer:

Step 1: Create a separate client processing method that handles network stream communication and

other applicable processing between server and client applications.
480 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 19: Networked Client-Server Applications Client-Server Applications With TcpListener And TcpClient
Step 2: For each incoming client connection, spawn a separate thread, passing to it the name of the

client processing method.

That’s it! Let’s see how these modifications look in the code. Example 19.21 gives the code for the MultiThread-

edEchoServer class.
19.21 MultiThreadedEchoServer.cs

1 using System;
2 using System.IO;
3 using System.Net;
4 using System.Net.Sockets;
5 using System.Threading;
6
7 public class MultiThreadedEchoServer {
8
9 private static void ProcessClientRequests(Object argument){
10 TcpClient client = (TcpClient)argument;
11 try {
12 StreamReader reader = new StreamReader(client.GetStream());
13 StreamWriter writer = new StreamWriter(client.GetStream());
14 String s = String.Empty;
15 while(!(s = reader.ReadLine()).Equals("Exit")){
16 Console.WriteLine("From client -> " + s);
17 writer.WriteLine("From server -> " + s);
18 writer.Flush();
19 }
20 reader.Close();
21 writer.Close();
22 client.Close();
23 Console.WriteLine("Closing client connection!");
24 }catch(IOException){
25 Console.WriteLine("Problem with client communication. Exiting thread.");
26 }finally{
27 if(client != null){
28 client.Close();
29 }
30 }
31 }
32
33 public static void Main(){
34 TcpListener listener = null;
35 try {
36 listener = new TcpListener(IPAddress.Parse("127.0.0.1"), 8080);
37 listener.Start();
38 Console.WriteLine("MultiThreadedEchoServer started...");
39 while(true){
40 Console.WriteLine("Waiting for incoming client connections...");
41 TcpClient client = listener.AcceptTcpClient();
42 Console.WriteLine("Accepted new client connection...");
43 Thread t = new Thread(ProcessClientRequests);
44 t.Start(client);
45 }
46 }catch(Exception e){
47 Console.WriteLine(e);
48 }finally{
49 if(listener != null){
50 listener.Stop();
51 }

Figure 19-11: Results of Running the EchoClient and EchoServer Applications
C# For A
rtists © 2008 Rick Miller — All Rights Reserved 481

Client-Server Applications With TcpListener And TcpClient Chapter 19: Networked Client-Server Applications
52 }
53 } // end Main()
54 } // end class definition

Referring to Example 19.21 — first, a new namespace, System.Threading, has been added to list of using direc-

tives to gain access to the Thread class. I created a new method on line 9 named ProcessClientRequests(). Note that

this method takes one argument of type Object, which is cast immediately to a TcpClient object. The reason this cast

is necessary is because the ProcessClientRequests() method has the signature of a ParameterizedThreadStart dele-

gate, which specifies one argument of type Object. You’ll see how this method is actually used in the body of the

Main() method.

I copied the bulk of the ProcessClientRequests() method from the previous version of EchoClient starting with

the creation of the StreamReader and StreamWriter objects. It includes the whole of the second, or inner, while

loop. I enclosed the method’s code within its own try/catch/finally block because once the separate thread

begins execution, it must handle any exceptions it generates.

In the body of the Main() method, the TcpListener object is created as before on line 36 and is started on line 37.

The while loop beginning on line 39 repeats forever waiting for incoming client connections. When it detects an

incoming client connection, the AcceptTcpClient() method returns a reference to a new TcpClient object and process-

ing continues with the creation of a new Thread object on line 43. The name of the method this thread will execute,

ProcessClientRequests, is passed to the Thread constructor. An alternative call to the Thread constructor could look

like this:

Thread t = new Thread(new ParameterizedThreadStart(ProcessClientRequests));
In this example, the ParameterizedThreadStart delegate object is explicitly created and passed to the Thread con-

structor. The new thread is started with a call to t.Start() on line 44, passing to it the reference to the TcpClient object

named client. When line 44 completes execution, the while loop continues and the server returns to listening for

incoming client connections.

You now have a multithreaded server application! The code for EchoClient, given in the previous section,

remains unchanged.

Figure 19-12 shows the results of running the MultiThreadedServer and connecting to it from two EchoClient

applications.

Listening On Multiple IP Addresses

The MultiThreadedServer has some nice functionality, but in its current form the TcpListener binds to only one

server IP address, which in the previous examples has been the local loopback adapter 127.0.0.1. It would be nice to

listen on several IP addresses simultaneously. The only change necessary to do this is to use “IPAddress.Any” when

creating the TcpListener object. Example 19.22 gives the code for the MultiIPEchoServer class.
19.22 MultiIPEchoServer.cs

1 using System;
2 using System.Drawing;
3 using System.IO;
4 using System.Net;
5 using System.Net.Sockets;
6 using System.Net.NetworkInformation;
7 using System.Threading;
8
9 public class MultiIPEchoServer {
10

Figure 19-12: Two Clients Connected to MultiThreadedClientServer
482
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 19: Networked Client-Server Applications Client-Server Applications With TcpListener And TcpClient
11 private static void ProcessClientRequests(Object argument){
12 TcpClient client = (TcpClient)argument;
13 try {
14 StreamReader reader = new StreamReader(client.GetStream());
15 StreamWriter writer = new StreamWriter(client.GetStream());
16 String s = String.Empty;
17 while(!(s = reader.ReadLine()).Equals("Exit")){
18 Console.WriteLine("From client -> " + s);
19 writer.WriteLine("From server -> " + s);
20 writer.Flush();
21 }
22 reader.Close();
23 writer.Close();
24 client.Close();
25 Console.WriteLine("Client connection closed!");
26 }catch(IOException){
27 Console.WriteLine("Problem with client communication. Exiting thread.");
28 }finally{
29 if(client != null){
30 client.Close();
31 }
32 }
33 }
34
35 private static void ShowServerNetworkConfig(){
36 Console.ForegroundColor = ConsoleColor.Yellow;
37 NetworkInterface[] adapters = NetworkInterface.GetAllNetworkInterfaces();
38 foreach(NetworkInterface adapter in adapters){
39 Console.WriteLine(adapter.Description);
40 Console.WriteLine("\tAdapter Name: " + adapter.Name);
41 Console.WriteLine("\tMAC Address: " + adapter.GetPhysicalAddress());
42 IPInterfaceProperties ip_properties = adapter.GetIPProperties();
43 UnicastIPAddressInformationCollection addresses = ip_properties.UnicastAddresses;
44 foreach(UnicastIPAddressInformation address in addresses){
45 Console.WriteLine("\tIP Address: " + address.Address);
46 }
47 }
48 Console.ForegroundColor = ConsoleColor.White;
49 }
50
51 public static void Main(){
52 TcpListener listener = null;
53 try {
54 ShowServerNetworkConfig();
55 listener = new TcpListener(IPAddress.Any, 8080);
56 listener.Start();
57 Console.WriteLine("MultiIPEchoServer started...");
58 while(true){
59 Console.WriteLine("Waiting for incoming client connections...");
60 TcpClient client = listener.AcceptTcpClient();
61 Console.WriteLine("Accepted new client connection...");
62 Thread t = new Thread(ProcessClientRequests);
63 t.Start(client);
64 }
65 }catch(Exception e){
66 Console.WriteLine(e);
67 }finally{
68 if(listener != null){
69 listener.Stop();
70 }
71 }
72 } // end Main()
73 } // end class definition

Referring to Example 19.22 — I have added another method to the server code named ShowServerNetworkCon-

fig() which begins on line 35. I’ve also added another namespace, System.Net.NetworkInformation, to the list of

using directives.

Referring to the ShowServerNetworkConfig() method — the first thing it does is set Console.ForegroundColor

to Color.Yellow. This makes the network information stand out from the ordinary client-server interaction messages.

Next, on line 37, the NetworkInterface.GetAllNetworkInterfaces() method is called. This returns an array of Net-

workInterface objects. The foreach statement starting on line 38 iterates over the array of NetworkInterface objects

and prints out various properties about each one including the interface’s Description, Name, and Physical or MAC

addresses. On line 42, I create an IPInterfaceProperties object with the help of the adapter.GetIPProperties() method

and use it to get a collection of UnicastIPAddressInformation objects for each adapter. The foreach loop starting on

line 44 iterates over the collection of UnicastIPAddressInformation objects and prints each IP address to the console.

Finally, the method concludes by resetting the Console.ForegroundColor to Color.White.
C# For Artists © 2008 Rick Miller — All Rights Reserved 483

Client-Server Applications With TcpListener And TcpClient Chapter 19: Networked Client-Server Applications
The only changes to the Main() method include the addition of line 54, where I make a call to the ShowServ-

erNetworkConfig() method, and on line 55 where I bind the TcpListener object to all available machine IP addresses

by using IPAddress.Any.

The EchoClient has been changed to connect to an IP address given in the form of a command-line argument

when the program executes. The code for the modified EchoClient class is given in Example 19.23.
19.23 EchoClient.cs (Mod 1)

1 using System;
2 using System.IO;
3 using System.Net;
4 using System.Net.Sockets;
5
6 public class EchoClient {
7 public static void Main(String[] args){
8 IPAddress ip_address = IPAddress.Parse("127.0.0.1"); //default
9 int port = 8080;
10 try{
11 if(args.Length >= 1){
12 ip_address = IPAddress.Parse(args[0]);
13 }
14 }catch(FormatException){
15 Console.WriteLine("Invalid IP address entered. Using default IP of: " + ip_address.ToString());
16 }
17 try {
18 Console.WriteLine("Attempting to connect to server at IP address: {0} port: {1}",
19 ip_address.ToString(), port);
20 TcpClient client = new TcpClient(ip_address.ToString(), port);
21 Console.WriteLine("Connection successful!");
22 StreamReader reader = new StreamReader(client.GetStream());
23 StreamWriter writer = new StreamWriter(client.GetStream());
24 String s = String.Empty;
25 while(!s.Equals("Exit")){
26 Console.Write("Enter a string to send to the server: ");
27 s = Console.ReadLine();
28 Console.WriteLine();
29 writer.WriteLine(s);
30 writer.Flush();
31 if(!s.Equals("Exit")){
32 String server_string = reader.ReadLine();
33 Console.WriteLine(server_string);
34 }
35 }
36 reader.Close();
37 writer.Close();
38 client.Close();
39 }catch(Exception e){
40 Console.WriteLine(e);
41 }
42 } // end Main()
43 } // end class definition

Referring to Example 19.23 — the EchoClient class now checks the argument array for the presence of a valid IP

address. If the given IP address is malformed, the IPAddress.Parse() method throws an exception and assigns the

default IP address value of 127.0.0.1 to the ip_address field. On line 20, the ip_address field is used in the TcpClient

constructor call where it is converted into a string. The remainder of the code remains unchanged from the previous

example.

To run these versions of the client and server applications, compile the code and start the MultiIPEchoServer,

then run the modified EchoClient application. The results of these changes can be seen in Figure 19-13. Note how

each client connects to the server via a different IP address.

Sending Objects Between Client And Server

In the previous examples, I’ve limited the exchange between client and server application to strings. In this sec-

tion I’ll show you how to serialize a complex object on the server side and send it to the client for deserialization.

Remember that in the case of .NET remoting applications, the hard work of serializing complex objects is done for

you by the remoting framework. Not here, no, no, no. If you want to serialize a complex object and send it across the

network you’ll need to get your hands dirty.

The following two examples implement a SurrealistEchoServer. The application actually consists of three

classes: SurrealistEchoServer.cs, SurrealistDB.cs, and Person.cs, which is not repeated here. Example 19.24 gives the

code for the SurrealistEchoServer class.
484 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 19: Networked Client-Server Applications Client-Server Applications With TcpListener And TcpClient
19.24 SurrealistEchoServer.cs

1 using System;
2 using System.Drawing;
3 using System.IO;
4 using System.Net;
5 using System.Net.Sockets;
6 using System.Net.NetworkInformation;
7 using System.Threading;
8 using System.Runtime.Serialization;
9 using System.Runtime.Serialization.Formatters.Binary;
10
11 public class SurrealistEchoServer {
12
13 private static void ProcessClientRequests(Object argument){
14 TcpClient client = (TcpClient)argument;
15 try {
16 StreamReader reader = new StreamReader(client.GetStream());
17 StreamWriter writer = new StreamWriter(client.GetStream());
18 String s = String.Empty;
19 while(!(s = reader.ReadLine()).Equals("Exit")){
20 switch(s){
21 case "GetSurrealists" : {
22 Console.WriteLine("From client -> " + s);
23 SerializeSurrealists(client.GetStream());
24 client.GetStream().Flush();
25 break;
26 }
27 default: {
28 Console.WriteLine("From client -> " + s);
29 writer.WriteLine("From server -> " + s);
30 writer.Flush();
31 break;
32 }
33 } // end switch
34 } // end while
35 reader.Close();

Figure 19-13: Results of Running MultiIPEchoServer and EchoClient (Mod 1) Applications
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 485

Client-Server Applications With TcpListener And TcpClient Chapter 19: Networked Client-Server Applications
36 writer.Close();
37 client.Close();
38 Console.WriteLine("Client connection closed!");
39 }catch(IOException){
40 Console.WriteLine("Problem with client communication. Exiting thread.");
41 }catch(NullReferenceException){
42 Console.WriteLine("Incoming string was null! Client may have terminated prematurly.");
43 }catch(Exception e){
44 Console.WriteLine("Unknown exception occured.");
45 Console.WriteLine(e);
46 }finally{
47 if(client != null){
48 client.Close();
49 }
50 }
51 } // end ProcessClientRequests()
52
53 private static void SerializeSurrealists(NetworkStream stream){
54 SurrealistDB db = new SurrealistDB();
55 BinaryFormatter bf = new BinaryFormatter();
56 bf.Serialize(stream, db.GetSurrealists());
57 } // end SerializeSurrealists()
58
59 private static void ShowServerNetworkConfig(){
60 Console.ForegroundColor = ConsoleColor.Yellow;
61 NetworkInterface[] adapters = NetworkInterface.GetAllNetworkInterfaces();
62 foreach(NetworkInterface adapter in adapters){
63 Console.WriteLine(adapter.Description);
64 Console.WriteLine("\tAdapter Name: " + adapter.Name);
65 Console.WriteLine("\tMAC Address: " + adapter.GetPhysicalAddress());
66 IPInterfaceProperties ip_properties = adapter.GetIPProperties();
67 UnicastIPAddressInformationCollection addresses = ip_properties.UnicastAddresses;
68 foreach(UnicastIPAddressInformation address in addresses){
69 Console.WriteLine("\tIP Address: " + address.Address);
70 }
71 }
72 Console.ForegroundColor = ConsoleColor.White;
73 } // end ShowServerNetworkConfig()
74
75 public static void Main(){
76 TcpListener listener = null;
77 try {
78 ShowServerNetworkConfig();
79 listener = new TcpListener(IPAddress.Any, 8080);
80 listener.Start();
81 Console.WriteLine("SurrealistEchoServer started...");
82 while(true){
83 Console.WriteLine("Waiting for incoming client connections...");
84 TcpClient client = listener.AcceptTcpClient();
85 Console.WriteLine("Accepted new client connection...");
86 Thread t = new Thread(ProcessClientRequests);
87 t.Start(client);
88 }
89 }catch(Exception e){
90 Console.WriteLine(e);
91 }finally{
92 if(listener != null){
93 listener.Stop();
94 }
95 }
96 } // end Main()
97 } // end class definition

Referring to Example 19.24 — first, note the addition of several namespaces required to perform object serializa-

tion. These include System.Runtime.Serialization and System.Runtime.Serialization.Formatters.Binary.

The SurrealistEchoServer class’s ProcessClientRequests() method has been slightly modified. It echoes client

strings as before, but if the client string equals “GetSurrealists”, it returns to the client a serialized collection of Per-

son objects. It does this with a call to its SerializeSurrealists() method, which begins on line 53.

The SerializeSurrealists() method takes a NetworkStream object as an argument. On line 54, it creates an

instance of SurrealistsDB followed by the creation of a BinaryFormatter object on the next line. The BinaryFormatter

serializes the List<Person> object returned by the db.GetSurrealists() method into the stream. When the SerializeSur-

realists() method returns, the network stream is flushed to send the collection of People objects on their way to the cli-

ent.

Example 19.25 gives the code for the SurrealistDB class.
486 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 19: Networked Client-Server Applications Client-Server Applications With TcpListener And TcpClient
19.25 SurrealistDB.cs

1 using System;
2 using System.Collections.Generic;
3
4 public class SurrealistDB {
5
6 private List<Person> surrealists = null;
7
8 public SurrealistDB(){
9 this.InitializeSurrealists();
10 }
11
12 public List<Person> GetSurrealists(){
13 return surrealists;
14 }
15
16 private void InitializeSurrealists(){
17 surrealists = new List<Person>();
18 Person p1 = new Person("Rick", "", "Miller", Person.Sex.MALE, new DateTime(1961, 02, 04));
19 Person p2 = new Person("Max", "", "Ernst", Person.Sex.MALE, new DateTime(1891, 04, 02));
20 Person p3 = new Person("Andre", "", "Breton", Person.Sex.MALE, new DateTime(1896, 02, 19));
21 Person p4 = new Person("Roland", "", "Penrose", Person.Sex.MALE, new DateTime(1900, 10, 14));
22 Person p5 = new Person("Lee", "", "Miller", Person.Sex.FEMALE, new DateTime(1907, 04, 23));
23 Person p6 = new Person("Henri-Robert-Marcel", "", "Duchamp", Person.Sex.MALE,
24 new DateTime(1887, 07, 28));
25
26 surrealists.Add(p1);
27 surrealists.Add(p2);
28 surrealists.Add(p3);
29 surrealists.Add(p4);
30 surrealists.Add(p5);
31 surrealists.Add(p6);
32 }
33 } // end class definition

Referring to Example 19.25 — The SurrealistDB class initializes a list of People objects and provides a GetSur-

realists() method which returns the populated list. (Note: This class could easily have been written to connect to a

data base to fetch the required information. You’ll see how that’s done in Chapter 20.)

The EchoClient class must be modified to accept and deserialize the incoming list of People objects. Example

19.26 gives the code for the modified EchoClient class.
19.26 EchoClient.cs (Mod 2)

1 using System;
2 using System.IO;
3 using System.Net;
4 using System.Net.Sockets;
5 using System.Runtime.Serialization;
6 using System.Runtime.Serialization.Formatters.Binary;
7 using System.Collections.Generic;
8
9 public class EchoClient {
10
11
12 static List<Person> DeserializeSurrealists(NetworkStream stream){
13 BinaryFormatter bf = new BinaryFormatter();
14 return (List<Person>)bf.Deserialize(stream);
15 }
16
17 static void WriteSurrealistDataToConsole(List<Person> surrealists){
18 foreach(Person p in surrealists){
19 Console.WriteLine(p);
20 }
21 }
22
23 public static void Main(String[] args){
24 IPAddress ip_address = IPAddress.Parse("127.0.0.1"); //default
25 int port = 8080;
26 try{
27 if(args.Length >= 1){
28 ip_address = IPAddress.Parse(args[0]);
29 }
30 }catch(FormatException){
31 Console.WriteLine("Invalid IP address entered. Using default IP of: " + ip_address.ToString());
32 }
33 try {
34 Console.WriteLine("Attempting to connect to server at IP address: {0} port: {1}",
35 ip_address.ToString(), port);
36 TcpClient client = new TcpClient(ip_address.ToString(), port);
37 Console.WriteLine("Connection successful!");
38 StreamReader reader = new StreamReader(client.GetStream());
C# For Artists © 2008 Rick Miller — All Rights Reserved 487

Client-Server Applications With TcpListener And TcpClient Chapter 19: Networked Client-Server Applications
39 StreamWriter writer = new StreamWriter(client.GetStream());
40 String s = String.Empty;
41 while(!s.Equals("Exit")){
42 Console.Write("Enter \"GetSurrealists\" to retrieve list from server: ");
43 s = Console.ReadLine();
44 Console.WriteLine();
45 switch(s){
46 case "GetSurrealists" : {
47 writer.WriteLine(s);
48 writer.Flush();
49 WriteSurrealistDataToConsole(DeserializeSurrealists(client.GetStream()));
50 Console.WriteLine();
51 break;
52 }
53 case "Exit" : {
54 writer.WriteLine(s);
55 writer.Flush();
56 break;
57 }
58 default: {
59 writer.WriteLine(s);
60 writer.Flush();
61 String server_string = reader.ReadLine();
62 Console.WriteLine(server_string);
63 Console.WriteLine();
64 break;
65 }
66 }
67 }
68 reader.Close();
69 writer.Close();
70 client.Close();
71 }catch(Exception e){
72 Console.WriteLine(e);
73 }
74 } // end Main()
75 } // end class definition

Referring to Example 19.26 — the modified EchoClient application sends strings to the server as before. When

the string it sends equals “GetSurrealists” the server returns a serialized list of People objects. (i.e., List<People>)

The client must then deserialize the object and cast it to its expected type, which it does with the DeserializeSurreal-

ists() method. Once the list of People objects is deserialized, the EchoClient application calls the WriteSurrealistData-

ToConsole() method. All this action takes place on line 49!

To run these applications, copy the Person.dll into both client and server directories, then change to the server

directory and compile the server application using the following compiler commands.

First compile the SurrealistDB class into a dll:

csc /t:library /r:Person.dll SurrealistDB.cs
Then compile the server itself:

csc /r:Person.dll;SurrealistDB.dll SurrealistEchoServer.cs
Change to the client directory and compile the EchoClient class like so:

csc /r:Person.dll EchoClient.cs
Finally, start the SurrealistEchoServer application and then run the EchoClient application. Figure 19-14 gives

the results of fetching some surrealists from the server.

Quick Review

When building client-server applications using the TcpListener and TcpClient classes, you’ll need to know how

to handle the details of establishing the network connection between client and server applications, how to send data

between the client and server so they can perform useful work, and how to use threads to enable a server to handle

multiple client requests simultaneously.

The TcpListener and TcpClient classes provide wrappers around Socket objects. You can access Socket objects

directly if you need more control over client-server network communication.

The general steps required to create a client-server application using TcpListener and TcpClient include the fol-

lowing: 1) create a TcpListener object that listens for incoming TcpClient connections on a specified IP address and

port number, 2) on the client side, create a TcpClient object that connects to a particular server identified by an IP

address and a particular port number, 3) when the listener detects an incoming TcpClient connection its AcceptTcp-

Client() method returns (unblocks) and creates a server-side TcpClient object, 4) use the TcpClient’s GetStream()
488 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 19: Networked Client-Server Applications Summary
method to get a reference to the NetworkStream object, 5) use the NetworkStream object to create StreamReader and

StreamWriter objects. Remember to follow a call to StreamWriter.Write() with a call to StreamWriter.Flush().

Multithreaded servers can service multiple simultaneous client connections. Use the Thread class to create a sep-

arate client processing thread. This frees up the server to listen for new incoming client connections.

Objects passed between client-server applications must be tagged Serializable. Use a BinaryFormatter to serial-

ize an object to the NetworkStream. Call NetworkStream.Flush() to send the object on its way.

Summary

All .NET remoting applications have three common components, regardless of their complexity: a remotable

object, a server application that hosts the remotable object and handles incoming service requests, and a client appli-

cation that utilizes the services of the remotely-hosted object.

A remotable object is created from a class that inherits from System.MarshalByRefObject. This enables the

object to be shared across application domains in .NET remoting applications. Note that the remotable object can be

simple or complex.

The remoting server application hosts the remotable object and makes its services available via a channel. There

are three primary channel types: TcpChannel, HttpChannel, and IpcChannel. The IpcChannel is used for inter-pro-

cess communication between client and server applications hosted on the same machine.

The remoting client application accesses the services of the remote object via a proxy created automatically by

the .NET remoting infrastructure. Once a remoting client application creates a reference to a remote object, it uses the

services of the remote object, via the remote object’s proxy, as if the remote object were a local object. The underly-

ing complexities associated with calling the remote object’s methods or properties are handled automatically by the

Figure 19-14: Results of Running SurrealistEchoServer and EchoClient (Mod 2)
C# For Arti
sts © 2008 Rick Miller — All Rights Reserved 489

Skill-Building Exercises Chapter 19: Networked Client-Server Applications
.NET remoting infrastructure. Remote objects accessed in this manner must extend MarshalByRefObject and any

other interfaces as required.

Remote objects can be hosted in SingleCall or Singleton mode. In SingleCall mode, a new remote object is used

to respond to each client service request. In Singleton mode, remote objects persist and maintain state across multiple

client service requests.

Remoting client applications can access the services of remote objects via one or more of the remote object’s

interfaces. This makes changing the implementation of the remote object easier, as long as the new object implements

one of the interfaces expected by the client application.

For maximum deployment flexibility, place .NET remoting application deployment data in configuration files.

Complex objects sent between remoting client and server applications must be tagged as being serializable by

using the Serializable attribute.

When building client-server applications using the TcpListener and TcpClient classes, you’ll need to know how

to handle the details of establishing the network connection between client and server applications, how to send data

between the client and server so they can perform useful work, and how to use threads to enable a server to handle

multiple client requests simultaneously.

The TcpListener and TcpClient classes provide wrappers around Socket objects. You can access Socket objects

directly if you need more control over client-server network communication.

The general steps required to create a client-server application using TcpListener and TcpClient include the fol-

lowing: 1) create a TcpListener object that listens for incoming TcpClient connections on a specified IP address and

port number, 2) on the client side, create a TcpClient object that connects to a particular server identified by an IP

address and a particular port number, 3) when the listener detects an incoming TcpClient connection, its AcceptTcp-

Client() method returns (unblocks) and creates a server-side TcpClient object, 4) use the TcpClient’s GetStream()

method to get a reference to the NetworkStream object, 5) use the NetworkStream object to create StreamReader and

StreamWriter objects. Remember to follow a call to StreamWriter.Write() with a call to StreamWriter.Flush().

Multithreaded servers can service multiple simultaneous client connections. Use the Thread class to create a sep-

arate client processing thread. This frees up the server to listen for new incoming client connections.

Objects passed between client-server applications must be tagged Serializable. Use a BinaryFormatter to serial-

ize an object to the NetworkStream. Call NetworkStream.Flush() to send the object on its way.

Skill-Building Exercises

1. API Drill: Visit the System.Runtime.Remoting, System.Runtime.Remoting.Channels, and System.Runtime.Re-

moting.Channels.Tcp namespaces and list each class, structure, interface, and enumeration. Write a brief descrip-

tion of its purpose. Browse each entry’s members including its methods and properties.

2. Programming Drill: Compile and execute all the exercises in this chapter.

3. Code Drill: Trace the execution of all the exercises in this chapter.

4. Programming Drill: Modify this chapter’s .NET remoting examples to use the HttpChannel.

5. API Drill: Explore the System.Net and System.Net.Sockets namespaces and list each class, structure, interface,

and enumeration. Write a brief description of its purpose. Browse each entry’s members including its methods and

properties.

6. Programming Drill: Modify this chapter’s client-server examples to use UDP vs. TCP.

7. Programming Drill: Modify this chapter’s client-server examples to better handle the possibility of a network out-

age between client and server applications. For example, modify the EchoClient to gracefully recover if it tries to

send something to a server but experiences a long network delay. (Hint: Explore the TcpClient class’s properties

section on MSDN.)
490 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 19: Networked Client-Server Applications Suggested Projects
8. Extra Reading: Procure the book TCP/IP SOCKETS IN C#: Practical Guide for Programmers and read it from

front to back!

9. Programming Drill: Is a .NET remoting server multithreading capable? To answer this question, modify the last

RemotingClient example given in Example 19.17 so that it repeatedly sets the Text property on the remote object

and then goes to sleep (i.e., Thread.Sleep()) for 3 seconds. Start the RemotingServer application and then start two

or more RemotingClient applications and see what happens.

10. Deployment Drill: Deploy and test this chapter’s example applications on different machines. That is, start the

server on one machine and run the client application on another machine on the same network. (Note: Only the cli-

ent applications capable of connecting to IP addresses other than 127.0.0.1 will work in this scenario.)

Suggested Projects

1. Network Robot Rat: Write a client-server version of the robot rat application. Create a server application that dis-

plays robot rat images in a GUI representation of the floor. Each incoming client connection should have their very

own image of robot rat displayed and moved on the floor. Use the client application to control the movements of

the robot rat. In the client application show an image of the floor, which gives the position of that client’s robot rat.

Alternatively, give the client application a spy capability (enabled by the server) that lets it see the positions of all

the other connected clients’s robot rats.

2. Network Employee Management Application: Write a client-server application that lets users remotely access

and manipulate a file containing employee information. Use the client application to view a list of employees, add

a new employee, edit an existing employee, and create new employees. Use the Employee example code given in

Chapter 11. Give the client application a graphical user interface.

3. Chat Program: Write a program that lets multiple users connect and chat. The server should request the user name

from new client connections. The client application should be able to see a list of connected users. Have the server

echo user messages to all connected clients.

4. Email Client: Study the members of the System.Net.Mail namespace. Write a client program that lets you connect

to your email provider, download and read your messages, and create and send new messages.

Self-Test Questions

1. What three things do all .NET remoting applications have in common?

2. What class must be extended to create a remotable object?

3. What attribute must you tag a class with before you can transmit objects of its type between .NET remoting appli-

cations?

4. List and briefly describe the purpose of the three primary remoting channel types.

5. What is the primary benefit derived from accessing a remote object via an interface?

6. What’s the difference between a remote object deployed in the SingleCall mode vs. the Singleton mode?

7. Describe the roles of the TcpListener and TcpClient classes in a typical client-server application.
C# For Artists © 2008 Rick Miller — All Rights Reserved 491

References Chapter 19: Networked Client-Server Applications
8. What happens when you call the TcpListener.AcceptTcpClient() method?

9. Describe in general terms what you need to do to create a multithreaded server application.

10. Why must you follow a call to NetworkStream.Write() with a call to NetworkStream.Flush()?

References

David B. Makofske, et. al. TCP/IP SOCKETS IN C#: Practical Guide for Programmers. Morgan Kaufmann

Publishers, 2004, ISBN-13: 978-0-12-466051-9, ISBN-10:0-12-466051-7

Microsoft Developer Network (MSDN) .NET Framework 3.0 and3.5 Reference Documentation

[www.msdn.com]

Notes
492 © 2008 Rick Miller — All Rights Reserved C# For Artists

http://www.msdn.com

20 Database Access & Multitiered Applications

Learning Objectives
• Design and build a multitiered, networked, data-driven, client-server application
• Use Structured Query Language (SQL) to manipulate a relational database
• State the definition of the terms “table”, “row”, “column”, “primary key”, “foreign key”, and

“constraint”
• Use data access objects (DAOs) to map objects to relational database tables
• Use business objects (BOs) to implement business logic
• Use value objects (VOs) to model application entities
• Use Microsoft Enterprise Library Data Access Block to build a data-driven, client-server application
• Use the DatabaseFactory class to create a database connection
• Use prepared statements to execute SQL commands
• Use prepared statement parameters to build dynamic SQL commands
• Correlate a C# data type to its corresponding Microsoft SQL Server data type
• Manipulate large binary database objects
• Use a DataGridView to display and manipulate tabular data in a graphical user interface (GUI)

Chapter 20

Database AccessWCC Interior

P
en

ta
x
 6

7
 /

 S
M

C
 T

ak
u
m

ar
 5

5
/2

.8
 /

 K
o

d
ak

 T
ri

-X
 P

ro
fe

ss
io

n
al

& Multitiered Applications
C#
For Artists © 2008 Rick Miller — All Rights Reserved 493

Introduction Chapter 20: Database Access & Multitiered Applications
Introduction

As you might have guessed from reading the learning objectives, we have a lot to talk about in this chapter. The

relational database topic is large enough on its own to warrant a complete book, and many excellent texts have

already been written, so I will limit my discussion about this topic to only the essentials you need to know to get up to

speed quick.

I will also take a different approach in my presentation of ADO.NET. It’s too feature rich to cover completely in

great detail, so I am omitting broad swaths of it to concentrate on those aspects I feel give you more power and flexi-

bility to design extremely complex database applications. Instead of DataSets and DataProviders I will show you how

to create and use Data Access Objects (DAOs), Business Objects (BOs), and Value Objects (VOs).

Your success in completing this chapter hinges on your ability to properly install and configure several critical

components. These include Microsoft SQLServer Express Edition and Microsoft Enterprise Library Application

Blocks. The installation of SQLServer Express is relatively painless and straightforward. The installation of the

Enterprise Library Application Blocks will seem daunting to novice programmers, especially if you’re not familiar

with using the command-line console. (If you’ve made it this far in the book, you should be getting pretty good at

using it by now!)

Note: You may have to fiddle with things to get them to work! As you know by now, programming, in large part,

is a constant attention-to-detail drill. At no other time is this more true than when you start adding the complexities of

database access to the mix. One small spelling mistake in a configuration file or SQL query will render an application

inoperable. Also, at the start, you may feel overwhelmed by the myriad complexities that confront you. There’s the

database, SQL syntax, relational database theory, new terms and technology, and the complexity of a multitiered

application. To get a complex application to run correctly requires each piece of the application to work correctly. But

fear not. At every step of the way I will show you how to compile (if necessary), configure, and run each piece of the

puzzle.

When you finish this chapter you will be invincible! But don’t stop here. Dive deeper into the topic by following

your interests. There’s much more to relational database design, ADO.NET, and the Microsoft Enterprise Library

than what’s covered here. Alas, there is always more to learn!

What You Are Going To Build

You, my friend, are going to build a multitiered, networked, data-driven, client-server application. The applica-

tion will be used to track employee training. Users can create, edit, and delete employees as well as create, edit, and

delete employee training records. Employee records stored in the database will include an employee picture, so you’ll

need to know how to store and retrieve image data.

The overall architectural diagram for the employee training server application is given in Figure 20-1.

Figure 20-1: Employee Training Server Application Architecture
494
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications Preliminaries
Referring to Figure 20-1 — the employee training server application comprises several application layers. These

include the Business Layer (BL) where business objects (BOs) reside, and the Data Access Layer (DAL) where data

access objects (DAOs) reside. The use of value objects (VOs) spans all application layers.

Different supporting Microsoft technologies come into play throughout the application. The Microsoft Enterprise

Library can be used to support both business and data access layers, although in this chapter I am only using the

Enterprise Library Data Access Application Block, which directly supports the data access layer. The .NET remoting

infrastructure supports the remote object.

A business object is simply a class that contains the logic required to enforce the business rules of a particular

application. However, try as one may to isolate business rules to business objects, they tend to creep into other parts

of an application. For example, database design plays a key factor in what business rules can be enforced. (For exam-

ple, what information about an employee is required and what information is optional?, etc.)

A business object will use the services of one or more data access objects. A data access object is a class whose

job it is to interact with the database. As a rule, there is a one-to-one correspondence between data access objects and

database tables. For example, an EmployeeDAO class would be responsible for interacting with the tbl_employee

table in the database.

The data access layer uses the services of various classes, structures, interfaces, and enumerations provided by

ADO.NET and the Microsoft Enterprise Library Data Access Application Block (DAAB). The DAAB, among other

things, provides a DatabaseFactory class that is used to get a connection to the database. The DAAB also takes care of

connection pooling to increase application performance when servicing multiple client connections.

The remote object supplies an interface used by remote client applications to interact with the server. The remote

object uses the services provided by one or more business objects. As you know already from reading the previous

chapter, a remote object requires the support of the .NET remoting infrastructure.

Referring again to Figure 20-1 — application layer dependencies flow from right to left. The business layer

depends on the data access layer, and the remote object depends on the business layer. All layers depend on the value

object layer, which spans all application layers.

Preliminaries

Before you move forward in this chapter, you must take the time to install Microsoft SQL Server Express Edition

and the Microsoft Enterprise Library. You will also find it helpful to install the Microsoft SQL Server Management

Studio Express Edition as well, but this is not strictly required to get the application up and running. The Manage-

ment Studio application provides a robust GUI interface to your SQL Server database.

Installing SQL Server Express Edition

I use SQL Server 2005 Express Edition for the database in this chapter. (Note: You should be able to use SQL

Server 2008 Express Edition with little or no problem.) Go to Microsoft’s website, download the installation package,

double click the installer executable file and follow the on-screen instructions. Installation starts with an overall sys-

tem configuration check and the installation of some key components necessary for a smooth installation. If the con-

figuration check goes well, you’ll see a report similar to the one shown in Figure 20-2.

If you pass the system configuration check, you’ll come to the feature selection dialog window, as is shown in

Figure 20-3. At this point you can simply click the “Next >” button to proceed with the installation.

When you’ve finished installing SQL Server Express Edition, you can test the installation by opening a console

window and entering the following command:

sqlcmd -S .\sqlexpress
This opens a connection to the default database. If all goes well you will get a line number. At the first line num-

ber “1>” enter the following SQL command:

select table_name from information_schema.tables
Press Enter. This will bring you to a second line number “2>” where you need to enter the following command:

go
Press Enter. The results you get should look similar to the output shown in Figure 20-4. To exit the SQL com-

mand prompt type the command “exit” at the line number, then press Enter.
C# For Artists © 2008 Rick Miller — All Rights Reserved 495

Preliminaries Chapter 20: Database Access & Multitiered Applications
Installing Microsoft SQL Server Management Studio Express

You could do all your interaction with SQL Server Express via the SQL command utility, however, this can be

cumbersome for beginners (and experienced developers too!). SQL Server Management Studio is a GUI-based appli-

cation that makes it easy to manage and manipulate SQL Server databases.

You can download SQL Server Management Studio Express Edition from the same place you downloaded SQL

Server Express. Follow the installation instructions and go with the default values. Installation is quick and painless.

When you’ve finished, start SQL Server Management Studio by selecting All Programs->Microsoft SQL Server

2005->SQL Server Management Studio Express from the Start menu. This will display a login dialog window similar

to the one shown in Figure 20-5.

Referring to Figure 20-5 — click the Connect button to connect to the designated Server name. If you have just

installed SQL Server Express there will be only one server on the list! When you click the Connect button, you’ll be

logged into the server and your next window will look similar to the one shown in Figure 20-6.

Figure 20-2: SQL Server System Configuration Check

Figure 20-3: SQL Express Feature Selection Dialog
496
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications Preliminaries
Figure 20-4: Results of Testing SQL Server Express Edition Installation

Figure 20-5: Management Studio Login Dialog

Figure 20-6: SQL Management Studio Main Window
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 497

Preliminaries Chapter 20: Database Access & Multitiered Applications
Installing Microsoft Enterprise Library

The final thing you need to install is the Microsoft Enterprise Library. In the interest of full disclosure, you don’t

need the enterprise library data application blocks to do ADO.NET programming. They just make ADO.NET pro-

gramming easier to do. For the purposes of this chapter, the Enterprise Library Data Access Application Block is

required.

Download the Microsoft Enterprise Library installer from the Microsoft Patterns and Practices site. Run the

enterprise library installer. The second window you’ll see will be the Custom Setup dialog window similar to the one

shown in Figure 20-7.

Referring to Figure 20-7 — accept the default installation by clicking the Next button. Installation will proceed

fairly quick, however, you are not done just yet. When the installer completes, you’ll need to build the libraries by

navigating to the installation directory and double-clicking the InstallServices.bat file to compile and deploy the

libraries (i.e., the .dll files) Figure 20-8 shows my enterprise library installation directory (Note: I have changed the

installation directory from its default name to Microsoft_Enterprise_Library.)

Double-clicking the InstallServices.bat file will open a console window where you will see the libraries compiled

automatically. When done, you should have a Bin directory with the enterprise library .dll files. You will be most con-

cerned with the following three enterprise library .dll files:

• Microsoft.Practices.EnterpriseLibrary.Common.dll

• Microsoft.Practices.EnterpriseLibrary.Data.dll

• Microsoft.Practices.EnterpriseLibrary.ObjectBuilder.dll

Figure 20-7: Enterprise Library Custom Setup Dialog

Double-click the

InstallServices.bat file

to compile and deploy

the enterprise library

.dll files.

Figure 20-8: Double-Click the InstallServices.bat File
498
 © 2008 Rick Miller — All Rights Reserved
 C# For Artists

Chapter 20: Database Access & Multitiered Applications Preliminaries
A Simple Test Application

This section presents a short, simple test application that will make sure you’ve got everything installed cor-

rectly. Don’t proceed past this point until you get this application to run. When you’re successful, you can rest assured

you’ve got this chapter half licked!

Example 20.1 gives the code for a short application named SimpleConnection that uses a DatabaseFactory to cre-

ate a Database object, and then executes a simple SQL command against that database.
20.1 SimpleConnection.cs

1 using System;
2 using System.Data;
3 using System.Data.Common;
4 using System.Data.Sql;
5 using System.Data.SqlClient;
6
7 using Microsoft.Practices.EnterpriseLibrary.Common;
8 using Microsoft.Practices.EnterpriseLibrary.Data;
9 using Microsoft.Practices.EnterpriseLibrary.Data.Sql;
10
11 public class SimpleConnection {
12 public static void Main(){
13 Console.WriteLine("Simple Connection!");
14 Database database = DatabaseFactory.CreateDatabase();
15 Console.WriteLine("Database created!");
16 DbCommand command = database.GetSqlStringCommand("select table_name from information_schema.tables");
17 IDataReader reader = database.ExecuteReader(command);
18 while(reader.Read()){
19 Console.WriteLine(reader.GetString(0));
20 }
21 } // end Main()
22 } // end class definition

Referring to Example 20.1 — note first the namespaces required. On line 14, the DatabaseFactory.CreateData-

base() method is called to create a Database object. At this point you should be wondering from where on earth does

the DatabaseFactory class get the information required to create the Database object? The answer is — from a config-

uration file, which you’ll see shortly.

On line 16, the Database object’s GetSqlStringCommand() method is used to create a DbCommand object. The

string used as an argument to the GetSqlStringCommand() method is a short SQL select statement, just like the one

you used earlier to test the installation of SQL Server Express. The command is executed via a call to the Database

object’s ExecuteReader() method using the reference to the newly created Command object as an argument. It returns

an IDataReader object which you use to access the query results in the body of the while loop. The output of this

program will be a list of table names like that obtained originally in Figure 20-4.

Example 20.2 shows the contents of the simpleconnection.exe.config file.
20.2 simpleconnection.exe.config

1 <configuration>
2 <configSections>
3 <section name="dataConfiguration"
4 type="Microsoft.Practices.EnterpriseLibrary.Data.Configuration.DatabaseSettings,
5 Microsoft.Practices.EnterpriseLibrary.Data,
6 Version=3.1.0.0, Culture=neutral,
7 PublicKeyToken=b03f5f7f11d50a3a" />
8 </configSections>
9 <dataConfiguration defaultDatabase="Connection String" />
10 <connectionStrings>
11 <add name="Connection String"
12 connectionString="Data Source=(local)\SQLEXPRESS;Initial Catalog=master;
13 Integrated Security=True"
14 providerName="System.Data.SqlClient" />
15 </connectionStrings>
16 </configuration>

Referring to Example 20.2 — the configuration file provides database connection string information. You create

these configuration files with the help of the Enterprise Library Configuration tool, which you’ll find in the enterprise

library’s installation directory. A screen shot showing the tool in action is shown in Figure 20-9. At this point it would

be easier for you to either download this configuration file from the pulpfreepress.com website or create it manually

by copying it from the example above.

Alright — you have the SimpleConnection.cs file and the simpleconnection.exe.config file. Before you compile

the application, you’ll need to copy the three required Enterprise Library dll files into your project directory. Your

project directory should look similar to the one shown in Figure 20.10.
C# For Artists © 2008 Rick Miller — All Rights Reserved 499

Introduction To Relational Databases And SQL Chapter 20: Database Access & Multitiered Applications
To compile this application, open a command console window, change to the project directory, and enter the fol-

lowing compiler command:

csc /r:Microsoft.Practices.EnterpriseLibrary.Data.dll;Microsoft.Practices.EnterpriseLibrary.Common.dll /
lib:"C:\Program Files\Microsoft_Enterprise_Library\Bin" *.cs

Note that this is all on one line and that there is no hyphen in the word Enterprise. Also note that I have changed

the name of my enterprise library installation directory to Microsoft_Enterprise_Library, so on my computer the

enterprise library .dll files are located in the Microsoft_Enterprise_Library\Bin directory as I’ve given in the /lib

compiler switch above.

When you’ve entered this command, press Enter and cross your fingers. If all goes well it will compile. If not,

you’ll need to retrace your steps to ensure you’ve installed the database and the enterprise library files correctly.

Finally, run the application by typing simpleconnection at the command prompt. You should see an output simi-

lar to what is shown in Figure 20-11.

Introduction To Relational Databases And SQL

In this section I will show you how to create and manipulate data contained in a relational database using Struc-

tured Query Language (SQL). You’ll also learn how to create SQL scripts to automate the execution of complex que-

ries and other commands.

Figure 20-9: Enterprise Library Configuration File Creation Tool

Figure 20-10: Contents of the SimpleConnection Project Directory Before Compiling
500
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications Introduction To Relational Databases And SQL
Terminology

A database management system (DBMS) is a software application that stores data in some form or another and

provides a suite of software components that allows users to create, manipulate, and delete the data. The term data-

base refers to a related collection of data. A DBMS may contain one or more databases. The term database is often

used interchangeably to refer both to a DBMS and to the databases it contains. For example, a colleague is more

likely to ask you “What type of database are you going to use?” rather than “What type of database management sys-

tem are you going to use?”

A relational database stores data in relations referred to as tables. A relational database management system

(RDBMS) is a software application that allows users to create and manipulate relational databases. Popular RDBMS

systems that I’m personally familiar with include Oracle, MySQL, and Microsoft SQL Server, but there exist many

more.

A table is composed of rows and columns. Each column has a name and an associated database type. For exam-

ple, a table named tbl_employee may have a column named FirstName with a type of varchar(50). (i.e., A variable-

length character field with a 50 character limit.) Each row is an instance of data stored in the table. For example, the

tbl_employee table might contain any number of employee entries, with each entry occupying a single row in the

table.

In most cases it is desirable to be able to uniquely identify each row of data contained within a table. To do this,

one or more of the table columns must be designated as the primary key for that table. The important characteristic of

a primary key is that its value must be unique for each row.

The power of relational databases derives from their ability to dynamically create associations between different

tables. One table can be related to another table by the implementation of a foreign key. The primary key of one table

serves as the foreign key in the related table, as Figure 20-12 illustrates.

Referring to Figure 20-12 — the EmployeeID column serves as the primary key for tbl_employee. An Employ-

eeID column in tbl_employee_training serves as a foreign key for that table. In this manner, a relationship has been

established between tbl_employee and tbl_employee_training. These tables can now be manipulated together to

extract meaningful data regarding employees and the training they have taken. A table can be related to multiple

tables by the inclusion of multiple foreign keys.

Primary keys and foreign keys can be used together to enforce referential integrity. For example, you should not

be able to insert a new row into tbl_employee_training unless the EmployeeID foreign key value you are trying to

Figure 20-11: Results of Running the SimpleConnection Application

Figure 20-12: The Primary Key of One Table Can Serve as the Foreign Key in a Related Table
C# For
 Artists © 2008 Rick Miller — All Rights Reserved 501

Introduction To Relational Databases And SQL Chapter 20: Database Access & Multitiered Applications
insert already exists as a primary key in tbl_employee. Also, what should happen when an employee row is deleted

from tbl_employee? A cascade delete can automatically delete any related records in tbl_employee_training. When

an employee row is deleted from tbl_employee, any rows in tbl_employee_training with a matching foreign key will

also be deleted.

Structured Query Language (SQL)

SQL is used to create, manipulate, and delete relational database objects and the data they contain. Although

SQL is a standardized database language, each RDBMS vendor is free to add extensions to the language, which

essentially renders the language non-portable between different database products. What this means to you is that

while the examples I present in this section will work with Microsoft SQL Server, they may not work with Oracle,

MySQL, or whatever relational database system you’re familiar with. This holds true especially for SQL’s Data Defi-

nition Language commands, which we will cover shortly.

SQL comprises three sub-languages, which group commands according to functionality: Data Definition Lan-

guage (DDL), Data Manipulation Language (DML), and Data Control Language (DCL). In this section I will focus

on the use of DDL and DML.

Data Definition Language (DDL)

The DDL includes the create, use, alter, and drop commands. Let’s use a few of these commands to set

up the employee training database that will be used to store data for the employee training application. Before we

begin, open SQL Server Management Studio and take a look at the default databases SQL Server provides upon

installation.

Referring to Figure 20-13 — there are four databases installed by default. These include master, model, msdb,

and tempdb. Of these four, the master database is most important. It contains data necessary to startup and run SQL

Server. Ordinarily, you will not directly interface with or manipulate the master database, but you will need to use it

every once in a while with the use command as you will see shortly.

Creating The EmployeeTraining Database

Let’s now create the EmployeeTraining database with the help of the create command. You could create the

database using Management Studio, but I want to show you how to do it using the SQL command utility and then

with the help of an SQL script file.

First, open a command window and start the SQL command utility with the following command:

sqlcmd -S .\sqlexpress
On the first numbered line enter the following command:

create database EmployeeTraining

Figure 20-13: SQL Server’s Default Databases
502
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications Introduction To Relational Databases And SQL
Press Enter, and on the second numbered line enter the following command:

go
Press Enter. Your command window should look similar to Figure 20-14. Check that the database exists by open-

ing Management Studio and taking a look. You should see something similar to Figure 20-15.

Creating A Database With A Script

Alright, now that you’ve done this via the SQL command utility line-by-line, I want to show you how to drop the

database and create it with a script. Open your favorite text editor and create a file named “create_database.sql” and

enter the code shown in Example 20.3
20.3 create_database.sql

1 use master
2 drop database EmployeeTraining
3 go
4
5 create database EmployeeTraining
6 go

Referring to Example 20.3 — one line 1, the use command switches to the master database context. The drop

command on line 2 drops the EmployeeTraining database. The go command on line 3 executes the previous two

lines. On line 5, the create command creates the EmployeeTraining database. The go command is used again on

line 6 to execute line 5.

Save the create_database.sql file in a folder named “scripts”. In fact, now would be a good time to create a

project folder for the employee training application. I recommend two folders: one named “client”, the other named

“server”. Create the scripts folder in the server folder.

To execute the create_database.sql script, change to the scripts folder and enter the following command:

sqlcmd -S .\sqlexpress -i create_database.sql

Figure 20-14: Creating EmployeeTraining Database with SQL Command Utility

Figure 20-15: Checking on the Existence of the EmployeeTraining Database
C# For A
rtists © 2008 Rick Miller — All Rights Reserved 503

Introduction To Relational Databases And SQL Chapter 20: Database Access & Multitiered Applications
Press Enter. If all goes well, you’ll see an output similar to that shown in Figure 20-16. As you can see from look-

ing at Figure 20-16, there’s not much output, only one line indicating the database context changed to master. Open

Management Studio and verify once again that the EmployeeTraining database exists. It’s now time to create the

tables we’ll use to store the employee training application data.

Creating Tables

The create command is used to create the tables we’ll need to store data for employees and their training.

Now, while you could create the tables via the SQL command utility line-by-line, that method is error-prone and hard

to edit. It’s much easier to create a script to do the work for you. Example 20.4 gives the first version of a database

script named “create_tables.sql” that contains the SQL code required to create a table named “tbl_employee”.

20.4 create_tables.sql (1st version)

1 use EmployeeTraining

2

3 drop table tbl_employee

4 go

5

6 create table tbl_employee (

7 EmployeeID uniqueidentifier not null primary key,

8 FirstName varchar(50) not null,

9 MiddleName varchar(50) not null,

10 LastName varchar(50) not null,

11 Birthday datetime not null,

12 Gender varchar(1) not null,

13 Picture varbinary(MAX) null

14)

15 go

Referring to Example 20.4 — it’s imperative that this script executes in the EmployeeTraining database, and

that’s the purpose of the use command on line 1. Line 3 drops the tbl_employee table, if it exists. It certainly will not

exist the first time you execute the script, so you’ll see an error message stating that fact. You can safely ignore that

message. The create command starting on line 6 creates the tbl_employee table. The tbl_employee table contains

seven columns named EmployeeID, FirstName, MiddleName, LastName, Birthday, Gender, and Picture. Each col-

umn has a corresponding database type. Most are of the variable length character type varchar(n) where n specifies

the maximum number or characters the column can contain. The EmployeeID column is of type uniqueidentifier

which has been designated as the table’s primary key column. The Birthday column is of type datetime, and the Pic-

ture column is a variable length binary column set to varbinary(MAX). All columns except Picture must contain data

when a row is created. This is specified with the not null constraint. (A constraint is a rule placed on a column or

table meant to enforce data integrity.)

In this example application the tbl_employee table is fairly simple and straightforward. I may, in the not to dis-

tant future, regret the decision to put the employee picture in the tbl_employee table, but for now that’s where I’m

putting it!

To run this script save it in the scripts folder, open a command window, change to the scripts folder, and enter the

following command-line command:

sqlcmd -S .\sqlexpress -i create_tables.sql

The results obtained from executing this script on my machine are shown in Figure 20-17.

Figure 20-16: Results of Executing the create_database.sql Script
50
4 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications Introduction To Relational Databases And SQL
SQL Server Database Types

Table 20-1 lists the MS SQL Server database types and their associated value ranges and usage.

Type Category Data Type Value Range Usage

Exact Numeric bigint -263 to 263-1 Use to store large integral values.

Exact Numeric int -231 to 231-1 Use to store medium-sized integral val-

ues.

Exact Numeric smallint -215 to 215-1 Use to store small integral values.

Exact Numeric tinyint 0 to 255 Use to store really small integral values.

Exact Numeric bit 0, 1, or null Stores 1 or 0

Exact Numeric decimal -1038+1 to 1038-1 decimal(p, s) where p is precision and s

is scale. P is the maximum total number

of decimal digits that can be stored both

to the left and right of the decimal point.

The range of p is 1 - 38 with 18 as the de-

fault.

Scale is the maximum number of deci-

mal digits that can be stored to the right

of the decimal point. The range of s var-

ies from 0 - p. (Example decimal(24, 6)

would specify 24 total digits with 6 to

the right of the decimal point.)

Exact Numeric numeric -1038+1 to 1038-1 numeric is equivalent to decimal

Exact Numeric money -922,337,203,685,477.5808

to

922,337,203,685,477.5807

Large monetary or currency values. Use

to hold the value of US national debt.

Exact Numeric smallmoney -214,748.3648 to 214,748.3647 Small monetary or currency values.

Approximate

Numerics

float -1.79308 to -2.23-308, 0,

and 2.23-308 to 1.79308
float(n) where n is the number of bits

used to store the mantissa. n must be a

value between 1 - 53. Default value of n

is 53.

Approximate

Numerics

real -3.4038 to -1.18-38, 0

and 1.18-38 to 3.438
Equivalent to float

Date and Time datetime 1 January 1753 through

31 December 9999

Holds a large date and time range.

Table 20-1: SQL Server Data Types

Figure 20-17: Results of Executing create_tables.sql Database Script
C
For Artists © 2008 Rick Miller — All Rights Reserved 505

Introduction To Relational Databases And SQL Chapter 20: Database Access & Multitiered Applications
Referring to Table 20-1 — note that three database types have been deprecated and will, at some point in the

future, be dropped from SQL Server. These have been highlighted with light grey shading. Now, while this may or

may not happen for a long, long time, it’s still a good idea to shy away from using the deprecated types when writing

new code.

Data Manipulation Language (DML)

Now that you’ve created the EmployeeTraining database and added to it the tbl_employee table, it’s time to learn

how to use SQL’s Data Manipulation Language to add, manipulate, and delete tbl_employee data. There are four

DML commands: insert, select, update, and delete. First things first! Let’s create a script to insert some

test data into the tbl_employee table. I’ll then show you how to manipulate that data with the other three commands.

Date and Time smalldatetime 1 January 1900 through

6 June 2079

Holds a smaller date and time range.

Character Strings char 1 - 8000 fixed length bytes Holds fixed length character values.

Character Strings varchar 1 - 8000 variable length bytes

or varchar(MAX) holds 231-1 bytes

Holds variable length character strings

varchar(n) where n specifies max

length.

Character Strings text DO NOT USE Will be removed from future versions of

SQL Server

Unicode Character

Strings

nchar 1 - 4000 fixed length unicode

characters

Holds fixed length unicode character

strings.

Unicode Character

Strings

nvarchar 1 - 4000 variable length unicode

characters or nvarchar(MAX) holds

231-1 bytes

Holds variable length unicode character

strings. nvarchar(n) where n specifies

max length.

Unicode Character

Strings

ntext DO NOT USE Will be removed from future versions of

SQL Server

Binary Strings binary 1 - 8000 fixed length binary data Holds fixed length binary data.

Binary Strings varbinary 1 - 8000 variable length binary data

or varbinary(MAX) holds 231-1 bytes

Holds variable length binary data. varbi-

nary(n) where n specifies max length.

Binary Strings image DO NOT USE Will be removed from future versions of

SQL Server

Other cursor cursor reference Holds variables or stored procedure out-

put parameters that contain a reference

to a cursor.

Other sql_variant int, binary, and char Stores values of various data types.

Other table result set Stores a result set for later processing.

Other timestamp Automatically generated unique

binary number

Used to version-stamp table rows. Does

not preserve a date or a time.

Other uniqueidentifier A 16-byte Globally Unique Identifier

(GUID)

Used to hold GUID strings.

Other xml 2 gigabytes Holds XML data.

Type Category Data Type Value Range Usage

Table 20-1: SQL Server Data Types
506 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications Introduction To Relational Databases And SQL
Using The Insert Command

Example 20.5 gives the code for a database script named “create_test_data.sql” that inserts one row of test data

into the tbl_employee table.
20.5 create_test_data.sql

1 use EmployeeTraining
2 go
3
4 insert into tbl_employee (employeeid, firstname, middlename, lastname, birthday, gender)
5 values (newid(), 'Rick', 'Warren', 'Miller', '3/13/1961', 'M')
6 go

Referring to Example 20.5 — line 1 is necessary to ensure we are using the correct database, which in this case is

EmployeeTraining. Line 4 contains the first part of the insert statement. With the insert statement you specify into

which table you want to insert data, and list each column that will receive data in the parentheses. The order of the

columns you specify is important because the order of the actual values you insert, shown here on line 5, must match

the order in which you listed your columns. In this example, I am inserting data into the employeeid, firstname, mid-

dlename, lastname, birthday, and gender columns only. Remember, these columns MUST contain data because of

their NOT NULL constraint. It’s ok not to insert data into the picture column because that column is allowed to con-

tain a null value. (Note: If you want to insert more than one row of test data simply add another insert statement to the

script below line 5.)

To execute this script, open a command window, change to the scripts folder, and enter the following command:

sqlcmd -S .\sqlexpress -i create_test_data.sql
Then press Enter. You should see a result similar to that shown in Figure 20-18.

Using The Select Command

The select command is used to write database queries (i.e., select statements) that return data. A select

statement contains several clauses, most of which are optional. The following code fragment shows a simple

select statement that gets all the data contained in all the columns of the tbl_employee table:

select * from tbl_employee
To execute this select statement, open the SQL command utility by typing the following command-line com-

mand:

sqlcmd -S .\sqlexpress
At the first numbered line enter the following command:

use employeetraining
Press Enter, then enter go and press Enter again. On the first numbered line enter the select command given

above and press Enter. On the next numbered line enter the go command and press Enter. Your results should look

similar to Figure 20-19.

Referring to Figure 20-19 — the output is a little bunched up but you can pick out the column headings and their

associated data.

You can limit the number of columns a select statement returns by specifying exactly which columns you want

when you enter the select statement, as the following code fragment shows:

select firstname, middlename, lastname from tbl_employee
Try executing this statement in the SQL command utility. Your results should look similar to those shown in Fig-

ure 20-20.

Up to this point I’ve only been using one required select statement from clause to specify the table from

which to get the data. The following select statement adds an optional where clause to limit the data returned:

select firstname, lastname from tbl_employee where lastname=’Bishop’

Figure 20-18: Results of Running create_test_data.sql Database Script
C#
For Artists © 2008 Rick Miller — All Rights Reserved 507

Introduction To Relational Databases And SQL Chapter 20: Database Access & Multitiered Applications
As you may have guessed, if you entered this query in the employeetraining database, you’d get no results

because nobody by the last name of Bishop has been entered into the tbl_employee table. Let’s modify the

create_test_data.sql script to add some more test data. Example 20.6 gives the modified script.
20.6 create_test_data.sql (Mod 1)

1 use EmployeeTraining
2 go
3
4 insert into tbl_employee (employeeid, firstname, middlename, lastname, birthday, gender)
5 values (newid(), 'Rick', 'Warren', 'Miller', '3/13/1961', 'M')
6 go
7 insert into tbl_employee (employeeid, firstname, middlename, lastname, birthday, gender)
8 values (newid(), 'Steve', 'Jacob', 'Bishop', '2/10/1942', 'M')
9 go
10 insert into tbl_employee (employeeid, firstname, middlename, lastname, birthday, gender)
11 values (newid(), 'Coralie', 'Sarah', 'Powell', '10/10/1974', 'F')
12 go
13 insert into tbl_employee (employeeid, firstname, middlename, lastname, birthday, gender)
14 values (newid(), 'Kyle', 'Victor', 'Miller', '8/25/1986', 'M')
15 go
16 insert into tbl_employee (employeeid, firstname, middlename, lastname, birthday, gender)
17 values (newid(), 'Patrick', 'Tony', 'Condemi', '4/17/1961', 'M')
18 go
19 insert into tbl_employee (employeeid, firstname, middlename, lastname, birthday, gender)
20 values (newid(), 'Dana', 'Lee', 'Condemi', '11/1/1965', 'F')
21 go

Referring to Example 20.6 — notice how the go command must be issued after each insert statement. Run

this script to insert the extra data. (Note: You may want to run the create_tables.sql script to start clean! Don’t you

just love database scripts!) Your results should look similar to Figure 20-21.

Now, start the SQL command utility, change to the employeetraining database, and enter the following select

statement:

 select firstname, lastname
 from tbl_employee

Figure 20-19: Results of Executing a Simple Select Statement

Figure 20-20: Selecting Specific Rows with select Statement
50
8
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications Introduction To Relational Databases And SQL
 where lastname=’Miller’
 go
This is how you will normally see a select statement used, with each clause appearing on separate lines. Note

that the go command is not part of SQL, but rather how the SQL statement is executed in SQL Server. The results

you get from executing this query should look similar to those shown in Figure 20-22.

Referring to Figure 20-22 — the query returned two employees with the last name Miller. If you did not run the

create_tables.sql script before running the modified create_test_data.sql script, you would see three employees in the

results because there would be two Rick Millers in the database.

Try this query:

 select firstname, lastname
 from tbl_employee
 where gender=’F’ or firstname=’Kyle’
 go
This should return three rows as is shown in Figure 20-23.

Using The Update Command

Data within a table can be changed with the SQL update command. For example, if you wanted to change the

employee Coralie Powell’s last name to Miller, you would use the following update statement:

 update tbl_employee

Figure 20-21: Inserting More Test Data with the create_test_data.sql Database Script

Figure 20-22: Results of Limiting Data Returned from select Statement with where Clause

Figure 20-23: Results of Executing the Previous Query
C# F
or A
rtists © 2008 Rick Miller — All Rights Reserved 509

Introduction To Relational Databases And SQL Chapter 20: Database Access & Multitiered Applications
 set lastname = ‘Miller’
 where firstname = ‘Coralie’
 go
The update statement begins by specifying the name of the table to which the update applies. The set clause

on the second line specifies one or more columns within that table and their new values. The where clause is used to

specify to which row in the table the update applies. In this case the employee whose first name is “Coralie” will have

her name changed from “Powell” to “Miller”. (Note: If you had more than one employee with the first name “Cor-

alie”, this statement would change all their last names to Miller. To isolate the correct Coralie you’d have to use her

EmployeeID in the where clause.) Figure 20-24 illustrates the use of the previous update statement.

Using The Delete Command

The delete command is used to delete one or more rows from a table. The following delete statement

removes from the tbl_employee table all employees whose last names equal “Miller”:

 delete from tbl_employee
 where lastname = ‘Miller’
 go
The results of executing this statement are shown in Figure 20-25.

Figure 20-24: Changing Coralie Powell’s Last Name to Miller with the Update Statement

Figure 20-25: Deleting all Employees whose Last Names = “Miller”
51
0 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications Complex SQL Queries
Quick Review

Relational databases hold data in tables. Table columns are specified to be of a particular data type. Table data is

contained in rows. Structured Query Language (SQL) is used to create, manipulate, and delete relational database

objects and data. SQL contains three sub-languages: Data Definition Language (DDL) which is used to create data-

bases, tables, views, and other database objects; Data Manipulation Language (DML) which is used to create, manip-

ulate, and delete the data contained within a database; and Data Control Language (DCL) which is used to grant or

revoke user rights and privileges on database objects.

Different database makers are free to extend SQL to suit their needs so there’s no guarantee of SQL portability

between different databases.

One or more table columns can be designated as a primary key whose value is unique for each row inserted into

that table. Related tables can be created by including the primary key of one table as a foreign key in the related table.

Complex SQL Queries

In this section I want to show you how to use SQL to manipulate data in multiple tables. Along the way you will

learn how to use a foreign key to create a related table, and how to use the from clause to join related tables together

in a select statement.

Creating A Related Table With A Foreign Key

It’s time now to add another table to the employeetraining database. Where do you think would be a good place

to put this table’s create statement code? If you guessed the create_tables.sql script you’re right!
20.7 create_tables.sql (Mod 1)

1 use EmployeeTraining
2
3 alter table tbl_employee_training drop constraint fk_employee
4 go
5
6 drop table tbl_employee
7 go
8
9 create table tbl_employee (
10 EmployeeID uniqueidentifier not null primary key,
11 FirstName varchar(50) not null,
12 MiddleName varchar(50) not null,
13 LastName varchar(50) not null,
14 Birthday datetime not null,
15 Gender varchar(1) not null,
16 Picture varbinary(max) null
17)
18 go
19
20 drop table tbl_employee_training
21 go
22
23 create table tbl_employee_training (
24 TrainingID int not null identity(1,1) primary key,
25 EmployeeID uniqueidentifier not null,
26 Title varchar(200) not null,
27 Description varchar(500) not null,
28 StartDate datetime null,
29 EndDate datetime null,
30 Status varchar(25)
31)
32 go
33
34 alter table tbl_employee_training
35 add constraint fk_employee
36 foreign key (EmployeeID)
37 references tbl_employee (EmployeeID) on delete cascade
38 go

Referring to Example 20.7 — the create statement for the tbl_employee_training table begins on line 23. It’s

preceded by the drop statement on line 20. The table’s primary key is named TrainingID. The primary key value, in

this case an integer, will be automatically generated when a record is inserted into the table and incremented by 1.
C# For Artists © 2008 Rick Miller — All Rights Reserved 511

Complex SQL Queries Chapter 20: Database Access & Multitiered Applications
This behavior is obtained with the identity(1,1) entry specification. The first value is the identity seed, the second is

the increment value.

Note that the tbl_employee_training table has a column named EmployeeID, which is the same type as the

EmployeeID column in the tbl_employee table. However, this alone does not establish the foreign key relationship

between that column and the one in the tbl_employee table. The foreign key constraint is created with the alter

statement beginning on line 34. Note that the name of the foreign key constraint is fk_employee. (You could name it

anything you like.) Having the foreign key constraint named in this manner allows you to drop the constraint before

you drop the tbl_employee table. If you don’t drop the fk_employee constraint before trying to drop the tbl_employee

table you’ll get an error. That’s why it’s necessary to put the alter statement on line 3.

To run this script, change to the scripts directory and enter the following command at the command-line:

sqlcmd -S .\sqlexpress -i create_tables.sql
The first time you run this script you’ll get several errors saying the fk_employee constraint and

tbl_employee_training table do not exist. When you run it a second time you will not receive those errors. After you

run the script, verify the existence of the tbl_employee_training table by opening SQL Server Management Studio as

is shown in Figure 20-26.

Inserting Test Data Into The tbl_employee_training Table

You’ll want to insert some test data into the tbl_employee_training table and to do this you’ll need to make sev-

eral modifications to the create_test_data.sql script. But first, run the script as-is to insert test data into the

tbl_employee table. You need to do this so that you can get a valid GUID for each employee. To do this, run the

script, then enter the following command in the SQL command utility: (Don’t forget to change to the employeetrain-

ing database first!)

 select employeeid from tbl_employee
 go
Figure 20-27 shows this statement being executed in the SQL command utility.

Referring to Figure 20-27 — select the listed EmployeeIDs, copy them, and paste them into your text editor.

You’ll need them to create the modified version of the create_test_data.sql script as is shown in Example 20.8.
20.8 create_test_data.sql (Mod 2)

1 use EmployeeTraining
2 go
3
4 insert into tbl_employee (employeeid, firstname, middlename, lastname, birthday, gender)
5 values ('E4F786EC-D8FC-472A-9E8C-4DDE307ABEC8', 'Rick', 'Warren', 'Miller', '3/13/1961', 'M')
6 go
7 insert into tbl_employee (employeeid, firstname, middlename, lastname, birthday, gender)
8 values ('25BF3A98-AB02-445E-A5F7-67B74C6A9515', 'Steve', 'Jacob', 'Bishop', '2/10/1942', 'M')

Figure 20-26: Verifying the Creation of the tbl_employee_training Table
512
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications Complex SQL Queries
9 go
10 insert into tbl_employee (employeeid, firstname, middlename, lastname, birthday, gender)
11 values ('74F9A6B5-F099-4829-8CD1-89A4A01B5F96', 'Coralie', 'Sarah', 'Powell', '10/10/1974', 'F')
12 go
13 insert into tbl_employee (employeeid, firstname, middlename, lastname, birthday, gender)
14 values ('439A7460-9D35-4ABC-ABDF-A48F6B224D42', 'Kyle', 'Victor', 'Miller', '8/25/1986', 'M')
15 go
16 insert into tbl_employee (employeeid, firstname, middlename, lastname, birthday, gender)
17 values ('DF67C044-A7A8-4E22-B602-C4DA6C48E485', 'Patrick', 'Tony', 'Condemi', '4/17/1961', 'M')
18 go
19 insert into tbl_employee (employeeid, firstname, middlename, lastname, birthday, gender)
20 values ('522C2C1F-2088-40A3-9E1B-D27910CA0006', 'Dana', 'Lee', 'Condemi', '11/1/1965', 'F')
21 go
22
23
24 insert into tbl_employee_training (EmployeeID, Title, Description, StartDate, EndDate, Status)
25 values ('E4F786EC-D8FC-472A-9E8C-4DDE307ABEC8', 'Advanced Microsoft Word', 'Description text here...',
26 '11/2/2007', '11/5/2007', 'Passed')
27 go
28 insert into tbl_employee_training (EmployeeID, Title, Description, StartDate, EndDate, Status)
29 values ('E4F786EC-D8FC-472A-9E8C-4DDE307ABEC8', 'Project Management Professional',
30 'Description text here...', '6/12/2006', '6/15/2006', 'Passed')
31 go
32
33 insert into tbl_employee_training (EmployeeID, Title, Description, StartDate, EndDate, Status)
34 values ('25BF3A98-AB02-445E-A5F7-67B74C6A9515', 'Project Management Professional',
35 'Description text here...', '6/12/2006', '06/15/2006', 'Passed')
36 go
37 insert into tbl_employee_training (EmployeeID, Title, Description, StartDate, EndDate, Status)
38 values ('74F9A6B5-F099-4829-8CD1-89A4A01B5F96', 'C# Programming', 'Description text here...',
39 '1/15/2007', '5/8/2007', 'Passed')
40 go
41 insert into tbl_employee_training (EmployeeID, Title, Description, StartDate, EndDate, Status)
42 values ('439A7460-9D35-4ABC-ABDF-A48F6B224D42', 'Managing Difficult Employees',
43 'Description text here...', '1/2/2007', '1/4/2007', 'Passed')
44 go
45 insert into tbl_employee_training (EmployeeID, Title, Description, StartDate, EndDate, Status)
46 values ('439A7460-9D35-4ABC-ABDF-A48F6B224D42', 'Project Management Professional',
47 'Description text here...', '6/12/2006', '6/15/2006', 'Passed')
48 go
49 insert into tbl_employee_training (EmployeeID, Title, Description, StartDate, EndDate, Status)
50 values ('DF67C044-A7A8-4E22-B602-C4DA6C48E485', 'Squeezing Profit Margins', 'Description text here...',
51 '7/5/2004', '7/10/2004', 'Passed')
52 go
53 insert into tbl_employee_training (EmployeeID, Title, Description, StartDate, EndDate, Status)
54 values ('522C2C1F-2088-40A3-9E1B-D27910CA0006', 'Project Financial Management',
55 'Description text here...', '8/2/2007', '8/5/2007', 'Passed')
56 go

Referring to Example 20.8 — the modified create_test_data.sql statement does away with the newid() function

and instead inserts employees into the tbl_employee table with hard-wired employee ids. These employee ids are then

used to insert one or more training records into the tbl_employee_training table for each employee. Note that because

of the foreign key constraint between the tbl_employee_training and tbl_employee tables, the insert statement

checks to ensure the EmployeeID being inserted into tbl_employee_training is valid, meaning that the EmployeeID

does in fact exist as a primary key in the tbl_employee table. If it were invalid the insert would fail.

To run this script be sure to first run the new create_tables.sql script to get rid of any data that may be in the

tables. (Both tables should be empty at this point but if, in the future, you want to reset the test data, you’ll get errors

Figure 20-27: Selecting EmployeeIDs from tbl_employee
C
For Artists © 2008 Rick Miller — All Rights Reserved 513

Complex SQL Queries Chapter 20: Database Access & Multitiered Applications
if you try to run this script without first deleting the data in the tbl_employee table since the EmployeeID values are

hard-wired.)

Now that we have a mix of employee and training test data loaded into the database, I can show you how to use

the select statement to create complex queries that span multiple tables.

Selecting Data From Multiple Tables

The select statement can be used to perform complex database queries involving multiple tables. In this sec-

tion, I show you how to use the select statement to join the tbl_employee and tbl_employee_training tables

together to answer complex employee training queries.

Join Operations

Related database tables can be joined together to answer complex database queries. There are several different

types of join operations but the most common one is an inner join, which is the default SQL Server join operation.

A join operation results in a new temporary table that contains the results of the join. A join can involve any

number of related tables, or non-related tables in the case of outer joins.

Let’s start by listing all the training each employee has taken and sort the results by last name. This query is

shown in the following select statement:

 select firstname, lastname, title
 from tbl_employee, tbl_employee_training
 where tbl_employee.EmployeeID = tbl_employee_training.EmployeeID
 order by lastname
 go
In this example, the from clause implicitly joins the tbl_employee and tbl_employee_training tables together.

The where clause provides further filtering that limits the result set to those records in the tbl_employee table that

have a matching EmployeeID entry in a tbl_employee_training record. (The term record is synonymous with the term

row.) To run this query, start the SQL command utility with the following command:

sqlcmd -S .\sqlexpress -W
The -W switch removes the trailing spaces from each field so the query results fit on the screen.

Figure 20-28 shows the results of running this query in the SQL command utility against our freshly-loaded test

data.

Referring to Figure 20-28 — note that the number of results equals the number of training records contained in

the tbl_employee_training table.

Now, suppose you wanted to find only those employees who’ve attended Project Management Professional train-

ing and sort the results by the employee’s last name. The query for that question would look like this:

 select firstname, lastname
 from tbl_employee, tbl_employee_training
 where (tbl_employee.EmployeeID = tbl_employee_training.EmployeeID) AND

Figure 20-28: Results of Running the Previous SQL Query
514
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications Complex SQL Queries
 (title = ‘Project Management Professional’)
 order by lastname
 go
In this example, the where clause uses the AND operator to provide the required record filtering. The results of

running this query are shown in Figure 20-29.

Testing The Cascade Delete Constraint

If you’ll return to Example 20.7 you’ll see on line 37 that the foreign key constraint specifies that when a row

from the tbl_employee table is deleted, all related records in the tbl_employee_training table will also be deleted.

Let’s test the cascade delete mechanism now by deleting the employee Rick Miller from the database. The SQL

delete statement would look something like this:

 delete from tbl_employee
 where employeeid = 'E4F786EC-D8FC-472A-9E8C-4DDE307ABEC8'
 go
After you execute this delete statement, you’ll want to check to be sure the related training records were in

fact deleted. You can do that with the following query:

select * from tbl_employee_training
The results of executing these two statement are shown in Figure 20-30.

Quick Review

The select statement can be used to construct complex queries involving multiple related tables. One table is

joined to another to form a temporary table. There are many different types of join operations, but the most common

one is an inner join, which is the default join condition provided by Microsoft SQL Server.

Figure 20-29: Results of Running the Previous SQL Query

Figure 20-30: Results of Executing a Cascade Delete and Checking the Results
C#
 For Artists © 2008 Rick Miller — All Rights Reserved 515

The Server Application Chapter 20: Database Access & Multitiered Applications
Inner joins are made possible through the use of foreign keys. A foreign key is a column in a table that contains a

value that is used as a primary key in another table. A table can be related to many other tables by including multiple

foreign keys. Specify a foreign key by adding a foreign key constraint to a particular table using the alter com-

mand.

The Server Application

Now that you have a better understanding of relational databases and Structured Query Language, it’s time to

move on to building the employee training application. The best way to approach the design and development of a

complex application is through the use of development iterations. (See Chapter 3) In this section I will step through

the development of the employee training server application. As is the case with any complex development project,

the best way to start is to get organized. I recommend adopting a project folder structure that mirrors the application

layers or tiers.

Project Folder Organization

Figure 20-31 shows how I’ve arranged my server application project folders.

Referring to Figure 20-31 — the structure of my project folder mirrors that of the application layers contained

within my application plus several more folders to hold different types of project artifacts. You’ll also notice that

there is an EmployeeTrainingServer.proj file at the bottom of the list. This is an MSBuild project file that is used to

manage and build the project. I’ll explain the use of the MSBuild project file in a moment. Table 20-2 lists and

describes the purpose and contents of each of the folders shown above.

Folder Name Contents

app Contains source code files for the main server application, remote object interface, and remote object.

bo Contains source code files for business objects.

build Stores the resultant application build files. This includes dlls, the config file, and the server.exe file. Most

of the files in this folder are copied from other project folders.

config Contains the master copy of the server config file.

dao Contains the source code files for the data access objects.

Table 20-2: Project Folder Descriptions

Figure 20-31: Employee Training Project Folder Arrangement
516
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications The Server Application
Using Microsoft Build To Manage And Build the Project

Due to the complexity of the employee training server application, it would be difficult at best to compile the

project files from the command line using only the csc compiler tool. The Microsoft Build tool (MSBuild) enables

you to build complex projects with the help of project files. Example 20.9 gives the code for the EmployeeTraining-

Server.proj file. You will find the syntax of this file somewhat confusing at first, however, keep studying it until you

understand what’s going on. Knowing how to use MSBuild will save you a ton of time.
20.9 EmployeeTrainingServer.proj

1 <Project DefaultTargets="CompileVO"
2 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
3
4 <PropertyGroup>
5 <IncludeDebugInformation>false</IncludeDebugInformation>
6 <BuildDir>build</BuildDir>
7 <LibDir>lib</LibDir>
8 <AppDir>app</AppDir>
9 <RefDir>ref</RefDir>
10 <ConfigDir>config</ConfigDir>
11 </PropertyGroup>
12
13 <ItemGroup>
14 <DAO Include="dao***.cs" />
15 <BO Include="bo***.cs" />
16 <VO Include="vo***.cs" />
17 <APP Include="app***.cs" />
18 <LIB Include="lib***.dll" />
19 <REF Include="ref***.dll" />
20 <CONFIG Include="config***.config" />
21 <EXE Include="app***.exe" />
22 </ItemGroup>
23
24 <Target Name="MakeDirs">
25 <MakeDir Directories="$(BuildDir)" />
26 <MakeDir Directories="$(LibDir)" />
27 </Target>
28
29 <Target Name="RemoveDirs">
30 <RemoveDir Directories="$(BuildDir)" />
31 <RemoveDir Directories="$(LibDir)" />
32 </Target>
33
34 <Target Name="Clean"
35 DependsOnTargets="RemoveDirs;MakeDirs">
36 </Target>
37
38 <Target Name="CopyFiles">
39 <Copy
40 SourceFiles="@(CONFIG);@(LIB);@(REF)"
41 DestinationFolder="$(BuildDir)" />
42 </Target>
43
44 <Target Name="CompileVO"
45 Inputs="@(VO)"
46 Outputs="$(LibDir)\VOLib.dll">
47 <Csc Sources="@(VO)"
48 TargetType="library"
49 References="@(REF);@(LIB)"
50 OutputAssembly="$(LibDir)\VOLib.dll">

lib Stores application dlls after they have been built. Other parts of the project will depend on the files stored

in the lib directory.

ref Stores dlls and other third-party libraries. These are libraries the server application depends on to build and

run but are not built by the application build process.

scripts Contains database scripts.

vo Contains the source code files for the value objects.

Folder Name Contents

Table 20-2: Project Folder Descriptions
C# For Artists © 2008 Rick Miller — All Rights Reserved 517

The Server Application Chapter 20: Database Access & Multitiered Applications
51 </Csc>
52 </Target>
53
54 <Target Name="CompileDAO"
55 Inputs="@(DAO)"
56 Outputs="$(LibDir)\DAOLib.dll"
57 DependsOnTargets="CompileVO">
58 <Csc Sources="@(DAO)"
59 TargetType="library"
60 References="@(REF);@(LIB)"
61 WarningLevel="0"
62 OutputAssembly="$(LibDir)\DAOLib.dll">
63 </Csc>
64 </Target>
65
66 <Target Name="CompileBO"
67 Inputs="@(BO)"
68 Outputs="$(LibDir)\BOLib.dll"
69 DependsOnTargets="CompileDAO">
70 <Csc Sources="@(BO)"
71 TargetType="library"
72 References="@(REF);@(LIB)"
73 WarningLevel="0"
74 OutputAssembly="$(LibDir)\BOLib.dll">
75 </Csc>
76 </Target>
77
78 <Target Name="CompileApp"
79 Inputs="@(APP)"
80 Outputs="$(BuildDir)\$(MSBuildProjectName).exe"
81 DependsOnTargets="CompileDAO">
82 <Csc Sources="@(APP)"
83 TargetType="exe"
84 References="@(REF);@(LIB)"
85 OutputAssembly="$(BuildDir)\$(MSBuildProjectName).exe">
86 </Csc>
87 </Target>
88
89 <Target Name="CompileAll">
90 <Csc Sources="@(VO);@(DAO);@(BO);@(APP)"
91 TargetType="exe"
92 References="@(REF);@(LIB)"
93 OutputAssembly="$(BuildDir)\$(MSBuildProjectName).exe">
94 </Csc>
95 </Target>
96
97 <Target Name="Run"
98 DependsOnTargets="CompileApp;CopyFiles">
99 <Exec Command="$(MSBuildProjectName).exe"
100 WorkingDirectory="$(BuildDir)" />
101 </Target>
102
103 </Project>

Referring to Example 20.9 — the EmployeeTrainingServer.proj file contains a project specification between a

pair of XML <project></project> tags. Within the project tags there appears a PropertyGroup specification, an Item-

Group specification, and several Targets.

The PropertyGroup specification appears between the <PropertyGroup></PropertyGroup> tags and defines a list

of properties used within the project. Properties within the project are referenced via the $(PropertyName) notation.

Most of the properties defined are project folder names. For example, on line 6, the <BuildDir> property is defined as

the build directory.

The ItemGroup specification appears between the <ItemGroup></ItemGroup> tags and defines a list of project

artifacts. An item within the project is referenced with the @(ItemName) notation. Items defined in this project

include source files in various directories (.cs), library files (.dlls), config files, and executable files (.exe). For exam-

ple, the DAO item defined on line 14 includes all the C# source files found in the dao directory and all its subdirecto-

ries.

The remainder of the EmployeeTrainingServer.proj file contains target definitions. A target is an action the

MSBuild tool will perform and includes a set of one or more tasks. A target definition appears between the <Tar-

get></Target> tags. Targets can be stand-alone or they can depend on other targets. For example, the Clean target

defined on line 34 depends on the RemoveDirs and MakeDirs targets. In other words, running the Clean target will

also run the RemoveDirs and MakeDirs targets.
518 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications The Server Application
MSBuild projects have a default target. For example, on line 1 you see the default target for the EmployeeTrain-

ingServer.proj is the CompileVO project.

Let’s take a look at one of the more complex targets. The CompileApp target definition begins on line 78. Its

inputs include all the source files in the app directory, as specified in the APP item and referenced with @(APP). Its

output is an executable file written to the build directory, as specified by the BuildDir property and referenced with

$(BuildDir). The CompileApp target depends on the CompileDAO target. (Note: This dependency will change once

we move into the second iteration of the server application development.) The CompileApp target contains one com-

pile task as is specified with the <Csc></Csc> tags. The Csc task calls the C# compiler tool and compiles all the

source files found in the app directory, builds the .exe file, and writes it to the build directory. The Csc task references

the libraries found in the lib and ref directories.

(Note: This version of the project file will change slightly as the project evolves.) As I mentioned above, the

CompileApp target currently depends on the CompileDAO target. This dependency will change to the CompileBO

target once we start working on the application’s business objects. Also note that the CompileVO, CompileBO, and

CompileDAO targets all produce dlls. These dlls are written to the lib directory.

I’ll show you how to run the build using MSBuild as soon as we get some source code to compile. So, let’s start

on the first iteration of the employee training server application.

First Iteration

Let’s see, where do we stand? The database is up and running. We have database scripts that can be used to drop

and create the database, the required tables, and test data. I think a good overall objective for the first iteration of any

development project is to identify, design, and code the high-risk areas. (i.e., Solve the most difficult problems first.)

For this project, the most difficult aspect is the DAO layer and the insertion and retrieval of an employee’s data and

their picture. Also, with multitier projects like this one, it’s a good idea to code from the database out, meaning again

that the DAO layer deserves our attention right from the start. Given this assessment, the objectives for the first devel-

opment iteration are listed in Table 20-3.

Check-Off Design Consideration Design Decision

DAO layer Create a data access object (a C# class) for the employee table. Focus on

the insertion and retrieval of employee data including the employee’s pic-

ture. The EmployeeDAO class will need a connection to the database. This

is a good use for a BaseDAO class.

Value objects Value objects represent entities within the application that are passed be-

tween tiers. A good place to start would be to create an EmployeeVO that

contains all an employee’s data. In past chapters we’ve already created a

Person class that has most of the properties required by the EmployeeVO

class. You can let the Person class serve as the base class for the Employ-

eeVO. For consistency we’ll rename the Person class to be PersonVO.

Enterprise Library Data Access

Application Block

The Enterprise Library Data Access Application Block provides a Data-

baseFactory class. You’ll need to create an application configuration file

that provides the required database connection. The name of the configura-

tion file will be:

EmployeeTrainingServer.exe.config
Place this file in the project’s config directory.

You’ll also need to copy and paste the following three enterprise library

dlls into the project’s ref directory:

Microsoft.Practices.EnterpriseLibrary.Common
.dll
Microsoft.Practices.EnterpriseLibrary.Data.d
ll
Microsoft.Practices.ObjectBuilder.dll

Table 20-3: Employee Training Server Application — First Iteration Design Considerations & Decisions
C# For Artists © 2008 Rick Miller — All Rights Reserved 519

The Server Application Chapter 20: Database Access & Multitiered Applications
Referring to Table 20-3 — this looks like enough work for now. Although this development cycle will yield only

five source files: EmployeeTrainingServer.cs, BaseDAO.cs, EmployeeDAO.cs, PersonVO.cs, and EmployeeVO.cs, it

exercises a major portion of the architecture and forces you to deal with the most complex issues you’ll face during

the development of this project, and that is coding up the DAO layer. I must remind you before proceeding that

design decisions made early on a complex project like this one will most certainly change before the project ends.

This is the natural state of affairs in software development. If the application architecture is flexible enough to be

changed without too much pain then the design is sound.

Coding The EmployeeVO And EmployeeDAO

Figure 20-32 gives the UML diagram for the EmployeeVO and EmployeeDAO classes.

Referring to Figure 20-32 — the EmployeeDAO extends the BaseDAO class and has a dependency association

on the EmployeeVO class. The EmployeeVO class extends PersonVO. Since the EmployeeDAO depends on the

EmployeeVO class, you must code it first. Examples 20.10 and 20.11 give the code for these classes.
20.10 PersonVO.cs

1 using System;
2
3 namespace EmployeeTraining.VO {
4 [Serializable]
5 public class PersonVO {
6
7 //enumeration
8 public enum Sex {MALE, FEMALE};
9
10 // private instance fields
11 private String _firstName;
12 private String _middleName;
13 private String _lastName;
14 private Sex _gender;
15 private DateTime _birthday;
16
17 //default constructor
18 public PersonVO(){}
19
20 public PersonVO(String firstName, String middleName, String lastName,
21 Sex gender, DateTime birthday){

Test application You’ll need to write a small application that tests the EmployeeDAO. The

application should let you select an image to use for the employee’s picture

so it will be a GUI application. It doesn’t need to be fancy as it will be

thrown away. The name of the application source file will be:

EmployeeTrainingServer.cs
Create this file in the project’s app directory.

Check-Off Design Consideration Design Decision

Table 20-3: Employee Training Server Application — First Iteration Design Considerations & Decisions

Figure 20-32: EmployeeVO and EmployeeDAO Class Diagram

EmployeeDAO depends

on EmployeeVO.

BaseDAO serves as the

base class for all DAO

classes.

PersonVO is the base

class for EmployeeVO.

EmployeeVO extends

PersonVO and pro-

vides two additional

properties unique to

employee objects.
520
 © 2008 Rick Miller — All Rights Reserved
 C# For Artists

Chapter 20: Database Access & Multitiered Applications The Server Application
22 FirstName = firstName;
23 MiddleName = middleName;
24 LastName = lastName;
25 Gender = gender;
26 BirthDay = birthday;
27 }
28
29 // public properties
30 public String FirstName {
31 get { return _firstName; }
32 set { _firstName = value; }
33 }
34
35 public String MiddleName {
36 get { return _middleName; }
37 set { _middleName = value; }
38 }
39
40 public String LastName {
41 get { return _lastName; }
42 set { _lastName = value; }
43 }
44
45 public Sex Gender {
46 get { return _gender; }
47 set { _gender = value; }
48 }
49
50 public DateTime BirthDay {
51 get { return _birthday; }
52 set { _birthday = value; }
53 }
54
55 public int Age {
56 get {
57 int years = DateTime.Now.Year - _birthday.Year;
58 int adjustment = 0;
59 if((DateTime.Now.Month <= _birthday.Month) && (DateTime.Now.Day < _birthday.Day)){
60 adjustment = 1;
61 }
62 return years - adjustment;
63 }
64 }
65
66 public String FullName {
67 get { return FirstName + " " + MiddleName + " " + LastName; }
68 }
69
70 public String FullNameAndAge {
71 get { return FullName + " " + Age; }
72 }
73
74 public override String ToString(){
75 return FullName + " is a " + Gender + " who is " + Age + " years old.";
76 }
77
78 } // end PersonVO class
79 } // end namespace

Referring to Example 20.10 — the PersonVO class differs from the original Person class in a couple of ways.

First, it belongs to the EmployeeTraining.VO namespace, as line 3 indicates. Second, I made the default constructor

public since this class is being used as a base class and I want to be able to create EmployeeVO objects with the

EmployeeVO’s default constructor.
20.11 EmployeeVO.cs

1 using System;
2 using System.Drawing;
3
4 namespace EmployeeTraining.VO {
5 [Serializable]
6 public class EmployeeVO : PersonVO {
7
8 // private instance fields
9 private Guid _employeeID;
10 private Image _picture;
11
12 //default constructor
13 public EmployeeVO(){}
14
15 public EmployeeVO(Guid employeeid, String firstName, String middleName, String lastName,
C# For Artists © 2008 Rick Miller — All Rights Reserved 521

The Server Application Chapter 20: Database Access & Multitiered Applications
16 Sex gender, DateTime birthday):base(firstName, middleName, lastName, gender, birthday){
17 EmployeeID = employeeid;
18 }
19
20 // public properties
21 public Guid EmployeeID {
22 get { return _employeeID; }
23 set { _employeeID = value; }
24 }
25
26 public Image Picture {
27 get { return _picture; }
28 set { _picture = value; }
29 }
30
31 public override String ToString(){
32 return (EmployeeID + " " + base.ToString());
33 }
34 } // end EmployeeVO class
35 } // end namespace

Referring to Example 20.11 — the EmployeeVO class is quite simple because most of the heavy lifting is done

by the PersonVO class. This class adds two additional properties: EmployeeID, which is of type System.Guid (Glo-

bally Unique Identifier), and Picture, which is of type System.Drawing.Image. Note that both the PersonVO and

EmployeeVO classes are tagged with the Serializable attribute.

To compile these classes with the MSBuild project file, make sure both classes are located in the project’s vo

directory, change to the server directory, and run the project file with the following command:

msbuild /target:compilevo
If you get compile errors, edit the files accordingly and run the build again. Eventually, your output should look

similar to that shown in Figure 20-33.

At this point you should check to ensure the build did in fact write the VOLib.dll to the lib directory. If not, check

the validity of the EmployeeTrainingServer.proj file and make sure your project folder names match those of the

properties defined within the project file. Then try and try again until you get this build target to work correctly.

Now, if you edit either the PersonVO or EmployeeVO source files and run the compilevo target again without

running the clean target, you’ll get the type conflict warnings shown in Figure 20-34.

You can safely ignore these warnings. What’s happening here is that when the <Csc> task executes it references

the VOLib.dll, which now resides in the lib directory. This dll contains the definition for the PersonVO. The warning

message states that the compiler is using the definition found in PersonVO.cs instead, which is perfectly fine.

Now that the EmployeeVO is coded up, you can move on to the EmployeeDAO. You might want to write a short

application to test the EmployeeVO but I’m skipping that step in this chapter. In a production environment, you’d use

a testing framework like NUnit to write unit tests that thoroughly exercise the classes you create in your application.

(Unfortunately, I don’t have the space to cover the use of NUnit in this book but I recommend you explore its capabil-

ities on your own when you have a chance.)

Example 20-12 gives the code for the BaseDAO class.
20.12 BaseDAO.cs

1 using System;
2 using System.Data;
3 using System.Configuration;
4
5 using Microsoft.Practices.EnterpriseLibrary.Data;
6
7 namespace EmployeeTraining.DAO {

Figure 20-33: Results of Running the CompileVO Target using the MSBuild Utility
52
2 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications The Server Application
8 public class BaseDAO {
9 private Database _database;
10
11 protected Database DataBase {
12 get {
13 if(_database == null){
14 try {
15 _database = DatabaseFactory.CreateDatabase();
16 }catch(ConfigurationException ce){
17 Console.WriteLine(ce);
18 }
19 }
20 return _database;
21 }
22 }
23
24 protected void CloseReader(IDataReader reader){
25 if(reader != null){
26 try{
27 reader.Close();
28 }catch(Exception e){
29 Console.WriteLine(e);
30 }
31 }
32 }
33
34 } // end BaseDAO class definition
35 } // end namespace

Referring to Example 20.12 — the purpose of this class is to make available to its subclasses a Database object

via its DataBase property. This class implements the Singleton software design pattern. (See Chapter 24.) The Data-

Base property definition begins on line 11. If the _database field is null, a call is made to the DatabaseFactory.Create-

Database() method to create the Database object. If the _database field is not null, the property simply returns the

existing reference. This class also provides a CloseReader() method used by its subclasses to close the IDatabaseR-

eader object.

Example 20-13 lists the 1st iteration implementation of the EmployeeDAO class. For this iteration I focused on

the insertion and retrieval of EmployeeVO object data into the database. In the EmployeeDAO class you’ll find all

the SQL code required to create, read, update, and delete (CRUD) employee database records, although in this initial

version of the code I’ve only implemented the create (i.e., insert) and read (i.e., get) operations.
20.13 EmployeeDAO.cs (1st Iteration)

1 using System;
2 using System.IO;
3 using System.Data;
4 using System.Data.Common;
5 using System.Data.Sql;

Figure 20-34: Build Warnings From Conflicting Type Declarations
C#
For Artists © 2008 Rick Miller — All Rights Reserved 523

The Server Application Chapter 20: Database Access & Multitiered Applications
6 using System.Data.SqlTypes;
7 using System.Data.SqlClient;
8 using System.Collections.Generic;
9 using System.Drawing;
10 using System.Drawing.Imaging;
11 using EmployeeTraining.VO;
12
13 using Microsoft.Practices.EnterpriseLibrary.Common;
14 using Microsoft.Practices.EnterpriseLibrary.Data;
15 using Microsoft.Practices.EnterpriseLibrary.Data.Sql;
16
17 namespace EmployeeTraining.DAO {
18 public class EmployeeDAO : BaseDAO {
19
20 private bool debug = true;
21
22 //List of column identifiers used in perpared statements
23 private const String EMPLOYEE_ID = "@employee_id";
24 private const String FIRST_NAME = "@first_name";
25 private const String MIDDLE_NAME = "@middle_name";
26 private const String LAST_NAME = "@last_name";
27 private const String BIRTHDAY = "@birthday";
28 private const String GENDER = "@gender";
29 private const String PICTURE = "@picture";
30
31 private const String SELECT_ALL_COLUMNS =
32 "SELECT employeeid, firstname, middlename, lastname, birthday, gender, picture ";
33
34 private const String SELECT_ALL_EMPLOYEES =
35 SELECT_ALL_COLUMNS +
36 "FROM tbl_employee ";
37
38 private const String SELECT_EMPLOYEE_BY_EMPLOYEE_ID =
39 SELECT_ALL_EMPLOYEES +
40 "WHERE employeeid = " + EMPLOYEE_ID;
41
42
43 private const String INSERT_EMPLOYEE =
44 "INSERT INTO tbl_employee " +
45 "(EmployeeID, FirstName, MiddleName, LastName, Birthday, Gender, Picture) " +
46 "VALUES (" + EMPLOYEE_ID + ", " + FIRST_NAME + ", " + MIDDLE_NAME + ", " + LAST_NAME + ", " +
47 BIRTHDAY + ", " + GENDER + ", " + PICTURE + ")";
48
49
50 /************************************
51 Returns a List<EmployeeVO> object
52 **************************************/
53 public List<EmployeeVO> GetAllEmployees(){
54 DbCommand command = DataBase.GetSqlStringCommand(SELECT_ALL_EMPLOYEES);
55 return this.GetEmployeeList(command);
56 }
57
58 /***
59 Returns an EmployeeVO object given a valid employeeid
60 ***/
61 public EmployeeVO GetEmployee(Guid employeeid){
62 DbCommand command = DataBase.GetSqlStringCommand(SELECT_EMPLOYEE_BY_EMPLOYEE_ID);
63 DataBase.AddInParameter(command, EMPLOYEE_ID, DbType.Guid, employeeid);
64 return this.GetEmployee(command);
65 }
66
67 /***
68 Inserts an employee given a fully-populated EmployeeVO object
69 ***/
70 public EmployeeVO InsertEmployee(EmployeeVO employee){
71 try{
72 employee.EmployeeID = Guid.NewGuid();
73 DbCommand command = DataBase.GetSqlStringCommand(INSERT_EMPLOYEE);
74 DataBase.AddInParameter(command, EMPLOYEE_ID, DbType.Guid, employee.EmployeeID);
75 DataBase.AddInParameter(command, FIRST_NAME, DbType.String, employee.FirstName);
76 DataBase.AddInParameter(command, MIDDLE_NAME, DbType.String, employee.MiddleName);
77 DataBase.AddInParameter(command, LAST_NAME, DbType.String, employee.LastName);
78 DataBase.AddInParameter(command, BIRTHDAY, DbType.DateTime, employee.BirthDay);
79 switch(employee.Gender){
80 case EmployeeVO.Sex.MALE: DataBase.AddInParameter(command, GENDER, DbType.String, "M");
81 break;
82 case EmployeeVO.Sex.FEMALE: DataBase.AddInParameter(command, GENDER, DbType.String, "F");
83 break;
84 }
85
86 if(employee.Picture != null){
524 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications The Server Application
87 if(debug){ Console.WriteLine("Inserting picture!"); }
88 MemoryStream ms = new MemoryStream();
89 employee.Picture.Save(ms, ImageFormat.Tiff);
90 byte[] byte_array = ms.ToArray();
91 if(debug){
92 for(int i=0; i<byte_array.Length; i++){
93 Console.Write(byte_array[i]);
94 }
95 } // end if debug
96 DataBase.AddInParameter(command, PICTURE, DbType.Binary, byte_array);
97 if(debug){ Console.WriteLine("Picture inserted, I think!"); }
98 }
99
100 DataBase.ExecuteNonQuery(command);
101 }catch(Exception e){
102 Console.WriteLine(e);
103 }
104 return this.GetEmployee(employee.EmployeeID);
105 }
106
107 /**
108 Private utility method that executes the given DbCommand
109 and returns a fully-populated EmployeeVO object
110 ***/
111 private EmployeeVO GetEmployee(DbCommand command){
112 EmployeeVO empVO = null;
113 IDataReader reader = null;
114 try {
115 reader = DataBase.ExecuteReader(command);
116 if(reader.Read()){
117 empVO = this.FillInEmployeeVO(reader);
118 }
119 }catch(Exception e){
120 Console.WriteLine(e);
121 }finally {
122 base.CloseReader(reader);
123 }
124 return empVO;
125 }
126
127 /**
128 GetEmployeeList() - returns a List<EmployeeVO> object
129 **/
130 private List<EmployeeVO> GetEmployeeList(DbCommand command){
131 IDataReader reader = null;
132 List<EmployeeVO> employee_list = new List<EmployeeVO>();
133 try{
134 reader = DataBase.ExecuteReader(command);
135 while(reader.Read()){
136 EmployeeVO empVO = this.FillInEmployeeVO(reader);
137 employee_list.Add(empVO);
138 }
139 }catch(Exception e){
140 Console.WriteLine(e);
141 }finally{
142 base.CloseReader(reader);
143 }
144 return employee_list;
145 }
146
147 /***
148 Private utility method that populates an EmployeeVO object from
149 data read from the IDataReader object
150 **/
151 private EmployeeVO FillInEmployeeVO(IDataReader reader){
152 EmployeeVO empVO = new EmployeeVO();
153 empVO.EmployeeID = reader.GetGuid(0);
154 empVO.FirstName = reader.GetString(1);
155 empVO.MiddleName = reader.GetString(2);
156 empVO.LastName = reader.GetString(3);
157 empVO.BirthDay = reader.GetDateTime(4);
158 String gender = reader.GetString(5);
159 switch(gender){
160 case "M" : empVO.Gender = EmployeeVO.Sex.MALE;
161 break;
162 case "F" : empVO.Gender = EmployeeVO.Sex.FEMALE;
163 break;
164 }
165 if(!reader.IsDBNull(6)){
166 int buffersize = 5000;
167 int startindex = 0;
C# For Artists © 2008 Rick Miller — All Rights Reserved 525

The Server Application Chapter 20: Database Access & Multitiered Applications
168 Byte[] byte_array = new Byte[buffersize];
169 MemoryStream ms = new MemoryStream();
170 long retval = reader.GetBytes(6, startindex, byte_array, 0, buffersize);
171 while(retval > 0){
172 ms.Write(byte_array, 0, byte_array.Length);
173 startindex += buffersize;
174 retval = reader.GetBytes(6, startindex, byte_array, 0, buffersize);
175 }
176 empVO.Picture = new Bitmap(ms);
177 }
178 return empVO;
179 }
180 } // end EmployeeDAO definition
181 } // end namespace

Referring to Example 20.13 — lines 23 through 29 define SQL command parameter string constants representing

each column in the tbl_employee table. Note that these are not the same as verbatim strings. The difference lies in the

placement of the @ symbol. This is a verbatim string:

@”this is a verbatim string”
This is an SQL command parameter string:

“@this is an SQL parameter string”
The SQL command parameter string constants are then used to create SQL query string constants, which are

used later to create prepared statements. Let’s see how this is done by tracing the execution of the InsertEmployee()

method, which begins on line 70.

The InsertEmployee() method takes a populated EmployeeVO object as an argument. Since this is a new

employee, the incoming EmployeeVO object lacks a valid EmployeeID, so the first thing that must be done is to

make a call to the Guid.NewGuid() method to generate a valid globally unique identifier. This Guid value will

become the employee’s primary key.

On line 73, the BaseDAO’s DataBase property (which is a Database object) is used to create a DbCommand

object with a call to its GetSqlStringCommand() method. The argument to this method call is the

INSERT_EMPLOYEE SQL string constant, which is defined on line 43. Refer now to line 43 to see how the SQL

command parameters are used to formulate the INSERT_EMPLOYEE query string. Note the correspondence

between each SQL command parameter included in the INSERT_EMPLOYEE string and lines 74 through 84 where

the DataBase.AddInParameter() method is called to set the value of each SQL command parameter.

The switch statement beginning on line 79 checks the value of the incoming EmployeVO.Gender property and

sets the GENDER command parameter to the corresponding valid one-character value required by the

tbl_employee.Gender column.

The employee picture insertion code begins on line 86. If the incoming EmployeeVO.Picture property is null, I

skip the insertion. This is valid because the tbl_employee.Picture column is allowed to contain null values. If the

EmployeeVO.Picture property is not null then it’s converted into a byte array (byte[]). To do this I save the Picture

data to a MemoryStream and then call the MemoryStream’s ToArray() method, which returns the required byte array.

I’ve also included some debugging code that allows me to trace the insertion of the picture data if the class constant

debug is true. (lines 87, 91, and 97)

When all the command parameters have been set, I execute the DbCommand by calling the DataBase.ExecuteN-

onQuery() method.

SQL Command Parameters And Prepared Statements: Generalized Steps

So, in a nutshell, here are the generalized steps to using SQL command parameters and prepared statements:

Step 1: Define the required SQL command parameters. There is usually a one-to-one correspon-

dence between a command parameter and a column in the targeted database table.

Step 2: Create an SQL command string using the previously defined command parameters.

Step 3: Create a DbCommand object by calling the Database.GetSqlCommandString() method

passing in as an argument the SQL command string.

Step 4: Set each command parameter value with a call to Database.AddInParameter() method.

Step 5: Execute the DbCommand with a call to ExecuteNonQuery() (or ExecuteReader() or Exe-

cuteScalar() methods.)
526 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications The Server Application
DbType Enumeration Values And .NET Type Mapping

Refer for a moment to line 74 of the EmployeeDAO class. The Database.AddInParameter() method takes four

arguments. These include a DbCommand reference, an SQL command parameter string, a DbType, and the value you

want to use to set the SQL command parameter. The DbType enumeration is located in the System.Data namespace

and defines a list of database types available to a .NET data provider. The type of the value you want to set the SQL

command parameter to must correspond to the appropriate DbType, which must correspond to the MS SQL Server

database type supported by the targeted database table column. Table 20-4 offers a mapping table between these three

types and the corresponding IDataReader methods.

.NET Type DbType SQL Server Type IDataReader Methods

String AnsiString varchar GetString()

byte

byte[]

Binary varbinary GetByte(), GetBytes()

byte Byte binary, varbinary GetByte()

bool Boolean bit GetBoolean()

decimal Currency money

smallmoney

GetDecimal()

DateTime Date datetime

smalldatetime

GetDateTime()

DateTime DateTime datetime

smalldatetime

GetDateTime()

decimal Decimal decimal GetDecimal()

double Double float GetDouble()

Guid Guid uniqueidentifier GetGuid()

short Int16 smallint GetInt16()

int Int32 int GetInt32()

long Int64 bigint GetInt64()

Object Object varbinary GetValue()

sbyte SByte binary GetBinary()

float Single float

real

GetFloat()

String

char[]

String char, varchar, text

nchar, nvarchar

GetChar(), GetChars()

GetString()

DateTime Time datetime GetDateTime()

ushort UInt16

uint UInt32

ulong UInt64

Table 20-4: .NET to DbType to SQL Server Type to IDataReader Method Mapping
C# For Artists © 2008 Rick Miller — All Rights Reserved 527

The Server Application Chapter 20: Database Access & Multitiered Applications
Referring to Table 20-4 — note that there is not a one-to-one correspondence between all .NET, DbType, and

SQL Server types.

Application Configuration File

Example 20-14 gives the configuration file for the first iteration of the Employee Training application. You can

create this file with the Enterprise Library Configuration tool, which was covered earlier in the chapter.
20.14 EmployeeTrainingServer.exe.config (1st iteration version)

1 <configuration>
2 <configSections>
3 <section name="dataConfiguration"
4 type="Microsoft.Practices.EnterpriseLibrary.Data.Configuration.DatabaseSettings,
5 Microsoft.Practices.EnterpriseLibrary.Data, Version=3.1.0.0, Culture=neutral,
6 PublicKeyToken=b03f5f7f11d50a3a" />
7 </configSections>
8 <dataConfiguration defaultDatabase="Connection String" />
9 <connectionStrings>
10 <add name="Connection String" connectionString="Data Source=(local)\SQLEXPRESS;
11 Initial Catalog=EmployeeTraining;
12 Integrated Security=True"
13 providerName="System.Data.SqlClient" />
14 </connectionStrings>
15 </configuration>

Referring to Example 20-14 — this version provides the necessary database connection information required for

the DatabaseFactory class. Later, I will add to this file a remoting section to configure the remote object, but for now

it’s fine the way it stands.

Creating Test Application

All that’s left now is to write a brief test application that can be used to create and retrieve employee objects and

test the DAO layer. Example 20-15 gives the code for a GUI application that provides a PictureBox and several but-

tons. The primary goal of this test application is to allow the selection and insertion of an employee picture. I do not

particularly care about creating different employees per se, so there are no text boxes with which to enter employee

data like an employee’s first name, last name, etc. I instead create the same employee, Rick Miller.
20.15 EmployeeTrainingServer.cs (Throw away test code)

1 using System;
2 using System.Windows.Forms;
3 using System.Drawing;
4 using System.Drawing.Imaging;
5 using System.Collections.Generic;
6 using EmployeeTraining.DAO;
7 using EmployeeTraining.VO;
8
9 public class EmployeeTrainingServer : Form {
10
11 private PictureBox _picturebox;
12 private TableLayoutPanel _tablepanel;
13 private FlowLayoutPanel _flowpanel;
14 private Button _button1;
15 private Button _button2;
16 private Button _button3;
17 private Button _button4;
18 private Button _button5;

VarNumeric

AnsiStringFixedLength

XMLDocument Xml xml

DateTime DateTime2

DateTime DateTimeOffset

.NET Type DbType SQL Server Type IDataReader Methods

Table 20-4: .NET to DbType to SQL Server Type to IDataReader Method Mapping
528 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications The Server Application
19 private EmployeeVO _emp_vo;
20 private List<EmployeeVO> _list;
21 private int _next_employee = 0;
22 private OpenFileDialog _dialog;
23
24 public EmployeeTrainingServer(){
25 this.InitializeComponent();
26 Application.Run(this);
27 }
28
29 private void InitializeComponent(){
30 this.SuspendLayout();
31 _tablepanel = new TableLayoutPanel();
32 _flowpanel = new FlowLayoutPanel();
33 _tablepanel.SuspendLayout();
34 _tablepanel.RowCount = 1;
35 _tablepanel.ColumnCount = 2;
36 _tablepanel.Anchor = AnchorStyles.Top | AnchorStyles.Bottom | AnchorStyles.Left | AnchorStyles.Right;
37 _tablepanel.Dock = DockStyle.Left;
38 _tablepanel.Width = 600;
39
40 _picturebox = new PictureBox();
41 _picturebox.Anchor = AnchorStyles.Top | AnchorStyles.Bottom | AnchorStyles.Left | AnchorStyles.Right;
42
43 _button1 = new Button();
44 _button1.Text = "Create";
45 _button1.Click += this.CreateEmployee;
46 _button1.Enabled = false;
47
48 _button2 = new Button();
49 _button2.Text = "Load";
50 _button2.Click += this.LoadEmployee;
51 _button2.Enabled = false;
52
53 _button3 = new Button();
54 _button3.Text = "Find Picture";
55 _button3.Click += this.ShowOpenFileDialog;
56
57 _button4 = new Button();
58 _button4.Text = "Get All Employees";
59 _button4.AutoSize = true;
60 _button4.Click += this.GetAllEmployees;
61
62 _button5 = new Button();
63 _button5.Text = "Next";
64 _button5.Click += this.NextEmployee;
65 _button5.Enabled = false;
66
67 _tablepanel.Controls.Add(_picturebox);
68 _flowpanel.Controls.Add(_button1);
69 _flowpanel.Controls.Add(_button2);
70 _flowpanel.Controls.Add(_button3);
71 _flowpanel.Controls.Add(_button4);
72 _flowpanel.Controls.Add(_button5);
73 _tablepanel.Controls.Add(_flowpanel);
74
75 this.Controls.Add(_tablepanel);
76 this.Width = _tablepanel.Width;
77 this.Height = 300;
78 _tablepanel.ResumeLayout();
79 this.ResumeLayout();
80 _dialog = new OpenFileDialog();
81 _dialog.FileOk += this.LoadPicture;
82 }
83
84 public void ShowOpenFileDialog(Object sender, EventArgs e){
85 _dialog.ShowDialog();
86 }
87
88 public void LoadPicture(Object sender, EventArgs e){
89 String filename = _dialog.FileName;
90 _picturebox.Image = new Bitmap(filename);
91 this.AdjustPicturebox();
92 _button1.Enabled = true;
93 }
94
95 public void CreateEmployee(Object sender, EventArgs e){
96 EmployeeVO vo = new EmployeeVO();
97 vo.FirstName = "Rick";
98 vo.MiddleName = "Warren";
99 vo.LastName = "Miller";
C# For Artists © 2008 Rick Miller — All Rights Reserved 529

The Server Application Chapter 20: Database Access & Multitiered Applications
100 vo.Gender = EmployeeVO.Sex.MALE;
101 vo.BirthDay = new DateTime(1961, 2, 4);
102 vo.Picture = _picturebox.Image;
103
104 EmployeeDAO dao = new EmployeeDAO();
105 _emp_vo = dao.InsertEmployee(vo);
106 _picturebox.Image = null;
107 _button2.Enabled = true;
108 _button1.Enabled = false;
109 }
110
111 public void LoadEmployee(Object sender, EventArgs e){
112 EmployeeDAO dao = new EmployeeDAO();
113 _emp_vo.Picture = null;
114 _emp_vo = dao.GetEmployee(_emp_vo.EmployeeID);
115 _picturebox.Image = _emp_vo.Picture;
116 }
117
118 public void GetAllEmployees(Object sender, EventArgs e){
119 EmployeeDAO dao = new EmployeeDAO();
120 _list = dao.GetAllEmployees();
121 foreach(EmployeeVO emp in _list){
122 Console.WriteLine(emp);
123 }
124 _button5.Enabled = true;
125 }
126
127 public void NextEmployee(Object sender, EventArgs e){
128 Console.WriteLine(_next_employee);
129 if(_next_employee >= _list.Count){
130 _next_employee = 0;
131 }
132 Console.WriteLine(_next_employee);
133 Console.WriteLine(_list[_next_employee]);
134 _picturebox.Image = _list[_next_employee++].Picture;
135 if(_picturebox.Image != null){
136 this.AdjustPicturebox();
137 }
138 }
139
140 private void AdjustPicturebox(){
141 this.SuspendLayout();
142 _tablepanel.SuspendLayout();
143 _picturebox.Width = _picturebox.Image.Width;
144 _picturebox.Height = _picturebox.Image.Height;
145 _tablepanel.Width = _picturebox.Image.Width + 300;
146 this.Width = _tablepanel.Width;
147 _tablepanel.ResumeLayout();
148 this.ResumeLayout();
149 }
150
151 public static void Main(){
152 new EmployeeTrainingServer();
153 }
154 }

Referring to Example 20-15 — this application displays a form that contains a TableLayoutPanel. The TableLay-

outPanel contains a PictureBox and five buttons. To run this application, make sure you’re in the directory that con-

tains the EmployeeTrainingServer.proj file and enter the following MSBuild command on the command line:

msbuild /target:run
The startup window will look similar to Figure 20-35.

Referring to Figure 20-35 — you can trace the execution of the code as I discuss the use of this application. Ini-

tially, two buttons are enabled: Find Picture, and GetAllEmployees. Clicking the GetAllEmployees button calls the

Figure 20-35: Initial State of the EmployeeTrainingServer Application Window
530
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications The Server Application
GetAllEmployees() event handler method, which creates an EmployeeDAO object and calls its GetAllEmployees()

method. The foreach loop on line 121 then loops through the returned list of EmployeeVO objects and prints their

information to the console. Clicking the Get All Employees button also enables the Next button, which is used to step

through the EmployeeVO list (_list) by calling the NextEmployee() event handler method and to display employee

pictures in the picture box. Note that with an initial load of test data there will be no employee pictures, so the test

application code must properly handle the possibility of the EmployeeVO.Picture property being null.

Figure 20-36 shows an employee picture loaded, and the Create button enabled. Referring to Figure 20-36 — to

create a new employee and insert the picture into the database, click the Create button. To test the retrieval of an

employee’s data and picture click the Get All Employees button and then click the Next button until the picture

appears in the PictureBox. Figure 20-37 shows several more employee pictures after they’ve been inserted and

retrieved from the database.

Now, the employee ID photos I’ve been using are fairly small. It would be a good idea to try to load and retrieve

a large image into the database. Figure 20-38 shows the results of that test.

This completes the development and testing phase of the first iteration. When you feel confident that the Empoy-

eeDAO’s insert and retrieval method’s work fine you can move to the second iteration.

Second Iteration

A good set of objectives for the second iteration of the Employee Training application would be to finish the

EmployeeDAO class by adding update and delete methods. You can also create a business object — a good name for

which might be EmployeeAdminBO, and while you’re at it create the TrainingDAO and TrainingVO classes. You

Figure 20-36: Employee Picture Loaded and Create Button Enabled

Figure 20-37: Testing with More Employee Pictures
C# For Artist
s © 2008 Rick Miller — All Rights Reserved 531

The Server Application Chapter 20: Database Access & Multitiered Applications
might also want to add a few tweaks to the test application. Table 20-5 lists the design considerations and design deci-

sions for this iteration.

Figure 20-39 shows the UML class diagram for the TrainingDAO and TrainingVO classes.

Referring to Figure 20-39 — since the TrainingDAO class depends on the TrainingVO class, the TrainingVO

class must be coded up first.

Figure 20-40 shows the UML diagram for the EmployeeAdminBO class. Referring to Figure 20-40 — the

EmployeeAdminBO class has dependencies on the EmployeeVO, EmployeeDAO, TrainingVO, and TrainingDAO

classes. It would be a good idea to finish coding up these four classes before starting on the EmployeeAdminBO

class.

Example 20.16 gives the code for the TrainingVO class.
20.16 TrainingVO.cs

1 using System;
2
3 namespace EmployeeTraining.VO {

Check-Off Design Consideration Design Decision

DAO layer Finish coding the EmployeeDAO. Add update and delete methods. Create

the TrainingDAO class.

Value objects Create the TrainingVO class.

BO layer Create the EmployeeAdminBO class.

Test application Add the ability to add, update, and delete employee and employee training

data. Modify the code to use the services of the EmployeeAdminBO class.

Project file Modify the EmployeeTrainingServer.proj file to build the contents of the

bo directory.

Table 20-5: Employee Training Server Application — Second Iteration Design Considerations And Decisions

Figure 20-38: Testing the Insertion and Retrieval of a Large Image
532
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications The Server Application
4 [Serializable]
5 public class TrainingVO {
6
7 // Status enumeration
8 public enum TrainingStatus { Passed, Failed };
9 // Private fields
10 private int _trainingID;
11 private Guid _employeeID;
12 private String _title;
13 private String _description;
14 private DateTime _startdate;
15 private DateTime _enddate;
16 private TrainingStatus _status;
17
18 //Constructors
19 public TrainingVO(){}
20
21 public TrainingVO(int trainingID, Guid employeeID, String title, String description,
22 DateTime startdate, DateTime enddate, TrainingStatus status){
23 TrainingID = trainingID;
24 EmployeeID = employeeID;
25 Title = title;
26 Description = description;
27 StartDate = startdate;
28 EndDate = enddate;
29 Status = status;
30 }
31
32 //Properties
33 public int TrainingID {

Figure 20-39: TrainingDAO and TrainingVO Class Diagram

Figure 20-40: EmployeeAdminBO UML Class Diagram
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 533

The Server Application Chapter 20: Database Access & Multitiered Applications
34 get { return _trainingID; }
35 set { _trainingID = value; }
36 }
37
38 public Guid EmployeeID {
39 get { return _employeeID; }
40 set { _employeeID = value; }
41 }
42
43 public String Title {
44 get { return _title; }
45 set { _title = value; }
46 }
47
48 public String Description {
49 get { return _description; }
50 set { _description = value; }
51 }
52
53 public DateTime StartDate {
54 get { return _startdate; }
55 set {_startdate = value; }
56 }
57
58 public DateTime EndDate {
59 get { return _enddate; }
60 set { _enddate = value; }
61 }
62
63 public TrainingStatus Status {
64 get { return _status; }
65 set { _status = value; }
66 }
67
68 public override String ToString(){
69 return Title + " " + Description + " " + EndDate.ToString() + " " + StartDate.ToString() +
70 " " + Status;
71 }
72
73 } // end class definition
74 } // end namespace

Referring to Example 20.16 — The TrainingVO class if fairly straightforward. I’ve added an enumeration named

TrainingStatus on line 8 that contains two possible values: Passed and Failed. The TrainingStatus enumeration is used

as the type for the Status property, which is defined on line 63.

Example 20-17 gives the code for the TrainingDAO class.
20.17 TrainingDAO.cs

1 using System;
2 using System.IO;
3 using System.Data;
4 using System.Data.Common;
5 using System.Data.Sql;
6 using System.Data.SqlTypes;
7 using System.Data.SqlClient;
8 using System.Collections.Generic;
9 using EmployeeTraining.VO;
10
11 using Microsoft.Practices.EnterpriseLibrary.Common;
12 using Microsoft.Practices.EnterpriseLibrary.Data;
13 using Microsoft.Practices.EnterpriseLibrary.Data.Sql;
14
15 namespace EmployeeTraining.DAO {
16 public class TrainingDAO : BaseDAO {
17 //List of column identifiers used in perpared statements
18 private const String TRAINING_ID = "@training_id";
19 private const String EMPLOYEE_ID = "@employee_id";
20 private const String TITLE = "@title";
21 private const String DESCRIPTION = "@description";
22 private const String STARTDATE = "@startdate";
23 private const String ENDDATE = "@enddate";
24 private const String STATUS = "@status";
25
26 // SQL statement string constants
27 private const String SELECT_ALL_COLUMNS =
28 "SELECT trainingid, employeeid, title, description, startdate, enddate, status ";
29
30 private const String SELECT_ALL_TRAINING =
31 SELECT_ALL_COLUMNS +
32 "FROM tbl_employee_training ";
534 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications The Server Application
33
34 private const String SELECT_TRAINING_BY_TRAINING_ID =
35 SELECT_ALL_TRAINING +
36 "WHERE TrainingID = " + TRAINING_ID;
37
38 private const String SELECT_TRAINING_BY_EMPLOYEE_ID =
39 SELECT_ALL_TRAINING +
40 "WHERE employeeid = " + EMPLOYEE_ID;
41
42 private const String INSERT_TRAINING =
43 "INSERT INTO tbl_employee_training " +
44 "(EmployeeID, Title, Description, StartDate, EndDate, Status) " +
45 "VALUES (" + EMPLOYEE_ID + ", " + TITLE + ", " + DESCRIPTION + ", " +
46 STARTDATE + ", " + ENDDATE + ", " + STATUS + ") " +
47 "SELECT scope_identity()";
48
49 private const String UPDATE_TRAINING =
50 "UPDATE tbl_employee_training " +
51 "SET EmployeeID = " + EMPLOYEE_ID + ", Title = " + TITLE + ", Description = " + DESCRIPTION +
52 ", StartDate = " + STARTDATE + ", EndDate = " + ENDDATE + ", Status = " + STATUS + " " +
53 "Where TrainingID = " + TRAINING_ID;
54
55 private const String DELETE_TRAINING =
56 "DELETE FROM tbl_employee_training " +
57 "WHERE TrainingID = " + TRAINING_ID;
58
59 private const String DELETE_TRAINING_FOR_EMPLOYEEID =
60 "DELETE FROM tbl_employee_training " +
61 "WHERE EmployeeID = " + EMPLOYEE_ID;
62
63 // Public methods
64 /***
65 Gets a list of all training in the database.
66 **/
67 public List<TrainingVO> GetAllTraining(){
68 DbCommand command = DataBase.GetSqlStringCommand(SELECT_ALL_TRAINING);
69 return this.GetTrainingList(command);
70 }
71
72 /***
73 Returns a TrainingVO object given a valid trainingid
74 ***/
75 public TrainingVO GetTraining(int trainingid){
76 DbCommand command = null;
77 try{
78 command = DataBase.GetSqlStringCommand(SELECT_TRAINING_BY_TRAINING_ID);
79 DataBase.AddInParameter(command, TRAINING_ID, DbType.Int32, trainingid);
80 }catch(Exception e){
81 Console.WriteLine(e);
82 }
83 return this.GetTraining(command);
84 }
85
86 /***
87 Returns a List<TrainingVO> object given a valid employeeid
88 ***/
89 public List<TrainingVO> GetTrainingForEmployee(Guid employeeid){
90 DbCommand command = null;
91 try{
92 command = DataBase.GetSqlStringCommand(SELECT_TRAINING_BY_EMPLOYEE_ID);
93 DataBase.AddInParameter(command, EMPLOYEE_ID, DbType.Guid, employeeid);
94 }catch(Exception e){
95 Console.WriteLine(e);
96 }
97 return this.GetTrainingList(command);
98 }
99
100 /***
101 Inserts a row into tbl_employee_training given populated TrainingVO object.
102 Returns fully-populated TrainingVO object, including primary key.
103 **/
104 public TrainingVO InsertTraining(TrainingVO trainingVO){
105 int trainingID = 0;
106 try{
107 DbCommand command = DataBase.GetSqlStringCommand(INSERT_TRAINING);
108 DataBase.AddInParameter(command, EMPLOYEE_ID, DbType.Guid, trainingVO.EmployeeID);
109 DataBase.AddInParameter(command, TITLE, DbType.String, trainingVO.Title);
110 DataBase.AddInParameter(command, DESCRIPTION, DbType.String, trainingVO.Description);
111 DataBase.AddInParameter(command, STARTDATE, DbType.DateTime, trainingVO.StartDate);
112 DataBase.AddInParameter(command, ENDDATE, DbType.DateTime, trainingVO.EndDate);
113 switch(trainingVO.Status){
C# For Artists © 2008 Rick Miller — All Rights Reserved 535

The Server Application Chapter 20: Database Access & Multitiered Applications
114 case TrainingVO.TrainingStatus.Passed :
115 DataBase.AddInParameter(command, STATUS, DbType.String, "Passed");
116 break;
117 case TrainingVO.TrainingStatus.Failed :
118 DataBase.AddInParameter(command, STATUS, DbType.String, "Failed");
119 break;
120 }
121 trainingID = Convert.ToInt32(DataBase.ExecuteScalar(command));
122 }catch(Exception e){
123 Console.WriteLine(e);
124 }
125 return this.GetTraining(trainingID);
126 }
127
128 /***
129 Updates a row in the tbl_employee_training table given a populated TrainingVO object.
130 **/
131 public TrainingVO UpdateTraining(TrainingVO trainingVO){
132 try{
133 DbCommand command = DataBase.GetSqlStringCommand(UPDATE_TRAINING);
134 DataBase.AddInParameter(command, TRAINING_ID, DbType.Int32, trainingVO.TrainingID);
135 DataBase.AddInParameter(command, EMPLOYEE_ID, DbType.Guid, trainingVO.EmployeeID);
136 DataBase.AddInParameter(command, TITLE, DbType.String, trainingVO.Title);
137 DataBase.AddInParameter(command, DESCRIPTION, DbType.String, trainingVO.Description);
138 DataBase.AddInParameter(command, STARTDATE, DbType.DateTime, trainingVO.StartDate);
139 DataBase.AddInParameter(command, ENDDATE, DbType.DateTime, trainingVO.EndDate);
140 switch(trainingVO.Status){
141 case TrainingVO.TrainingStatus.Passed :
142 DataBase.AddInParameter(command, STATUS, DbType.String, "Passed");
143 break;
144 case TrainingVO.TrainingStatus.Failed :
145 DataBase.AddInParameter(command, STATUS, DbType.String, "Failed");
146 break;
147 }
148 DataBase.ExecuteNonQuery(command);
149 }catch(Exception e){
150 Console.WriteLine(e);
151 }
152 return this.GetTraining(trainingVO.TrainingID);
153 }
154
155 /***
156 Deletes a row from the tbl_employee_training table for the given a training id.
157 **/
158 public void DeleteTraining(int trainingid){
159 try {
160 DbCommand command = DataBase.GetSqlStringCommand(DELETE_TRAINING);
161 DataBase.AddInParameter(command, TRAINING_ID, DbType.Int32, trainingid);
162 DataBase.ExecuteNonQuery(command);
163 }catch(Exception e){
164 Console.WriteLine(e);
165 }
166 }
167
168 /***
169 Deletes all training associated with given employee id.
170 **/
171 public void DeleteTrainingForEmployeeID(Guid employeeid){
172 try {
173 DbCommand command = DataBase.GetSqlStringCommand(DELETE_TRAINING_FOR_EMPLOYEEID);
174 DataBase.AddInParameter(command, EMPLOYEE_ID, DbType.Guid, employeeid);
175 DataBase.ExecuteNonQuery(command);
176 }catch(Exception e){
177 Console.WriteLine(e);
178 }
179 }
180
181 /**
182 Private utility method that executes the given DbCommand
183 and returns a fully-populated TrainingVO object
184 ***/
185 private TrainingVO GetTraining(DbCommand command){
186 TrainingVO trainingVO = null;
187 IDataReader reader = null;
188 try {
189 reader = DataBase.ExecuteReader(command);
190 if(reader.Read()){
191 trainingVO = this.FillInTrainingVO(reader);
192 }
193 }catch(Exception e){
194 Console.WriteLine(e);
536 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications The Server Application
195 }finally {
196 base.CloseReader(reader);
197 }
198 return trainingVO;
199 }
200
201 /***
202 Private utility method that gets a list of TrainingVOs given a DbCommand
203 ***/
204 private List<TrainingVO> GetTrainingList(DbCommand command){
205 IDataReader reader = null;
206 List<TrainingVO> training_list = new List<TrainingVO>();
207 try{
208 reader = DataBase.ExecuteReader(command);
209 while(reader.Read()){
210 TrainingVO trainingVO = this.FillInTrainingVO(reader);
211 training_list.Add(trainingVO);
212 }
213 }catch(Exception e){
214 Console.WriteLine(e);
215 }finally{
216 base.CloseReader(reader);
217 }
218 return training_list;
219 }
220
221 /***
222 Private utility method that fills in a TrainingVO
223 ***/
224 private TrainingVO FillInTrainingVO(IDataReader reader){
225 TrainingVO trainingVO = new TrainingVO();
226 trainingVO.TrainingID = reader.GetInt32(0);
227 trainingVO.EmployeeID = reader.GetGuid(1);
228 trainingVO.Title = reader.GetString(2);
229 trainingVO.Description = reader.GetString(3);
230 trainingVO.StartDate = reader.GetDateTime(4);
231 trainingVO.EndDate = reader.GetDateTime(5);
232 String status = reader.GetString(6);
233 switch(status){
234 case "Passed" : trainingVO.Status = TrainingVO.TrainingStatus.Passed;
235 break;
236 case "Failed" : trainingVO.Status = TrainingVO.TrainingStatus.Failed;
237 break;
238 }
239 return trainingVO;
240 }
241
242 } // end class definition
243 } // end namespace

Referring to Example 20.17 — the TrainingDAO class inserts, queries, updates, and deletes data in the

tbl_employee_training table. This class functions like the EmployeeDAO so I’ll let you walk through the code on

your own.

Example 20.18 gives the completed version of the EmployeeDAO class with the delete and update methods

added.
20.18 EmployeeDAO.cs (Complete)

1 using System;
2 using System.IO;
3 using System.Data;
4 using System.Data.Common;
5 using System.Data.Sql;
6 using System.Data.SqlTypes;
7 using System.Data.SqlClient;
8 using System.Collections.Generic;
9 using System.Drawing;
10 using System.Drawing.Imaging;
11 using EmployeeTraining.VO;
12
13 using Microsoft.Practices.EnterpriseLibrary.Common;
14 using Microsoft.Practices.EnterpriseLibrary.Data;
15 using Microsoft.Practices.EnterpriseLibrary.Data.Sql;
16
17 namespace EmployeeTraining.DAO {
18 public class EmployeeDAO : BaseDAO {
19
20 private bool debug = true;
21
22 //List of column identifiers used in perpared statements
23 private const String EMPLOYEE_ID = "@employee_id";
C# For Artists © 2008 Rick Miller — All Rights Reserved 537

The Server Application Chapter 20: Database Access & Multitiered Applications
24 private const String FIRST_NAME = "@first_name";
25 private const String MIDDLE_NAME = "@middle_name";
26 private const String LAST_NAME = "@last_name";
27 private const String BIRTHDAY = "@birthday";
28 private const String GENDER = "@gender";
29 private const String PICTURE = "@picture";
30
31 private const String SELECT_ALL_COLUMNS =
32 "SELECT employeeid, firstname, middlename, lastname, birthday, gender, picture ";
33
34 private const String SELECT_ALL_EMPLOYEES =
35 SELECT_ALL_COLUMNS +
36 "FROM tbl_employee ";
37
38 private const String SELECT_EMPLOYEE_BY_EMPLOYEE_ID =
39 SELECT_ALL_EMPLOYEES +
40 "WHERE employeeid = " + EMPLOYEE_ID;
41
42
43 private const String INSERT_EMPLOYEE =
44 "INSERT INTO tbl_employee " +
45 "(EmployeeID, FirstName, MiddleName, LastName, Birthday, Gender, Picture) " +
46 "VALUES (" + EMPLOYEE_ID + ", " + FIRST_NAME + ", " + MIDDLE_NAME + ", " + LAST_NAME + ", " +
47 BIRTHDAY + ", " + GENDER + ", " + PICTURE + ")";
48
49 private const String UPDATE_EMPLOYEE =
50 "UPDATE tbl_employee " +
51 "SET FirstName = " + FIRST_NAME + ", MiddleName = " + MIDDLE_NAME + ", LastName = " + LAST_NAME +
52 ", Birthday = " + BIRTHDAY + ", Gender = " + GENDER + ", Picture = " + PICTURE + " " +
53 "WHERE EmployeeID = " + EMPLOYEE_ID;
54
55 private const String DELETE_EMPLOYEE =
56 "DELETE FROM tbl_employee " +
57 "WHERE EmployeeID = " + EMPLOYEE_ID;
58
59 /************************************
60 Returns a List<EmployeeVO> object
61 **************************************/
62 public List<EmployeeVO> GetAllEmployees(){
63 DbCommand command = DataBase.GetSqlStringCommand(SELECT_ALL_EMPLOYEES);
64 return this.GetEmployeeList(command);
65 }
66
67 /***
68 Returns an EmployeeVO object given a valid employeeid
69 ***/
70 public EmployeeVO GetEmployee(Guid employeeid){
71 DbCommand command = null;
72 try{
73 command = DataBase.GetSqlStringCommand(SELECT_EMPLOYEE_BY_EMPLOYEE_ID);
74 DataBase.AddInParameter(command, EMPLOYEE_ID, DbType.Guid, employeeid);
75 }catch(Exception e){
76 Console.WriteLine(e);
77 }
78 return this.GetEmployee(command);
79 }
80
81 /***
82 Inserts an employee given a fully-populated EmployeeVO object
83 ***/
84 public EmployeeVO InsertEmployee(EmployeeVO employee){
85 try{
86 employee.EmployeeID = Guid.NewGuid();
87 DbCommand command = DataBase.GetSqlStringCommand(INSERT_EMPLOYEE);
88 DataBase.AddInParameter(command, EMPLOYEE_ID, DbType.Guid, employee.EmployeeID);
89 DataBase.AddInParameter(command, FIRST_NAME, DbType.String, employee.FirstName);
90 DataBase.AddInParameter(command, MIDDLE_NAME, DbType.String, employee.MiddleName);
91 DataBase.AddInParameter(command, LAST_NAME, DbType.String, employee.LastName);
92 DataBase.AddInParameter(command, BIRTHDAY, DbType.DateTime, employee.BirthDay);
93 switch(employee.Gender){
94 case EmployeeVO.Sex.MALE: DataBase.AddInParameter(command, GENDER, DbType.String, "M");
95 break;
96 case EmployeeVO.Sex.FEMALE: DataBase.AddInParameter(command, GENDER, DbType.String, "F");
97 break;
98 }
99
100 if(employee.Picture != null){
101 if(debug){ Console.WriteLine("Inserting picture!"); }
102 MemoryStream ms = new MemoryStream();
103 employee.Picture.Save(ms, ImageFormat.Tiff);
104 byte[] byte_array = ms.ToArray();
538 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications The Server Application
105 if(debug){
106 for(int i=0; i<byte_array.Length; i++){
107 Console.Write(byte_array[i]);
108 }
109 } // end if debug
110 DataBase.AddInParameter(command, PICTURE, DbType.Binary, byte_array);
111 if(debug){ Console.WriteLine("Picture inserted, I think!"); }
112 }
113
114 DataBase.ExecuteNonQuery(command);
115 }catch(Exception e){
116 Console.WriteLine(e);
117 }
118 return this.GetEmployee(employee.EmployeeID);
119 }
120
121 /**
122 Updates a row in the tbl_employee table given the fully-populated
123 EmployeeVO object.
124 **/
125 public EmployeeVO UpdateEmployee(EmployeeVO employee){
126 try {
127 DbCommand command = DataBase.GetSqlStringCommand(UPDATE_EMPLOYEE);
128 DataBase.AddInParameter(command, FIRST_NAME, DbType.String, employee.FirstName);
129 DataBase.AddInParameter(command, MIDDLE_NAME, DbType.String, employee.MiddleName);
130 DataBase.AddInParameter(command, LAST_NAME, DbType.String, employee.LastName);
131 DataBase.AddInParameter(command, BIRTHDAY, DbType.DateTime, employee.BirthDay);
132 switch(employee.Gender){
133 case EmployeeVO.Sex.MALE: DataBase.AddInParameter(command, GENDER, DbType.String, "M");
134 break;
135 case EmployeeVO.Sex.FEMALE: DataBase.AddInParameter(command, GENDER, DbType.String, "F");
136 break;
137 }
138 if(employee.Picture != null){
139 if(debug){ Console.WriteLine("Inserting picture!"); }
140 MemoryStream ms = new MemoryStream();
141 employee.Picture.Save(ms, ImageFormat.Tiff);
142 byte[] byte_array = ms.ToArray();
143 if(debug){
144 for(int i=0; i<byte_array.Length; i++){
145 Console.Write(byte_array[i]);
146 }
147 } // end if debug
148 DataBase.AddInParameter(command, PICTURE, DbType.Binary, byte_array);
149 if(debug){ Console.WriteLine("Picture inserted, I think!"); }
150 }
151 DataBase.AddInParameter(command, EMPLOYEE_ID, DbType.Guid, employee.EmployeeID);
152 DataBase.ExecuteNonQuery(command);
153 }catch(Exception e){
154 Console.WriteLine(e);
155 }
156 return this.GetEmployee(employee.EmployeeID);
157 }
158
159 /**
160 Deletes a row from the tbl_employee table given an employee id.
161 ***/
162 public void DeleteEmployee(Guid employeeid){
163 try{
164 DbCommand command = DataBase.GetSqlStringCommand(DELETE_EMPLOYEE);
165 DataBase.AddInParameter(command, EMPLOYEE_ID, DbType.Guid, employeeid);
166 DataBase.ExecuteNonQuery(command);
167 }catch(Exception e){
168 Console.WriteLine(e);
169 }
170 }
171
172 /**
173 Private utility method that executes the given DbCommand
174 and returns a fully-populated EmployeeVO object
175 ***/
176 private EmployeeVO GetEmployee(DbCommand command){
177 EmployeeVO empVO = null;
178 IDataReader reader = null;
179 try {
180 reader = DataBase.ExecuteReader(command);
181 if(reader.Read()){
182 empVO = this.FillInEmployeeVO(reader);
183 }
184 }catch(Exception e){
185 Console.WriteLine(e);
C# For Artists © 2008 Rick Miller — All Rights Reserved 539

The Server Application Chapter 20: Database Access & Multitiered Applications
186 }finally {
187 base.CloseReader(reader);
188 }
189 return empVO;
190 }
191
192 /**
193 GetEmployeeList() - returns a List<EmployeeVO> object
194 **/
195 private List<EmployeeVO> GetEmployeeList(DbCommand command){
196 IDataReader reader = null;
197 List<EmployeeVO> employee_list = new List<EmployeeVO>();
198 try{
199 reader = DataBase.ExecuteReader(command);
200 while(reader.Read()){
201 EmployeeVO empVO = this.FillInEmployeeVO(reader);
202 employee_list.Add(empVO);
203 }
204 }catch(Exception e){
205 Console.WriteLine(e);
206 }finally{
207 base.CloseReader(reader);
208 }
209 return employee_list;
210 }
211
212 /**
213 Private utility method that populates an EmployeeVO object from
214 data read from the IDataReader object
215 **/
216 private EmployeeVO FillInEmployeeVO(IDataReader reader){
217 EmployeeVO empVO = new EmployeeVO();
218 empVO.EmployeeID = reader.GetGuid(0);
219 empVO.FirstName = reader.GetString(1);
220 empVO.MiddleName = reader.GetString(2);
221 empVO.LastName = reader.GetString(3);
222 empVO.BirthDay = reader.GetDateTime(4);
223 String gender = reader.GetString(5);
224 switch(gender){
225 case "M" : empVO.Gender = EmployeeVO.Sex.MALE;
226 break;
227 case "F" : empVO.Gender = EmployeeVO.Sex.FEMALE;
228 break;
229 }
230 if(!reader.IsDBNull(6)){
231 int buffersize = 5000;
232 int startindex = 0;
233 Byte[] byte_array = new Byte[buffersize];
234 MemoryStream ms = new MemoryStream();
235 long retval = reader.GetBytes(6, startindex, byte_array, 0, buffersize);
236 while(retval > 0){
237 ms.Write(byte_array, 0, byte_array.Length);
238 startindex += buffersize;
239 retval = reader.GetBytes(6, startindex, byte_array, 0, buffersize);
240 }
241 empVO.Picture = new Bitmap(ms);
242 }
243 return empVO;
244 }
245
246 } // end EmployeeDAO definition
247 } // end namespace

Example 20.19 gives the code for the EmployeeAdminBO class.
20.19 EmployeeAdminBO.cs

1 using System;
2 using System.Collections.Generic;
3 using EmployeeTraining.VO;
4 using EmployeeTraining.DAO;
5
6 namespace EmployeeTraining.BO {
7 public class EmployeeAdminBO {
8
9 #region Employee Methods
10
11 public EmployeeVO CreateEmployee(EmployeeVO employee){
12 EmployeeDAO dao = new EmployeeDAO();
13 return dao.InsertEmployee(employee);
14 }
15
16 public EmployeeVO GetEmployee(Guid employeeID){
540 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications The Server Application
17 EmployeeDAO dao = new EmployeeDAO();
18 return dao.GetEmployee(employeeID);
19 }
20
21 public List<EmployeeVO> GetAllEmployees(){
22 EmployeeDAO dao = new EmployeeDAO();
23 return dao.GetAllEmployees();
24 }
25
26 public EmployeeVO UpdateEmployee(EmployeeVO employee){
27 EmployeeDAO dao = new EmployeeDAO();
28 return dao.UpdateEmployee(employee);
29 }
30
31 public void DeleteEmployee(Guid employeeID){
32 EmployeeDAO dao = new EmployeeDAO();
33 dao.DeleteEmployee(employeeID);
34 }
35 #endregion Employee Methods
36
37 #region Training Methods
38 public TrainingVO CreateTraining(TrainingVO training){
39 TrainingDAO dao = new TrainingDAO();
40 return dao.InsertTraining(training);
41 }
42
43 public TrainingVO GetTraining(int trainingID){
44 TrainingDAO dao = new TrainingDAO();
45 return dao.GetTraining(trainingID);
46 }
47
48 public List<TrainingVO> GetTrainingForEmployee(Guid employeeID){
49 TrainingDAO dao = new TrainingDAO();
50 return dao.GetTrainingForEmployee(employeeID);
51 }
52
53 public TrainingVO UpdateTraining(TrainingVO training){
54 TrainingDAO dao = new TrainingDAO();
55 return dao.UpdateTraining(training);
56 }
57
58 public void DeleteTrainingForEmployee(EmployeeVO employee){
59 TrainingDAO dao = new TrainingDAO();
60 dao.DeleteTrainingForEmployeeID(employee.EmployeeID);
61 }
62
63 public void DeleteTraining(int trainingID){
64 TrainingDAO dao = new TrainingDAO();
65 dao.DeleteTraining(trainingID);
66 }
67 #endregion Training Methods
68
69 } // End class definition
70 } // End namespace

Referring to Example 20.19 — the EmployeeAdminBO provides methods to create, query, update, and delete

employee and employee training data. The methods that deal with employee data have been grouped in the Employee

Methods region by using the #region and #endregion directives. Regions allow you to collapse and expand

sections of code when using Visual Studio or a compatible text editor like Notepad++. Figure 20-41 shows how code

regions look when they are collapsed in Notepad++.

Referring again to Example 20.19 — in this example, all the methods are short because they are simply pass-

through methods to the appropriate DAO. For example, the CreateEmployee() method defined on line 11 creates an

instance of the EmployeeDAO class and calls its InsertEmployee() method to insert the EmployeeVO object’s data

into the tbl_employee table. In a more real world example, the EmployeeAdminBo would be used to implement and

enforce more elaborate business rules. For example, if only certain types of users were allowed to create, update, or

delete employee data, then those corresponding methods would perform the requisite checks to validate the user’s

credentials before allowing the insert, update, or delete operations via the DAO to occur.

OK, before you can compile the EmployeeAdminBO class you must make a change to the MSBuild project file.

Example 20.20 shows the updated EmployeeTrainingServer.proj file.
20.20 EmployeeTrainingServer.proj (Mod 1)

1 <Project DefaultTargets="CompileApp"
2 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
3
4
C# For Artists © 2008 Rick Miller — All Rights Reserved 541

The Server Application Chapter 20: Database Access & Multitiered Applications
5 <PropertyGroup>
6 <IncludeDebugInformation>false</IncludeDebugInformation>
7 <BuildDir>build</BuildDir>
8 <LibDir>lib</LibDir>
9 <AppDir>app</AppDir>
10 <RefDir>ref</RefDir>
11 <ConfigDir>config</ConfigDir>
12 </PropertyGroup>
13
14 <ItemGroup>
15 <DAO Include="dao***.cs" />
16 <BO Include="bo***.cs" />
17 <VO Include="vo***.cs" />
18 <APP Include="app***.cs" />
19 <LIB Include="lib***.dll" />
20 <REF Include="ref***.dll" />
21 <CONFIG Include="config***.config" />
22 <EXE Include="app***.exe" />
23 </ItemGroup>
24
25 <Target Name="MakeDirs">
26 <MakeDir Directories="$(BuildDir)" />
27 <MakeDir Directories="$(LibDir)" />
28 </Target>
29
30 <Target Name="RemoveDirs">
31 <RemoveDir Directories="$(BuildDir)" />
32 <RemoveDir Directories="$(LibDir)" />
33 </Target>
34
35 <Target Name="Clean"
36 DependsOnTargets="RemoveDirs;MakeDirs">
37 </Target>
38
39 <Target Name="CopyFiles">
40 <Copy
41 SourceFiles="@(CONFIG);@(LIB);@(REF)"
42 DestinationFolder="$(BuildDir)" />
43 </Target>
44
45 <Target Name="CompileVO"
46 Inputs="@(VO)"
47 Outputs="$(LibDir)\VOLib.dll">
48 <Csc Sources="@(VO)"
49 TargetType="library"
50 References="@(REF);@(LIB)"
51 OutputAssembly="$(LibDir)\VOLib.dll">
52 </Csc>
53 </Target>
54
55 <Target Name="CompileDAO"
56 Inputs="@(DAO)"
57 Outputs="$(LibDir)\DAOLib.dll"
58 DependsOnTargets="CompileVO">
59 <Csc Sources="@(DAO)"
60 TargetType="library"

Figure 20-41: Collapsed Code Regions in Notepad++
542 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications The Server Application
61 References="@(REF);@(LIB)"
62 WarningLevel="0"
63 OutputAssembly="$(LibDir)\DAOLib.dll">
64 </Csc>
65 </Target>
66
67 <Target Name="CompileBO"
68 Inputs="@(BO)"
69 Outputs="$(LibDir)\BOLib.dll"
70 DependsOnTargets="CompileDAO">
71 <Csc Sources="@(BO)"
72 TargetType="library"
73 References="@(REF);@(LIB)"
74 WarningLevel="0"
75 OutputAssembly="$(LibDir)\BOLib.dll">
76 </Csc>
77 </Target>
78
79 <Target Name="CompileApp"
80 Inputs="@(APP)"
81 Outputs="$(BuildDir)\$(MSBuildProjectName).exe"
82 DependsOnTargets="CompileBO">
83 <Csc Sources="@(APP)"
84 TargetType="exe"
85 References="@(REF);@(LIB)"
86 OutputAssembly="$(BuildDir)\$(MSBuildProjectName).exe">
87 </Csc>
88 </Target>
89
90 <Target Name="CompileAll">
91 <Csc Sources="@(VO);@(DAO);@(BO);@(APP)"
92 TargetType="exe"
93 References="@(REF);@(LIB)"
94 OutputAssembly="$(BuildDir)\$(MSBuildProjectName).exe">
95 </Csc>
96 </Target>
97
98 <Target Name="Run"
99 DependsOnTargets="CompileApp;CopyFiles">
100 <Exec Command="$(MSBuildProjectName).exe"
101 WorkingDirectory="$(BuildDir)" />
102 </Target>
103 </Project>

Referring to Example 20.20 — the only changes made to the file were to the DefaultTargets on line 1, which is

now set to CompileApp, and to the DependOnTargets in the CompileApp target, which is now set to CompileBO.

Testing The Code - Second Iteration

To completely test the code developed thus far requires major enhancements to the test application. Figure 20-42

shows the modified user interface of the EmployeeTrainingServer applicaton.

Referring to Figure 20-42 — the test application has been enhanced to allow the creation of employee training

records as well as the ability to update and delete both employee and training data. The code for this version of the

test application is given in Example 20.21.
20.21 EmployeeTrainingServer.cs (Test Application 2nd Iteration)

1 using System;
2 using System.Text;
3 using System.Windows.Forms;
4 using System.Drawing;
5 using System.Drawing.Imaging;
6 using System.Collections.Generic;
7 using EmployeeTraining.BO;
8 using EmployeeTraining.VO;
9
10 public class EmployeeTrainingServer : Form {
11
12 private PictureBox _picturebox;
13 private TableLayoutPanel _tablepanel;
14
15 private FlowLayoutPanel _flowpanel;
16 private Button _create_employee_botton;
17 private Button _find_picture_button;
18 private Button _get_all_employees_button;
19 private Button _next_employee_button;
20 private Button _add_training_button;
21 private Button _update_employee_button;
C# For Artists © 2008 Rick Miller — All Rights Reserved 543

The Server Application Chapter 20: Database Access & Multitiered Applications
22 private Button _update_training_button;
23 private Button _next_training_button;
24 private Button _delete_employee_button;
25 private Button _delete_training_button;
26
27 private TableLayoutPanel _employee_info_entry_panel;
28 private Label _fname_label;
29 private Label _mname_label;
30 private Label _lname_label;
31 private Label _bday_label;
32 private Label _gender_label;
33 private TextBox _fname_textbox;
34 private TextBox _mname_textbox;
35 private TextBox _lname_textbox;
36 private DateTimePicker _bday_picker;
37 private GroupBox _gender_groupbox;
38 private RadioButton _male_button;
39 private RadioButton _female_button;
40
41
42 private const int TABLE_PANEL_ROW_COUNT = 2;
43 private const int TABLE_PANEL_COLUMN_COUNT = 3;
44 private const int TABLE_PANEL_HEIGHT = 600;
45 private const int TABLE_PANEL_WIDTH = 600;
46 private const int EMPLOYEE_INFO_PANEL_HEIGHT = 200;
47 private const int EMPLOYEE_INFO_PANEL_WIDTH= 200;
48 private const int EMPLOYEE_INFO_PANEL_ROW_COUNT = 5;
49 private const int EMPLOYEE_INFO_PANEL_COLUMN_COUNT = 2;
50 private const int TRAINING_INFO_PANEL_ROW_COUNT = 5;
51 private const int TRAINING_INFO_PANEL_COLUMN_COUNT = 2;
52 private const int TRAINING_INFO_PANEL_HEIGHT = 200;
53 private const int TRAINING_INFO_PANEL_WIDTH = 200;
54 private const int TEXTBOX_WIDTH = 200;
55 private const int SMALL_PADDING = 100;
56 private const int LARGE_PADDING = 150;
57 private const int TRAINING_TEXTBOX_WIDTH = 400;
58 private const int TRAINING_TEXTBOX_HEIGHT = 200;
59 private const int PICTUREBOX_WIDTH = 150;
60 private const int PICTUREBOX_HEIGHT = 150;
61 private const int GROUPBOX_WIDTH = 200;
62 private const int GROUPBOX_HEIGHT = 125;
63
64 private TableLayoutPanel _training_info_entry_panel;
65 private Label _title_label;
66 private Label _description_label;
67 private Label _startdate_label;
68 private Label _enddate_label;
69 private Label _status_label;
70 private TextBox _title_textbox;
71 private TextBox _description_textbox;

Figure 20-42: Modified Test Application
544
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications The Server Application
72 private DateTimePicker _startdate_picker;
73 private DateTimePicker _enddate_picker;
74 private ListBox _status_listbox;
75
76 private TextBox _training_textbox;
77
78 private EmployeeVO _emp_vo;
79 private List<EmployeeVO> _employee_list;
80 private List<TrainingVO> _training_list;
81 private int _next_employee = 0;
82 private int _next_training = 0;
83 private OpenFileDialog _dialog;
84
85 public EmployeeTrainingServer(){
86 this.InitializeComponent();
87 Application.Run(this);
88 }
89
90 private void InitializeComponent(){
91 this.SuspendLayout();
92 _tablepanel = new TableLayoutPanel();
93 _flowpanel = new FlowLayoutPanel();
94 _flowpanel.Anchor = AnchorStyles.Top | AnchorStyles.Bottom | AnchorStyles.Left | AnchorStyles.Right;
95 _tablepanel.SuspendLayout();
96 _tablepanel.RowCount = TABLE_PANEL_ROW_COUNT;
97 _tablepanel.ColumnCount = TABLE_PANEL_COLUMN_COUNT;
98 _tablepanel.Anchor = AnchorStyles.Top | AnchorStyles.Bottom | AnchorStyles.Left | AnchorStyles.Right;
99 _tablepanel.Dock = DockStyle.Top;
100
101 _picturebox = new PictureBox();
102 _picturebox.Height = PICTUREBOX_WIDTH;
103 _picturebox.Width = PICTUREBOX_HEIGHT;
104 _picturebox.Anchor = AnchorStyles.Top | AnchorStyles.Bottom | AnchorStyles.Left | AnchorStyles.Right;
105
106 _create_employee_botton = new Button();
107 _create_employee_botton.Text = "Create Employee";
108 _create_employee_botton.AutoSize = true;
109 _create_employee_botton.Click += this.CreateEmployee;
110 _create_employee_botton.Enabled = false;
111
112 _find_picture_button = new Button();
113 _find_picture_button.Text = "Find Picture";
114 _find_picture_button.Click += this.ShowOpenFileDialog;
115
116 _get_all_employees_button = new Button();
117 _get_all_employees_button.Text = "Get All Employees";
118 _get_all_employees_button.AutoSize = true;
119 _get_all_employees_button.Click += this.GetAllEmployees;
120
121 _next_employee_button = new Button();
122 _next_employee_button.Text = "Next Employee";
123 _next_employee_button.AutoSize = true;
124 _next_employee_button.Click += this.NextEmployee;
125 _next_employee_button.Enabled = false;
126
127 _add_training_button = new Button();
128 _add_training_button.Text = "Add Training";
129 _add_training_button.AutoSize = true;
130 _add_training_button.Click += this.AddTraining;
131 _add_training_button.Enabled = false;
132
133 _update_employee_button = new Button();
134 _update_employee_button.Text = "Update Employee";
135 _update_employee_button.AutoSize = true;
136 _update_employee_button.Click += this.UpdateEmployee;
137 _update_employee_button.Enabled = false;
138
139 _update_training_button = new Button();
140 _update_training_button.Text = "Update Training";
141 _update_training_button.AutoSize = true;
142 _update_training_button.Click += this.UpdateTraining;
143 _update_training_button.Enabled = false;
144
145 _next_training_button = new Button();
146 _next_training_button.Text = "Next Training";
147 _next_training_button.AutoSize = true;
148 _next_training_button.Click += this.NextTraining;
149 _next_training_button.Enabled = false;
150
151 _delete_employee_button = new Button();
152 _delete_employee_button.Text = "Delete Employee";
C# For Artists © 2008 Rick Miller — All Rights Reserved 545

The Server Application Chapter 20: Database Access & Multitiered Applications
153 _delete_employee_button.AutoSize = true;
154 _delete_employee_button.Click += this.DeleteEmployee;
155 _delete_employee_button.Enabled = false;
156
157 _delete_training_button = new Button();
158 _delete_training_button.Text = "Delete Training";
159 _delete_training_button.AutoSize = true;
160 _delete_training_button.Click += this.DeleteTraining;
161 _delete_training_button.Enabled = false;
162
163 _tablepanel.Controls.Add(_picturebox);
164 _flowpanel.Controls.Add(_create_employee_botton);
165 _flowpanel.Controls.Add(_find_picture_button);
166 _flowpanel.Controls.Add(_get_all_employees_button);
167 _flowpanel.Controls.Add(_next_employee_button);
168 _flowpanel.Controls.Add(_add_training_button);
169 _flowpanel.Controls.Add(_update_employee_button);
170 _flowpanel.Controls.Add(_update_training_button);
171 _flowpanel.Controls.Add(_next_training_button);
172 _flowpanel.Controls.Add(_delete_employee_button);
173 _flowpanel.Controls.Add(_delete_training_button);
174
175 _tablepanel.Controls.Add(_flowpanel);
176
177 _employee_info_entry_panel = new TableLayoutPanel();
178 _employee_info_entry_panel.SuspendLayout();
179 _employee_info_entry_panel.Height = EMPLOYEE_INFO_PANEL_HEIGHT;
180 _employee_info_entry_panel.Width = EMPLOYEE_INFO_PANEL_WIDTH;
181 _employee_info_entry_panel.RowCount = EMPLOYEE_INFO_PANEL_ROW_COUNT;
182 _employee_info_entry_panel.ColumnCount = EMPLOYEE_INFO_PANEL_COLUMN_COUNT;
183 _fname_label = new Label();
184 _fname_label.Text = "First Name";
185 _mname_label = new Label();
186 _mname_label.Text = "Middle Name";
187 _lname_label = new Label();
188 _lname_label.Text = "Last Name";
189 _bday_label = new Label();
190 _bday_label.Text = "Birthday";
191 _gender_label = new Label();
192 _gender_label.Text = "Gender";
193 _fname_textbox = new TextBox();
194 _fname_textbox.Width = TEXTBOX_WIDTH;
195 _mname_textbox = new TextBox();
196 _mname_textbox.Width = TEXTBOX_WIDTH;
197 _lname_textbox = new TextBox();
198 _lname_textbox.Width = TEXTBOX_WIDTH;
199 _bday_picker = new DateTimePicker();
200 _gender_groupbox = new GroupBox();
201 _gender_groupbox.Text = "Gender";
202 _gender_groupbox.Anchor = AnchorStyles.Top | AnchorStyles.Bottom | AnchorStyles.Left
203 | AnchorStyles.Right;
204 _gender_groupbox.Height = GROUPBOX_HEIGHT;
205 _gender_groupbox.Width = GROUPBOX_WIDTH;
206
207 _male_button = new RadioButton();
208 _male_button.Text = "Male";
209 _male_button.Checked = true;
210 _male_button.Location = new Point(10, 20);
211 _female_button = new RadioButton();
212 _female_button.Text = "Female";
213 _female_button.Location = new Point(10, 40);
214 _gender_groupbox.Controls.Add(_male_button);
215 _gender_groupbox.Controls.Add(_female_button);
216 _gender_groupbox.Size = new Size(50, 50);
217 _employee_info_entry_panel.Controls.Add(_fname_label);
218 _employee_info_entry_panel.Controls.Add(_fname_textbox);
219 _employee_info_entry_panel.Controls.Add(_mname_label);
220 _employee_info_entry_panel.Controls.Add(_mname_textbox);
221 _employee_info_entry_panel.Controls.Add(_lname_label);
222 _employee_info_entry_panel.Controls.Add(_lname_textbox);
223 _employee_info_entry_panel.Controls.Add(_bday_label);
224 _employee_info_entry_panel.Controls.Add(_bday_picker);
225 _employee_info_entry_panel.Controls.Add(_gender_label);
226 _employee_info_entry_panel.Controls.Add(_gender_groupbox);
227 _employee_info_entry_panel.Anchor = AnchorStyles.Top | AnchorStyles.Bottom | AnchorStyles.Left
228 | AnchorStyles.Right;
229
230 _tablepanel.Controls.Add(_employee_info_entry_panel);
231
232 _training_info_entry_panel = new TableLayoutPanel();
233 _training_info_entry_panel.RowCount = TRAINING_INFO_PANEL_ROW_COUNT;
546 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications The Server Application
234 _training_info_entry_panel.ColumnCount = TRAINING_INFO_PANEL_COLUMN_COUNT;
235 _training_info_entry_panel.Height = TRAINING_INFO_PANEL_HEIGHT;
236 _training_info_entry_panel.Width = TRAINING_INFO_PANEL_WIDTH;
237 _title_label = new Label();
238 _title_label.Text = "Title";
239 _description_label = new Label();
240 _description_label.Text = "Description";
241 _startdate_label = new Label();
242 _startdate_label.Text = "Start Date";
243 _enddate_label = new Label();
244 _enddate_label.Text = "End Date";
245 _status_label = new Label();
246 _status_label.Text = "Status";
247 _title_textbox = new TextBox();
248 _title_textbox.Width = TEXTBOX_WIDTH;
249 _description_textbox = new TextBox();
250 _description_textbox.Width = TEXTBOX_WIDTH;
251 _startdate_picker = new DateTimePicker();
252 _enddate_picker = new DateTimePicker();
253 _status_listbox = new ListBox();
254 _status_listbox.Items.Add("Passed");
255 _status_listbox.Items.Add("Failed");
256 _status_listbox.SetSelected(0, true);
257
258 _training_info_entry_panel.Controls.Add(_title_label);
259 _training_info_entry_panel.Controls.Add(_title_textbox);
260 _training_info_entry_panel.Controls.Add(_description_label);
261 _training_info_entry_panel.Controls.Add(_description_textbox);
262 _training_info_entry_panel.Controls.Add(_startdate_label);
263 _training_info_entry_panel.Controls.Add(_startdate_picker);
264 _training_info_entry_panel.Controls.Add(_enddate_label);
265 _training_info_entry_panel.Controls.Add(_enddate_picker);
266 _training_info_entry_panel.Controls.Add(_status_label);
267 _training_info_entry_panel.Controls.Add(_status_listbox);
268 _training_info_entry_panel.Anchor = AnchorStyles.Top | AnchorStyles.Bottom | AnchorStyles.Left
269 | AnchorStyles.Right;
270
271 _tablepanel.Controls.Add(_training_info_entry_panel);
272
273 _training_textbox = new TextBox();
274 _training_textbox.Multiline = true;
275 _training_textbox.ScrollBars = ScrollBars.Vertical;
276 _training_textbox.Dock = DockStyle.Top;
277 _training_textbox.Width = TRAINING_TEXTBOX_WIDTH;
278 _training_textbox.Height = TRAINING_TEXTBOX_HEIGHT;
279 _tablepanel.Controls.Add(_training_textbox);
280 _tablepanel.SetRow(_training_textbox, 1);
281 _tablepanel.SetColumn(_training_textbox, 0);
282 _tablepanel.SetColumnSpan(_training_textbox, 2);
283
284 this.Controls.Add(_tablepanel);
285 _tablepanel.Width = _training_textbox.Width + _employee_info_entry_panel.Width + LARGE_PADDING;
286 _tablepanel.Height = TABLE_PANEL_HEIGHT;
287 this.Width = _tablepanel.Width;
288 this.Height = _tablepanel.Height;
289 this.Text = "Employee Training Test Application";
290 _employee_info_entry_panel.ResumeLayout();
291 _tablepanel.ResumeLayout();
292 this.ResumeLayout();
293 _dialog = new OpenFileDialog();
294 _dialog.FileOk += this.LoadPicture;
295 }
296
297 public void ShowOpenFileDialog(Object sender, EventArgs e){
298 this.ResetEntryFields();
299 this.ResetTrainingTextbox();
300 _add_training_button.Enabled = false;
301 _delete_employee_button.Enabled = false;
302 _update_employee_button.Enabled = false;
303 _next_training_button.Enabled = false;
304 _dialog.ShowDialog();
305 }
306
307 public void LoadPicture(Object sender, EventArgs e){
308 String filename = _dialog.FileName;
309 _picturebox.Image = new Bitmap(filename);
310 this.AdjustAppWindowSize();
311 _create_employee_botton.Enabled = true;
312 }
313
314 public void CreateEmployee(Object sender, EventArgs e){
C# For Artists © 2008 Rick Miller — All Rights Reserved 547

The Server Application Chapter 20: Database Access & Multitiered Applications
315 EmployeeVO vo = new EmployeeVO();
316 vo = this.PopulateEmployeeVOFromEntryFields(vo);
317
318 EmployeeAdminBO bo = new EmployeeAdminBO();
319 _emp_vo = bo.CreateEmployee(vo);
320 _picturebox.Image = null;
321 _create_employee_botton.Enabled = false;
322 this.ResetEntryFields();
323 this.DisplayEmployeeInfo();
324 this.DisplayEmployeeTraining(bo);
325 }
326
327 public void GetAllEmployees(Object sender, EventArgs e){
328 EmployeeAdminBO bo = new EmployeeAdminBO();
329 _employee_list = bo.GetAllEmployees();
330 foreach(EmployeeVO emp in _employee_list){
331 Console.WriteLine(emp);
332 }
333 _next_employee_button.Enabled = true;
334 }
335
336 public void NextEmployee(Object sender, EventArgs e){
337 _next_employee++;
338 _next_training = 0;
339 Console.WriteLine(_next_employee);
340 if(_next_employee >= _employee_list.Count){
341 _next_employee = 0;
342 }
343 Console.WriteLine(_next_employee);
344 if(_employee_list.Count > 0){
345 Console.WriteLine(_employee_list[_next_employee]);
346 _emp_vo = _employee_list[_next_employee];
347 this.DisplayEmployeeInfo();
348 this.DisplayEmployeeTraining(new EmployeeAdminBO());
349 if(_training_list.Count > 0){
350 _update_training_button.Enabled = true;
351 _next_training_button.Enabled = true;
352 }else{
353 _update_training_button.Enabled = false;
354 _next_training_button.Enabled = false;
355 _delete_training_button.Enabled = false;
356 }
357 _delete_employee_button.Enabled = true;
358 _add_training_button.Enabled = true;
359 _update_employee_button.Enabled = true;
360 }else{
361 _delete_employee_button.Enabled = false;
362 _add_training_button.Enabled = false;
363 _update_employee_button.Enabled = false;
364 }
365 this.ResetTrainingEntryFields();
366 }
367
368 public void UpdateEmployee(Object sender, EventArgs e){
369 _emp_vo = this.PopulateEmployeeVOFromEntryFields(_emp_vo);
370 EmployeeAdminBO bo = new EmployeeAdminBO();
371 _emp_vo = bo.UpdateEmployee(_emp_vo);
372 this.ResetEntryFields();
373 this.DisplayEmployeeInfo();
374 this.DisplayEmployeeTraining(bo);
375 }
376
377 public void AddTraining(Object sender, EventArgs e){
378 TrainingVO vo = new TrainingVO();
379 vo = this.PopulateTrainingVOFromEntryFields(vo);
380 EmployeeAdminBO bo = new EmployeeAdminBO();
381 bo.CreateTraining(vo);
382 this.DisplayEmployeeTraining(bo);
383 this.ResetTrainingEntryFields();
384 _next_training_button.Enabled = true;
385 }
386
387 public void NextTraining(Object Sender, EventArgs e){
388 _next_training++;
389 if(_next_training >= _training_list.Count){
390 _next_training = 0;
391 }
392 if(_training_list.Count > 0){
393 this.DisplayTrainingInfo(_training_list[_next_training]);
394 _delete_training_button.Enabled = true;
395 }
548 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications The Server Application
396 }
397
398 public void UpdateTraining(Object Sender, EventArgs e){
399 EmployeeAdminBO bo = new EmployeeAdminBO();
400 bo.UpdateTraining(this.PopulateTrainingVOFromEntryFields(_training_list[_next_training]));
401 _training_list = bo.GetTrainingForEmployee(_emp_vo.EmployeeID);
402 this.DisplayEmployeeTraining(bo);
403 }
404
405 public void DeleteEmployee(Object sender, EventArgs e){
406 EmployeeAdminBO bo = new EmployeeAdminBO();
407 bo.DeleteEmployee(_emp_vo.EmployeeID);
408 _employee_list = bo.GetAllEmployees();
409 _next_employee = 0;
410 _emp_vo = null;
411 this.ResetEntryFields();
412 if(_employee_list.Count > 0){
413 _emp_vo = _employee_list[_next_employee];
414 this.DisplayEmployeeInfo();
415 this.DisplayEmployeeTraining(new EmployeeAdminBO());
416 if(_training_list.Count > 0){
417 _update_training_button.Enabled = true;
418 _next_training_button.Enabled = true;
419 _delete_training_button.Enabled = true;
420 }else{
421 _update_training_button.Enabled = false;
422 _next_training_button.Enabled = false;
423 _delete_training_button.Enabled = false;
424 }
425 _delete_employee_button.Enabled = true;
426 }else{
427 _delete_employee_button.Enabled = false;
428 _delete_training_button.Enabled = false;
429 _next_training_button.Enabled = false;
430 _update_training_button.Enabled = false;
431 _update_employee_button.Enabled = false;
432 _next_employee_button.Enabled = false;
433 this.ResetTrainingTextbox();
434 }
435 }
436
437 public void DeleteTraining(Object sender, EventArgs e){
438 EmployeeAdminBO bo = new EmployeeAdminBO();
439 bo.DeleteTraining(_training_list[_next_training].TrainingID);
440 this.DisplayEmployeeTraining(bo);
441 if(_training_list.Count > 0){
442 _update_training_button.Enabled = true;
443 _next_training_button.Enabled = true;
444 _delete_training_button.Enabled = true;
445 }else{
446 _update_training_button.Enabled = false;
447 _next_training_button.Enabled = false;
448 _delete_training_button.Enabled = false;
449 }
450 _next_training = 0;
451 this.ResetTrainingEntryFields();
452 }
453
454 private void AdjustAppWindowSize(){
455 this.SuspendLayout();
456 _tablepanel.SuspendLayout();
457 _employee_info_entry_panel.SuspendLayout();
458 _training_info_entry_panel.SuspendLayout();
459 _picturebox.Width = _picturebox.Image.Width;
460 _picturebox.Height = _picturebox.Image.Height;
461 _employee_info_entry_panel.Height = EMPLOYEE_INFO_PANEL_HEIGHT;
462 _employee_info_entry_panel.Width = EMPLOYEE_INFO_PANEL_WIDTH;
463 _training_info_entry_panel.Height = TRAINING_INFO_PANEL_HEIGHT;
464 _training_info_entry_panel.Width = TRAINING_INFO_PANEL_WIDTH;
465 _training_textbox.Width = TRAINING_TEXTBOX_WIDTH;
466 _training_textbox.Height = TRAINING_TEXTBOX_HEIGHT;
467 _tablepanel.Width = (_picturebox.Width + _flowpanel.Width + _employee_info_entry_panel.Width
468 + SMALL_PADDING);
469 _tablepanel.Height = (_picturebox.Image.Height + _training_textbox.Height + SMALL_PADDING);
470 this.Width = _tablepanel.Width + SMALL_PADDING;
471 this.Height = _tablepanel.Height;
472 _training_info_entry_panel.ResumeLayout();
473 _employee_info_entry_panel.ResumeLayout();
474 _tablepanel.ResumeLayout();
475 this.ResumeLayout();
476 }
C# For Artists © 2008 Rick Miller — All Rights Reserved 549

The Server Application Chapter 20: Database Access & Multitiered Applications
477
478 private void DisplayEmployeeTraining(EmployeeAdminBO bo){
479 _training_list = bo.GetTrainingForEmployee(_emp_vo.EmployeeID);
480 _training_textbox.Text = String.Empty;
481 StringBuilder sb = new StringBuilder();
482 foreach(TrainingVO t in _training_list){
483 sb.Append(t.ToString() + "\r\n");
484 }
485 _training_textbox.Text = sb.ToString();
486 }
487
488 private TrainingVO.TrainingStatus StringToTrainingStatus(String s){
489 TrainingVO.TrainingStatus status = TrainingVO.TrainingStatus.Passed;
490 switch(s){
491 case "Passed" : status = TrainingVO.TrainingStatus.Passed;
492 break;
493 case "Failed" : status = TrainingVO.TrainingStatus.Failed;
494 break;
495 }
496 return status;
497 }
498
499 private void ResetEntryFields(){
500 _fname_textbox.Text = String.Empty;
501 _mname_textbox.Text = String.Empty;
502 _lname_textbox.Text = String.Empty;
503 _male_button.Checked = true;
504 _bday_picker.Value = DateTime.Now;
505 _picturebox.Image = null;
506 this.ResetTrainingEntryFields();
507 }
508
509 private void ResetTrainingEntryFields(){
510 _title_textbox.Text = String.Empty;
511 _description_textbox.Text = String.Empty;
512 _startdate_picker.Value = DateTime.Now;
513 _enddate_picker.Value = DateTime.Now;
514 _status_listbox.SetSelected(0, true);
515 }
516
517 public void ResetTrainingTextbox(){
518 _training_textbox.Text = String.Empty;
519 }
520
521 private void DisplayEmployeeInfo(){
522 _fname_textbox.Text = _emp_vo.FirstName;
523 _mname_textbox.Text = _emp_vo.MiddleName;
524 _lname_textbox.Text = _emp_vo.LastName;
525 switch(_emp_vo.Gender){
526 case PersonVO.Sex.MALE : _male_button.Checked = true;
527 break;
528 case PersonVO.Sex.FEMALE : _female_button.Checked = true;
529 break;
530 }
531 _bday_picker.Value = _emp_vo.BirthDay;
532 _picturebox.Image = _emp_vo.Picture;
533 if(_picturebox.Image != null){
534 this.AdjustAppWindowSize();
535 }
536 }
537
538 private PersonVO.Sex RadioButtonToSexEnum(){
539 PersonVO.Sex gender = PersonVO.Sex.MALE;
540 if(_male_button.Checked){
541 gender = PersonVO.Sex.MALE;
542 }else{
543 if(_female_button.Checked){
544 gender = PersonVO.Sex.FEMALE;
545 }
546 }
547 return gender;
548 }
549
550 private EmployeeVO PopulateEmployeeVOFromEntryFields(EmployeeVO vo){
551 vo.FirstName = _fname_textbox.Text;
552 vo.MiddleName = _mname_textbox.Text;
553 vo.LastName = _lname_textbox.Text;
554 vo.Gender = this.RadioButtonToSexEnum();
555 vo.BirthDay = _bday_picker.Value;
556 vo.Picture = _picturebox.Image;
557 return vo;
550 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications The Server Application
558 }
559
560 private TrainingVO PopulateTrainingVOFromEntryFields(TrainingVO vo){
561 vo.EmployeeID = _emp_vo.EmployeeID;
562 vo.Title = _title_textbox.Text;
563 vo.Description = _description_textbox.Text;
564 vo.StartDate = _startdate_picker.Value;
565 vo.EndDate = _enddate_picker.Value;
566 vo.Status = this.StringToTrainingStatus(_status_listbox.SelectedItem.ToString());
567 return vo;
568 }
569
570 private void DisplayTrainingInfo(TrainingVO vo){
571 _title_textbox.Text = vo.Title;
572 _description_textbox.Text = vo.Description;
573 _startdate_picker.Value = vo.StartDate;
574 _enddate_picker.Value = vo.EndDate;
575 switch(vo.Status){
576 case TrainingVO.TrainingStatus.Passed :
577 _status_listbox.SetSelected(0, true);
578 break;
579 case TrainingVO.TrainingStatus.Failed :
580 _status_listbox.SetSelected(1, true);
581 break;
582 }
583 }
584
585 public static void Main(){
586 new EmployeeTrainingServer();
587 }
588 }

Referring to Example 20.21 — you may be thinking, “Holy cow, you wrote 588 lines of test code?” Trust me,

that’s nothing. If you were using a test framework like NUnit to write unit tests for all the individual classes (Employ-

eeVO, TrainingVO, EmployeeDAO, TrainingDAO, and EmployeeAdminBO), you’d have written more than 588

lines of code, especially if your tests were well thought out and thorough. However, the more effort you put into good

unit testing, the easier your programming life becomes, especially when you start to make changes to your code.

The drawbacks to using a GUI application like Example 20.21 to test your code is that it is not automatic. You

must make sure to perform all the tasks manually, like creating employees, updating employees, deleting employees,

and the same with their associated training records. But it’s better than nothing.

You might also ask, “Why don’t you just wait until you build the client to test the code?” That’s not a good idea

because you really do want to test as you go. You want to move into the client development iteration knowing the

server code has been thoroughly tested.

Reality Check

Each development iteration actually comprises many subiterations. For example, the code developed during this

second iteration took me about twenty-five subiterations of coding, compiling, and testing.

Third Iteration

At this point the server-side code is nearly complete. All that’s left to do is to create the remote object and modify

the EmployeeTrainingServer code to host the remote object. This will also require a modification to the Employee-

TrainingServer.exe.config file. I will also need to modify the MSBuild project file slightly to add several special build

tasks to correctly build the remote object and the EmployeeTrainingServer application. Also, to test the remote object,

I’ll need to write a short remote client application. Table 20-6 lists the design considerations and design decisions for

the third iteration.

Check-Off Design Consideration Design Decision

Remote object interface Create an interface for the remote object. I’ll name the interface IEmploy-

eeTraining. The interface will declare all the methods required to manage

employee and training objects.

Table 20-6: Employee Training Server Application — Third Iteration Design Considerations And Decisions
C# For Artists © 2008 Rick Miller — All Rights Reserved 551

The Server Application Chapter 20: Database Access & Multitiered Applications
Figure 20-43 shows the UML class diagram for the EmployeeTrainingRemoteObject class. Referring to Figure

20-43 — the EmployeeTrainingRemoteObject class extends MarshalByRefObject and implements the IEmployee-

Training interface. It also uses the services of the EmployeeAdminBO class.

Example 20.22 gives the code for the IEmployeeTraining interface.
20.22 IEmployeeTraining.cs

1 using System;
2 using System.Collections.Generic;
3 using EmployeeTraining.VO;
4
5 public interface IEmployeeTraining {
6
7 #region Employee Methods
8
9 List<EmployeeVO> GetAllEmployees();
10 EmployeeVO GetEmployee(Guid employeeID);
11 EmployeeVO CreateEmployee(EmployeeVO employee);
12 EmployeeVO UpdateEmployee(EmployeeVO employee);
13 void DeleteEmployee(Guid employeeID);
14
15 #endregion Employee Methods
16
17 #region Training Methods
18
19 List<TrainingVO> GetTrainingForEmployee(Guid employeeID);
20 TrainingVO GetTraining(int trainingID);
21 TrainingVO CreateTraining(TrainingVO training);
22 TrainingVO UpdateTraining(TrainingVO training);
23 void DeleteTraining(int trainingID);
24 void DeleteTrainingForEmployee(Guid employeeID);
25
26 #endregion TrainingMethods
27 }

Remote object Create the remote object by extending MarshalByRefObject and imple-

menting the IEmployeeTraining interface. I’ll name the remote object Em-

ployeeTrainingRemoteObject.

EmployeeTrainingServer Remove the GUI test code and add the code required to host the remote ob-

ject.

Configuration file Add a remoting section.

Client test application Start coding the client application. Create a short test application that tests

the remote server object. This will require the addition of a client configu-

ration file. The required value object dlls will need to be copied to the client

project folder. While I’m at it I’ll create an MSBuild project file to help

build and manage the client development process.

Check-Off Design Consideration Design Decision

Table 20-6: Employee Training Server Application — Third Iteration Design Considerations And Decisions

Figure 20-43: EmployeeTrainingRemoteObject UML Class Diagram
552
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications The Server Application
Referring to Example 20.22 — the IEmployeeTraining interface simply declares the methods required to manage

employees and their training.

Example 20.23 gives the code for the EmployeeTrainingRemoteObject class.
20.23 EmployeeTrainingRemoteObject.cs

1 using System;
2 using System.Collections.Generic;
3 using EmployeeTraining.VO;
4 using EmployeeTraining.BO;
5
6 public class EmployeeTrainingRemoteObject : MarshalByRefObject, IEmployeeTraining {
7
8 #region Employee Methods
9
10 public List<EmployeeVO> GetAllEmployees(){
11 EmployeeAdminBO bo = new EmployeeAdminBO();
12 return bo.GetAllEmployees();
13 }
14
15 public EmployeeVO GetEmployee(Guid employeeID){
16 EmployeeAdminBO bo = new EmployeeAdminBO();
17 return bo.GetEmployee(employeeID);
18 }
19
20 public EmployeeVO CreateEmployee(EmployeeVO employee){
21 EmployeeAdminBO bo = new EmployeeAdminBO();
22 return bo.CreateEmployee(employee);
23 }
24
25 public EmployeeVO UpdateEmployee(EmployeeVO employee){
26 EmployeeAdminBO bo = new EmployeeAdminBO();
27 return bo.UpdateEmployee(employee);
28 }
29
30 public void DeleteEmployee(Guid employeeID){
31 EmployeeAdminBO bo = new EmployeeAdminBO();
32 bo.DeleteEmployee(employeeID);
33 }
34
35 #endregion Employee Methods
36
37 #region Training Methods
38
39 public TrainingVO CreateTraining(TrainingVO training){
40 EmployeeAdminBO bo = new EmployeeAdminBO();
41 return bo.CreateTraining(training);
42 }
43
44 public TrainingVO GetTraining(int trainingID){
45 EmployeeAdminBO bo = new EmployeeAdminBO();
46 return bo.GetTraining(trainingID);
47 }
48
49 public List<TrainingVO> GetTrainingForEmployee(Guid employeeID){
50 EmployeeAdminBO bo = new EmployeeAdminBO();
51 return bo.GetTrainingForEmployee(employeeID);
52 }
53
54 public TrainingVO UpdateTraining(TrainingVO training){
55 EmployeeAdminBO bo = new EmployeeAdminBO();
56 return bo.UpdateTraining(training);
57 }
58
59 public void DeleteTraining(int trainingID){
60 EmployeeAdminBO bo = new EmployeeAdminBO();
61 bo.DeleteTraining(trainingID);
62 }
63
64 public void DeleteTrainingForEmployee(Guid employeeID){
65 EmployeeAdminBO bo = new EmployeeAdminBO();
66 bo.DeleteTrainingForEmployee(employeeID);
67 }
68
69 #endregion Training Methods
70 }

Referring to Example 20.23 — the EmployeeTrainingRemoteObject class extends MarshalByRefObject and

implements the methods required by the IEmployeeTraining interface. In this example, the method implementations

simply pass the call on to the corresponding EmployeeAdminBO method.
C# For Artists © 2008 Rick Miller — All Rights Reserved 553

The Server Application Chapter 20: Database Access & Multitiered Applications
I did make one change to the EmployeeAdminBO class during this iteration. I modified the DeleteTraining-

ForEmployee() method to take a Guid as an argument rather than an EmployeeVO object. This will cut down on net-

work traffic at least somewhat.

Example 20.24 gives the code for the modified EmployeeTrainingServer class.
20.24 EmployeeTrainingServer.cs

1 using System;
2 using System.Runtime.Remoting;
3
4 public class EmployeeTrainingServer {
5 public static void Main(){
6 RemotingConfiguration.Configure("EmployeeTrainingServer.exe.config", false);
7 Console.WriteLine("Listening for remote requests. Press any key to exit...");
8 Console.ReadLine();
9 }
10 }

Referring to Example 20.24 — this is a whole lot shorter than the last version! This short application simply

loads the configuration file. The modified EmployeeTrainingServer.exe.config file is given in Example 20.25.
20.25 EmployeeTrainingServer.exe.config

1 <configuration>
2 <configSections>
3 <section name="dataConfiguration"
4 type="Microsoft.Practices.EnterpriseLibrary.Data.Configuration.DatabaseSettings,
5 Microsoft.Practices.EnterpriseLibrary.Data, Version=3.1.0.0, Culture=neutral,
6 PublicKeyToken=b03f5f7f11d50a3a" />
7 </configSections>
8 <dataConfiguration defaultDatabase="Connection String" />
9 <connectionStrings>
10 <add name="Connection String" connectionString="Data Source=(local)\SQLEXPRESS;
11 Initial Catalog=EmployeeTraining;Integrated Security=True"
12 providerName="System.Data.SqlClient" />
13 </connectionStrings>
14 <system.runtime.remoting>
15 <application>
16 <service>
17 <wellknown mode="Singleton"
18 type="EmployeeTrainingRemoteObject, EmployeeTrainingRemoteObject"
19 objectUri="EmployeeTraining" />
20 </service>
21 <channels>
22 <channel ref="tcp" port="8080" />
23 </channels>
24 </application>
25 </system.runtime.remoting>
26 </configuration>

Referring to Example 20.25 — the configuration file now sports a <system.runtime.remoting> section

which gives configuration details about the remote object, its hosting mode (Singleton), and its URI.

Now, to compile the IEmployeeTraining interface, the EmployeeTrainingRemoteObject class, and the Employ-

eeTrainingServer class, you’ll need to make a modification to the MSBuild project file. The modified project file is

listed in Example 20.26.
20.26 EmployeeTrainingServer.proj (Mod 2)

1 <Project DefaultTargets="CompileApp"
2 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
3
4 <PropertyGroup>
5 <IncludeDebugInformation>false</IncludeDebugInformation>
6 <BuildDir>build</BuildDir>
7 <LibDir>lib</LibDir>
8 <AppDir>app</AppDir>
9 <RefDir>ref</RefDir>
10 <ConfigDir>config</ConfigDir>
11 </PropertyGroup>
12
13 <ItemGroup>
14 <DAO Include="dao***.cs" />
15 <BO Include="bo***.cs" />
16 <VO Include="vo***.cs" />
17 <APP Include="app\EmployeeTrainingServer.cs" />
18 <REMOTEINTERFACE Include="app\IEmployeeTraining.cs" />
19 <REMOTEOBJECT Include="app\EmployeeTrainingRemoteObject.cs" />
20 <LIB Include="lib***.dll" />
21 <REF Include="ref***.dll" />
22 <CONFIG Include="config***.config" />
23 <EXE Include="app***.exe" />
24 </ItemGroup>
554 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications The Server Application
25
26 <Target Name="MakeDirs">
27 <MakeDir Directories="$(BuildDir)" />
28 <MakeDir Directories="$(LibDir)" />
29 </Target>
30
31 <Target Name="RemoveDirs">
32 <RemoveDir Directories="$(BuildDir)" />
33 <RemoveDir Directories="$(LibDir)" />
34 </Target>
35
36 <Target Name="Clean"
37 DependsOnTargets="RemoveDirs;MakeDirs">
38 </Target>
39
40 <Target Name="CopyFiles">
41 <Copy
42 SourceFiles="@(CONFIG);@(LIB);@(REF)"
43 DestinationFolder="$(BuildDir)" />
44 </Target>
45
46 <Target Name="CompileVO"
47 Inputs="@(VO)"
48 Outputs="$(LibDir)\VOLib.dll">
49 <Csc Sources="@(VO)"
50 TargetType="library"
51 References="@(REF);@(LIB)"
52 OutputAssembly="$(LibDir)\VOLib.dll">
53 </Csc>
54 </Target>
55
56 <Target Name="CompileDAO"
57 Inputs="@(DAO)"
58 Outputs="$(LibDir)\DAOLib.dll"
59 DependsOnTargets="CompileVO">
60 <Csc Sources="@(DAO)"
61 TargetType="library"
62 References="@(REF);@(LIB)"
63 WarningLevel="0"
64 OutputAssembly="$(LibDir)\DAOLib.dll">
65 </Csc>
66 </Target>
67
68 <Target Name="CompileBO"
69 Inputs="@(BO)"
70 Outputs="$(LibDir)\BOLib.dll"
71 DependsOnTargets="CompileDAO">
72 <Csc Sources="@(BO)"
73 TargetType="library"
74 References="@(REF);@(LIB)"
75 WarningLevel="0"
76 OutputAssembly="$(LibDir)\BOLib.dll">
77 </Csc>
78 </Target>
79
80 <Target Name="CompileApp"
81 Inputs="@(APP);@(REMOTEINTERFACE);@(REMOTEOBJECT)"
82 Outputs="$(BuildDir)\$(MSBuildProjectName).exe;
83 $(LibDir)\IEmployeeTraining.dll;
84 $(LibDir)\EmployeeTrainingRemoteObject.dll"
85 DependsOnTargets="CompileBO">
86 <Csc Sources="@(REMOTEINTERFACE)"
87 TargetType="library"
88 References="@(REF);@(LIB)"
89 OutputAssembly="$(LibDir)\IEmployeeTraining.dll">
90 </Csc>
91 <Csc Sources="@(REMOTEOBJECT)"
92 TargetType="library"
93 References="@(REF);@(LIB)"
94 OutputAssembly="$(LibDir)\EmployeeTrainingRemoteObject.dll">
95 </Csc>
96 <Csc Sources="@(APP)"
97 TargetType="exe"
98 References="@(REF);@(LIB)"
99 OutputAssembly="$(BuildDir)\$(MSBuildProjectName).exe">
100 </Csc>
101 </Target>
102
103 <Target Name="Run"
104 DependsOnTargets="CompileApp;CopyFiles">
105 <Exec Command="$(MSBuildProjectName).exe"
C# For Artists © 2008 Rick Miller — All Rights Reserved 555

The Client Application Chapter 20: Database Access & Multitiered Applications
106 WorkingDirectory="$(BuildDir)" />
107 </Target>
108
109 </Project>

Referring to Example 20.26 — I’ve made changes to the <ItemGroup> section and to the <CompileApp> target.

To the <ItemGroup> section I added <REMOTEINTERFACE> and <REMOTEOBJECT> items, giving specific

names for the corresponding source files. To the <CompileApp> target I added two new <Csc> tasks to compile the

IEmployeeTraining and EmployeeTrainingRemoteObject source files.

To compile the EmployeeTrainingServer application, simply execute the CompileApp target by entering the fol-

lowing command-line command:

msbuild /t:compileapp
If all goes well the EmployeeTrainingServer.exe file will be built and written to the build directory. Change to the

build directory and double-click the EmployeeTrainingServer.exe file. You should see an output similar to that shown

in Figure 20-44.

To test the server at this point requires building a suitable remoting client application. I cover this topic in the

next section.

The Client Application

In this section I will show you how to build a suitable remoting client application that provides a GUI front-end

to the EmployeeTrainingServer application. The GUI-based client application will allow users to manage employees

and their training with the help of menus, dialog boxes, and data grid components.

Third Iteration (continued)

The best place to start the client development effort is by setting up the client project folders, building an

MSbuild project file, creating a client configuration file, and writing a small client application to test connectivity to

the EmployeeTrainingRemoteObject. Table 20-7 lists the design considerations and design decisions for the continu-

ing third iteration.

Figure 20-45 shows the client project directory structure.

Check-Off Design Consideration Design Decision

Project directory structure Create the client application project folders. In the client directory cre-

ate the app, build, config, and ref subdirectories.

MSBuild project file Create an MSBuild project file that will be used to compile and run the

client application.

Client configuration file Create a configuration file that contains a <system.runtime.remoting>

section. The name of the configuration file will be EmployeeTraining-

Client.exe.config

Remoting client application Start the client application by writing a short program that tests the con-

nection to the remote object.

Table 20-7: Employee Training Client Application — Third Iteration Design Considerations And Decisions (Continued)

Figure 20-44: EmployeeTrainingServer Running and Ready For Remote Connections
556
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications The Client Application
Referring to Figure 20-45 — the client application source code goes in the app folder. The configuration file

resides in the config folder, and the required dlls must be placed in the ref folder. For this iteration you will need the

IEmployeeTraining.dll and the VOLib.dll files. You will find these dlls in the server project’s lib directory. The client

executable file will be built to the build folder and any required dlls will be moved to that location as well.

Example 20.27 gives the code for the EmployeeTrainingClient.proj project file.
20.27 EmployeeTrainingClient.proj

1 <Project DefaultTargets="Run"
2 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
3
4 <PropertyGroup>
5 <IncludeDebugInformation>false</IncludeDebugInformation>
6 <BuildDir>build</BuildDir>
7 <AppDir>app</AppDir>
8 <RefDir>ref</RefDir>
9 <ConfigDir>config</ConfigDir>
10 </PropertyGroup>
11
12 <ItemGroup>
13
14 <APP Include="app\EmployeeTrainingClient.cs" />
15 <REF Include="ref***.dll" />
16 <CONFIG Include="config***.config" />
17 <EXE Include="app***.exe" />
18 </ItemGroup>
19
20 <Target Name="MakeDirs">
21 <MakeDir Directories="$(BuildDir)" />
22 </Target>
23
24 <Target Name="RemoveDirs">
25 <RemoveDir Directories="$(BuildDir)" />
26 </Target>
27
28 <Target Name="Clean"
29 DependsOnTargets="RemoveDirs;MakeDirs">
30 </Target>
31
32 <Target Name="CopyFiles">
33 <Copy
34 SourceFiles="@(CONFIG);@(REF)"
35 DestinationFolder="$(BuildDir)" />
36 </Target>
37
38 <Target Name="CompileApp"
39 Inputs="@(APP)"
40 Outputs="$(BuildDir)\$(MSBuildProjectName).exe"
41 DependsOnTargets="Clean">
42 <Csc Sources="@(APP)"
43 TargetType="exe"
44 References="@(REF)"
45 OutputAssembly="$(BuildDir)\$(MSBuildProjectName).exe">
46 </Csc>
47 </Target>
48
49 <Target Name="Run"
50 DependsOnTargets="CompileApp;CopyFiles">
51 <Exec Command="$(MSBuildProjectName).exe"

Figure 20-45: Client Project Directory Structure
C# For A
rtists © 2008 Rick Miller — All Rights Reserved 557

The Client Application Chapter 20: Database Access & Multitiered Applications
52 WorkingDirectory="$(BuildDir)" />
53 </Target>
54 </Project>

Referring to Example 20.27 — this project file contains <PropertyGroup> and <ItemGroup> sections along with

several targets. There are two primary targets: CompileApp and Run. The default project target is specified on line 1

as the Run target. The Run target depends on the CompileApp and CopyFiles targets.

Example 20.28 gives the code for the EmployeeTrainingClient.exe.config configuration file.
20.28 EmployeeTrainingClient.exe.config

1 <configuration>
2 <system.runtime.remoting>
3 <application>
4 <client>
5 <wellknown type="IEmployeeTraining, IEmployeeTraining"
6 url="tcp://localhost:8080/EmployeeTraining" />
7 </client>
8 </application>
9 </system.runtime.remoting>
10 </configuration>

Referring to Example 20.28 — the client configuration file has a <system.runtime.remoting> section, which

specifies the remote object type and its url.

Example 20.29 gives the code for the EmployeeTrainingClient application.
20.29 EmployeeTrainingClient.cs

1 using System;
2 using System.Collections.Generic;
3 using System.Runtime.Remoting;
4 using System.Runtime.Remoting.Channels;
5 using System.Runtime.Remoting.Channels.Tcp;
6 using EmployeeTraining.VO;
7
8 public class EmployeeTrainingClient {
9 public static void Main(){
10 try {
11 RemotingConfiguration.Configure("EmployeeTrainingClient.exe.config", false);
12 WellKnownClientTypeEntry[] client_types = RemotingConfiguration.GetRegisteredWellKnownClientTypes();
13 IEmployeeTraining employee_training =
14 (IEmployeeTraining)Activator.GetObject(typeof(IEmployeeTraining), client_types[0].ObjectUrl);
15 Console.WriteLine("Remote EmployeeTraining object successfully created!");
16 List<EmployeeVO> employee_list = employee_training.GetAllEmployees();
17 foreach(EmployeeVO emp in employee_list){
18 Console.WriteLine(emp.FirstName + " " + emp.MiddleName + " " + emp.LastName);
19 }
20 }catch(Exception e){
21 Console.WriteLine(e);
22 }
23 }
24 }

Referring to Example 20.29 — this first short version of the client application tests the connectivity to the remote

object. Once it obtains the proxy to the remote object, it calls the GetAllEmployees() method and prints the returned

information to the console.

To build and run this application make sure you’ve copied the required dlls to the client’s ref folder and have

started the server. Run the msbuild project file’s Run target with the following command-line command:

msbuild /t:run
Also, since the Run target is the default target, you could also simply enter the following command:

msbuild
Figure 20-46 shows the results of running the first version of the client application.

Fourth Iteration

It’s time now in this development iteration to flesh out the final version of the Employee Training client applica-

tion. As you proceed with development you may find that you’ll need to make some changes to the server application

in order to accommodate some unforeseen design problems.

A good place to start this development cycle is to sketch out a framework for the client GUI application, imple-

ment a piece of it, and continue with testing the server application, as the minimal amount of testing done in the pre-
558 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications The Client Application
vious iteration was wholly inadequate. Table 20-8 lists the design considerations and design decisions for the fourth

development iteration.

Referring to Table 20-8 — these two activities are quite enough to bite off for this iteration. Let’s start with a

UML diagram of the EmployeeTrainingClient application class, as is shown in Figure 20-47.

Referring to Figure 20-47 — the EmployeeTrainingClient class extends the Form class. (System.Win-

dows.Form) It also contains by reference an instance of IEmployeeTraining, and it has a dependency on the Employ-

eeVO and TrainingVO classes. Thus, if changes are required to the server side components, you’ll need to ensure you

copy the required dependant dlls into the client project’s ref folder before building the client application. The depen-

dent dlls include VOLib.dll and IEmployeeTraining.dll.

Figure 20-48 shows a mock-up sketch of the GUI layout for the EmployeeTrainingClient application.

Referring to Figure 20-48 — the GUI contains a menu with several menu items. Here I’ve only shown two menu

items, but the final application may contain more. DataGridView components are used to display employee and train-

ing information. A PictureBox component contains the employee’s picture. The components are arranged in a Table-

Check-Off Design Consideration Design Decision

Client application Sketch out a mock-up of the client application GUI and start its imple-

mentation. The client application will need to use the EmployeeTraining

remote object, so you’ll need to pass a reference to the remote object

into the client application. This you can do via the client application

constructor.

Application testing Continue testing the server side components and note any deficiencies.

Table 20-8: Employee Training Client Application — Fourth Iteration Design Considerations And Decisions

Figure 20-46: Running Client Application via the MSBuild Project’s Run Target

Figure 20-47: EmployeeTrainingClient UML Class Diagram
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 559

The Client Application Chapter 20: Database Access & Multitiered Applications
LayoutPanel containing two rows and two columns. The employee DataGridView goes into the upper left table

layout cell, and the PictureBox is placed in the upper right cell. The training DataGridView is placed in the second

row and spans two columns. Example 20.30 gives the code for the partial implementation of this application.

20.30 EmployeeTrainingClient.cs

1 using System;
2 using System.Windows.Forms;
3 using System.Drawing;
4 using System.IO;
5 using System.ComponentModel;
6 using System.Collections.Generic;
7 using System.Runtime.Remoting;
8 using System.Runtime.Remoting.Channels;
9 using System.Runtime.Remoting.Channels.Tcp;
10 using EmployeeTraining.VO;
11
12 public class EmployeeTrainingClient : Form {
13
14 // Constants
15 private const int WINDOW_HEIGHT = 500;
16 private const int WINDOW_WIDTH = 900;
17 private const String WINDOW_TITLE = "Employee Training Application";
18 private const bool DEBUG = true;
19
20 // fields
21 private IEmployeeTraining _employeeTraining = null;
22 private List<EmployeeVO> _employeeList = null;
23 private TableLayoutPanel _tablePanel = null;
24 private DataGridView _employeeGrid = null;
25 private DataGridView _trainingGrid = null;
26 private PictureBox _pictureBox = null;
27
28 public EmployeeTrainingClient(IEmployeeTraining employeeTraining){
29 _employeeTraining = employeeTraining;
30 this.InitializeComponent();
31 }
32
33 private void InitializeComponent(){
34 // setup the menus
35 MenuStrip ms = new MenuStrip();
36
37 ToolStripMenuItem fileMenu = new ToolStripMenuItem("File");
38 ToolStripMenuItem exitMenuItem = new ToolStripMenuItem("Exit", null,
39 new EventHandler(this.ExitProgramHandler));
40
41 ToolStripMenuItem createMenu = new ToolStripMenuItem("Create");
42 ToolStripMenuItem employeeMenuItem = new ToolStripMenuItem("Employee...", null,
43 new EventHandler(this.CreateEmployeeHandler));
44 ToolStripMenuItem trainingMenuItem = new ToolStripMenuItem("Training...", null,
45 new EventHandler(this.CreateTrainingHandler));
46
47 fileMenu.DropDownItems.Add(exitMenuItem);

Figure 20-48: Mock-up Sketch of the EmployeeTrainingApplication GUI
560
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications The Client Application
48 ms.Items.Add(fileMenu);
49
50 createMenu.DropDownItems.Add(employeeMenuItem);
51 createMenu.DropDownItems.Add(trainingMenuItem);
52 ms.Items.Add(createMenu);
53
54 // create the table panel
55 _tablePanel = new TableLayoutPanel();
56 _tablePanel.RowCount = 2;
57 _tablePanel.ColumnCount = 2;
58 _tablePanel.Anchor = AnchorStyles.Top | AnchorStyles.Bottom | AnchorStyles.Left | AnchorStyles.Right;
59 _tablePanel.Dock = DockStyle.Top;
60 _tablePanel.Height = 400;
61
62 // create and initialize the data grids
63 _employeeGrid = new DataGridView();
64 _employeeGrid.SelectionMode = DataGridViewSelectionMode.FullRowSelect;
65 _employeeGrid.Height = 200;
66 _employeeGrid.Width = 700;
67 _employeeList = _employeeTraining.GetAllEmployees();
68 _employeeGrid.DataSource = _employeeList;
69 _employeeGrid.Anchor = AnchorStyles.Top | AnchorStyles.Bottom | AnchorStyles.Left | AnchorStyles.Right;
70 _employeeGrid.Click += this.EmployeeGridClickedHandler;
71
72 _trainingGrid = new DataGridView();
73 _trainingGrid.SelectionMode = DataGridViewSelectionMode.FullRowSelect;
74 _trainingGrid.Anchor = AnchorStyles.Top | AnchorStyles.Bottom | AnchorStyles.Left | AnchorStyles.Right;
75
76 // create picture box
77 _pictureBox = new PictureBox();
78 _pictureBox.Anchor = AnchorStyles.Top | AnchorStyles.Bottom | AnchorStyles.Left | AnchorStyles.Right;
79
80 //add grids to table panel
81 _tablePanel.Controls.Add(_employeeGrid);
82 _tablePanel.Controls.Add(_pictureBox);
83 _tablePanel.Controls.Add(_trainingGrid);
84 _tablePanel.SetColumnSpan(_trainingGrid, 2);
85
86 this.Controls.Add(_tablePanel);
87 ms.Dock = DockStyle.Top;
88 this.MainMenuStrip = ms;
89 this.Controls.Add(ms);
90 this.Height = WINDOW_HEIGHT;
91 this.Width = WINDOW_WIDTH;
92 this.Text = WINDOW_TITLE;
93 }
94
95 /**
96 Event Handlers
97 ***/
98 private void ExitProgramHandler(Object sender, EventArgs e){
99 Application.Exit();
100 }
101
102 private void CreateEmployeeHandler(Object sender, EventArgs e){
103 // add code here
104 }
105
106 private void CreateTrainingHandler(Object sender, EventArgs e){
107 // add code here
108 }
109
110 private void EmployeeGridClickedHandler(Object sender, EventArgs e){
111 int selected_row = _employeeGrid.SelectedRows[0].Index;
112 Image employee_picture = _employeeList[selected_row].Picture;
113
114 if(employee_picture != null){
115 _pictureBox.Image = employee_picture;
116 }
117 if(DEBUG){ // print some info to the console
118 Console.WriteLine(selected_row);
119 Console.WriteLine(_employeeList[selected_row]);
120 }
121
122 _trainingGrid.DataSource = null;
123 _trainingGrid.DataSource =
124 _employeeTraining.GetTrainingForEmployee(_employeeList[selected_row].EmployeeID);
125 }
126
127 public static void Main(){
128 try {
C# For Artists © 2008 Rick Miller — All Rights Reserved 561

The Client Application Chapter 20: Database Access & Multitiered Applications
129 RemotingConfiguration.Configure("EmployeeTrainingClient.exe.config", false);
130 WellKnownClientTypeEntry[] client_types = RemotingConfiguration.GetRegisteredWellKnownClientTypes();
131 IEmployeeTraining employee_training =
132 (IEmployeeTraining)Activator.GetObject(typeof(IEmployeeTraining), client_types[0].ObjectUrl);
133 EmployeeTrainingClient client = new EmployeeTrainingClient(employee_training);
134 Application.Run(client);
135 }catch(Exception e){
136 Console.WriteLine(e);
137 }
138 }
139 } // end class definition

Referring to Example 20.30 — the EmployeeTrainingClient class extends Form, as expected. It contains two

DataGridViews and a PictureBox, which are contained within a TableLayoutPanel in accordance with the mock-up

sketch given in Figure 20-48. All menu item event handler methods, with the exception of the File->Exit menu item

event handler, are stub methods that will eventually need to be fleshed out.

Let’s take a look at the Main() method which begins on line 127. The bulk of the Main() method remains

unchanged from the previous iteration. The test code has been removed and replaced with lines 133 and 134. These

lines of code create an instance of the EmployeeTrainingClient, passing into the constructor the reference to the

remote object, and then calling Application.Run() to kick things off.

Look now at the InitializeComponent() method which begins on line 33. The first thing I do is create and initial-

ize the menu strip and its associated menu items. Next, beginning on line 55, I create and initialize the TableLayout-

Panel, followed by the creation and initialization of the DataGridView components. When I create the

_employeeGrid, I make a call via the remote object reference _employeeTraining to get a list of all employees. I

assign this list to the _employeeList reference and then use this reference to set the _employeeGrid.DataSource prop-

erty.

So, what happens when the application starts is this: The client application displays a list of employees and their

associated data in the employee DataGridView component. When a user clicks on the employee DataGridView, that

Click event is handled by the EmployeeGridClickedHandler() method, which begins on line 110. The event handler

loads the employee’s picture into the PictureBox component as long as the employee’s picture is not null. It then

loads the employee’s training into the training DataGridView by setting its DataSource property via a call to the

remote object’s GetTrainingForEmployee() method. A click on a DataGridView yields a row index value. This row

index value is used to index the _employeeList to retrieve the appropriate EmployeeVO object.

To compile and run this application make sure you’ve copied the requisite dlls from the server application’s lib

folder to the client application’s ref folder, start the server application, and then from the client application project

directory run MSBuild with the default target like so:

msbuild
If all goes well you’ll see the client application window open and it should look something like Figure 20-49.

Figure 20-49: EmployeeTrainingClient Initial Display on Startup — Something’s Not Quite Right!
562
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications The Client Application
Referring to Figure 20-49 — well, something’s amiss! Your display will look different depending on what was

behind your application window on startup. Let’s try clicking on the first row of the employee information DataGrid-

View and see if the related training will display. Figure 20-50 shows the results. Referring to Figure 20-50 — when I

click the first row (I’m clicking on the gray margin to the left of each row) the related training for that employee

shows up in the training DataGridView. However, the first employee has no picture. Let’s see what happens when I

click on the second row. Figure 20-51 shows the results. (Cross your fingers!)

Referring to Figure 20-51 — something is obviously wrong! I’ve received a rather cryptic RemotingException

saying: “Remoting cannot find field ‘nativeImage’ on type System.Drawing.Image.” Upon deep investigation around

the Internet I finally find the following note buried on the MSDN website for the System.Drawing.Bitmap class:

“The Bitmap class is not accessible across application domains. For example, if you create a

Figure 20-50: Employee’s Related Training Shown in Training DataGridView

Figure 20-51: Results of Clicking on a Employee with a Picture - a RemotingException is Thrown
C# For A
rtists © 2008 Rick Miller — All Rights Reserved 563

The Client Application Chapter 20: Database Access & Multitiered Applications
dynamic AppDomain and create several brushes, pens, and bitmaps in that domain, then pass these
objects back to the main application domain, you can successfully use the pens and brushes. How-
ever, if you call the DrawImage method to draw the marshaled Bitmap, you receive the following
exception. Remoting cannot find field "native image" on type "System.Drawing.Image". “

I’ve also shown the Bitmap note in Figure 20-52. OK, so if you can’t transfer an Image across application

domains, how are you to transfer the employee’s picture? You’ll have to do it the old fashioned way — store the

employee’s picture as an array of bytes. These should transfer across application domains with no problem. To do this

will require some changes to the server application. This fix will be the focus of the fifth development iteration.

Fifth Iteration

In the previous development iteration we encountered a problem with transferring the Employee’s picture across

application domains via .NET remoting. This problem played havoc with the employee DataGridView component. In

this iteration I’m going to fix that problem by modifying the server application to hold the employee’s picture as an

array of bytes. (i.e., a byte[]) To make this fix I’ll need to modify two server-side classes: EmployeeVO and Employ-

eeDAO. I’ll also need to modify the EmployeeTrainingClient class to properly handle the modified EmployeeVO

class. (You see, it’s sweet having an application architecture that lets you zero in on exactly what components need to

be modified to implement the fix.)

Table 20-9 gives the design considerations and design decisions for the fifth iteration.

Example 20.31 gives the modified code for the EmployeeVO class.
20.31 EmployeeVO.cs (modified)

1 using System;
2
3 namespace EmployeeTraining.VO {
4 [Serializable]
5 public class EmployeeVO : PersonVO {
6
7 // private instance fields
8 private Guid _employeeID;
9 private byte[] _picturebytes;

Check-Off Design Consideration Design Decision

Employee picture transfer problem:

EmployeeVO class

Modify the EmployeeVO class to hold employee picture data in a byte

array.

Employee picture transfer problem:

EmployeeDAO class

Modify the EmployeeDAO class to properly insert the byte array into

the tbl_employee.Picture column and to properly populate the Employ-

eeVO upon retrieval.

EmployeeTrainingClient class Modify the EmployeeGridClickedHandler() method to properly handle

the modified EmployeeVO class.

Application testing Continue with application testing to ensure the changes work. Some of

the changes to the DAO will not be tested fully until the next iteration.

Table 20-9: Employee Training Client Application — Fifth Iteration Design Considerations And Decisions

Figure 20-52: Bitmap Class Usage Note
564
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications The Client Application
10
11 //default constructor
12 public EmployeeVO(){}
13
14 public EmployeeVO(Guid employeeid, String firstName, String middleName, String lastName,
15 Sex gender, DateTime birthday):base(firstName, middleName, lastName, gender, birthday){
16 EmployeeID = employeeid;
17 }
18
19 // public properties
20 public Guid EmployeeID {
21 get { return _employeeID; }
22 set { _employeeID = value; }
23 }
24
25 public byte[] Picture {
26 get { return _picturebytes; }
27 set { _picturebytes = value; }
28 }
29
30 public override String ToString(){
31 return (EmployeeID + " " + base.ToString());
32 }
33 } // end EmployeeVO class
34 } // end namespace

Referring to Example 20.31 — I’ve made three changes to this class. First, I removed the using System.Draw-

ing directive since I no longer need to use the System.Drawing.Image class. Second, I removed the _picture field and

replaced it with the _picturebytes field which is of type byte array (byte[]). Lastly, I changed the Picture property to

reflect it’s new type and to get and set the _picturebytes field.

Example 20.32 gives the code for the modified EmployeeDAO class.
20.32 EmployeeDAO.cs (modified)

1 using System;
2 using System.IO;
3 using System.Data;
4 using System.Data.Common;
5 using System.Data.Sql;
6 using System.Data.SqlTypes;
7 using System.Data.SqlClient;
8 using System.Collections.Generic;
9 //using System.Drawing;
10 //using System.Drawing.Imaging;
11 using EmployeeTraining.VO;
12
13 using Microsoft.Practices.EnterpriseLibrary.Common;
14 using Microsoft.Practices.EnterpriseLibrary.Data;
15 using Microsoft.Practices.EnterpriseLibrary.Data.Sql;
16
17 namespace EmployeeTraining.DAO {
18 public class EmployeeDAO : BaseDAO {
19
20 private bool debug = true;
21
22 //List of column identifiers used in perpared statements
23 private const String EMPLOYEE_ID = "@employee_id";
24 private const String FIRST_NAME = "@first_name";
25 private const String MIDDLE_NAME = "@middle_name";
26 private const String LAST_NAME = "@last_name";
27 private const String BIRTHDAY = "@birthday";
28 private const String GENDER = "@gender";
29 private const String PICTURE = "@picture";
30
31 private const String SELECT_ALL_COLUMNS =
32 "SELECT employeeid, firstname, middlename, lastname, birthday, gender, picture ";
33
34 private const String SELECT_ALL_EMPLOYEES =
35 SELECT_ALL_COLUMNS +
36 "FROM tbl_employee ";
37
38 private const String SELECT_EMPLOYEE_BY_EMPLOYEE_ID =
39 SELECT_ALL_EMPLOYEES +
40 "WHERE employeeid = " + EMPLOYEE_ID;
41
42
43 private const String INSERT_EMPLOYEE =
44 "INSERT INTO tbl_employee " +
45 "(EmployeeID, FirstName, MiddleName, LastName, Birthday, Gender, Picture) " +
46 "VALUES (" + EMPLOYEE_ID + ", " + FIRST_NAME + ", " + MIDDLE_NAME + ", " + LAST_NAME + ", " +
47 BIRTHDAY + ", " + GENDER + ", " + PICTURE + ")";
C# For Artists © 2008 Rick Miller — All Rights Reserved 565

The Client Application Chapter 20: Database Access & Multitiered Applications
48
49 private const String UPDATE_EMPLOYEE =
50 "UPDATE tbl_employee " +
51 "SET FirstName = " + FIRST_NAME + ", MiddleName = " + MIDDLE_NAME + ", LastName = " + LAST_NAME +
52 ", Birthday = " + BIRTHDAY + ", Gender = " + GENDER + ", Picture = " + PICTURE + " " +
53 "WHERE EmployeeID = " + EMPLOYEE_ID;
54
55 private const String DELETE_EMPLOYEE =
56 "DELETE FROM tbl_employee " +
57 "WHERE EmployeeID = " + EMPLOYEE_ID;
58
59 /************************************
60 Returns a List<EmployeeVO> object
61 **************************************/
62 public List<EmployeeVO> GetAllEmployees(){
63 DbCommand command = DataBase.GetSqlStringCommand(SELECT_ALL_EMPLOYEES);
64 return this.GetEmployeeList(command);
65 }
66
67 /***
68 Returns an EmployeeVO object given a valid employeeid
69 ***/
70 public EmployeeVO GetEmployee(Guid employeeid){
71 DbCommand command = null;
72 try{
73 command = DataBase.GetSqlStringCommand(SELECT_EMPLOYEE_BY_EMPLOYEE_ID);
74 DataBase.AddInParameter(command, EMPLOYEE_ID, DbType.Guid, employeeid);
75 }catch(Exception e){
76 Console.WriteLine(e);
77 }
78 return this.GetEmployee(command);
79 }
80
81 /***
82 Inserts an employee given a fully-populated EmployeeVO object
83 ***/
84 public EmployeeVO InsertEmployee(EmployeeVO employee){
85 try{
86 employee.EmployeeID = Guid.NewGuid();
87 DbCommand command = DataBase.GetSqlStringCommand(INSERT_EMPLOYEE);
88 DataBase.AddInParameter(command, EMPLOYEE_ID, DbType.Guid, employee.EmployeeID);
89 DataBase.AddInParameter(command, FIRST_NAME, DbType.String, employee.FirstName);
90 DataBase.AddInParameter(command, MIDDLE_NAME, DbType.String, employee.MiddleName);
91 DataBase.AddInParameter(command, LAST_NAME, DbType.String, employee.LastName);
92 DataBase.AddInParameter(command, BIRTHDAY, DbType.DateTime, employee.BirthDay);
93 switch(employee.Gender){
94 case EmployeeVO.Sex.MALE: DataBase.AddInParameter(command, GENDER, DbType.String, "M");
95 break;
96 case EmployeeVO.Sex.FEMALE: DataBase.AddInParameter(command, GENDER, DbType.String, "F");
97 break;
98 }
99
100 if(employee.Picture != null){
101 if(debug){ Console.WriteLine("Inserting picture!"); }
102 if(debug){
103 for(int i=0; i<employee.Picture.Length; i++){
104 Console.Write(employee.Picture[i]);
105 }
106 } // end if debug
107 DataBase.AddInParameter(command, PICTURE, DbType.Binary, employee.Picture);
108 if(debug){ Console.WriteLine("Picture inserted, I think!"); }
109 }
110 DataBase.ExecuteNonQuery(command);
111 }catch(Exception e){
112 Console.WriteLine(e);
113 }
114 return this.GetEmployee(employee.EmployeeID);
115 }
116
117 /**
118 Updates a row in the tbl_employee table given the fully-populated
119 EmployeeVO object.
120 **/
121 public EmployeeVO UpdateEmployee(EmployeeVO employee){
122 try {
123 DbCommand command = DataBase.GetSqlStringCommand(UPDATE_EMPLOYEE);
124 DataBase.AddInParameter(command, FIRST_NAME, DbType.String, employee.FirstName);
125 DataBase.AddInParameter(command, MIDDLE_NAME, DbType.String, employee.MiddleName);
126 DataBase.AddInParameter(command, LAST_NAME, DbType.String, employee.LastName);
127 DataBase.AddInParameter(command, BIRTHDAY, DbType.DateTime, employee.BirthDay);
128 switch(employee.Gender){
566 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications The Client Application
129 case EmployeeVO.Sex.MALE: DataBase.AddInParameter(command, GENDER, DbType.String, "M");
130 break;
131 case EmployeeVO.Sex.FEMALE: DataBase.AddInParameter(command, GENDER, DbType.String, "F");
132 break;
133 }
134 if(employee.Picture != null){
135 if(debug){ Console.WriteLine("Inserting picture!"); }
136 if(debug){
137 for(int i=0; i<employee.Picture.Length; i++){
138 Console.Write(employee.Picture[i]);
139 }
140 } // end if debug
141 DataBase.AddInParameter(command, PICTURE, DbType.Binary, employee.Picture);
142 if(debug){ Console.WriteLine("Picture inserted, I think!"); }
143 }
144 DataBase.AddInParameter(command, EMPLOYEE_ID, DbType.Guid, employee.EmployeeID);
145 DataBase.ExecuteNonQuery(command);
146 }catch(Exception e){
147 Console.WriteLine(e);
148 }
149 return this.GetEmployee(employee.EmployeeID);
150 }
151
152 /**
153 Deletes a row from the tbl_employee table given an employee id.
154 ***/
155 public void DeleteEmployee(Guid employeeid){
156 try{
157 DbCommand command = DataBase.GetSqlStringCommand(DELETE_EMPLOYEE);
158 DataBase.AddInParameter(command, EMPLOYEE_ID, DbType.Guid, employeeid);
159 DataBase.ExecuteNonQuery(command);
160 }catch(Exception e){
161 Console.WriteLine(e);
162 }
163 }
164
165 /**
166 Private utility method that executes the given DbCommand
167 and returns a fully-populated EmployeeVO object
168 ***/
169 private EmployeeVO GetEmployee(DbCommand command){
170 EmployeeVO empVO = null;
171 IDataReader reader = null;
172 try {
173 reader = DataBase.ExecuteReader(command);
174 if(reader.Read()){
175 empVO = this.FillInEmployeeVO(reader);
176 }
177 }catch(Exception e){
178 Console.WriteLine(e);
179 }finally {
180 base.CloseReader(reader);
181 }
182 return empVO;
183 }
184
185 /**
186 GetEmployeeList() - returns a List<EmployeeVO> object
187 **/
188 private List<EmployeeVO> GetEmployeeList(DbCommand command){
189 IDataReader reader = null;
190 List<EmployeeVO> employee_list = new List<EmployeeVO>();
191 try{
192 reader = DataBase.ExecuteReader(command);
193 while(reader.Read()){
194 EmployeeVO empVO = this.FillInEmployeeVO(reader);
195 employee_list.Add(empVO);
196 }
197 }catch(Exception e){
198 Console.WriteLine(e);
199 }finally{
200 base.CloseReader(reader);
201 }
202 return employee_list;
203 }
204
205 /**
206 Private utility method that populates an EmployeeVO object from
207 data read from the IDataReader object
208 **/
209 private EmployeeVO FillInEmployeeVO(IDataReader reader){
C# For Artists © 2008 Rick Miller — All Rights Reserved 567

The Client Application Chapter 20: Database Access & Multitiered Applications
210 EmployeeVO empVO = new EmployeeVO();
211 empVO.EmployeeID = reader.GetGuid(0);
212 empVO.FirstName = reader.GetString(1);
213 empVO.MiddleName = reader.GetString(2);
214 empVO.LastName = reader.GetString(3);
215 empVO.BirthDay = reader.GetDateTime(4);
216 String gender = reader.GetString(5);
217 switch(gender){
218 case "M" : empVO.Gender = EmployeeVO.Sex.MALE;
219 break;
220 case "F" : empVO.Gender = EmployeeVO.Sex.FEMALE;
221 break;
222 }
223 if(!reader.IsDBNull(6)){
224 int buffersize = 5000;
225 int startindex = 0;
226 Byte[] byte_array = new Byte[buffersize];
227 MemoryStream ms = new MemoryStream();
228 long retval = reader.GetBytes(6, startindex, byte_array, 0, buffersize);
229 while(retval > 0){
230 ms.Write(byte_array, 0, byte_array.Length);
231 startindex += buffersize;
232 retval = reader.GetBytes(6, startindex, byte_array, 0, buffersize);
233 }
234 empVO.Picture = ms.ToArray();
235 }
236 return empVO;
237 }
238
239 } // end EmployeeDAO definition
240 } // end namespace

Referring to Example 20.32 — I removed the using System.Drawing and using System.Drawing.Imaging

directives, and made modifications to the InsertEmployee(), UpdateEmployee(), and FillInEmployeeVO() methods to

properly handle the insertion and retrieval of a byte_array. Actually, a byte array was already being inserted and

retrieved from the database. The only changes I made involved the elimination of the image conversion step. The

code is actually simplified now that there’s no need to convert an image into an array of bytes. However, this conver-

sion will now need to be performed in the client application when an employee picture is selected for insertion.

Example 20.33 gives the code for the modified EmployeeGridClickedHandler() method which is found in the

EmployeeTrainingClient class.
20.33 EmployeeGridClickedHandler() Method (modified)

1 private void EmployeeGridClickedHandler(Object sender, EventArgs e){
2 int selected_row = _employeeGrid.SelectedRows[0].Index;
3 byte[] pictureBytes = _employeeList[selected_row].Picture;
4
5 if(pictureBytes != null){
6 MemoryStream ms = new MemoryStream();
7 ms.Write(pictureBytes, 0, pictureBytes.Length);
8 _pictureBox.Image = new Bitmap(ms);
9 } else {
10 _pictureBox.Image = null;
11 }
12 Console.WriteLine(selected_row);
13 Console.WriteLine(_employeeList[selected_row]);
14
15 _trainingGrid.DataSource = null;
16 _trainingGrid.DataSource =
17 _employeeTraining.GetTrainingForEmployee(_employeeList[selected_row].EmployeeID);
18
19 }

Referring to Example 20.33 — the selected employee’s Picture array is assigned to the pictureBytes reference.

The if statement beginning on line 5 checks to see if the pictureBytes reference is not null. If it’s not null, the pic-

tureBytes array is written to a MemoryStream object, which is then used to create a Bitmap object.

Let’s test these changes before proceeding further. You’ll need to recompile the server application and copy the

IEmployeeTraining.dll and VOLib.dll files to the client’s ref folder. Start the server and then run the client. Figure 20-

53 shows the client application with an employee’s picture displayed in the PictureBox.

Referring to Figure 20-53 — it seems the byte array is the way to go. You can also see a portion of each

employee’s picture (those that have one) in the corresponding cell under the Picture column. However, I’m not sure I

want the employee picture in the DataGridView as it would make each row too high. I’ll fix this in the next develop-

ment iteration as well as add the ability to create and edit employees and their associated training.
568 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications The Client Application
Sixth Iteration

Now that an employee’s data, including their image data, can be successfully transferred across the network, it’s

time to add more features to the EmployeeTrainingClient application. One thing I’ll do will be to customize the Dat-

aGridViews and hide a few of the columns I don’t want to display. I’ll also add the ability to create, edit, and delete

employees and training records. I’ll use separate forms to enter and edit employee and training data. Table 20-10 lists

the design considerations and design decisions for the sixth iteration.

Check-Off Design Consideration Design Decision

Hide unwanted DataGridView col-

umns.

The columns displayed in a DataGridView correspond to public proper-

ties of the EmployeeVO and TrainingVO classes. For the employee’s

DataGridView I’ll hide the EmployeeID, Picture, FullName, and

FullNameAndAge columns. For the training DataGridView I’ll hide the

EmployeeID and TrainingID columns.

Application menus. I think I’ll do a redesign here and rename the Create menu and call it the

Edit menu instead. To the Edit menu I’ll add the following menu items:

Create Employee...
Edit Employee

Create Training...
Edit Training...

Delete Employee...
Delete Training...
I’ll need to do some menu manipulation while the application is running

so I will move the declaration of the menu items out of the Initialize-

Component() method so that I have access to them throughout the appli-

cation. I’ll also need to use a MessageBox to give users the chance to

change their mind about deleting an employee or a training record.

Employee form I’ll need to create a data entry form suitable for use both to create a new

employee and to edit an existing employee. (Note: I could create and

edit via the DataGridView but I’ll leave that as an exercise for you!)

Training form I’ll also need a data entry form suitable for use both to create and edit

training records.

Table 20-10: Employee Training Client Application — Sixth Iteration Design Considerations And Decisions

Figure 20-53: EmployeeTrainingClient Application with Employee’s Picture Displayed in the PictureBox
C
For Artists © 2008 Rick Miller — All Rights Reserved 569

The Client Application Chapter 20: Database Access & Multitiered Applications
I think I’ll start by designing and implementing the data entry forms. Figure 20-54 shows the mock-up for the

employee data entry form.

Referring to Figure 20-54 — the employee form will contain the components required to enter and edit employee

information. The components I’ll need to use include Labels, TextBoxes, RadioButtons and a GroupBox, Buttons,

and a PictureBox. I’ll arrange the components with the help of several TableLayoutPanels and a FlowLayoutPanel.

I’ll need a way to set and get the values of each data entry component. I’ll make this possible by adding read-

write properties to the employee form. Example 20.34 gives the code for the EmployeeForm class.
20.34 EmployeeForm.cs

1 using System;
2 using System.Drawing;
3 using System.Windows.Forms;
4 using EmployeeTraining.VO;
5
6 public class EmployeeForm : Form {
7 // constants
8 private const int WINDOW_HEIGHT = 300;
9 private const int WINDOW_WIDTH = 550;
10
11 // fields
12 private TableLayoutPanel _mainTablePanel;
13 private TableLayoutPanel _infoTablePanel;
14 private FlowLayoutPanel _buttonPanel;
15 private PictureBox _pictureBox;
16 private Label _firstNameLabel;
17 private Label _middleNameLabel;
18 private Label _lastNameLabel;
19 private Label _birthdayLabel;
20 private Label _genderLabel;
21 private TextBox _firstNameTextBox;
22 private TextBox _middleNameTextBox;
23 private TextBox _lastNameTextBox;
24 private DateTimePicker _birthdayPicker;
25 private GroupBox _genderBox;
26 private RadioButton _maleRadioButton;
27 private RadioButton _femaleRadioButton;
28 private Button _clearButton;
29 private Button _loadPictureButton;
30 private Button _submitButton;
31 private OpenFileDialog _dialog;
32 private bool _createMode;
33
34
35 // public properties -
36 public String FirstName {
37 get { return _firstNameTextBox.Text; }
38 set { _firstNameTextBox.Text = value; }
39 }
40
41 public String MiddleName {
42 get { return _middleNameTextBox.Text; }
43 set { _middleNameTextBox.Text = value; }
44 }
45
46 public String LastName {
47 get { return _lastNameTextBox.Text; }
48 set { _lastNameTextBox.Text = value; }
49 }

Figure 20-54: Employee Form Mock-up
570
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications The Client Application
50
51 public DateTime Birthday {
52 get { return _birthdayPicker.Value; }
53 set { _birthdayPicker.Value = value; }
54 }
55
56 public Image Picture {
57 get { return _pictureBox.Image; }
58 set { _pictureBox.Image = value; }
59 }
60
61 public PersonVO.Sex Gender {
62 get { return this.RadioButtonToSexEnum(); }
63 set { this.SetRadioButton(value); }
64 }
65
66 public bool CreateMode {
67 get { return _createMode; }
68 set { _createMode = value; }
69 }
70
71 public bool SubmitOK {
72 set { _submitButton.Enabled = value; }
73 }
74
75 public EmployeeForm(EmployeeTrainingClient externalHandler){
76 this.InitializeComponent(externalHandler);
77 }
78
79 private void InitializeComponent(EmployeeTrainingClient externalHandler){
80 _mainTablePanel = new TableLayoutPanel();
81 _mainTablePanel.RowCount = 2;
82 _mainTablePanel.ColumnCount = 2;
83 _mainTablePanel.Anchor = AnchorStyles.Top | AnchorStyles.Bottom | AnchorStyles.Right
84 | AnchorStyles.Left;
85 _mainTablePanel.Height = 500;
86 _mainTablePanel.Width = 700;
87 _infoTablePanel = new TableLayoutPanel();
88 _infoTablePanel.Anchor = AnchorStyles.Top | AnchorStyles.Bottom | AnchorStyles.Right
89 | AnchorStyles.Left;
90 _infoTablePanel.RowCount = 2;
91 _infoTablePanel.ColumnCount = 2;
92 _infoTablePanel.Height = 200;
93 _infoTablePanel.Width = 400;
94 _buttonPanel = new FlowLayoutPanel();
95 _buttonPanel.Anchor = AnchorStyles.Top | AnchorStyles.Bottom | AnchorStyles.Right | AnchorStyles.Left;
96 _buttonPanel.Width = 500;
97 _buttonPanel.Height = 200;
98
99 _pictureBox = new PictureBox();
100 _pictureBox.Height = 200;
101 _pictureBox.Width = 200;
102 _pictureBox.Anchor = AnchorStyles.Top | AnchorStyles.Bottom | AnchorStyles.Right | AnchorStyles.Left;
103
104 _firstNameLabel = new Label();
105 _firstNameLabel.Text = "First Name:";
106 _middleNameLabel = new Label();
107 _middleNameLabel.Text = "Middle Name:";
108 _lastNameLabel = new Label();
109 _lastNameLabel.Text = "Last Name:";
110 _birthdayLabel = new Label();
111 _birthdayLabel.Text = "Birthday";
112 _genderLabel = new Label();
113 _genderLabel.Text = "Gender";
114 _firstNameTextBox = new TextBox();
115 _firstNameTextBox.Width = 200;
116 _middleNameTextBox = new TextBox();
117 _middleNameTextBox.Width = 200;
118 _lastNameTextBox = new TextBox();
119 _lastNameTextBox.Width = 200;
120 _birthdayPicker = new DateTimePicker();
121 _genderBox = new GroupBox();
122 _genderBox.Text = "Gender";
123 _genderBox.Height = 75;
124 _genderBox.Width = 200;
125 _maleRadioButton = new RadioButton();
126 _maleRadioButton.Text = "Male";
127 _maleRadioButton.Checked = true;
128 _maleRadioButton.Location = new Point(10, 20);
129 _femaleRadioButton = new RadioButton();
130 _femaleRadioButton.Text = "Female";
C# For Artists © 2008 Rick Miller — All Rights Reserved 571

The Client Application Chapter 20: Database Access & Multitiered Applications
131 _femaleRadioButton.Location = new Point(10, 40);
132 _genderBox.Controls.Add(_maleRadioButton);
133 _genderBox.Controls.Add(_femaleRadioButton);
134 _clearButton = new Button();
135 _clearButton.Text = "Clear";
136 _clearButton.Click += this.ClearButtonHandler;
137 _loadPictureButton = new Button();
138 _loadPictureButton.Text = "Load Picture";
139 _loadPictureButton.AutoSize = true;
140 _loadPictureButton.Click += this.LoadPictureButtonHandler;
141 _submitButton = new Button();
142 _submitButton.Text = "Submit";
143 _submitButton.Click += externalHandler.EmployeeSubmitButtonHandler;
144 _submitButton.Enabled = false;
145
146 _infoTablePanel.SuspendLayout();
147 _infoTablePanel.Controls.Add(_firstNameLabel);
148 _infoTablePanel.Controls.Add(_firstNameTextBox);
149 _infoTablePanel.Controls.Add(_middleNameLabel);
150 _infoTablePanel.Controls.Add(_middleNameTextBox);
151 _infoTablePanel.Controls.Add(_lastNameLabel);
152 _infoTablePanel.Controls.Add(_lastNameTextBox);
153 _infoTablePanel.Controls.Add(_birthdayLabel);
154 _infoTablePanel.Controls.Add(_birthdayPicker);
155 _infoTablePanel.Controls.Add(_genderLabel);
156 _infoTablePanel.Controls.Add(_genderBox);
157 _infoTablePanel.Dock = DockStyle.Top;
158
159 _buttonPanel.SuspendLayout();
160 _buttonPanel.Controls.Add(_clearButton);
161 _buttonPanel.Controls.Add(_loadPictureButton);
162 _buttonPanel.Controls.Add(_submitButton);
163
164 _mainTablePanel.SuspendLayout();
165 _mainTablePanel.Controls.Add(_pictureBox);
166 _mainTablePanel.Controls.Add(_infoTablePanel);
167 _mainTablePanel.Controls.Add(_buttonPanel);
168 _mainTablePanel.SetColumnSpan(_buttonPanel, 2);
169
170 this.SuspendLayout();
171 this.Controls.Add(_mainTablePanel);
172 this.Width = WINDOW_WIDTH;
173 this.Height = WINDOW_HEIGHT;
174 this.Text = "Employee Form";
175 _infoTablePanel.ResumeLayout();
176 _buttonPanel.ResumeLayout();
177 _mainTablePanel.ResumeLayout();
178 this.ResumeLayout();
179 _dialog = new OpenFileDialog();
180 _dialog.FileOk += this.LoadPicture;
181 }
182
183 private void ClearButtonHandler(Object sender, EventArgs e){
184 this.ClearFields();
185 _submitButton.Enabled = false;
186 }
187
188 private void LoadPictureButtonHandler(Object sender, EventArgs e){
189 _dialog.ShowDialog();
190 }
191
192 private void LoadPicture(Object sender, EventArgs e){
193 String filename = _dialog.FileName;
194 _pictureBox.Image = new Bitmap(filename);
195 _submitButton.Enabled = true;
196 }
197
198 public void ClearFields(){
199 _firstNameTextBox.Text = String.Empty;
200 _middleNameTextBox.Text = String.Empty;
201 _lastNameTextBox.Text = String.Empty;
202 _maleRadioButton.Checked = true;
203 _birthdayPicker.Value = DateTime.Now;
204 _pictureBox.Image = null;
205 }
206
207 private PersonVO.Sex RadioButtonToSexEnum(){
208 PersonVO.Sex gender = PersonVO.Sex.MALE;
209 if(_maleRadioButton.Checked){
210 gender = PersonVO.Sex.MALE;
211 }else{
572 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications The Client Application
212 gender = PersonVO.Sex.FEMALE;
213 }
214 return gender;
215 }
216
217 private void SetRadioButton(PersonVO.Sex gender){
218 if(gender == PersonVO.Sex.MALE){
219 _maleRadioButton.Checked = true;
220 }else{
221 _femaleRadioButton.Checked = true;
222 }
223 }
224
225 } // end class definition

Referring to Example 20.34 — most of the code is straightforward. The class contains several constants, fields,

properties, and event handlers. The _submitButton.Click event is handled by the EmployeeTrainingClient.Employee-

SubmitButtonHandler() method. The _clearButton and _loadPictureButton Click events are handled by local event

handlers.

Note that most of the properties consist of simple get and set statements, however, the Gender property’s get and

set call methods to perform the heavy lifting. The reason for this is that the radio button settings must be translated

into Person.Sex enumeration values and vice versa. The CreateMode property is used to indicate whether the form is

used to create a new employee or edit an existing employee.

Figure 20-55 shows the mock-up for the training form.

Referring to Figure 20-55 — the training form is built similar to the employee form. It will contain the data entry

components required to create and edit an employee training record. It too uses TableLayoutPanels and a FlowLay-

outPanel to arrange the components. Example 20.35 shows the code for the TrainingForm class.
20.35 TrainingForm .cs

1 using System;
2 using System.Drawing;
3 using System.Windows.Forms;
4 using System.Collections.Generic;
5 using EmployeeTraining.VO;
6
7 public class TrainingForm : Form {
8 // constants
9 private const int WINDOW_HEIGHT = 300;
10 private const int WINDOW_WIDTH = 450;
11 private const bool DEBUG = true;
12
13 // fields
14 private TableLayoutPanel _mainTablePanel;
15 private TableLayoutPanel _infoTablePanel;
16 private FlowLayoutPanel _buttonPanel;
17 private Label _titleLabel;
18 private Label _descriptionLabel;
19 private Label _startDateLabel;
20 private Label _endDateLabel;
21 private Label _statusLabel;
22 private TextBox _titleTextBox;
23 private TextBox _descriptionTextBox;
24 private DateTimePicker _startDatePicker;
25 private DateTimePicker _endDatePicker;
26 private GroupBox _statusGroupBox;
27 private RadioButton _passedRadioButton;
28 private RadioButton _failedRadioButton;

Figure 20-55: Training Form Mock-up
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 573

The Client Application Chapter 20: Database Access & Multitiered Applications
29 private Button _clearButton;
30 private Button _submitButton;
31 private bool _createMode;
32
33 // public properties -
34 public String Title {
35 get { return _titleTextBox.Text; }
36 set { _titleTextBox.Text = value; }
37 }
38
39 public String Description {
40 get { return _descriptionTextBox.Text; }
41 set { _descriptionTextBox.Text = value; }
42 }
43
44 public DateTime StartDate {
45 get { return _startDatePicker.Value; }
46 set { _startDatePicker.Value = value; }
47 }
48
49 public DateTime EndDate {
50 get { return _endDatePicker.Value; }
51 set { _endDatePicker.Value = value; }
52 }
53
54 public TrainingVO.TrainingStatus Status {
55 get { return this.RadioButtonToTrainingStatusEnum(); }
56 set { this.SetRadioButton(value); }
57 }
58
59 public bool CreateMode {
60 get { return _createMode; }
61 set { _createMode = value; }
62 }
63
64 public TrainingForm(EmployeeTrainingClient externalHandler){
65 this.InitializeComponent(externalHandler);
66 }
67
68 private void InitializeComponent(EmployeeTrainingClient externalHandler){
69 _mainTablePanel = new TableLayoutPanel();
70 _mainTablePanel.RowCount = 2;
71 _mainTablePanel.ColumnCount = 1;
72 _mainTablePanel.Height = 400;
73 _mainTablePanel.Width = 500;
74 _mainTablePanel.Anchor = AnchorStyles.Top | AnchorStyles.Bottom | AnchorStyles.Left
75 | AnchorStyles.Right;
76
77 _infoTablePanel = new TableLayoutPanel();
78 _infoTablePanel.RowCount = 5;
79 _infoTablePanel.ColumnCount = 2;
80 _infoTablePanel.Height = 200;
81 _infoTablePanel.Width = 300;
82 _infoTablePanel.Anchor = AnchorStyles.Top | AnchorStyles.Bottom | AnchorStyles.Left
83 | AnchorStyles.Right;
84
85 _buttonPanel = new FlowLayoutPanel();
86 _buttonPanel.Anchor = AnchorStyles.Top | AnchorStyles.Bottom | AnchorStyles.Left | AnchorStyles.Right;
87
88 _titleLabel = new Label();
89 _titleLabel.Text = "Title:";
90 _descriptionLabel = new Label();
91 _descriptionLabel.Text = "Description:";
92 _startDateLabel = new Label();
93 _startDateLabel.Text = "Start Date:";
94 _endDateLabel = new Label();
95 _endDateLabel.Text = "End Date";
96 _statusLabel = new Label();
97 _statusLabel.Text = "Status";
98 _titleTextBox = new TextBox();
99 _titleTextBox.Width = 300;
100 _descriptionTextBox = new TextBox();
101 _descriptionTextBox.Width = 300;
102 _startDatePicker = new DateTimePicker();
103 _endDatePicker = new DateTimePicker();
104 _statusGroupBox = new GroupBox();
105 _statusGroupBox.Height = 75;
106 _statusGroupBox.Width = 300;
107 _passedRadioButton = new RadioButton();
108 _passedRadioButton.Text = "Passed";
109 _passedRadioButton.Checked = true;
574 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications The Client Application
110 _passedRadioButton.Location = new Point(10, 10);
111 _failedRadioButton = new RadioButton();
112 _failedRadioButton.Text = "Failed";
113 _failedRadioButton.Location = new Point(10, 30);
114 _clearButton = new Button();
115 _clearButton.Text = "Clear";
116 _clearButton.Click += this.ClearButtonHandler;
117 _submitButton = new Button();
118 _submitButton.Text = "Submit";
119 _submitButton.Click += externalHandler.TrainingSubmitButtonHandler;
120
121 _statusGroupBox.Controls.Add(_passedRadioButton);
122 _statusGroupBox.Controls.Add(_failedRadioButton);
123
124 _infoTablePanel.SuspendLayout();
125 _infoTablePanel.Controls.Add(_titleLabel);
126 _infoTablePanel.Controls.Add(_titleTextBox);
127 _infoTablePanel.Controls.Add(_descriptionLabel);
128 _infoTablePanel.Controls.Add(_descriptionTextBox);
129 _infoTablePanel.Controls.Add(_startDateLabel);
130 _infoTablePanel.Controls.Add(_startDatePicker);
131 _infoTablePanel.Controls.Add(_endDateLabel);
132 _infoTablePanel.Controls.Add(_endDatePicker);
133 _infoTablePanel.Controls.Add(_statusLabel);
134 _infoTablePanel.Controls.Add(_statusGroupBox);
135
136 _buttonPanel.Controls.Add(_clearButton);
137 _buttonPanel.Controls.Add(_submitButton);
138
139
140 _mainTablePanel.SuspendLayout();
141 _mainTablePanel.Controls.Add(_infoTablePanel);
142 _mainTablePanel.Controls.Add(_buttonPanel);
143
144 this.SuspendLayout();
145 this.Controls.Add(_mainTablePanel);
146 this.Height = WINDOW_HEIGHT;
147 this.Width = WINDOW_WIDTH;
148 this.Text = "Training Form";
149 _infoTablePanel.ResumeLayout();
150 _mainTablePanel.ResumeLayout();
151 this.ResumeLayout();
152 }
153
154 private TrainingVO.TrainingStatus RadioButtonToTrainingStatusEnum(){
155 TrainingVO.TrainingStatus status = TrainingVO.TrainingStatus.Passed;
156 if(_passedRadioButton.Checked){
157 status = TrainingVO.TrainingStatus.Passed;
158 }else{
159 status = TrainingVO.TrainingStatus.Failed;
160 }
161 return status;
162 }
163
164 private void ClearButtonHandler(Object sender, EventArgs e){
165 this.ClearFields();
166 }
167
168 public void ClearFields(){
169 _titleTextBox.Text = String.Empty;
170 _descriptionTextBox.Text = String.Empty;
171 _startDatePicker.Value = DateTime.Now;
172 _endDatePicker.Value = DateTime.Now;
173 _passedRadioButton.Checked = true;
174 }
175
176 private void SetRadioButton(TrainingVO.TrainingStatus status){
177 if(status == TrainingVO.TrainingStatus.Passed){
178 _passedRadioButton.Checked = true;
179 }else{
180 _failedRadioButton.Checked = true;
181 }
182 }
183 } // end class definition

Example 20.36 gives the code for the revised EmployeeTrainingClient class.
20.36 EmployeeTrainingClient.cs (revised)

1 using System;
2 using System.Windows.Forms;
3 using System.Drawing;
4 using System.Drawing.Imaging;
C# For Artists © 2008 Rick Miller — All Rights Reserved 575

The Client Application Chapter 20: Database Access & Multitiered Applications
5 using System.IO;
6 using System.ComponentModel;
7 using System.Collections.Generic;
8 using System.Runtime.Remoting;
9 using System.Runtime.Remoting.Channels;
10 using System.Runtime.Remoting.Channels.Tcp;
11 using EmployeeTraining.VO;
12
13 public class EmployeeTrainingClient : Form {
14
15 // Constants
16 private const int WINDOW_HEIGHT = 500;
17 private const int WINDOW_WIDTH = 900;
18 private const String WINDOW_TITLE = "Employee Training Application";
19 private const bool DEBUG = true;
20
21 // fields
22 private MenuStrip _ms;
23 private ToolStripMenuItem _fileMenu;
24 private ToolStripMenuItem _exitMenuItem;
25 private ToolStripMenuItem _editMenu;
26 private ToolStripMenuItem _createEmployeeMenuItem;
27 private ToolStripMenuItem _createTrainingMenuItem;
28 private ToolStripMenuItem _editEmployeeMenuItem;
29 private ToolStripMenuItem _editTrainingMenuItem;
30 private ToolStripMenuItem _deleteEmployeeMenuItem;
31 private ToolStripMenuItem _deleteTrainingMenuItem;
32 private IEmployeeTraining _employeeTraining = null;
33 private List<EmployeeVO> _employeeList = null;
34 private List<TrainingVO> _trainingList = null;
35 private TableLayoutPanel _tablePanel = null;
36 private DataGridView _employeeGrid = null;
37 private DataGridView _trainingGrid = null;
38 private PictureBox _pictureBox = null;
39 private EmployeeForm _employeeForm;
40 private TrainingForm _trainingForm;
41
42 public EmployeeTrainingClient(IEmployeeTraining employeeTraining){
43 _employeeTraining = employeeTraining;
44 this.InitializeComponent();
45 }
46
47 private void InitializeComponent(){
48 // setup the menus
49 _ms = new MenuStrip();
50
51 _fileMenu = new ToolStripMenuItem("File");
52 _exitMenuItem = new ToolStripMenuItem("Exit", null, new EventHandler(this.ExitProgramHandler));
53
54 _editMenu = new ToolStripMenuItem("Edit");
55 _createEmployeeMenuItem = new ToolStripMenuItem("Create Employee...", null,
56 new EventHandler(this.CreateEmployeeHandler));
57 _createTrainingMenuItem = new ToolStripMenuItem("Create Training...", null,
58 new EventHandler(this.CreateTrainingHandler));
59 _editEmployeeMenuItem = new ToolStripMenuItem("Edit Employee...", null,
60 new EventHandler(this.EditEmployeeHandler));
61 _editEmployeeMenuItem.Enabled = false;
62 _editTrainingMenuItem = new ToolStripMenuItem("Edit Training...", null,
63 new EventHandler(this.EditTrainingHandler));
64 _editTrainingMenuItem.Enabled = false;
65 _deleteEmployeeMenuItem = new ToolStripMenuItem("Delete Employee...", null,
66 new EventHandler(this.DeleteEmployeeHandler));
67 _deleteEmployeeMenuItem.Enabled = false;
68 _deleteTrainingMenuItem = new ToolStripMenuItem("Delete Training...", null,
69 new EventHandler(this.DeleteTrainingHandler));
70 _deleteTrainingMenuItem.Enabled = false;
71
72 _fileMenu.DropDownItems.Add(_exitMenuItem);
73 _ms.Items.Add(_fileMenu);
74
75 _editMenu.DropDownItems.Add(_createEmployeeMenuItem);
76 _editMenu.DropDownItems.Add(_createTrainingMenuItem);
77 _editMenu.DropDownItems.Add("-");
78 _editMenu.DropDownItems.Add(_editEmployeeMenuItem);
79 _editMenu.DropDownItems.Add(_editTrainingMenuItem);
80 _editMenu.DropDownItems.Add("-");
81 _editMenu.DropDownItems.Add(_deleteEmployeeMenuItem);
82 _editMenu.DropDownItems.Add(_deleteTrainingMenuItem);
83 _ms.Items.Add(_editMenu);
84
85 // create the table panel
576 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications The Client Application
86 _tablePanel = new TableLayoutPanel();
87 _tablePanel.RowCount = 2;
88 _tablePanel.ColumnCount = 2;
89 _tablePanel.Anchor = AnchorStyles.Top | AnchorStyles.Bottom | AnchorStyles.Left | AnchorStyles.Right;
90 _tablePanel.Dock = DockStyle.Top;
91 _tablePanel.Height = 400;
92
93 // create and initialize the data grids
94 _employeeGrid = new DataGridView();
95 _employeeGrid.SelectionMode = DataGridViewSelectionMode.FullRowSelect;
96 _employeeGrid.Height = 200;
97 _employeeGrid.Width = 700;
98 _employeeList = _employeeTraining.GetAllEmployees();
99 _employeeGrid.DataSource = _employeeList;
100 _employeeGrid.Anchor = AnchorStyles.Top | AnchorStyles.Bottom | AnchorStyles.Left | AnchorStyles.Right;
101 _employeeGrid.Click += this.EmployeeGridClickedHandler;
102 _employeeGrid.DataBindingComplete += this.EmployeeGridDataBindingCompleteHandler;
103
104 _trainingGrid = new DataGridView();
105 _trainingGrid.SelectionMode = DataGridViewSelectionMode.FullRowSelect;
106 _trainingGrid.Anchor = AnchorStyles.Top | AnchorStyles.Bottom | AnchorStyles.Left | AnchorStyles.Right;
107 _trainingGrid.DataBindingComplete += this.TrainingGridDataBindingCompleteHandler;
108
109
110 _trainingList = _employeeTraining.GetTrainingForEmployee(_employeeList[0].EmployeeID);
111 _trainingGrid.DataSource = _trainingList;
112
113 // create picture box
114 _pictureBox = new PictureBox();
115 _pictureBox.Anchor = AnchorStyles.Top | AnchorStyles.Bottom | AnchorStyles.Left | AnchorStyles.Right;
116
117
118 //add grids to table panel
119 _tablePanel.Controls.Add(_employeeGrid);
120 _tablePanel.Controls.Add(_pictureBox);
121 _tablePanel.Controls.Add(_trainingGrid);
122 _tablePanel.SetColumnSpan(_trainingGrid, 2);
123
124 this.Controls.Add(_tablePanel);
125 _ms.Dock = DockStyle.Top;
126 this.MainMenuStrip = _ms;
127 this.Controls.Add(_ms);
128 this.Height = WINDOW_HEIGHT;
129 this.Width = WINDOW_WIDTH;
130 this.Text = WINDOW_TITLE;
131 _employeeForm = new EmployeeForm(this);
132 _employeeForm.Visible = false;
133 _trainingForm = new TrainingForm(this);
134 _trainingForm.Visible = false;
135 }
136
137 /**
138 Event Handlers
139 ***/
140 private void ExitProgramHandler(Object sender, EventArgs e){
141 Application.Exit();
142 }
143
144 private void CreateEmployeeHandler(Object sender, EventArgs e){
145 _employeeForm.CreateMode = true;
146 _employeeForm.SubmitOK = false;
147 _employeeForm.ClearFields();
148 _employeeForm.ShowDialog();
149 }
150
151 private void CreateTrainingHandler(Object sender, EventArgs e){
152 _trainingForm.CreateMode = true;
153 _trainingForm.ClearFields();
154 _trainingForm.ShowDialog();
155 }
156
157 private void EditEmployeeHandler(Object sender, EventArgs e){
158 _employeeForm.ClearFields();
159 _employeeForm.SubmitOK = true;
160 _employeeForm.CreateMode = false;
161 EmployeeVO vo = _employeeList[_employeeGrid.SelectedRows[0].Index];
162 _employeeForm.FirstName = vo.FirstName;
163 _employeeForm.MiddleName = vo.MiddleName;
164 _employeeForm.LastName = vo.LastName;
165 _employeeForm.Birthday = vo.BirthDay;
166 _employeeForm.Gender = vo.Gender;
C# For Artists © 2008 Rick Miller — All Rights Reserved 577

The Client Application Chapter 20: Database Access & Multitiered Applications
167 MemoryStream ms = new MemoryStream();
168 if(vo.Picture != null) {
169 ms.Write(vo.Picture, 0, vo.Picture.Length);
170 _employeeForm.Picture = new Bitmap(ms);
171 }
172 _employeeForm.ShowDialog();
173 }
174
175 private void EditTrainingHandler(Object sender, EventArgs e){
176 _trainingForm.CreateMode = false;
177 TrainingVO vo = _trainingList[_trainingGrid.SelectedRows[0].Index];
178 _trainingForm.Title = vo.Title;
179 _trainingForm.Description = vo.Description;
180 _trainingForm.StartDate = vo.StartDate;
181 _trainingForm.EndDate = vo.EndDate;
182 _trainingForm.Status = vo.Status;
183 _trainingForm.ShowDialog();
184 }
185
186 private void EmployeeGridClickedHandler(Object sender, EventArgs e){
187 int selected_row = _employeeGrid.SelectedRows[0].Index;
188 byte[] pictureBytes = _employeeList[selected_row].Picture;
189
190 if(pictureBytes != null){
191 MemoryStream ms = new MemoryStream();
192 ms.Write(pictureBytes, 0, pictureBytes.Length);
193 _pictureBox.Image = new Bitmap(ms);
194 } else {
195 _pictureBox.Image = null;
196 }
197 Console.WriteLine(selected_row);
198 Console.WriteLine(_employeeList[selected_row]);
199
200 _trainingGrid.DataSource = null;
201 _trainingList = _employeeTraining.GetTrainingForEmployee(_employeeList[selected_row].EmployeeID);
202 _trainingGrid.DataSource = _trainingList;
203 if(_trainingList.Count > 0){
204 _trainingGrid.Rows[0].Selected = true;
205 _editTrainingMenuItem.Enabled = true;
206 _deleteTrainingMenuItem.Enabled = true;
207 } else {
208 _editTrainingMenuItem.Enabled = false;
209 _deleteTrainingMenuItem.Enabled = false;
210 }
211
212 if(DEBUG){
213 foreach(EmployeeVO emp in _employeeList){
214 Console.WriteLine(emp.FirstName + " " + emp.LastName);
215 }
216 }
217 }
218
219 private void EmployeeGridDataBindingCompleteHandler(Object sender, EventArgs e){
220 _employeeGrid.Columns["Picture"].Visible = false;
221 _employeeGrid.Columns["FullName"].Visible = false;
222 _employeeGrid.Columns["FullNameAndAge"].Visible = false;
223 _employeeGrid.Columns["Age"].ReadOnly = true;
224 _employeeGrid.Columns["Age"].ToolTipText = "Read Only!";
225 _employeeGrid.Columns["EmployeeID"].Visible = false;
226 if(_employeeList.Count > 0){
227 _employeeGrid.Rows[0].Selected = true;
228 this.EmployeeGridClickedHandler(this, new EventArgs());
229 _editEmployeeMenuItem.Enabled = true;
230 _deleteEmployeeMenuItem.Enabled = true;
231 }
232 }
233
234 private void TrainingGridDataBindingCompleteHandler(Object sender, EventArgs e){
235 _trainingGrid.Columns["TrainingID"].Visible = false;
236 _trainingGrid.Columns["EmployeeID"].Visible = false;
237 if(_trainingList.Count > 0){
238 _trainingGrid.Rows[0].Selected = true;
239 _editTrainingMenuItem.Enabled = true;
240 _deleteTrainingMenuItem.Enabled = true;
241 }
242 }
243
244 public void EmployeeSubmitButtonHandler(Object sender, EventArgs e){
245 if(_employeeForm.CreateMode){ // creating new employee
246 EmployeeVO vo = new EmployeeVO();
247 vo.FirstName = _employeeForm.FirstName;
578 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications The Client Application
248 vo.MiddleName = _employeeForm.MiddleName;
249 vo.LastName = _employeeForm.LastName;
250 vo.BirthDay = _employeeForm.Birthday;
251 MemoryStream ms = new MemoryStream();
252 _employeeForm.Picture.Save(ms, ImageFormat.Tiff);
253 vo.Picture = ms.ToArray();
254 vo.Gender = _employeeForm.Gender;
255 _employeeTraining.CreateEmployee(vo);
256 _employeeForm.Visible = false;
257 _employeeList = _employeeTraining.GetAllEmployees();
258 _employeeGrid.DataSource = _employeeList;
259 _employeeForm.ClearFields();
260 }else{ // editing new employee
261 EmployeeVO vo = _employeeList[_employeeGrid.SelectedRows[0].Index];
262 vo.FirstName = _employeeForm.FirstName;
263 vo.MiddleName = _employeeForm.MiddleName;
264 vo.LastName = _employeeForm.LastName;
265 vo.BirthDay = _employeeForm.Birthday;
266 MemoryStream ms = new MemoryStream();
267 _employeeForm.Picture.Save(ms, ImageFormat.Tiff);
268 vo.Picture = ms.ToArray();
269 vo.Gender = _employeeForm.Gender;
270 _employeeTraining.UpdateEmployee(vo);
271 _employeeForm.Visible = false;
272 _employeeList = _employeeTraining.GetAllEmployees();
273 _employeeGrid.DataSource = _employeeList;
274 _employeeForm.ClearFields();
275
276 }
277 }
278
279 public void TrainingSubmitButtonHandler(Object sender, EventArgs e){
280 if(_trainingForm.CreateMode){
281 TrainingVO vo = new TrainingVO();
282 int selected_row = _employeeGrid.SelectedRows[0].Index;
283 vo.EmployeeID = _employeeList[selected_row].EmployeeID;
284 vo.Title = _trainingForm.Title;
285 vo.Description = _trainingForm.Description;
286 vo.StartDate = _trainingForm.StartDate;
287 vo.EndDate = _trainingForm.EndDate;
288 vo.Status = _trainingForm.Status;
289 _employeeTraining.CreateTraining(vo);
290 _trainingGrid.DataSource = null;
291 _trainingGrid.DataSource = _employeeTraining.GetTrainingForEmployee(vo.EmployeeID);
292 _trainingForm.Visible = false;
293 _trainingForm.ClearFields();
294 }else {
295 TrainingVO vo = _trainingList[_trainingGrid.Rows[0].Index];
296 vo.Title = _trainingForm.Title;
297 vo.Description = _trainingForm.Description;
298 vo.StartDate = _trainingForm.StartDate;
299 vo.EndDate = _trainingForm.EndDate;
300 vo.Status = _trainingForm.Status;
301 _employeeTraining.UpdateTraining(vo);
302 _trainingGrid.DataSource = null;
303 _trainingGrid.DataSource = _employeeTraining.GetTrainingForEmployee(vo.EmployeeID);
304 _trainingForm.Visible = false;
305 _trainingForm.ClearFields();
306 }
307 }
308
309 private void DeleteEmployeeHandler(Object sender, EventArgs e){
310 DialogResult result = MessageBox.Show("Are you sure? Click OK to delete, “ +
311 “or Cancel to return to the application.",
312 "Warning!", MessageBoxButtons.OKCancel, MessageBoxIcon.Warning);
313 if(result == DialogResult.OK){
314 int selected_row = _employeeGrid.SelectedRows[0].Index;
315 _employeeTraining.DeleteEmployee(_employeeList[selected_row].EmployeeID);
316 _employeeGrid.DataSource = null;
317 _employeeList = _employeeTraining.GetAllEmployees();
318 _employeeGrid.DataSource = _employeeList;
319 if(_employeeList.Count > 0){
320 _employeeGrid.Rows[0].Selected = true;
321 this.EmployeeGridClickedHandler(this, new EventArgs());
322 _editEmployeeMenuItem.Enabled = true;
323 _deleteEmployeeMenuItem.Enabled = true;
324 }
325 }
326 }
327
328 private void DeleteTrainingHandler(Object sender, EventArgs e){
C# For Artists © 2008 Rick Miller — All Rights Reserved 579

The Client Application Chapter 20: Database Access & Multitiered Applications
329 DialogResult result = MessageBox.Show("Are you sure? Click OK to delete, “ +
330 “or Cancel to return to the application.",
331 "Warning!", MessageBoxButtons.OKCancel, MessageBoxIcon.Warning);
332 if(result == DialogResult.OK){
333 int selected_row = _trainingGrid.SelectedRows[0].Index;
334 _employeeTraining.DeleteTraining(_trainingList[selected_row].TrainingID);
335 _trainingGrid.DataSource = null;
336 int selected_employee = _employeeGrid.SelectedRows[0].Index;
337 _trainingList =
338 _employeeTraining.GetTrainingForEmployee(_employeeList[selected_employee].EmployeeID);
339 _trainingGrid.DataSource = _trainingList;
340 if(_trainingList.Count > 0){
341 _trainingGrid.Rows[0].Selected = true;
342 _editTrainingMenuItem.Enabled = true;
343 _deleteTrainingMenuItem.Enabled = true;
344 }
345 }
346 }
347
348 public static void Main(){
349 try {
350 RemotingConfiguration.Configure("EmployeeTrainingClient.exe.config", false);
351 WellKnownClientTypeEntry[] client_types = RemotingConfiguration.GetRegisteredWellKnownClientTypes();
352 IEmployeeTraining employee_training =
353 (IEmployeeTraining)Activator.GetObject(typeof(IEmployeeTraining), client_types[0].ObjectUrl);
354 EmployeeTrainingClient client = new EmployeeTrainingClient(employee_training);
355 Application.Run(client);
356 }catch(Exception e){
357 Console.WriteLine(e);
358 }
359 }
360 } // end class definition

Referring to Example 20.36 — well, there’s a lot going on here but it should be easy to follow the code. First,

I’ve moved the declarations for the menu and its menu items into the fields area so I can have access to menu items

when I need to manipulate them. “What will I be doing?” you ask. Well, for one thing, I want to disable the “Edit

Employee...” and “Delete Employee...” menu choices when there are no employees to edit or delete. I also want to do

the same for the “Edit Training...” and “Delete Training...” menu choices.

I would like to focus your attention on a few areas of the code worth special mention. First, before I can hide any

columns, I must wait until the DataGridView controls have been properly data bound. Data binding takes place when

I assign a data source to a DataGridView’s DataSource property. When data binding is complete the control fires the

DataBindingComplete event. The column-hiding code for the _employeeGrid is placed in the EmployeeGridDataB-

indingCompleteHandler() method, which begins on line 219. To get an employee’s picture to load into the

_pictureBox and their associated training records to display in the _trainingGrid, I make an explicit call to the

EmployeeGridClickedHandler() method on line 228.

The _trainingGrid.DataBindingComplete event is handled by the TrainingGridDataBindingCompleteHandler()

method which begins on line 234. I place the column-hiding code for the _trainingGrid in this method.

Compiling And Running The Modified EmployeeTrainingClient Project

I placed the EmployeeForm.cs and TrainingForm.cs files in the project’s app directory. To compile these files

along with the EmployeeTrainingClient.cs file, I need to make a minor change to the EmployeeTrainingClient.proj

file. Example 20.37 gives the modified project file.
20.37 EmployeeTrainingClient.proj (modified)

1 <Project DefaultTargets="Run"
2 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
3
4 <PropertyGroup>
5 <IncludeDebugInformation>false</IncludeDebugInformation>
6 <BuildDir>build</BuildDir>
7 <AppDir>app</AppDir>
8 <RefDir>ref</RefDir>
9 <ConfigDir>config</ConfigDir>
10 </PropertyGroup>
11
12 <ItemGroup>
13
14 <APP Include="app***.cs" />
15 <REF Include="ref***.dll" />
16 <CONFIG Include="config***.config" />
17 <EXE Include="app***.exe" />
580 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications The Client Application
18 </ItemGroup>
19
20 <Target Name="MakeDirs">
21 <MakeDir Directories="$(BuildDir)" />
22 </Target>
23
24 <Target Name="RemoveDirs">
25 <RemoveDir Directories="$(BuildDir)" />
26 </Target>
27
28 <Target Name="Clean"
29 DependsOnTargets="RemoveDirs;MakeDirs">
30 </Target>
31
32 <Target Name="CopyFiles">
33 <Copy
34 SourceFiles="@(CONFIG);@(REF)"
35 DestinationFolder="$(BuildDir)" />
36 </Target>
37
38 <Target Name="CompileApp"
39 Inputs="@(APP)"
40 Outputs="$(BuildDir)\$(MSBuildProjectName).exe"
41 DependsOnTargets="Clean">
42 <Csc Sources="@(APP)"
43 TargetType="exe"
44 References="@(REF)"
45 OutputAssembly="$(BuildDir)\$(MSBuildProjectName).exe">
46 </Csc>
47 </Target>
48
49 <Target Name="Run"
50 DependsOnTargets="CompileApp;CopyFiles">
51 <Exec Command="$(MSBuildProjectName).exe"
52 WorkingDirectory="$(BuildDir)" />
53 </Target>
54 </Project>

Referring to Example 20.37 — the change appears on line 14 where I’ve specified the <APP> item to include all

the source files found in the project’s app folder.

To compile and run the EmployeeTrainingClient project, make sure the server is up and running, change to the

EmployeeTrainingClient project directory, and enter the following command-line command:

msbuild
This executes the default build target. If all goes well you’ll see the application window appear. Figure 20-56

shows the main application window with the Edit menu extended to show the new menu items.

Figure 20-57 shows how the Edit menu looks when some of the menu items are disabled.

Referring to Figure 20-57 — Bill Hicks has no training so the “Edit Training...” and “Delete Training...” menu

items are disabled.

To create a new employee select Edit->Create Employee... to open the employee form, as is shown in Figure 20-

58. Referring to Figure 20-58 — the employee form is cleared when creating a new employee and its Submit button

is disabled. To enable the Submit button you need to load a picture. Figure 20-59 shows how the employee form looks

fully populated. Figure 20-60 shows how the training form looks empty and fully populated.

Figure 20-56: Main Application Window with Edit Menu Open to Reveal Revised Menu Structure
C# For A
rtists © 2008 Rick Miller — All Rights Reserved 581

The Client Application Chapter 20: Database Access & Multitiered Applications
Where To Go From Here

The DataGridView control is extremely powerful and in the EmployeeTrainingClient application I don’t come

close to tapping its full potential. So, for starters, I recommend you explore its capabilities further by spending some

time on MSDN and researching its members. For example, it’s not necessary to have separate data entry forms to

enter and edit employee and training data. You can create new DataGridView rows programmatically and edits made

to data contained therein are reflected in the bound data source. I’ve put some code in the EmployeeTrainingClient

application that shows how the EmployeeVO objects contained in the _employeeList are changed automatically

when you edit an _employeeGrid column. (See Example 20.36 lines 212 - 216)

Figure 20-57: Edit Menu Items Disabled

Figure 20-58: Empty Employee Data Entry Form

Figure 20-59: Employee Form Fully Populate and Submit Button Enabled
582
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications Summary
Regarding the database side of things, although I covered a lot of ground, I omitted topics such as normal forms

and mapping tables. I’ll leave you to explore these and other database topics on your own. Having seen the employee

training project developed from start to finish should have filled your head with so many ideas that they are falling out

of your ears!

Summary

Relational databases hold data in tables. Table columns are specified to be of a particular data type. Table data is

contained in rows. Structured Query Language (SQL) is used to create, manipulate, and delete relational database

objects and data. SQL contains three sub-languages: Data Definition Language (DDL) which is used to create data-

bases, tables, views, and other database objects; Data Manipulation Language (DML) which is used to create, manip-

ulate, and delete the data contained within a database; and Data Control Language (DCL) which is used to grant or

revoke user rights and privileges on database objects.

Different database makers are free to extend SQL to suit their needs so there’s no guarantee of SQL portability

between different databases.

One or more table columns can be designated as a primary key whose value is unique for each row inserted into

that table. Related tables can be created by including the primary key of one table as a foreign key in the related table.

The select command can be used to construct complex queries involving multiple related tables. One table is

joined to another to form a temporary table. There are many different types of join operations, but the most common

one is an inner join, which is the default join condition provided by Microsoft SQL Server.

Inner joins are made possible through the use of foreign keys. A foreign key is a column in a table that contains a

value that is used as a primary key in another table. A table can be related to many other tables by including multiple

foreign keys. Specify a foreign key by adding a foreign key constraint to a particular table using the alter command.

Use database scripts to ease database development. Scripts that create the database, tables, constraints, and test

data let you work at the speed of light.

Approach the design and implementation of complex database applications in an iterative fashion. Structure the

design of your application in such a way as to make changing the application as painless as possible. A tiered

approach to application design allows you to quickly identify and correct problems or make application modifications

when you realize your design needs to be changed.

Transfer complex data types as byte arrays (byte[]) and convert them into the appropriate type at the other end.

Skill-Building Exercises

1. Programming Drill: Compile and execute the sixth iteration version of the employee training application pre-

sented in this chapter.

Figure 20-60: Training Form Empty and Filled
C# Fo
r Artists © 2008 Rick Miller — All Rights Reserved 583

Suggested Projects Chapter 20: Database Access & Multitiered Applications
2. UML Documentation Drill: Create a UML sequence diagram that traces the execution of method calls starting

from the EmployeeTrainingServerRemoteObject.

3. API Research: Visit Microsoft’s Patterns and Practices developer center and research the Enterprise Library Data

Access Application Block. (DAAB). [http://www.codeplex.com/entlib]

4. Relational Database Design: Procure a good book on relational database design theory and practice and read it

from front to back.

5. Normal Forms: Relational database designers use the concept of normal forms to help guide their design deci-

sions. Study the topic of normal forms paying particular attention to the differences between 1st, 2nd, and 3rd nor-

mal forms. Also, do some research on when it’s sometimes a good idea to denormalize a database.

6. Relational Relationships: When associating relational database tables you can have 1-to-N (a.k.a. 1-to-Many), N-

to-1 (a.k.a. Many-to-1), and N-to-N (a.k.a. Many-to-Many). Research each of these table relationship types so you

have an understanding of when and why each should be used.

Suggested Projects

1. Program Modification: Modify the Employee Training application so that it can store and display an employee’s

address and contact information. Enable the application to associate one or more employee’s with one or more

addresses. (Hint: N-to-N) Enable the application to associate each employee with one or more contact numbers,

email addresses, etc. (Hint: 1-to-N)

2. Program Modification: Currently, in the Employee Training application, due to the 1-to-N relationship between

the tbl_employee and tbl_employee_training table, if more than one employee takes the same class there’s a lot of

repetitive data stored in the database. This can lead to a loss of data integrity, especially if a user enters the title or

description training data differently for different employees who attended the same training. Modify the applica-

tion so that training class data is entered into the database only once. Enable users to select from a list of available

training when entering an employee’s training information. (Hint: This will require an N-to-N relationship between

an employee and a training record. In between there will be a linking table which contains the start date and end

date, status, and any other occurrence-specific data.)

3. Sex Offender Database: Design and build an application that let’s you register and track sex offenders. Some

ideas for data you might want to maintain include name, addresses, aliases, behavior practices, and employment.

4. Non-Profit Fund Raising Tracker Application: Design and build an application that lets you record and track the

contributions made to a non-profit organization. The database should record donor information including address

and contact information, and amounts donated and when.

Self-Test Questions

1. In what type of structure do relational databases store data.

2. What’s the purpose of a primary key?

3. What’s the purpose of a foreign key?

4. What are the names of SQL’s three sublanguages? What’s the purpose of each sublanguage?
584 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 20: Database Access & Multitiered Applications References
5. (T/F) All database makers implement SQL the exact same way.

6. What’s the purpose of the Data Access Object (DAO) application layer?

7. What’s the purpose of the Business Object (BO) application layer?

8. What’s the purpose of a Value Object (VO).

9. Into what data structure should you convert complex data types before serializing them and transferring then over

the network?

10. How should you approach the design and implementation of a complex, multitiered application?

References

Microsoft Patterns and Practices Developer Center. [http://www.codeplex.com/entlib]

Microsoft Developer Network (MSDN) .NET Framework 3.0 and3.5 Reference Documentation

[www.msdn.com]

Candace C. Fleming & Barbara von Halle. Handbook of Relational Database Design, Addison-Wesley Profes-

sional, 1989, ISBN: 0-201-11434-8

Notes
C# For Artists © 2008 Rick Miller — All Rights Reserved 585

http://www.msdn.com

Notes Chapter 20: Database Access & Multitiered Applications
586 © 2008 Rick Miller — All Rights Reserved C# For Artists

Part V: Advanced Concepts
C# For Artists © 2008 Rick Miller — All Rights Reserved 587

588 © 2008 Rick Miller — All Rights Reserved C# For Artists

21 Operator Overloading

Learning Objectives
• State the purpose of operator overloading

• List the overloadable operators

• State why it is important to preserve expected operator semantics

• List the operators that must be overloaded in pairs

• State the requirements for overloading unary operators

• Implement the true and false operators

• State the requirements for overloading binary operators

• Implement explicit type conversion operators

• State which operators you get for free when you overload the binary arithmetic operators

• Demonstrate your ability to overload C# operators

Chapter 21

Operator Overloading
Picnic At The Washington Canoe Club

C
o
n
ta

x
 T

 /
 K

o
d
ak

 T
ri

-X

C#
 For Artists © 2008 Rick Miller — All Rights Reserved 589

Introduction Chapter 21: Operator Overloading
Introduction

C# allows you to add meaning to certain language operators so they behave in expected ways when applied to

user-defined types. Adding meaning to operators in this fashion is referred to as operator overloading.

You have already seen many examples of operator overloading in action. Consider for a moment the equality

operator ==. It’s overloaded to operate on a wide range of value types: int == int, float == float, double == float, int

== short, etc. You can overload the equality operator so that it can be used to compare your user-defined types with

practically any other type of object.

Overloaded operators provide an elegant way to manipulate user-defined types. The decision regarding which

operators should be overloaded to manipulate a particular class of objects is a function of your design. This chapter

will help you understand how to overload C# operators and show you when it is appropriate to overload the different

types of operators in the context of your design.

Although I will list all of the operators that can be overloaded in C#, I will not show you an example of how to

overload every single operator. Many operators can be grouped together, like the binary arithmetic operators. Know-

ing how to overload one in the group leads to an understanding of how to overload the others. Most of the operators

can be treated in this fashion.

When you get the hang of operator overloading and get used to thinking of when and how to incorporate over-
loaded operators in your class design, you will miss not being able to overload operators when programming in a lan-
guage like Java. Overloaded operators, used in the right context, lead to cleaner, easier to read and understand code.

Operator Overloading

The C# language allows you to overload certain operators so that you can apply operator semantics to your user-

defined types. Overloading an operator is simply the act of expanding the scope of the operator’s defined behaviors so

that the C# compiler understands how to apply the operator to your user-defined types. This gives you the ability to

more naturally manipulate user-defined type objects in the context of your programs.

Now, you do not want, nor do you need, to overload operators just because you can. You must consider, as part of

the design process, how you want your user-defined types to behave in a program. If overloading a particular operator

facilitates the more natural manipulation of a user-defined type then doing so is a good design decision. You must also

strive to preserve the spirit of the operator’s intended semantics and guard against implementing unnatural behavior.

This is easy to do if you stop for a moment to consider how a particular operator behaves when applied to C#’s pre-

defined value or reference types.

Overloadable Operators

Table 21-1 lists the operators that can be overloaded in C#.

Operator Type Operators Notes

Unary +,-,!,~,++,--,true, false true and false must be overloaded in pairs.

Binary +,-,*,/,%,&,|,^,<<,>>

Comparison ==, !=, <,>,<=, >= Must be overloaded in pairs.

Implicit cast implicit†

Explicit cast explicit†

† implicit and explicit are not operators. They are keywords used to declare implicit and explicit conversion operators

Table 21-1: Overloadable Operators
590 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 21: Operator Overloading Overloading Unary Operators
Referring to Table 21-1 — the comparison operators must be overloaded in pairs as do the true and false

operators. This means that if you overload the == operator you must overload the != operator as well. The keywords

implicit and explicit, while not operators, are used to declare implicit and explicit cast operators.

Quick Review

Operator overloading allows you to more naturally manipulate user-defined type objects. As part of the design

process, you must consider how you want your user-defined type objects to behave in a program. If overloading a par-

ticular operator facilitates the more natural manipulation of a user-defined type object then doing so is a good design

decision. You must also strive to preserve the spirit of the operator’s intended semantics and guard against imple-

menting unnatural behavior.

Overloading Unary Operators

Unary operators operate on one argument. The general method signature for an overloaded unary operator is

shown in Figure 21-1.

Referring to Figure 21-1 — overloaded operator methods are declared to be public and static and have a return

type of the type in which they appear. In this particular example, the type name is MyType and the operator being

overloaded is the unary + operator.

If you are overloading a logical operator the return type will be of type bool, as is shown in Figure 21-2.

+,- Operators

The unary + operator, when applied to numeric types, returns the value of the operand. The unary - operator,

when applied to numeric types, returns the numeric negation of the operand. How might these two operators be over-

loaded in the context of a user-defined type? Example 21.1 gives the code for a class named MyType, which includes

both the overloaded + and - unary operators.
21.1 MyType.cs

1 using System;
2
3 public class MyType {
4 private int _intField;
5
6 public int IntField {
7 get { return _intField; }
8 set { _intField = value; }
9 }
10
11 public MyType():this(5){ }
12
13 public MyType(int intField){
14 _intField = intField;
15 }
16
17 public static MyType operator +(MyType mt){
18 mt.IntField = (+mt.IntField);

public static MyType operator + (MyType mt)

Figure 21-1: Method Signature for Overloaded Unary Operator

public static bool operator ! (MyType mt)

Figure 21-2: Method Signature for Overloaded Unary Logical Operator
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 591

Overloading Unary Operators Chapter 21: Operator Overloading
19 return mt;
20 }
21
22 public static MyType operator -(MyType mt){
23 mt.IntField = (-mt.IntField);
24 return mt;
25 }
26 } // end class definition

Referring to Example 21.1 — the class MyType has one private field named _intField and one public property

named IntField. It has a default constructor which sets the value of _intField to 5. Its second constructor sets the value

of _intField to the value supplied via the constructor parameter. On line 17 the unary + operator is overloaded to work

on objects of MyType. On line 18, the + operator is applied to the mt parameter’s IntField property. Finally, on line

19, the mt parameter is returned.

The unary - operator is overloaded beginning on line 22. It looks exactly the same as the previous method,

except that the unary - operator is applied to the mt parameter’s IntField property.

Example 21.2 gives the code for a short application named MainApp that tests these newly overloaded operators.
21.2 MainApp.cs (+ and - operators)

1 using System;
2
3 public class MainApp {
4 public static void Main(){
5 MyType mt = new MyType();
6 Console.WriteLine(mt.IntField);
7 MyType mt2 = new MyType(-5);
8 Console.WriteLine(mt2.IntField);
9 mt2 = +mt2;
10 Console.WriteLine(mt2.IntField);
11 mt = -mt;
12 mt2 = -mt2;
13 Console.WriteLine(mt.IntField);
14 Console.WriteLine(mt2.IntField);
15 }
16 }

Referring to Example 21.2 — this short program creates two instances of MyType and initializes references mt

and mt2. The value of mt.IntField is 5 (the default value), and the value of mt2.IntField is -5. The unary + and - oper-

ators are then applied to each of the objects and the results are printed to the console. Figure 21-3 shows the results of

running this program.

! Operator

The unary negation operator ! is a logical operator that negates its operand. The overloaded ! operator returns a

boolean value. Example 21.3 shows how this operator might be overloaded in the context of MyType.
21.3 MyType.cs (! operator)

1 using System;
2
3 public class MyType {
4 private int _intField;
5
6 public int IntField {
7 get { return _intField; }
8 set { _intField = value; }
9 }
10
11 public MyType():this(5){ }
12
13 public MyType(int intField){
14 _intField = intField;

Figure 21-3: Results of Running Example 21.2
592
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 21: Operator Overloading Overloading Unary Operators
15 }
16
17 public static MyType operator +(MyType mt){
18 mt.IntField = (+mt.IntField);
19 return mt;
20 }
21
22 public static MyType operator -(MyType mt){
23 mt.IntField = (-mt.IntField);
24 return mt;
25 }
26
27 public static bool operator !(MyType mt){
28 bool retVal = true;
29 if(mt.IntField >= 0){
30 retVal = false;
31 }
32 return retVal;
33 }
34 } // end class definition

Referring to Example 21.3 — the overloaded ! operator begins on line 27. The method returns true if the value

of IntField is <= 0 and false otherwise. Example 21.4 shows the negation operator in action.
21.4 MainApp.cs

1 using System;
2
3 public class MainApp {
4 public static void Main(){
5 MyType mt = new MyType();
6 Console.WriteLine(mt.IntField);
7 mt = -mt;
8 Console.WriteLine(mt.IntField);
9 if(!mt){
10 Console.WriteLine(mt.IntField);
11 }
12 }
13 }

Referring to Example 21.4 — the ! operator is applied to the mt reference on line 9. The results of running this

short program are shown in Figure 21-4.

true, false Operators

The true and false operators must be overloaded in pairs. Overload these operators if you want to use your

user defined type objects in conditional expressions. Example 21.5 gives the code for the modified MyType class with

the overloaded true and false operators.
21.5 MyType.cs (true & false operators)

1 using System;
2
3 public class MyType {
4 private int _intField;
5
6 public int IntField {
7 get { return _intField; }
8 set { _intField = value; }
9 }
10
11 public MyType():this(5){
12 }
13
14 public MyType(int intField){
15 _intField = intField;
16 }
17

Figure 21-4: Results of Running Example 21.4
C#
 For Artists © 2008 Rick Miller — All Rights Reserved 593

Overloading Unary Operators Chapter 21: Operator Overloading
18 public static MyType operator +(MyType mt){
19 mt.IntField = (+mt.IntField);
20 return mt;
21 }
22
23 public static MyType operator -(MyType mt){
24 mt.IntField = (-mt.IntField);
25 return mt;
26 }
27
28 public static bool operator ! (MyType mt){
29 bool retVal = true;
30 if(mt.IntField >= 0){
31 retVal = false;
32 }
33 return retVal;
34 }
35
36 public static bool operator true(MyType mt){
37 bool retVal = true;
38 if(mt.IntField <= 0){
39 retVal = false;
40 }
41 return retVal;
42 }
43
44 public static bool operator false(MyType mt){
45 bool retVal = false;
46 if(mt.IntField > 0){
47 retVal = true;
48 }
49 return retVal;
50 }
51 } // end class definition

Referring to Example 21.5 — the overloaded true operator starts on line 36. It returns true if the value of

IntField is greater than 0 and false otherwise. The overloaded false operator, which starts on line 44, behaves in the

opposite fashion. Example 21.6 shows these two operators in action.
21.6 MainApp.cs

1 using System;
2
3 public class MainApp {
4 public static void Main(){
5 MyType mt = new MyType();
6 Console.WriteLine(mt.IntField);
7 if(mt){
8 Console.WriteLine("if statement evaluated to true. Value of IntField = " + mt.IntField);
9 }else{
10 Console.WriteLine("if statement evaluated to false. Value of IntField = " + mt.IntField);
11 }
12 mt = -mt;
13 if(mt){
14 Console.WriteLine("if statement evaluated to true. Value of IntField = " + mt.IntField);
15 }else{
16 Console.WriteLine("if statement evaluated to false. Value of IntField = " + mt.IntField);
17 }
18 }
19 }

Referring to Example 21.6 — this program creates an instance of MyType with a default IntField value of 5. The

first if statement on line 7 will evaluate to true. On line 12, I negate the value of IntField with the overloaded -

operator. The second if statement evaluates to false. Figure 21-5 shows the results of running this program.

Figure 21-5: Results of Running Example 21.6
59
4 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 21: Operator Overloading Overloading Unary Operators
It seems, though, that since I have overloaded the ! operator I can eliminate the repetitive code contained within

the overloaded true and false operators. Example 21.7 offers an alternative implementation of the true and

false operators coded with the help of the overloaded ! operator.
21.7 MyType.cs (alternative true & false operator implementation)

1 using System;
2
3 public class MyType {
4 private int _intField;
5
6 public int IntField {
7 get { return _intField; }
8 set { _intField = value; }
9 }
10
11 public MyType():this(5){
12 }
13
14 public MyType(int intField){
15 _intField = intField;
16 }
17
18 public static MyType operator +(MyType mt){
19 mt.IntField = (+mt.IntField);
20 return mt;
21 }
22
23 public static MyType operator -(MyType mt){
24 mt.IntField = (-mt.IntField);
25 return mt;
26 }
27
28 public static bool operator ! (MyType mt){
29 bool retVal = true;
30 if(mt.IntField >= 0){
31 retVal = false;
32 }
33 return retVal;
34 }
35
36 public static bool operator true(MyType mt){
37 return !mt;
38 }
39
40 public static bool operator false(MyType mt){
41 return !mt;
42 }
43 } // end class definition

Referring to Example 21.7 — the overloaded true and false operators have been implemented with the help

of the overloaded ! operator. I’ll leave it as an exercise for you to validate that this code behaves as expected.

++ --, Operators

The unary increment and decrement operators do not need to be overloaded in pairs, but if you do one you may

as well do the other. Example 21.8 gives the modified MyType class showing how to overload these two operators.
21.8 MyType.cs (++ & -- operators)

1 using System;
2
3 public class MyType {
4 private int _intField;
5
6 public int IntField {
7 get { return _intField; }
8 set { _intField = value; }
9 }
10
11 public MyType():this(5){
12 }
13
14 public MyType(int intField){
15 _intField = intField;
16 }
17
18 public static MyType operator +(MyType mt){
19 mt.IntField = (+mt.IntField);
20 return mt;
C# For Artists © 2008 Rick Miller — All Rights Reserved 595

Overloading Unary Operators Chapter 21: Operator Overloading
21 }
22
23 public static MyType operator -(MyType mt){
24 mt.IntField = (-mt.IntField);
25 return mt;
26 }
27
28 public static bool operator ! (MyType mt){
29 bool retVal = true;
30 if(mt.IntField >= 0){
31 retVal = false;
32 }
33 return retVal;
34 }
35
36 public static bool operator true(MyType mt){
37 return !mt;
38 }
39
40 public static bool operator false(MyType mt){
41 return !mt;
42 }
43
44 public static MyType operator ++(MyType mt){
45 MyType result = new MyType(mt.IntField);
46 ++result.IntField;
47 return result;
48 }
49
50 public static MyType operator --(MyType mt){
51 MyType result = new MyType(mt.IntField);
52 --result.IntField;
53 return result;
54 }
55
56 public override String ToString(){
57 return IntField.ToString();
58 }
59 } // end class definition

Referring to Example 21.8 — the overloaded ++ and -- operators first create a new instance of MyType named

result passing into the constructor the value of lhs.IntField. The result.IntField is incremented or decremented as

required and the new reference returned. Note that I have also overridden the ToString() method to allow more natural

use of MyType objects in the Console.WriteLine() method. Example 21.9 shows these overloaded operators in action.
21.9 MainApp.cs

1 using System;
2
3 public class MainApp {
4 public static void Main(){
5 MyType mt = new MyType();
6 Console.WriteLine(mt);
7 Console.WriteLine(mt++);
8 Console.WriteLine(++mt);
9 Console.WriteLine(--mt);
10 Console.WriteLine(mt--);
11 }
12 }

Figure 21-6 shows the results of running this program.

Referring to Figure 21-6 — it looks like everything works fine. The semantics of the pre- and postfix increment

and decrement operators have been preserved. By this I mean that when the ++ operator is applied in prefix fashion

(i.e., ++mt) the value of mt.IntField is incremented and then used in the expression. When applied in postfix fashion

(i.e., mt++) the value of mt.IntField is used in the expression and then incremented. The same holds true for the dec-

rement operator.

Figure 21-6: Results of Running Example 21.9
5
96 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 21: Operator Overloading Overloading Binary Operators
Quick Review

Unary operators operate on one operand. Overloaded operator methods are declared to be public and static and

have a return type of the type in which they appear. If you are overloading a logical operator the return type will be of

type bool. You can overload the true and false operators with the help of the negation operator. When overload-

ing the increment and decrement operator be sure to create and return a new instance of your type.

Overloading Binary Operators

Binary operators take two operands, a left-hand side and a right-hand side. The signature will differ depending on

what other types you want your user-defined types to play nicely with. The signature for an overloaded binary + oper-

ator that works on two objects of type MyType is shown in Figure 21-7.

Figure 21-8 shows the signature of the same overloaded operator that works on objects of MyType and integer.

+, - Operators

When overloading the + and - operators for arithmetic types you must preserve the expected operator semantics.

Example 21.10 shows how the + and - operators would be overloaded for the MyType class.
21.10 MyType.cs (+ and - operators)

1 using System;
2
3 public class MyType {
4 private int _intField;
5
6 public int IntField {
7 get { return _intField; }
8 set { _intField = value; }
9 }
10
11 public MyType():this(5){
12 }
13
14 public MyType(int intField){
15 _intField = intField;
16 }
17
18 public static MyType operator +(MyType mt){
19 mt.IntField = (+mt.IntField);
20 return mt;
21 }
22
23 public static MyType operator -(MyType mt){
24 mt.IntField = (-mt.IntField);
25 return mt;
26 }
27
28 public static bool operator ! (MyType mt){
29 bool retVal = true;
30 if(mt.IntField >= 0){
31 retVal = false;
32 }

public static MyType operator +(MyType lhs, MyType rhs)

Figure 21-7: Overloaded Binary + Operator Signature that Operates on Two Objects of Type MyType

public static MyType operator +(MyType lhs, int rhs)

Figure 21-8: Overloaded Binary + Operator Signature that Operates on Objects of MyType and Integer
C# For
 A
rtists © 2008 Rick Miller — All Rights Reserved 597

Overloading Binary Operators Chapter 21: Operator Overloading
33 return retVal;
34 }
35
36 public static bool operator true(MyType mt){
37 return !mt;
38 }
39
40 public static bool operator false(MyType mt){
41 return !mt;
42 }
43
44 public static MyType operator ++ (MyType mt){
45 MyType result = new MyType(mt.IntField);
46 ++result.IntField;
47 return result;
48 }
49
50 public static MyType operator -- (MyType mt){
51 MyType result = new MyType(mt.IntField);
52 --result.IntField;
53 return result;
54 }
55
56 public static MyType operator +(MyType lhs, MyType rhs){
57 MyType result = new MyType(lhs.IntField);
58 result.IntField += rhs.IntField;
59 return result;
60
61 }
62
63 public static MyType operator -(MyType lhs, MyType rhs){
64 MyType result = new MyType(lhs.IntField);
65 result.IntField -= rhs.IntField;
66 return result;
67 }
68
69 public static MyType operator +(MyType lhs, int rhs){
70 MyType result = new MyType(lhs.IntField);
71 result.IntField += rhs;
72 return result;
73 }
74
75 public static MyType operator -(MyType lhs, int rhs){
76 MyType result = new MyType(lhs.IntField);
77 result.IntField -= rhs;
78 return result;
79 }
80
81 public override String ToString(){
82 return IntField.ToString();
83 }
84 } // end class definition

Referring to Example 21.10 — I have overloaded the + and - operators twice: once to work on two objects of

MyType and again to work on an object of MyType and an integer. Note how in each of the methods I first create a

new instance of MyType, passing into its constructor the value of the lhs.IntField. I then add to it the value of the

rhs.IntField, or simply the rhs in the case of integers. Example 21.11 shows these operators in action.
21.11 MainApp.cs

1 using System;
2
3 public class MainApp {
4 public static void Main(){
5 MyType mt = new MyType();
6 Console.WriteLine("mt = " + mt);
7 Console.WriteLine("Should be 7:" + (mt++ + 2));
8 Console.WriteLine("mt = " + mt);
9 Console.WriteLine("Should be 9:" + (++mt + 2));
10 Console.WriteLine("mt = " + mt);
11 Console.WriteLine("Should be 4:" + (--mt - 2));
12 Console.WriteLine("mt = " + mt);
13 Console.WriteLine("Should be 4:" + (mt-- - 2));
14 Console.WriteLine("mt = " + mt);
15 Console.WriteLine("----------------------------");
16 int i = 5;
17 Console.WriteLine("i = " + i);
18 Console.WriteLine("Should be 7:" + (i++ + 2));
19 Console.WriteLine("i = " + i);
20 Console.WriteLine("Should be 9:" + (++i + 2));
21 Console.WriteLine("i = " + i);
598 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 21: Operator Overloading Overloading Binary Operators
22 Console.WriteLine("Should be 4:" + (--i - 2));
23 Console.WriteLine("i = " + i);
24 Console.WriteLine("Should be 4:" + (i-- - 2));
25 Console.WriteLine("i = " + i);
26 Console.WriteLine("-----------------------------");
27 MyType mt2 = new MyType();
28 Console.WriteLine("Should be 10:" + (mt + mt2));
29 Console.WriteLine("mt = " + mt);
30 Console.WriteLine("mt2 = " + mt2);
31 Console.WriteLine("Should be 0:" + (mt - mt2));
32 Console.WriteLine("mt = " + mt);
33 Console.WriteLine("mt2 = " + mt2);
34 }
35 }

Referring to Example 21.11 — this program exercises both the + and - operators as well as the pre- and postfix

increment and decrement operators. The code on lines 16 through 25 provides a reference output against which to

compare our overloaded operator behavior. Figure 21-9 shows the results of running this program.

*, / Operators

The multiplication and division operators are implemented very much like the addition and subtraction operators.

Example 21.12 gives the code for the MyType class showing how the * and / operators can be overloaded to operate

on objects of MyType and integer.
21.12 MyType.cs (* and / operators)

1 using System;
2
3 public class MyType {
4 private int _intField;
5
6 public int IntField {
7 get { return _intField; }
8 set { _intField = value; }
9 }
10
11 public MyType():this(5){
12 }
13
14 public MyType(int intField){
15 _intField = intField;
16 }
17
18 public static MyType operator +(MyType mt){
19 mt.IntField = (+mt.IntField);
20 return mt;
21 }
22

Figure 21-9: Results of Running Example 21.11
C#
 For Artists © 2008 Rick Miller — All Rights Reserved 599

Overloading Binary Operators Chapter 21: Operator Overloading
23 public static MyType operator -(MyType mt){
24 mt.IntField = (-mt.IntField);
25 return mt;
26 }
27
28 public static bool operator ! (MyType mt){
29 bool retVal = true;
30 if(mt.IntField >= 0){
31 retVal = false;
32 }
33 return retVal;
34 }
35
36 public static bool operator true(MyType mt){
37 return !mt;
38 }
39
40 public static bool operator false(MyType mt){
41 return !mt;
42 }
43
44 public static MyType operator ++ (MyType mt){
45 MyType result = new MyType(mt.IntField);
46 ++result.IntField;
47 return result;
48 }
49
50 public static MyType operator -- (MyType mt){
51 MyType result = new MyType(mt.IntField);
52 --result.IntField;
53 return result;
54 }
55
56 public static MyType operator +(MyType lhs, MyType rhs){
57 MyType result = new MyType(lhs.IntField);
58 result.IntField += rhs.IntField;
59 return result;
60
61 }
62
63 public static MyType operator -(MyType lhs, MyType rhs){
64 MyType result = new MyType(lhs.IntField);
65 result.IntField -= rhs.IntField;
66 return result;
67 }
68
69 public static MyType operator +(MyType lhs, int rhs){
70 MyType result = new MyType(lhs.IntField);
71 result.IntField += rhs;
72 return result;
73 }
74
75 public static MyType operator -(MyType lhs, int rhs){
76 MyType result = new MyType(lhs.IntField);
77 result.IntField -= rhs;
78 return result;
79 }
80
81 public static MyType operator *(MyType lhs, MyType rhs){
82 MyType result = new MyType(lhs.IntField);
83 result.IntField *= rhs.IntField;
84 return result;
85 }
86
87 public static MyType operator *(MyType lhs, int rhs){
88 MyType result = new MyType(lhs.IntField);
89 result.IntField *= rhs;
90 return result;
91 }
92
93 public static MyType operator /(MyType lhs, MyType rhs){
94 MyType result = new MyType(lhs.IntField);
95 result.IntField /= rhs.IntField;
96 return result;
97 }
98
99 public static MyType operator /(MyType lhs, int rhs){
100 MyType result = new MyType(lhs.IntField);
101 result.IntField /= rhs;
102 return result;
103 }
600 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 21: Operator Overloading Overloading Binary Operators
104
105 public override String ToString(){
106 return IntField.ToString();
107 }
108 } // end class definition

Referring to Example 21.12 — the multiplication and division operators are overloaded to operate on either two

MyType objects or one MyType object and an integer. The implementation of these methods follows that of the addi-

tion and subtraction operators. Example 21.13 shows these operators in action.
21.13 MainApp.cs

1 using System;
2
3 public class MainApp {
4 public static void Main(){
5 MyType mt = new MyType();
6 MyType mt2 = new MyType();
7 Console.WriteLine("mt = " + mt);
8 Console.WriteLine("mt2 = " + mt2);
9 Console.WriteLine("Should be 25: " + (mt * mt2));
10 Console.WriteLine("mt = " + mt);
11 Console.WriteLine("mt2 = " + mt2);
12 Console.WriteLine("Should be 1: " + (mt / mt2));
13 Console.WriteLine("mt = " + mt);
14 Console.WriteLine("mt2 = " + mt2);
15 Console.WriteLine("Should be 25: " + (mt * 5));
16 Console.WriteLine("mt = " + mt);
17 Console.WriteLine("Should be 1: " + (mt / mt2));
18 Console.WriteLine("mt = " + mt);
19 }
20 }

Figure 21-10 shows the results of running this program.

&, | Operators

These two operators behave differently when applied to bool and integral types. When applied to bool types the

& operator computes the logical AND operation but compares the values of both operands even if the first operand

evaluates to false. When applied to integral operands, the & operator performs a bitwise AND operation. The | opera-

tor performs a logical OR operation on bool operands and a bitwise OR operation on integral operands.

I think I’ll go with the bitwise path for the MyType class. Example 21.14 gives the code for the modified

MyType class showing these two overloaded operators.
21.14 MyType.cs (bitwise & and |)

1 using System;
2
3 public class MyType {
4 private int _intField;
5
6 public int IntField {
7 get { return _intField; }
8 set { _intField = value; }
9 }
10
11 public MyType():this(5){
12 }
13
14 public MyType(int intField){
15 _intField = intField;

Figure 21-10: Results of Running Example 21.13
C#
 For Artists © 2008 Rick Miller — All Rights Reserved 601

Overloading Binary Operators Chapter 21: Operator Overloading
16 }
17
18 public static MyType operator +(MyType mt){
19 mt.IntField = (+mt.IntField);
20 return mt;
21 }
22
23 public static MyType operator -(MyType mt){
24 mt.IntField = (-mt.IntField);
25 return mt;
26 }
27
28 public static bool operator ! (MyType mt){
29 bool retVal = true;
30 if(mt.IntField >= 0){
31 retVal = false;
32 }
33 return retVal;
34 }
35
36 public static bool operator true(MyType mt){
37 return !mt;
38 }
39
40 public static bool operator false(MyType mt){
41 return !mt;
42 }
43
44 public static MyType operator ++ (MyType mt){
45 MyType result = new MyType(mt.IntField);
46 ++result.IntField;
47 return result;
48 }
49
50 public static MyType operator -- (MyType mt){
51 MyType result = new MyType(mt.IntField);
52 --result.IntField;
53 return result;
54 }
55
56 public static MyType operator +(MyType lhs, MyType rhs){
57 MyType result = new MyType(lhs.IntField);
58 result.IntField += rhs.IntField;
59 return result;
60
61 }
62
63 public static MyType operator -(MyType lhs, MyType rhs){
64 MyType result = new MyType(lhs.IntField);
65 result.IntField -= rhs.IntField;
66 return result;
67 }
68
69 public static MyType operator +(MyType lhs, int rhs){
70 MyType result = new MyType(lhs.IntField);
71 result.IntField += rhs;
72 return result;
73 }
74
75 public static MyType operator -(MyType lhs, int rhs){
76 MyType result = new MyType(lhs.IntField);
77 result.IntField -= rhs;
78 return result;
79 }
80
81 public static MyType operator *(MyType lhs, MyType rhs){
82 MyType result = new MyType(lhs.IntField);
83 result.IntField *= rhs.IntField;
84 return result;
85 }
86
87 public static MyType operator *(MyType lhs, int rhs){
88 MyType result = new MyType(lhs.IntField);
89 result.IntField *= rhs;
90 return result;
91 }
92
93 public static MyType operator /(MyType lhs, MyType rhs){
94 MyType result = new MyType(lhs.IntField);
95 result.IntField /= rhs.IntField;
96 return result;
602 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 21: Operator Overloading Overloading Comparison Operators
97 }

98

99 public static MyType operator /(MyType lhs, int rhs){

100 MyType result = new MyType(lhs.IntField);

101 result.IntField /= rhs;

102 return result;

103 }

104

105 public static MyType operator &(MyType lhs, MyType rhs){

106 MyType result = new MyType(lhs.IntField);

107 result.IntField &= rhs.IntField;

108 return result;

109 }

110

111 public static MyType operator |(MyType lhs, MyType rhs){

112 MyType result = new MyType(lhs.IntField);

113 result.IntField |= rhs.IntField;

114 return result;

115 }

116

117 public override String ToString(){

118 return IntField.ToString();

119 }

120 } // end class definition

Referring to Example 21.14 — the bitwise & operator creates a new instance of MyType passing into its con-

structor the value of lhs.IntField. It then sets result.IntField to the bitwise AND of itself and rhs.IntField. I’ve over-

loaded these operators to use either two MyType objects or one MyType object and an integer. Example 21.15 shows

these overloaded bitwise operators in action.

21.15 MainApp.cs

1 using System;

2

3 public class MainApp {

4 public static void Main(){

5 MyType mt = new MyType();

6 MyType mt2 = new MyType(6);

7 Console.WriteLine("Should be 4:" + (mt & mt2)); // 0101 & 0110 = 0100

8 Console.WriteLine("Should be 7:" + (mt | mt2)); // 0101 | 0110 = 0111

9 }

10 }

Figure 21.11 shows the results of running this program.

Quick Review

Binary operators operate on two operands. You can overload binary operators to operate on two operands of the

same user-defined type, or on one user-defined type and any other type, which may be another user-defined type.

Overloading Comparison Operators

The comparison operators must be overloaded in pairs. That is, if you overload the equality operator ==, you

must also overload the inequality operator !=. The same holds true for the less-than and greater-than operators <,>,

and the less-than-or-equal-to and greater-than-or-equal-to operators <=, >=.

Figure 21-11: Results of Running Example 21.15
C
For Artists © 2008 Rick Miller — All Rights Reserved 603

Overloading Comparison Operators Chapter 21: Operator Overloading
==, !=,<,>,<=,>= Operators

The overloaded method signature for the comparison equality operator == is shown in Figure 21-12.

Referring to Figure 21-12 — in this example, the equality operator is overloaded to work on two MyType

objects. If you wanted to compare a MyType object to another type you would make the appropriate change to the

type of the rhs parameter.

Note: You usually don’t need to overload the equality and inequality operators == and != for reference (i.e.,

class) types because their default behavior suffices to settle the matter. In other words, if I compare two objects of the

same type and their addresses are the same they must be equal because they are the same object. On the other hand, if

you are comparing two distinct objects, the inequality operator will return true, regardless of whether or not the

objects are equal in all other aspects. So, overloading the == and != operators requires more thought regarding how

you want to manipulate your user-defined objects. Also, if you overload the == and != operators you should also

override the Object.Equals(Obejct o) and Object.GetHashCode() methods. (This topic is covered in more detail in

Chapter 22: Well-Behaved Objects.)

Example 21.16 shows how the comparison operators would be overloaded in the context of MyType
21.16 MyType.cs (comparison operators)

1 using System;
2
3 public class MyType {
4 private int _intField;
5
6 public int IntField {
7 get { return _intField; }
8 set { _intField = value; }
9 }
10
11 public MyType():this(5){
12 }
13
14 public MyType(int intField){
15 _intField = intField;
16 }
17
18 public static MyType operator +(MyType mt){
19 mt.IntField = (+mt.IntField);
20 return mt;
21 }
22
23 public static MyType operator -(MyType mt){
24 mt.IntField = (-mt.IntField);
25 return mt;
26 }
27
28 public static bool operator ! (MyType mt){
29 bool retVal = true;
30 if(mt.IntField >= 0){
31 retVal = false;
32 }
33 return retVal;
34 }
35
36 public static bool operator true(MyType mt){
37 return !mt;
38 }
39
40 public static bool operator false(MyType mt){
41 return !mt;
42 }
43
44 public static MyType operator ++ (MyType mt){
45 MyType result = new MyType(mt.IntField);
46 ++result.IntField;
47 return result;
48 }
49

public static bool operator ==(MyType lhs, MyType rhs)

Figure 21-12: Method Signature for Overloaded Equality Operator
604
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 21: Operator Overloading Overloading Comparison Operators
50 public static MyType operator -- (MyType mt){
51 MyType result = new MyType(mt.IntField);
52 --result.IntField;
53 return result;
54 }
55
56 public static MyType operator +(MyType lhs, MyType rhs){
57 MyType result = new MyType(lhs.IntField);
58 result.IntField += rhs.IntField;
59 return result;
60
61 }
62
63 public static MyType operator -(MyType lhs, MyType rhs){
64 MyType result = new MyType(lhs.IntField);
65 result.IntField -= rhs.IntField;
66 return result;
67 }
68
69 public static MyType operator +(MyType lhs, int rhs){
70 MyType result = new MyType(lhs.IntField);
71 result.IntField += rhs;
72 return result;
73 }
74
75 public static MyType operator -(MyType lhs, int rhs){
76 MyType result = new MyType(lhs.IntField);
77 result.IntField -= rhs;
78 return result;
79 }
80
81 public static MyType operator *(MyType lhs, MyType rhs){
82 MyType result = new MyType(lhs.IntField);
83 result.IntField *= rhs.IntField;
84 return result;
85 }
86
87 public static MyType operator *(MyType lhs, int rhs){
88 MyType result = new MyType(lhs.IntField);
89 result.IntField *= rhs;
90 return result;
91 }
92
93 public static MyType operator /(MyType lhs, MyType rhs){
94 MyType result = new MyType(lhs.IntField);
95 result.IntField /= rhs.IntField;
96 return result;
97 }
98
99 public static MyType operator /(MyType lhs, int rhs){
100 MyType result = new MyType(lhs.IntField);
101 result.IntField /= rhs;
102 return result;
103 }
104
105 public static MyType operator &(MyType lhs, MyType rhs){
106 MyType result = new MyType(lhs.IntField);
107 result.IntField &= rhs.IntField;
108 return result;
109 }
110
111 public static MyType operator |(MyType lhs, MyType rhs){
112 MyType result = new MyType(lhs.IntField);
113 result.IntField |= rhs.IntField;
114 return result;
115 }
116
117 public static bool operator ==(MyType lhs, MyType rhs){
118 return lhs.IntField == rhs.IntField;
119 }
120
121 public static bool operator !=(MyType lhs, MyType rhs){
122 return lhs.IntField != rhs.IntField;
123 }
124
125 public static bool operator <(MyType lhs, MyType rhs){
126 return lhs.IntField < rhs.IntField;
127 }
128
129 public static bool operator >(MyType lhs, MyType rhs){
130 return lhs.IntField > rhs.IntField;
C# For Artists © 2008 Rick Miller — All Rights Reserved 605

Overloading Comparison Operators Chapter 21: Operator Overloading
131 }
132
133 public static bool operator <=(MyType lhs, MyType rhs){
134 return lhs.IntField <= rhs.IntField;
135 }
136
137 public static bool operator >=(MyType lhs, MyType rhs){
138 return lhs.IntField >= rhs.IntField;
139 }
140
141 public override String ToString(){
142 return IntField.ToString();
143 }
144 } // end class definition

Referring to Example 21.16 — the overloaded comparison operators begin on line 117 with the equality operator.

Note that in this example it all boils down to comparing the lhs.IntField against the rhs.IntField and returning the

result. Example 21.17 shows these operators in action.
21.17 MainApp.cs

1 using System;
2
3 public class MainApp {
4 public static void Main(){
5 MyType mt = new MyType();
6 MyType mt2 = new MyType(6);
7 Console.WriteLine("Should be True:" + (mt == mt));
8 Console.WriteLine("Should be False:" + (mt != mt));
9 Console.WriteLine("Should be True:" + (mt != mt2));
10 Console.WriteLine("should be False:" + (mt == mt2));
11 Console.WriteLine("Should be False:" + (mt > mt2));
12 Console.WriteLine("Should be False:" + (mt >= mt2));
13 Console.WriteLine("Should be True:" + (mt < mt2));
14 Console.WriteLine("Should be True:" + (mt <= mt2));
15 }
16 }

Alright, when you compile these files you’ll receive several compiler warnings as are shown in Figure 21-13.

Referring to Figure 21-13 — the first two compiler warnings suggest that if you overload the equality and ine-

quality operators == and != then you might want to consider overriding the Object.Equals(Object o) and

Object.GetHashCode() methods. The second two compiler warnings simply draw your attention to the comparison of

the same variable. For the purposes of this chapter, you can safely ignore these warnings. Figure 21-14 shows the

results of exercising the overloaded comparison operators.

Figure 21-13: Compiler Warning — == and != Operators Need Special Attention

Figure 21-14: Results of Running Example 21.17
606
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 21: Operator Overloading Creating Implicit And Explicit Cast Operators
Quick Review

The comparison operators must be overloaded in pairs. If you overload the equality and inequality operators you

should also override the Object.Equals(Object o) and the Object.GetHashCode() methods.

Creating Implicit And Explicit Cast Operators

If you would like to change a user-defined type object into another type object, you must implement a cast oper-

ator of which there are two kinds: implicit and explicit. Figure 21-15 shows the method signature of both an

implicit and explicit cast operator.

Referring to Figure 21-15 — each of these cast operators will allow the MyType objects to be cast to integers. If

you wanted to cast MyType objects to anything other than an integer, you would need to provide an overloaded cast

operator for each type you want to cast to.

Implicit vs. Explicit Cast

I put this section in just to remind you of the difference between an implicit and an explicit cast. With an implicit

cast, you can simply assign the value of one type to another. The conversion between types is made automatically and

without fuss. The following code snippet shows how an object of MyType would be implicitly cast to an integer:

 MyType mt = new MyType(); // mt.IntField == 5 by default
 int i = mt; // i is now equal to 5
An explicit cast requires the use of parentheses. You generally need to use an explicit cast when a conversion

from one type to another has some type of ramification that must be considered, like when you cast from double to

int, which most certainly will result in a loss of precision. The following code snippet shows how you would cast a

double to an int:

Double d = 100.24;
int i = (int)d; // required because you will lose precision as a result

Overloaded Cast Operators Example

You can only overload one cast operator at a time, not both. Example 21.18 shows how the explicit cast

operator would be implemented to allow explicit casts from MyType object to integers.
21.18 MyType.cs (explicit cast operator)

1 using System;
2
3 public class MyType {
4 private int _intField;
5
6 public int IntField {
7 get { return _intField; }
8 set { _intField = value; }
9 }
10
11 public MyType():this(5){
12 }
13
14 public MyType(int intField){
15 _intField = intField;
16 }
17
18 public static MyType operator +(MyType mt){
19 mt.IntField = (+mt.IntField);

public static implicit operator int(MyType mt)

public static explicit operator int(MyType mt)

Figure 21-15: Method Signatures for Implicit and Explicit Cast Operators
C# For Art
ists © 2008 Rick Miller — All Rights Reserved 607

Creating Implicit And Explicit Cast Operators Chapter 21: Operator Overloading
20 return mt;
21 }
22
23 public static MyType operator -(MyType mt){
24 mt.IntField = (-mt.IntField);
25 return mt;
26 }
27
28 public static bool operator ! (MyType mt){
29 bool retVal = true;
30 if(mt.IntField >= 0){
31 retVal = false;
32 }
33 return retVal;
34 }
35
36 public static bool operator true(MyType mt){
37 return !mt;
38 }
39
40 public static bool operator false(MyType mt){
41 return !mt;
42 }
43
44 public static MyType operator ++ (MyType mt){
45 MyType result = new MyType(mt.IntField);
46 ++result.IntField;
47 return result;
48 }
49
50 public static MyType operator -- (MyType mt){
51 MyType result = new MyType(mt.IntField);
52 --result.IntField;
53 return result;
54 }
55
56 public static MyType operator +(MyType lhs, MyType rhs){
57 MyType result = new MyType(lhs.IntField);
58 result.IntField += rhs.IntField;
59 return result;
60
61 }
62
63 public static MyType operator -(MyType lhs, MyType rhs){
64 MyType result = new MyType(lhs.IntField);
65 result.IntField -= rhs.IntField;
66 return result;
67 }
68
69 public static MyType operator +(MyType lhs, int rhs){
70 MyType result = new MyType(lhs.IntField);
71 result.IntField += rhs;
72 return result;
73 }
74
75 public static MyType operator -(MyType lhs, int rhs){
76 MyType result = new MyType(lhs.IntField);
77 result.IntField -= rhs;
78 return result;
79 }
80
81 public static MyType operator *(MyType lhs, MyType rhs){
82 MyType result = new MyType(lhs.IntField);
83 result.IntField *= rhs.IntField;
84 return result;
85 }
86
87 public static MyType operator *(MyType lhs, int rhs){
88 MyType result = new MyType(lhs.IntField);
89 result.IntField *= rhs;
90 return result;
91 }
92
93 public static MyType operator /(MyType lhs, MyType rhs){
94 MyType result = new MyType(lhs.IntField);
95 result.IntField /= rhs.IntField;
96 return result;
97 }
98
99 public static MyType operator /(MyType lhs, int rhs){
100 MyType result = new MyType(lhs.IntField);
608 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 21: Operator Overloading Creating Implicit And Explicit Cast Operators
101 result.IntField /= rhs;
102 return result;
103 }
104
105 public static MyType operator &(MyType lhs, MyType rhs){
106 MyType result = new MyType(lhs.IntField);
107 result.IntField &= rhs.IntField;
108 return result;
109 }
110
111 public static MyType operator |(MyType lhs, MyType rhs){
112 MyType result = new MyType(lhs.IntField);
113 result.IntField |= rhs.IntField;
114 return result;
115 }
116
117 public static bool operator ==(MyType lhs, MyType rhs){
118 return lhs.IntField == rhs.IntField;
119 }
120
121 public static bool operator !=(MyType lhs, MyType rhs){
122 return lhs.IntField != rhs.IntField;
123 }
124
125 public static bool operator <(MyType lhs, MyType rhs){
126 return lhs.IntField < rhs.IntField;
127 }
128
129 public static bool operator >(MyType lhs, MyType rhs){
130 return lhs.IntField > rhs.IntField;
131 }
132
133 public static bool operator <=(MyType lhs, MyType rhs){
134 return lhs.IntField <= rhs.IntField;
135 }
136
137 public static bool operator >=(MyType lhs, MyType rhs){
138 return lhs.IntField >= rhs.IntField;
139 }
140
141 public static explicit operator int(MyType mt){
142 return mt.IntField;
143 }
144
145 public override String ToString(){
146 return IntField.ToString();
147 }
148 } // end class definition

Referring to Example 21.18 — the explicit cast operator begins on line 141. Note that the return type is

implied by the type of object you want to cast to, which in this case is an integer. Since the MyType.IntField property

is already an integer, all you need to do is simply return its value as is done here.

Example 21.19 shows the explicit cast operator in action.
21.19 MainApp.cs

1 using System;
2
3 public class MainApp {
4 public static void Main(){
5 MyType mt = new MyType();
6 int i = (int)mt; // explicit cast
7 Console.WriteLine("i should be 5:" + i);
8 }
9 }

Figure 21-16 shows the results of running this program.

Figure 21-16: Results of Running Example 21.19
C# Fo
r Artists © 2008 Rick Miller — All Rights Reserved 609

The Assignment Operators: Things You Get For Free Chapter 21: Operator Overloading
Quick Review

You can implement either the implicit cast or the explicit cast, but not both.

The Assignment Operators: Things You Get For Free

You cannot explicitly overload the assignment operators. These include +=, -=, *=, /=, etc. However, if you

overload the binary + operator, you get the += for free! The same holds true for the other assignment operators.

Example 21.20 demonstrates the use of these operators on MyType and integer objects.
21.20 MainApp.cs

1 using System;
2
3 public class MainApp {
4 public static void Main(){
5 MyType mt = new MyType();
6 MyType mt2 = new MyType(6);
7 Console.WriteLine("mt = " + mt);
8 Console.WriteLine("mt2 = " + mt2);
9 MyType mt3 = mt2; // assignment
10 Console.WriteLine("mt3 should be 6:" + mt3);
11 mt += mt2; // addition assignment
12 Console.WriteLine("mt = " + mt);
13 mt *= mt; // multiplication assignment
14 Console.WriteLine("mt = " + mt);
15 mt /= 2; // division assignment - will lose the remainder when doing integer division
16 Console.WriteLine("mt = " + mt);
17 }
18 }

Figure 21-17 shows the results of running this program.

Quick Review

When you overload the binary arithmetic operators you get the assignment operators for free.

Summary

Operator overloading allows you to more natually manipulate user-defined type objects. You must consider, as

part of the design process, how you want your user-defined types to behave in a program. If overloading a particular

operator facilitates the more natural manipulation of a user-defined type object then doing so is a good design deci-

sion. You must also strive to preserve the spirit of the operator’s intended semantics and guard against implementing

unnatural behavior.

Unary operators operate on one operand. Overloaded operator methods are declared to be public and static and

have a return type of the type in which they appear. If you are overloading a logical operator, the return type will be of

type bool. You can overload the true and false operators with the help of the negation operator. When overload-

ing the increment and decrement operators be sure to create and return a new instance of your type.

Figure 21-17: Results of Running Example 21.20
610
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 21: Operator Overloading Skill-Building Exercises
Binary operators operate on two operands. You can overload binary operators to operate on two operands of the

same user-defined type, or on one user-defined type and any other type, which may be another user-defined type.

The comparison operators must be overloaded in pairs. If you overload the equality and inequality operators you

may also want to override the Object.Equals(Object o) and the Object.GetHashCode() methods.

You can implement either the implicit cast or the explicit cast, but not both.

When you overload the binary arithmetic operators you get the assignment operators for free.

Skill-Building Exercises

1. Programming Drill: Compile and run the examples presented in this chapter.

2. API Drill: Visit the MSDN website and research any operators I have failed to cover in this chapter.

3. Programming Drill: Verify that the overloaded true and false operators implemented in Example 21.7 work

as expected.

Suggested Projects

1. Person Class Operators: Overload the comparison operators for the Person class as given in Chapter 20. Write a

short application to test your new operators. (Hint: Pick some attribute, maybe the Age property, with which you

can compare different Person objects.)

Self-Test Questions

1. What’s the purpose of operator overloading?

2. What should you strive to do when overloading operators for your user-defined types?

3. Unary operators operate on how many operands?

4. Binary operators operate on how many operands?

5. (T/F) Comparison operators must be overloaded in pairs.

6. (T/F) The true and false operators must be overloaded as a pair.

7. If you overload the binary arithmetic operator +, what assignment operator do you get for free?

8. How should you implement the increment and decrement operators?

9. Describe in your own words why it’s a good idea to preserve the expected operator semantics when overloading

operators for your user-defined types?

10. (T/F) You can overload both cast operators at the same time.
C# For Artists © 2008 Rick Miller — All Rights Reserved 611

References Chapter 21: Operator Overloading
References

Microsoft Developer Network (MSDN) .NET Framework 3.0 and3.5 Reference Documentation

[www.msdn.com]

Notes
612 © 2008 Rick Miller — All Rights Reserved C# For Artists

http://www.msdn.com

22 Well-Behaved Objects

Learning Objectives
• List and describe the desirable characteristics of a well-behaved object
• List and describe the four categories of object behavior
• List and describe the seven object usage scenarios
• State the purpose of a copy constructor
• Describe the default behavior of the Object.Equals() method on value types
• Describe the default behavior of the Object.Equals() method on reference types
• List the rules associated with overriding the Object.Equals() method
• Explain why you must override Object.Equals() when overloading the equality operator
• State the characteristics of a good Object.GetHashCode() method
• Explain the relationship between the Object.Equals() and Object.GetHashCode() methods
• Explain the difference between a deep copy vs. a shallow copy
• Identify an object’s natural ordering
• Demonstrate your ability to override Object methods to gain predictable user-defined object

behavior

Chapter 22

Well-Behaved Objects
Mayan Dogs, Yucatan, Mexico

C
o
n
ta

x
 T

 /
 K

o
d
ax

 T
ri

-X

C#
 For Artists © 2008 Rick Miller — All Rights Reserved 613

Introduction Chapter 22: Well Behaved Objects
Introduction

When designing user-defined data types, whether they be classes or structures, you must always ask yourself,

“How should objects of this type behave in a program?” You must then takes steps to implement the user-defined type

in a way that ensures its objects behave as expected.

Object behavior goes beyond an object’s public interface. When considering how an object behaves, you must

think about what happens when you create an object from scratch vs. creating an object from an existing object of the

same or different type. This leads to a need to understand the difference between a deep copy vs. a shallow copy. A

failure to understand this fundamental concept can lead to dire consequences and unexplained or irrational object

behavior.

Another important characteristic of object behavior has to do with object equality. What does it mean to compare

one object to another object of the same type? Do you accept the default behavior supplied by the Object.Equals()

method or do you override it? What else must you do when you override Object.Equals()? What’s the relationship

between the Object.Equals() and the Object.GetHashCode() methods? You must be keenly aware of these and other

object equality issues in order to make your objects behave properly.

If you intend to use user-defined objects in ordered collections such as trees, you must implement either ICompa-

rable<T> or an appropriate Comparer<T> object. To do this, you must understand what is meant by natural ordering

when the term is used in the context of your user-defined types.

To make the subject easier to remember, I have categorized object behavior into four distinct groups: fundamen-

tal behavior, copy/assignment behavior, equality behavior, and comparison/ordering behavior. Some of what I dis-

cuss in this chapter has been covered earlier in the book, but most is new material. What I’ve tried to do here is

present these issues as a coherent whole. I have also provided you with a handy check-off list of the seven object

usage scenarios.

When you finish this chapter, you’ll have a good understanding of these and other object behavior issues. The

bottom line — getting your objects to behave properly in demanding situations.

Object Behavior Defined

“How should objects of this type behave in a program?” This question should be foremost on your mind when

creating user-defined data types. To help you sort out the answer to this question, I have categorized object behavior

into four groups: fundamental behavior, copy/assignment behavior, equality behavior, and comparison/ordering

behavior. This section briefly describes each category. The remainder of the chapter covers each category in detail.

Fundamental Behavior

Fundamental behaviors include object creation (constructors), overriding the Object.ToString() method, object

serialization, and member accessibility. By now you should be familiar with, and understand the purpose of, construc-

tors. You should also by now know how to override the Object.ToString() method and understand when doing so is

appropriate, so I won’t dwell too long on these two topics. I will, however, go into more detail about object serializa-

tion and show you how to better control the serialization process. I will also summarize accessibility issues and show

you how to apply the keywords public, protected and private.

Copy/Assignment Behavior

Constructors, as you know, are special methods that are used to properly initialize an object when it’s created in

memory. You can also create what are referred to as copy constructors to create objects from existing objects. In this

section, I show you how to create copy constructors, and also show you how to implement the ICloneable interface.

Another important topic covered in this section is a discussion of deep copy vs. shallow copy.
614 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 22: Well Behaved Objects Object Behavior Defined
Equality Behavior

If user-defined type objects are to be compared against each other for equality then you need to properly imple-

ment equality behavior. To do this, you need to understand how reference equality differs from value equality, how to

override the Object.Equals() and Object.GetHashCode() methods, and how to implement a good custom hashcode

algorithm.

Comparison/Ordering Behavior

Objects used in comparison and ordering operations must properly implement either the IComparable<T> inter-

face or create Comparer<T> objects. Also in this section, I’ll discuss the meaning of the term natural ordering.

Seven Object Usage Scenarios

The need for well-behaved objects must be considered during the application design phase. All classes should be

evaluated against the seven usage scenarios listed in Table 22-1.

Referring to Table 22-1 — not all usage scenarios will apply to all classes. However, it is generally considered

good programming practice for all classes to override the Object.ToString() method as it comes in handy during

debugging.

Also notice that the Object.Equals() and Object.GetHashCode() methods are overridden together. This is because

the correct behavior of one affects the behavior of the other. These two methods also bring up the notion of a behavior

contract. A behavior contract is a specification of expected method behavior. If you override a method but fail to

honor the contract then your objects will behave erratically.

Yes/No Usage Scenario Implementation Requirement

Will objects of this type be required to

provide a string representation of

themselves?

Override the Object.ToString() method. (Although not a strict require-

ment, it is a generally accepted practice to override the ToString()

method in all cases.)

Will objects of this type be compared

against each other for equality?

Override the Object.Equals() method obeying the general contract

specified in the .NET Framework documentation. Also override the

Object.GetHashCode() method.

Will objects of this type be inserted

into a hash-based collection?

Override the Object.GetHashCode() method obeying the general con-

tract specified in the .NET Framework documentation. Also override

the Object.Equals() method.

Will objects of this type be copied or

cloned?

Use the Object.MemberwiseClone() method for simple value types.

The MemberwiseClone() method performs a shallow copy. If the ob-

ject being cloned contains other objects or collections of objects, you

can create copy constructors or implement the ICloneable interface.

Do objects of this type have a natural

ordering? i.e., Will they be sorted? and

Do you own the source code?

Implement the IComparable interface.

Do objects of this type have different

possible orderings? (Or, you don’t

own the source code.)

Create a separate comparer object by extending System.Collec-

tions.Generic.Comparer<T>.

Will objects of this type be saved to

disk or sent via a network?

Apply the Serializable attribute and, if necessary, implement custom

serialization.

Table 22-1: Object Usage Scenario Evaluation Checklist
C# For Artists © 2008 Rick Miller — All Rights Reserved 615

Fundamental Behavior Chapter 22: Well Behaved Objects
You’ll find method behavior contract rules in the .NET Framework API documentation. Specifically, the general

contract specifications for the Object.Equals() and Object.GetHashCode() methods are found in the documentation

for the System.Object class.

Fundamental Behavior

Fundamental object behaviors include object creation, member accessibility, overriding the Object.ToString()

method, and object serialization.

Object Creation — Constructors

Constructors are special methods that have the same name as the class in which they appear. Constructors have

no return type, not even void. The purpose of a constructor is to properly initialize an object upon its instantiation.

Default Constructor

A default constructor has no method parameters. If you fail to define a default constructor, the C# compiler cre-

ates one for you. This ready-made default constructor may or may not be sufficient. The ready-made default construc-

tor will most certainly not perform any custom field initializations. Any fields defined by your type will be initialized

to their default values. Therefore, it’s always a good idea to provide a default constructor, even if its body is empty.

Implementing an empty-bodied default constructor says, “I know full well what I’m doing and I’m perfectly happy

with the behavior provided by this empty default constructor.”

Private Constructors

Most constructors you define will have public accessibility, but in some cases you’ll want to declare constructors

to be private. You’ll find private constructors in singletons, where the class provides a static method that you use to

request an object but disallows the creation of new objects willy-nilly by client software. I discuss the singleton and

other software design patterns in Chapter 25: Helpful Design Patterns.

Overloaded Constructors

Constructor methods can be overloaded to allow the creation of objects in different ways. If your user-defined

type is complex, you may find you need several overloaded constructors to accommodate the many possible ways to

create objects.

Another good use for an overloaded constructor is to create what is referred to as a copy constructor. A copy con-

structor allows you to create an object of one type from an existing object of the same or different type. Copy con-

structors are covered later in the section titled Copy/Assignment Behavior.

Member Accessibility

The keywords public, protected, and private are used to control member accessibility. There are two

avenues of member accessibility: horizontal and vertical.

Horizontal Member Access

Horizontal access is that access granted by an object of one type to an object of another type. Members declared

to have public accessibility can be horizontally accessed. Members declared to be protected or private are not hori-

zontally accessible.
616 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 22: Well Behaved Objects Fundamental Behavior
Vertical Member Access

Vertical access is that access granted by a base class object to derived class objects. Members declared to be pub-

lic or protected are vertically accessible by a derived class. Private members are not vertically accessible.

Another way to think about vertical accessibility is to ask, “What gets inherited?” Members with public or pro-

tected accessibility get inherited but private members do not.

Figure 22-1 gives a diagram that illustrates the concepts of horizontal and vertical member accessibility.

Referring to Figure 22-1 — public members are both horizontally and vertically accessible. Protected members

are vertically accessible. Private members are neither horizontally nor vertically accessible.

Overriding Object.ToString()

The default implementation of the Object.ToString() method for user-defined types is to simply return the name

of the type. In most situations this is rarely an adequate behavior. I recommend that you override the

Object.ToString() method and make it do something useful. In most cases it’s obvious what information about the

object should be conveyed via the ToString() method. In those situations where it’s not so obvious then a summary of

the state of the object’s fields is usually a good way to go. Also, as you’ll see later, the overridden Object.ToString()

method comes in handy when overriding the Object.Equals() and Object.GetHashCode() methods.

Static vs. Instance Members

The keyword static is used to declare class-wide members. For example, a static field is shared by all of a class’s

objects. A change to the static field’s value by one object affects the value of the field in all objects.

By contrast, objects have their very own copies of non-static or instance fields. A change to the value of an

instance field by one object does not affect the value of that field in another object because each object has its own

personal copy of that field.

Static methods can only access static fields. Instance methods can access both static and instance fields.

Class-wide constants are declared with the const keyword. A const field is akin to a static readonly field but there

is a difference as I explained in Chapter 9.

Figure 22-1: Horizontal and Vertical Member Accessibility
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 617

Fundamental Behavior Chapter 22: Well Behaved Objects
Serialization

If you intend to send your user-defined type objects across the network, save them to a file, or convert them into

some other form, say, XML, then you’ll need to make them serializable. You do this by placing the Serializable

attribute above the class declaration. The Serializable attribute enables the .NET runtime environment to automati-

cally serialize an object, which, in most cases, works just file. The important thing to remember with serialization is

that if you are serializing graphs of complex objects, then all the sub-objects must themselves be tagged with the Seri-

alizable attribute.

Prior to the .NET Framework version 2.0, if you wanted to customize the serialization process, you needed to

implement the ISerializable interface, but this form of custom serialization has been superseded with the addition of

several more attributes: NonSerialized, OptionalField, OnSerializing, OnSerialized, OnDeserializing, and OnDeseri-

alized. The first two attributes, NonSerialized and OptionalField are applied to fields; the remaining four are applied

to methods you want to execute during those four stages of object serialization. Let’s look at an example.

Custom Serialization Example

I will use the PersonVO class from Chapter 20 to demonstrate custom serialization. The PersonVO class is listed

in Example 22.1.
22.1 PersonVO.cs

1 using System;
2
3 [Serializable]
4 public class PersonVO {
5
6 //enumeration
7 public enum Sex {MALE, FEMALE};
8
9 // private instance fields
10 private String _firstName;
11 private String _middleName;
12 private String _lastName;
13 private Sex _gender;
14 private DateTime _birthday;
15
16 //default constructor
17 public PersonVO(){}
18
19 public PersonVO(String firstName, String middleName, String lastName,
20 Sex gender, DateTime birthday){
21 FirstName = firstName;
22 MiddleName = middleName;
23 LastName = lastName;
24 Gender = gender;
25 BirthDay = birthday;
26 }
27
28 // public properties
29 public String FirstName {
30 get { return _firstName; }
31 set { _firstName = value; }
32 }
33
34 public String MiddleName {
35 get { return _middleName; }
36 set { _middleName = value; }
37 }
38
39 public String LastName {
40 get { return _lastName; }
41 set { _lastName = value; }
42 }
43
44 public Sex Gender {
45 get { return _gender; }
46 set { _gender = value; }
47 }
48
49 public DateTime BirthDay {
50 get { return _birthday; }
51 set { _birthday = value; }
52 }
53
618 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 22: Well Behaved Objects Fundamental Behavior
54 public int Age {
55 get {
56 int years = DateTime.Now.Year - _birthday.Year;
57 int adjustment = 0;
58 if(DateTime.Now.Month < _birthday.Month){
59 adjustment = 1;
60 }else if((DateTime.Now.Month == _birthday.Month) && (DateTime.Now.Day < _birthday.Day)){
61 adjustment = 1;
62 }
63 return years - adjustment;
64 }
65 }
66
67 public String FullName {
68 get { return FirstName + " " + MiddleName + " " + LastName; }
69 }
70
71 public String FullNameAndAge {
72 get { return FullName + " " + Age; }
73 }
74
75 public override String ToString(){
76 return FullName + " is a " + Gender + " who is " + Age + " years old.";
77 }
78 } // end PersonVO class

The next example provides a short program that inserts some PersonVO objects into a list and then serializes the

list. The program gives you three run options: create, append, and read. When run with the create option, it creates a

new list and saves it to a new file. The append option deserializes the list, adds a PersonVO object to the list, then

serializes the list. The read option deserializes the list and prints its contents to the console.
22.2 MainApp.cs

1 using System;
2 using System.IO;
3 using System.Collections.Generic;
4 using System.Runtime.Serialization;
5 using System.Runtime.Serialization.Formatters.Binary;
6
7 public class MainApp {
8 public static void Main(String[] args){
9 FileStream fs = null;
10 BinaryFormatter bf = null;
11 List<PersonVO> people_list = null;
12 PersonVO p1 = null;
13
14 if(args.Length > 0){
15 switch(args[0]){
16 case "create":
17 people_list = new List<PersonVO>();
18 p1 = new PersonVO("Rick", "Warren", "Miller", PersonVO.Sex.MALE, new DateTime(1964,7,8));
19 people_list.Add(p1);
20 fs = new FileStream("people.dat", FileMode.Create);
21 bf = new BinaryFormatter();
22 bf.Serialize(fs, people_list);
23 fs.Close();
24 break;
25
26 case "append":
27 fs = new FileStream("people.dat", FileMode.Open);
28 bf = new BinaryFormatter();
29 people_list = (List<PersonVO>) bf.Deserialize(fs);
30 fs.Close();
31 p1 = new PersonVO("Rick", "Warren", "Miller", PersonVO.Sex.MALE, new DateTime(1964,7,8));
32 people_list.Add(p1);
33 fs = new FileStream("people.dat", FileMode.Create);
34 bf = new BinaryFormatter();
35 bf.Serialize(fs, people_list);
36 fs.Close();
37 break;
38
39 case "read":
40 fs = new FileStream("people.dat", FileMode.Open);
41 bf = new BinaryFormatter();
42 people_list = (List<PersonVO>) bf.Deserialize(fs);
43 foreach(PersonVO p in people_list){
44 Console.WriteLine(p);
45 }
46 fs.Close();
47 break;
48
C# For Artists © 2008 Rick Miller — All Rights Reserved 619

Fundamental Behavior Chapter 22: Well Behaved Objects
49 default: break;
50
51 } // end switch
52 } // end if
53 } // end Main
54 } // end class definition

To compile this code I’ve placed both files in a folder named Serialization and compiled them both together

using the following command:

csc *.cs
Figure 22-2 shows the results of running this program several times, first with the create option, then a few times

with the append option, and lastly with the read option.

Alright, now suppose you want to make a modification to the PersonVO class. The new version of the applica-

tion needs to be able to read previously serialized PersonVO objects without throwing an exception. As part of the

modifications, you’d like to add several new fields, some new properties, and some other tweaks. Example 22.3 gives

the modified PersonVO class.
22.3 PersonVO.cs (modified)

1 using System;
2 using System.Runtime.Serialization;
3
4 [Serializable]
5 public class PersonVO {
6
7 //enumeration
8 public enum Sex {MALE, FEMALE};
9 public enum Haircolor {BLONDE, BROWN, BLACK};
10
11 // private instance fields
12 private String _firstName;
13 private String _middleName;
14 private String _lastName;
15 private Sex _gender;
16 private DateTime _birthday;
17 [OptionalField]
18 private Haircolor _haircolor;
19 [OptionalField]
20 private DateTime _dateSerialized;
21 [OptionalField]
22 private DateTime _dateDeserialized;
23
24 //default constructor
25 public PersonVO(){}
26
27 public PersonVO(String firstName, String middleName, String lastName,
28 Sex gender, DateTime birthday, Haircolor haircolor){
29 FirstName = firstName;
30 MiddleName = middleName;
31 LastName = lastName;
32 Gender = gender;
33 BirthDay = birthday;
34 HairColor = haircolor;
35 }
36
37 // public properties

Figure 22-2: Running Example 22.2 Several Times
620
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 22: Well Behaved Objects Fundamental Behavior
38 public String FirstName {
39 get { return _firstName; }
40 set { _firstName = value; }
41 }
42
43 public String MiddleName {
44 get { return _middleName; }
45 set { _middleName = value; }
46 }
47
48 public String LastName {
49 get { return _lastName; }
50 set { _lastName = value; }
51 }
52
53 public Sex Gender {
54 get { return _gender; }
55 set { _gender = value; }
56 }
57
58 public DateTime BirthDay {
59 get { return _birthday; }
60 set { _birthday = value; }
61 }
62
63 public int Age {
64 get {
65 int years = DateTime.Now.Year - _birthday.Year;
66 int adjustment = 0;
67 if(DateTime.Now.Month < _birthday.Month){
68 adjustment = 1;
69 }else if((DateTime.Now.Month == _birthday.Month) && (DateTime.Now.Day < _birthday.Day)){
70 adjustment = 1;
71 }
72 return years - adjustment;
73 }
74 }
75
76 #region New Properties
77 public Haircolor HairColor {
78 get { return _haircolor; }
79 set { _haircolor = value; }
80 }
81
82 public DateTime DateSerialized {
83 get { return _dateSerialized; }
84 }
85
86 public DateTime DateDeserialized {
87 get { return _dateDeserialized; }
88 }
89 #endregion
90
91 public String FullName {
92 get { return FirstName + " " + MiddleName + " " + LastName; }
93 }
94
95 public String FullNameAndAge {
96 get { return FullName + " " + Age; }
97 }
98
99 public override String ToString(){
100 return FullName + " is a " + Gender + " who is " + Age + " years old with " + HairColor +
101 " hair.\r\n" +
102 "-->Date Serialized:" + DateSerialized + ", Date Deserialized " + DateDeserialized;
103 }
104
105 #region Custom Serialization Methods
106 [OnSerializing]
107 internal void OnSerializingMethod(StreamingContext context){
108 _dateSerialized = DateTime.Now;
109 }
110
111 [OnDeserialized]
112 internal void OnDeserialized(StreamingContext context){
113 _dateDeserialized = DateTime.Now;
114 }
115 #endregion
116
117 } // end PersonVO class
C# For Artists © 2008 Rick Miller — All Rights Reserved 621

Fundamental Behavior Chapter 22: Well Behaved Objects
Referring to Example 22.3 — First, on line 2, I’ve added the using System.Runtime.Serialization directive.

I’ve added three new fields starting on line 17 and above each one I’ve placed the OptionalField attribute. I modified

the constructor to take another parameter named haircolor. Starting on line 74, I added three new properties named

HairColor, DateSerialized, and DateDeserialized. The last two properties are readonly. Finally, starting on line 103,

I’ve added two methods that let me modify the DateSerialized and DateDeserialized properties during the serializa-

tion and deserialization process.

The modified MainApp class appears in Example 22.4.
22.4 MainApp.cs (Mod 1)

1 using System;
2 using System.IO;
3 using System.Collections.Generic;
4 using System.Runtime.Serialization;
5 using System.Runtime.Serialization.Formatters.Binary;
6
7 public class MainApp {
8 public static void Main(String[] args){
9 FileStream fs = null;
10 BinaryFormatter bf = null;
11 List<PersonVO> people_list = null;
12 PersonVO p1 = null;
13
14 if(args.Length > 0){
15 switch(args[0]){
16 case "create":
17 people_list = new List<PersonVO>();
18 p1 = new PersonVO("Rick", "Warren", "Miller", PersonVO.Sex.MALE, new DateTime(1964,7,8),
19 PersonVO.Haircolor.BROWN);
20 people_list.Add(p1);
21 fs = new FileStream("people.dat", FileMode.Create);
22 bf = new BinaryFormatter();
23 bf.Serialize(fs, people_list);
24 fs.Close();
25 break;
26
27 case "append":
28 fs = new FileStream("people.dat", FileMode.Open);
29 bf = new BinaryFormatter();
30 people_list = (List<PersonVO>) bf.Deserialize(fs);
31 fs.Close();
32 p1 = new PersonVO("Rick", "Warren", "Miller", PersonVO.Sex.MALE, new DateTime(1964,7,8),
33 PersonVO.Haircolor.BROWN);
34 people_list.Add(p1);
35 fs = new FileStream("people.dat", FileMode.Create);
36 bf = new BinaryFormatter();
37 bf.Serialize(fs, people_list);
38 fs.Close();
39 break;
40
41 case "read":
42 fs = new FileStream("people.dat", FileMode.Open);
43 bf = new BinaryFormatter();
44 people_list = (List<PersonVO>) bf.Deserialize(fs);
45 foreach(PersonVO p in people_list){
46 Console.WriteLine(p);
47 }
48 fs.Close();
49 break;
50
51 default: break;
52
53 } // end switch
54 } // end if
55 } // end Main
56 } // end class definition

Referring to Example 22.4 — the only changes I made here were to lines 18 and 32 to add the PersonVO.Hari-

color.BROWN argument to the PersonVO constructor call.

To run this second experiment, I created a new folder named SerializationV2 to which I copied the MainApp.cs

file and saved the modified PersonVO class there as well. I also copied the people.dat file created with the prior ver-

sion of PersonVO.

Figure 22-3 shows the results of running MainApp in the read mode with the modified version of PersonVO.

Remember, at this point the people.dat file contains serialized objects from the previous version of PersonVO.

Referring to Figure 22-3 — notice how the old PersonVO objects were deserialized without complaint when cast

to the new version of PersonVO. Since the old PersonVO objects were not serialized with the _haircolor or
622 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 22: Well Behaved Objects Copy/Assignment Behavior
_dateSerialized fields, when the old objects are deserialized, these new fields are initialized to default values. In the

case of the Haircolor enumeration, the default value is zero, which equates to the first enum value BLONDE. The

_dateSerialized field is initialized to 1/1/0001.

Figure 22-4 shows the results of running MainApp in the append mode several times and then finally in the read

mode. Compare this output against that of Figure 22-3 above.

Quick Review

Things to think about regarding fundamental object behaviors include object creation, member accessibility,

overriding the Object.ToString() method, the use of static vs. instance fields and methods, and custom serialization.

It’s a good idea to always provide a default constructor. There are two avenues of member accessibility to consider:

horizontal and vertical. Control both with the keywords public, protected, and private. Override the

Object.ToString() method to provide a customized string representation of the state of your object. Use the attributes

NonSerialized, OptionalField, OnSerializing, OnSerialized, OnDeserializing, and OnDeserialized when you need to

implement custom object serialization.

Copy/Assignment Behavior

In many programming situations you’ll confront the need to make copies of objects. Copying comes in many

forms. In some instances, you’ll want to create a new object using data contained in an existing object. You can do

this explicitly with the help of a copy constructor. However, in many cases, copying takes place implicitly behind the

scenes, like when you pass objects as arguments to methods. The argument values are automatically copied to the

parameters. (I discuss parameter passing in detail in Chapter 9.)

Figure 22-3: Running MainApp in the Read Mode

Figure 22-4: Results of Running MainApp Several More Times in the Append Mode then Read Mode
C
#
 For Artists © 2008 Rick Miller — All Rights Reserved 623

Copy/Assignment Behavior Chapter 22: Well Behaved Objects
If you want your objects to behave well in copy/assignment situations, you’ll need to be aware of several impor-

tant issues. These include the difference between copying value type vs. reference type objects, and the difference

between a shallow copy vs. a deep copy. I will also show you how to create copy constructors.

Value Object vs. Reference Object Assignment

Remember! There’s a difference between a value type variable and a reference type variable. A value type vari-

able holds the actual data of the object whereas a reference type variable holds the address of the object. Also, you

must use the new operator to create reference type objects. By now, you should know this by heart.

When you assign one value type object to another value type object (of the same type) the value represented by

the right hand side object is copied to the left hand side object. For example, take a look at the following code snippet:

 int i = 0;

 int j = 1;

 i = j;

In this case, the value of j is assigned to i. There are two distinct integer objects in the end: the one contained in i

and the other contained in j.

A reference type variable contains an object’s address. When you assign one reference to another you are copy-

ing addresses. For example, given the following code snippet:

 Object o1 = new Object();

 Object o2 = new Object();

 o1 = o2;

In this case, reference o1 ultimately refers to the same object referenced by o2.

Rule Of Thumb — Favor The Class Construct For Complex Types

A good rule of thumb to apply when deciding whether to create a class or a structure is to let complexity be your

guide. If your user-defined type is simple and contains only value types then a structure may be appropriate. That’s

because, as stated above, when assigning one value type object to another, everything from one gets copied to the

other.

If, on the other hand, your user-defined type is complex or contains other reference types, favor the class con-

struct. You incur less overhead when making assignments because you’re only copying an address.

Shallow Copy vs. Deep Copy

Before you go copying objects, you must understand the difference between a shallow copy vs. a deep copy. A

shallow copy is one that simply copies the contents of the one object’s reference fields into the reference fields of the

new object. This results in the new object’s fields referring to the same objects referred to by the original object’s ref-

erence fields. Figure 22-5 illustrates the concept of the shallow copy.

In special cases, you may want objects to share their contained instances (containment by reference) but doing so

should be the intentional result of your application design, not because of a naive implementation of a copy construc-

tor or Clone() method.

A deep copy is different from a shallow copy in that it creates copies of the original object’s instance field objects

and assigns them to the new object. Figure 22-6 illustrates the concept of a deep copy. Referring to Figure 22-6 —

before Object A is copied, its Object_Reference field points to Object B. A deep copy of Object A results in a new

object, Object C, whose Object_Reference field points to its very own copy of Object B, which, in this example,

becomes a new object named Object D.

You can easily see from these diagrams that an unintentional shallow copy can lead to unexpected object behav-

ior
624 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 22: Well Behaved Objects Copy/Assignment Behavior
Copy Constructors

A copy constructor is used to create an object from another existing object of the same or different type. Example

22.5 lists the PersonVO class with the addition of a copy constructor that allows the creation of PersonVO objects

from an existing PersonVO object.

Figure 22-5: Concept of a Shallow Copy

Figure 22-6: Concept of a Deep Copy
C# Fo
r Artists © 2008 Rick Miller — All Rights Reserved 625

Copy/Assignment Behavior Chapter 22: Well Behaved Objects
22.5 PersonVO.cs (with copy constructor)

1 using System;
2
3 [Serializable]
4 public class PersonVO {
5
6 //enumeration
7 public enum Sex {MALE, FEMALE};
8
9 // private instance fields
10 private String _firstName;
11 private String _middleName;
12 private String _lastName;
13 private Sex _gender;
14 private DateTime _birthday;
15
16 //default constructor
17 public PersonVO(){}
18
19 public PersonVO(String firstName, String middleName, String lastName,
20 Sex gender, DateTime birthday){
21 FirstName = firstName;
22 MiddleName = middleName;
23 LastName = lastName;
24 Gender = gender;
25 BirthDay = birthday;
26 }
27
28 // copy constructor
29 public PersonVO(PersonVO person){
30 FirstName = person.FirstName;
31 MiddleName = person.MiddleName;
32 LastName = person.LastName;
33 Gender = person.Gender;
34 BirthDay = person.BirthDay;
35 }
36
37 // public properties
38 public String FirstName {
39 get { return _firstName; }
40 set { _firstName = value; }
41 }
42
43 public String MiddleName {
44 get { return _middleName; }
45 set { _middleName = value; }
46 }
47
48 public String LastName {
49 get { return _lastName; }
50 set { _lastName = value; }
51 }
52
53 public Sex Gender {
54 get { return _gender; }
55 set { _gender = value; }
56 }
57
58 public DateTime BirthDay {
59 get { return _birthday; }
60 set { _birthday = value; }
61 }
62
63 public int Age {
64 get {
65 int years = DateTime.Now.Year - _birthday.Year;
66 int adjustment = 0;
67 if(DateTime.Now.Month < _birthday.Month){
68 adjustment = 1;
69 }else if((DateTime.Now.Month == _birthday.Month) && (DateTime.Now.Day < _birthday.Day)){
70 adjustment = 1;
71 }
72 return years - adjustment;
73 }
74 }
75
76 public String FullName {
77 get { return FirstName + " " + MiddleName + " " + LastName; }
78 }
79
626 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 22: Well Behaved Objects Copy/Assignment Behavior
80 public String FullNameAndAge {
81 get { return FullName + " " + Age; }
82 }
83
84 public override String ToString(){
85 return FullName + " is a " + Gender + " who is " + Age + " years old.";
86 }
87 } // end PersonVO class

Referring to Example 22.5 — the copy constructor begins on line 29 and takes a PersonVO object as an argu-

ment. The values are copied from the parameter to the current object’s properties. Example 22.6 shows the copy con-

structor in use.

22.6 MainApp.cs

1 using System;
2
3 public class MainApp {
4 public static void Main(){
5 PersonVO p1 = new PersonVO("Rick", "Warren", "Miller", PersonVO.Sex.MALE, new DateTime(1968, 3, 7));
6 PersonVO p2 = new PersonVO(p1); // using copy constructor
7 Console.WriteLine(p1);
8 Console.WriteLine(p2);
9 }
10 }

Referring to Example 22.6 — a new PersonVO object is created on line 5 and its address is assigned to the refer-

ence p1. The reference p1 is then used on line 6 as an argument to the PersonVO copy constructor to create another

PersonVO object. The results of running this program are shown in Figure 22-7.

System.ICloneable vs. Object.MemberwiseClone()

Although the PersonVO class can be considered a complex type, in reality, it only contains simple fields consist-

ing of String, DateTime, and the Sex enumeration, which is really an integer in the end. In this section I want to show

you how to perform a deep copy of a complex object as well as highlight the differences between a deep copy vs. a

shallow copy.

The .NET Framework provides two ways to clone an object. For value types or simple classes the Object.Mem-

berwiseClone() method can be used straight out of the box to perform a shallow copy. If you need to exert more con-

trol over the cloning process you must implement the System.ICloneable interface.

The following example code shows a class named MyComplexType that has as a field an array of Strings. I

implement the ICloneable interface to ensure that a proper deep copy is performed when calling the Clone() method.
22.7 MyComplexType.cs (implementing ICloneable)

1 using System;
2 using System.Text;
3 using System.Collections.Generic;
4
5 public class MyComplexType : ICloneable {
6 List<String> _string_list = null;
7 String _name = String.Empty;
8
9 public MyComplexType(String name){
10 Name = name;
11 _string_list = new List<String>();
12 for(int i = 0; i<5; i++){
13 _string_list.Add(String.Empty);
14 }
15 }
16
17 public List<String> StringList {
18 get { return _string_list; }
19 }

Figure 22-7: Results of Running Example 22.6
C# Fo
r Artists © 2008 Rick Miller — All Rights Reserved 627

Copy/Assignment Behavior Chapter 22: Well Behaved Objects
20
21 public String Name {
22 get { return _name; }
23 set { _name = value; }
24 }
25
26 public Object Clone(){
27 MyComplexType mct = new MyComplexType(this.Name + " Clone");
28 for(int i = 0; i<this.StringList.Count; i++){
29 mct.StringList[i] = this.StringList[i];
30 }
31 return mct;
32 }
33
34 public Object GetMemberwiseClone(){
35 return this.MemberwiseClone();
36 }
37
38 public override String ToString(){
39 StringBuilder sb = new StringBuilder();
40 sb.Append(Name + ": ");
41 foreach(String s in StringList){
42 sb.Append(s + " ");
43 }
44 return sb.ToString();
45 }
46 } // end class definition

Referring to Example 22.7 — the Clone() method, as specified by the ICloneable interface, begins on line 26.

The first thing I do is create a new instance of MyComplexType and give it the same name as the existing object. I

add the string “clone” to the object’s name for demonstration purposes. Next, I iterate through the current object’s

StringList and assign its values to the new object’s StringList. Finally, I return the new object.

On line 34, I created a method called GetMemberwiseClone() that uses the Object.MemberwiseClone() method

to create a shallow copy of the current object.

Example 22.8 compares the operation of the Clone() and the GetMemberwiseClone() methods.
22.8 MainApp.cs

1 using System;
2
3 public class MainApp {
4 public static void Main(){
5 MyComplexType mct1 = new MyComplexType("mct1");
6 mct1.StringList[0] = "Hello";
7 mct1.StringList[1] = "World";
8 Console.WriteLine(mct1);
9
10 MyComplexType mct2 = (MyComplexType)mct1.Clone();
11 Console.WriteLine(mct2);
12 mct2.StringList[0] = "New String";
13 Console.WriteLine(mct1);
14 Console.WriteLine(mct2);
15
16 MyComplexType mct3 = (MyComplexType)mct2.GetMemberwiseClone();
17 Console.WriteLine(mct3);
18 mct2.StringList[2] = "Another String";
19 Console.WriteLine(mct2);
20 Console.WriteLine(mct3);
21 } // end main
22 } // end class definition

Referring to Example 22.8 — on line 5, I create an instance of MyComplexType named mct1. I then set the first

two elements in its StringList to “Hello” and “World” respectively. I then write the string representation of mct1 to

the console. (See MyComplexType’s ToString() method.)

On line 10, I declare a new reference named mct2 and assign to it a cloned instance of mct1 via the Clone()

method. I then write mct2 to the console, which will look like mct1 but with the string “Clone” attached to its name.

Next, to demonstrate that both objects have their very own copy of the _string_list field, I set the first element of

mct2’s StringList to the value “New String”. I then print out both mct1 and mct2 again to show they contain different

values.

Finally, I declare one last reference named mct3 and use the GetMemberwiseClone() method to create a shallow

copy of mct2. I them add another string to mct2’s StringList and then print both mct2 and mct3 to show they both

share a common _string_list field.
628 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 22: Well Behaved Objects Equality Behavior
Quick Review

When implementing copying behavior, you must be aware of the difference between a shallow copy and a deep

copy. There are generally three ways to implement copying or cloning behavior: create a copy constructor, implement

the ICloneable interface, or use the Object.MemberwiseClone() method. Copy constructors and the ICloneable inter-

face let you control the object copying process and, if necessary, allows you to implement a deep copy. The

Object.MemberwiseClone() method performs a shallow copy only and is best utilized on simple value types.

Equality Behavior

If you need to compare user-defined type objects against each other for equality you’ll need to be aware of equal-

ity behavior. In Chapter 21: Operator Overloading, you learned that if you overload the == and != operators you

should also override the Object.Equals() and Object.GetHashCode() methods. In this section, I focus on the

Object.Equals() and Object.GetHashCode() methods, show you how to override them with the help of the

Object.ToString() method, and present you with a list of rules you should follow when overriding these methods.

Reference Equality vs. Value Equality

Normally, when you compare two reference objects for equality like this...

o1 == o2

...you are comparing their addresses. In other words, if o1 and o2 refer the to the same location in memory then

they must be equal because they refer to the same object.

Comparing value objects for equality is different in that a test for equality compares their values. For example,

given two integer variables:

int i = 1;

int j = 2;

The expression (i == j) compares the value of i, which is 1, against the value of j, which is 2. In either case I

can substitute the == operator with the Equals() method like so:

o1.Equals(o2)

i.Equals(j);

The results would be the same. However, in the case of reference objects, it’s not always desirable behavior to

strictly use an object’s address as a basis for equality. Take strings for example. Two strings of equal value may be dif-

ferent objects as the following code snippet suggests:

String s1 = “Hello”;

String s2 = “Hello”;

So the expression (s1 == s2) will yield true just as s1.Equals(s2) will yield true. This is because the ==

operator has been overloaded to perform a value or string content comparison, which is what you’d expect when

Figure 22-8: Results of Running Example 22.8
C# For
 Artists © 2008 Rick Miller — All Rights Reserved 629

Equality Behavior Chapter 22: Well Behaved Objects
comparing two strings. (Note: This is different from the way the == operator behaves in Java, which is why you’ll

see Java programmers comparing strings for equality using the String.Equals() method in C#.)

Rules For Overriding The Object.Equals() Method

When overriding the Object.Equals() method, you must ensure that it subscribes to the expected behavior as

specified in the .NET Framework documentation. Table 22.2 lists the required behaviors of an overridden

Object.Equals() method. (Note: Your overloaded == operator should work the same way! See Chapter 21: Operator

Overloading.)

Overriding The Object.GetHashCode() Method

When you override the Object.Equals() method, you should also override the Object.GetHashCode() method to

ensure proper object behavior. This section presents two approaches to implementing a suitable GetHashCode()

method. Now, don’t be alarmed when I reference two very good Java books. The techniques used to create a suitable

hashcode algorithm apply equally to C# as well as Java.

The GetHashCode() method returns an integer which is referred to as the object’s hash value. The default imple-

mentation of GetHashCode() found in the Object class will, in most cases, return a unique hash value for each distinct

object even if they are logically equivalent. In most cases this default behavior is acceptable, however, if you intend

to use a class of objects as keys to hashtables or other hash-based data structures, then you must override the GetH-

ashCode() method and obey the general contract as specified in the .NET Framework API documentation. The gen-

eral contract for the GetHashCode() is given in Table 22-3.

Should be... Rule Comment

Reflexive x.Equals(x) returns true Exception: floating-point types

Symmetric x.Equals(y) returns the same as y.Equals(x)

Transitive (x.Equals(y) && y.Equals(z)) returns true if and only if

x.Equals(z) returns true

Consistent Successive calls to x.Equals(y) return the same value as

long as the objects referenced by x and y remain un-

changed.

x.Equals(null) returns false Or a null reference

x.Equals(y) returns true if both x and y are NaN NaN means Non a Number

Calls to Object.Equals() must not throw exceptions. No exceptions!

Override the Object.GetHashCode() method. If you override the Object.Equals()

method.

Table 22-2: Rules for Overriding Object.Equals() method

Check Criterion

The GetHashCode() method must consistently return the same integer when invoked on the same object

more than once during an execution of a C# or .NET application, provided no information used in Equals()

comparisons on the object is modified. This integer need not remain constant from one execution of an ap-

plication to another execution of the same application.

Table 22-3: The GetHashCode() General Contract
630 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 22: Well Behaved Objects Equality Behavior
As you can see from Table 22-3, there is a close relationship between the Object.Equals() and Object.GetHash-

Code() methods. It is recommended that any fields used in the Equals() method comparison be used to calculate an

object’s hash code. Remember, the primary goal when implementing a GetHashCode() method is to have it return the

same value consistently for logically equal objects. It would also be nice if the GetHashCode() method returned dis-

tinct hash code values for logically unequal objects, but according to the general contract this is not a strict require-

ment.

Before actually implementing the Person.GetHashCode() method, I want to provide you with two hash code gen-

eration algorithms. These algorithms come from two excellent Java references. I have changed the text to reflect the

.NET method names Object.Equals() and Object.GetHashCode() respectively, and have converted Java operations

into compatible C# .NET operations.

Bloch’s hash Code Generation Algorithm

Joshua Bloch, in his book Effective Java™ Programming Language Guide, provides the following algorithm for

calculating a hash code:

1. Start by storing a constant, nonzero value in an int variable called result. (Josh used the value 17)

2. For each significant field f in your object (each field involved in the Equals() comparison) do the following:

a. Compute an int hash code c for the field:

i. If the field is boolean (bool) compute: (f?0:1)

ii. If the field is a byte, char, short, or int, compute: (int)f
iii. If the field is a long compute: (unsigned)(f^(f >> 32))
iv. If the field is a float compute: Convert.ToInt32(f)
v. If the field is a double compute: Convert.ToInt64(f), and then hash the

resulting long according to step 2.a.iii.

vi. If the field is an object reference and this class’s Equals() method compares the field by recursively

invoking Equals(), recursively invoke GetHashCode() on the field. If a more complex comparison

is required, compute a “canonical representation” for this field and invoke GetHashCode() on the

canonical representation. If the value of the field is null, return 0.

vii. If the field is an array, treat it as if each element were a separate field. That is, compute a hash

code for each significant element by applying these rules recursively, and combine these values

in step 2.b

b. Combine the hash code c computed in step a into result as follows:

result = 37*result + c;
3. Return result.

4. If equal object instances do not have equal hash codes fix the problem!

Ashmore’s Hash Code Generation Algorithm

Derek Ashmore, in his book The J2EE Architect’s Handbook: How To Be A Successful Technical Architect For

J2EE Applications, recommends the following simplified hash code algorithm:

1. Concatenate the required fields (those involved in the Equals() comparison) into a string.

2. Call the GetHashCode() method on that string.

3. Return the resulting hash code value.

The GetHashCode() method must produce the same results when called on two objects if they are equal

according to the Equals() method.

The GetHashCode() method is not required to return distinct integer results for logically unequal objects,

however, failure to do so may result in degraded hash table performance.

Check Criterion

Table 22-3: The GetHashCode() General Contract
C# For Artists © 2008 Rick Miller — All Rights Reserved 631

Equality Behavior Chapter 22: Well Behaved Objects
Overridng Object.Equals() and Object.GetHashCode() Methods In The PersonVO Class

Example 22.9 shows how to apply Ashmore’s hash code algorithm to PersonVO objects.

22.9 PersonVO.cs (overriden Equals() and GetHashCode())

1 using System;
2
3 [Serializable]
4 public class PersonVO {
5
6 //enumeration
7 public enum Sex {MALE, FEMALE};
8
9 // private instance fields
10 private String _firstName;
11 private String _middleName;
12 private String _lastName;
13 private Sex _gender;
14 private DateTime _birthday;
15
16 //default constructor
17 public PersonVO(){}
18
19 public PersonVO(String firstName, String middleName, String lastName,
20 Sex gender, DateTime birthday){
21 FirstName = firstName;
22 MiddleName = middleName;
23 LastName = lastName;
24 Gender = gender;
25 BirthDay = birthday;
26 }
27
28 // copy constructor
29 public PersonVO(PersonVO person){
30 FirstName = person.FirstName;
31 MiddleName = person.MiddleName;
32 LastName = person.LastName;
33 Gender = person.Gender;
34 BirthDay = person.BirthDay;
35 }
36
37 // public properties
38 public String FirstName {
39 get { return _firstName; }
40 set { _firstName = value; }
41 }
42
43 public String MiddleName {
44 get { return _middleName; }
45 set { _middleName = value; }
46 }
47
48 public String LastName {
49 get { return _lastName; }
50 set { _lastName = value; }
51 }
52
53 public Sex Gender {
54 get { return _gender; }
55 set { _gender = value; }
56 }
57
58 public DateTime BirthDay {
59 get { return _birthday; }
60 set { _birthday = value; }
61 }
62
63 public int Age {
64 get {
65 int years = DateTime.Now.Year - _birthday.Year;
66 int adjustment = 0;
67 if(DateTime.Now.Month < _birthday.Month){
68 adjustment = 1;
69 }else if((DateTime.Now.Month == _birthday.Month) && (DateTime.Now.Day < _birthday.Day)){
70 adjustment = 1;
71 }
72 return years - adjustment;
73 }
74 }
632 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 22: Well Behaved Objects Equality Behavior
75
76 public String FullName {
77 get { return FirstName + " " + MiddleName + " " + LastName; }
78 }
79
80 public String FullNameAndAge {
81 get { return FullName + " " + Age; }
82 }
83
84 public override String ToString(){
85 return FullName + " is a " + Gender + " who is " + Age + " years old.";
86 }
87
88 // override System.Object methods
89 public override bool Equals(Object o){
90 if(o == null){
91 return false;
92 }
93 return this.ToString().Equals(o.ToString());
94 }
95
96 public override int GetHashCode(){
97 return this.ToString().GetHashCode();
98 }
99
100 } // end PersonVO class

Referring to Example 22.9 — The overridden Object.Equals() method starts on line 87. If the parameter is null, I

return false. If this test wasn’t in place, the code would throw an exception and, according to the contract, that’s not

good. To make the actual comparison, I simply compare their string representations and return the result.

The GetHashCode() method starts on line 94. It simply calls GetHashCode() on the object’s ToString() value and

returns the result.

Example 22.10 shows these two methods in action.
22.10 MainApp.cs

1 using System;
2
3 public class MainApp {
4 public static void Main(){
5 PersonVO p1 = new PersonVO("Rick", "Warren", "Miller", PersonVO.Sex.MALE, new DateTime(1964, 3, 7));
6 PersonVO p2 = new PersonVO(p1);
7 PersonVO p3 = new PersonVO("Coralie", "Sarah", "Miller", PersonVO.Sex.FEMALE,
8 new DateTime(1968, 4, 5));
9 PersonVO p4 = null;
10
11 Console.WriteLine("p1.Equals(p1) = " + p1.Equals(p1));
12 Console.WriteLine("p1.Equals(p2) = " + p1.Equals(p2));
13 Console.WriteLine("p2.Equals(p1) = " + p2.Equals(p1));
14 Console.WriteLine("p1.Equals(p3) = " + p1.Equals(p3));
15 Console.WriteLine("p3.Equals(p1) = " + p3.Equals(p1));
16 Console.WriteLine("p1.Equals(null) = " + p1.Equals(null));
17 Console.WriteLine("p1.Equals(p4) = " + p1.Equals(p4));
18 Console.WriteLine("------------------------------------");
19 Console.WriteLine("p1.GetHashCode() = " + p1.GetHashCode());
20 Console.WriteLine("p2.GetHashCode() = " + p2.GetHashCode());
21 Console.WriteLine("p3.GetHashCode() = " + p3.GetHashCode());
22 }
23 }

Figure 22-9 shows the results of running this program.

Figure 22-9: Results of Running Example 22.10
C# Fo
r Artists © 2008 Rick Miller — All Rights Reserved 633

Comparison/Ordering Behavior Chapter 22: Well Behaved Objects
Quick Review

Keep in mind, when implementing equality behavior, the differences between value and reference types. An

overloaded Object.Equals() method should be reflexive, symmetric, transitive, and consistent. Also, it should not

throw an exception when called.

Always override the Object.GetHashCode() method when you override Object.Equals(). Adhere to the general

contract when implementing a hash code algorithm.

Comparison/Ordering Behavior

You’ll often need to compare objects against each other to produce some type of ordering. If objects have a natu-

ral ordering then implement the IComparable<T> interface. You can do this if you own the source code. If your

objects can be ordered in different ways at different times or you don’t own the source code, extend the Comparer<T>

class to create one or more custom comparer objects This section repeats material originally presented in Chapter 14:

Collections. So, before you write me a nasty email, I want to let you know that I’m using the Person class vice the

PersonVO class I’ve used earlier in this chapter.

Implementing System.IComparable<T>

Fundamental data types provided by the .NET Framework implement the System.IComparable or System.ICom-

parable<T> interface and are therefore sortable. When you define a user-defined class or structure, you must ask

yourself, as part of the design process, “Will objects of this type be compared with each other or with other types of

objects?” If yes, then that class or structure should implement the IComparable<T> interface.

The IComparable<T> interface declares one method, CompareTo(). This method is automatically called during

collection or array sort operations. If you want your user-defined types to sort correctly, you must provide an imple-

mentation for the CompareTo() method. How one object is compared against another is entirely up to you since

you’re the programmer.

Example 22.11 shows the Person class modified to implement the IComparable<T> interface.
22.11 Person.cs (implementing IComparable<T>)

1 using System;
2
3 public class Person : IComparable<Person> {
4
5 //enumeration
6 public enum Sex {MALE, FEMALE};
7
8 // private instance fields
9 private String _firstName;
10 private String _middleName;
11 private String _lastName;
12 private Sex _gender;
13 private DateTime _birthday;
14
15
16 //private default constructor
17 private Person(){}
18
19 public Person(String firstName, String middleName, String lastName,
20 Sex gender, DateTime birthday){
21 FirstName = firstName;
22 MiddleName = middleName;
23 LastName = lastName;
24 Gender = gender;
25 BirthDay = birthday;
26 }
27
28 // public properties
29 public String FirstName {
30 get { return _firstName; }
31 set { _firstName = value; }
32 }
33
34 public String MiddleName {
634 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 22: Well Behaved Objects Comparison/Ordering Behavior
35 get { return _middleName; }
36 set { _middleName = value; }
37 }
38
39 public String LastName {
40 get { return _lastName; }
41 set { _lastName = value; }
42 }
43
44 public Sex Gender {
45 get { return _gender; }
46 set { _gender = value; }
47 }
48
49 public DateTime BirthDay {
50 get { return _birthday; }
51 set { _birthday = value; }
52 }
53
54 public int Age {
55 get {
56 int years = DateTime.Now.Year - _birthday.Year;
57 int adjustment = 0;
58 if(DateTime.Now.Month < _birthday.Month){
59 adjustment = 1;
60 }else if((DateTime.Now.Month == _birthday.Month) && (DateTime.Now.Day < _birthday.Day)){
61 adjustment = 1;
62 }
63 return years - adjustment;
64 }
65 }
66
67 public String FullName {
68 get { return FirstName + " " + MiddleName + " " + LastName; }
69 }
70
71 public String FullNameAndAge {
72 get { return FullName + " " + Age; }
73 }
74
75 public override String ToString(){
76 return FullName + " is a " + Gender + " who is " + Age + " years old.";
77 }
78
79 public int CompareTo(Person other){
80 return this.BirthDay.CompareTo(other.BirthDay);
81 }
82
83 } // end Person class

Referring to Example 22.11— the Person class implements the IComparable<T> interface. The CompareTo()

method, starting on line 79, defines how one Person object is compared with another. In this case, I am comparing

their BirthDay properties. Note that since the DateTime structure implements the IComparable<T> interface (i.e.,

IComparable<DateTime>) one simply needs to call its version of the CompareTo() method to make the required com-

parison. But what’s getting returned? Good question, and it’s one that’s answered in the next section.

Rules For Implementing The CompareTo(T other) Method

Table 22-4 lists the rules for implementing the CompareTo(T other) method.

Return Value Returned When...

Less than Zero (-1) This object is less than the other parameter

Zero (0) This object is equal to the other parameter

Greater than Zero (1) This object is greater than the other parameter, or, the

other parameter is null

Table 22-4: Rules For Implementing IComparable<T>.CompareTo(T other) Method
C# For Artists © 2008 Rick Miller — All Rights Reserved 635

Comparison/Ordering Behavior Chapter 22: Well Behaved Objects
What property, exactly, you compare between objects is strictly dictated by the program design. In the case of the

Person class I chose to compare birthdays. In the next section, I’ll show you how you would compare last names.

Now that the Person class implements the IComparable<T> interface, Person objects can be compared against

each other. Example 22.12 shows the List<T>.Sort() method in action.
22.12 SortingListDemo.cs

1 using System;
2 using System.Collections.Generic;
3
4 public class SortingListDemo {
5 public static void Main(){
6 List<Person> surrealists = new List<Person>();
7
8 Person p1 = new Person("Rick", "", "Miller", Person.Sex.MALE, new DateTime(1961, 02, 04));
9 Person p2 = new Person("Max", "", "Ernst", Person.Sex.MALE, new DateTime(1891, 04, 02));
10 Person p3 = new Person("Andre", "", "Breton", Person.Sex.MALE, new DateTime(1896, 02, 19));
11 Person p4 = new Person("Roland", "", "Penrose", Person.Sex.MALE, new DateTime(1900, 10, 14));
12 Person p5 = new Person("Lee", "", "Miller", Person.Sex.FEMALE, new DateTime(1907, 04, 23));
13 Person p6 = new Person("Henri-Robert-Marcel", "", "Duchamp", Person.Sex.MALE,
14 new DateTime(1887, 07, 28));
15
16 surrealists.Add(p1);
17 surrealists.Add(p2);
18 surrealists.Add(p3);
19 surrealists.Add(p4);
20 surrealists.Add(p5);
21 surrealists.Add(p6);
22
23 for(int i=0; i<surrealists.Count; i++){
24 Console.WriteLine(surrealists[i].FullNameAndAge);
25 }
26
27 surrealists.Sort();
28 Console.WriteLine("---------------------------------------");
29
30 for(int i=0; i<surrealists.Count; i++){
31 Console.WriteLine(surrealists[i].FullNameAndAge);
32 }
33
34 } // end Main()
35 } // end SortingListDemo

Referring to Example 22.12 — the Sort() method is called on line 27. Figure 22-10 shows the results of running

this program.

Extending The Comparer<T> Class

What if you don’t own the source code to the objects you want to compare? No problem, simply implement a

custom comparer object by extending the System.Collections.Generic.Comparer<T> class and provide an implemen-

tation for its Compare(T x, T y) method. Example 22.13 shows how a custom comparer might look. This particular

example compares two Person objects.
22.13 PersonComparer.cs

1 using System.Collections.Generic;
2
3 public class PersonComparer : Comparer<Person> {
4

Figure 22-10: Results of Running Example 22.12
636
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 22: Well Behaved Objects Comparison/Ordering Behavior
5 /***********************************
6 Return -1 if p1 < p2 or p1 == null
7 Return 0 if p1 == p2
8 Return +1 if p1 > p2 or p2 == null
9 ************************************/
10 public override int Compare(Person p1, Person p2){
11 if(p1 == null) return -1;
12 if(p2 == null) return 1;
13
14 return p1.LastName.CompareTo(p2.LastName);
15 }
16 }

Referring to Example 22.13— the PersonComparer class extends Comparer<T> (i.e., Comparer<Person>) and

provides an overriding implementation for its Compare(T x, T y) method. In this example I have renamed the param-

eters p1 and p2. Note that since I am comparing strings, I can simply call the String.CompareTo() method to actually

perform the comparison.

Example 22.14 shows how the PersonComparer class is used to sort a list of Person objects.
22.14 ComparerSortDemo.cs

1 using System;
2 using System.Collections.Generic;
3
4 public class ComparerSortDemo {
5 public static void Main(){
6 List<Person> surrealists = new List<Person>();
7
8 Person p1 = new Person("Rick", "", "Miller", Person.Sex.MALE, new DateTime(1961, 02, 04));
9 Person p2 = new Person("Max", "", "Ernst", Person.Sex.MALE, new DateTime(1891, 04, 02));
10 Person p3 = new Person("Andre", "", "Breton", Person.Sex.MALE, new DateTime(1896, 02, 19));
11 Person p4 = new Person("Roland", "", "Penrose", Person.Sex.MALE, new DateTime(1900, 10, 14));
12 Person p5 = new Person("Lee", "", "Miller", Person.Sex.FEMALE, new DateTime(1907, 04, 23));
13 Person p6 = new Person("Henri-Robert-Marcel", "", "Duchamp", Person.Sex.MALE,
14 new DateTime(1887, 07, 28));
15
16 surrealists.Add(p1);
17 surrealists.Add(p2);
18 surrealists.Add(p3);
19 surrealists.Add(p4);
20 surrealists.Add(p5);
21 surrealists.Add(p6);
22
23 for(int i=0; i<surrealists.Count; i++){
24 Console.WriteLine(surrealists[i].FullNameAndAge);
25 }
26
27 surrealists.Sort(new PersonComparer());
28 Console.WriteLine("---------------------------------------");
29
30 for(int i=0; i<surrealists.Count; i++){
31 Console.WriteLine(surrealists[i].FullNameAndAge);
32 }
33
34 } // end Main()
35 } // end SortingListDemo

Referring to Example 22.14 — an overloaded version of the List<T>.Sort() method is called on line 27. This ver-

sion of the Sort() method takes a Comparer<T> object as an argument. Figure 22-11 shows the results of running this

program.

Figure 22-11: Results of Running Example 22.14
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 637

Summary Chapter 22: Well Behaved Objects
Quick Review

If your user-defined type objects must be compared against each other for ordering (sorting), then implement

either the IComparable<T> interface to create a natural ordering or extend the Comparer<T> class and create one or

more comparer objects that will let you order your objects in different ways.

Summary

Things to think about regarding fundamental object behaviors include object creation, member accessibility,

overriding the Object.ToString() method, the use of static vs. instance fields and methods, and custom serialization.

It’s a good idea to always provide a default constructor. There are two avenues of member accessibility to consider:

horizontal and vertical. Control both with the keywords public, protected, and private. Override the

Object.ToString() method to provide a customized string representation of the state of your object. Use the attributes

NonSerialized, OptionalField, OnSerializing, OnSerialized, OnDeserializing, and OnDeserialized when you need to

implement custom object serialization.

When implementing copying behavior, you must be aware of the difference between a shallow copy and a deep

copy. There are generally three ways to implement copying or cloning behavior: create a copy constructor, implement

the ICloneable interface, or use the Object.MemberwiseClone() method. Copy constructors and the ICloneable inter-

face let you control the object copying process and, if necessary, allows you to implement a deep copy. The

Object.MemberwiseClone() method performs a shallow copy only and is best utilized on simple value-types.

Keep in mind, when implementing equality behavior, the differences between value and reference types. An

overloaded Object.Equals() method should be reflexive, symmetric, transitive, and consistent. Also, it should not

throw an exception when called.

Always override the Object.GetHashCode() method when you override Object.Equals(). Adhere to the general

contract when implementing a hash code algorithm.

If your user-defined type objects must be compared against each other for ordering (sorting), then implement

either the IComparable<T> interface to create a natural ordering or extend the Comparer<T> class and create one or

more comparer objects that will let you order your objects in different ways.

Skill-Building Exercises

1. API Drill: Research the System.Object class and read the rules for overriding the Object.Equals() and

Object.GetHashCode() methods.

2. Programming Drill: Compile and run the programs listed in this chapter.

Suggested Projects

1. EmployeeVO Serialization Do-Over: How might the problem of the non-serializable image encountered in

Chapter 20 have been solved with custom serialization?
638 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 22: Well Behaved Objects Self-Test Questions
Self-Test Questions

1. What are the seven object usage scenarios?

2. What’s the difference between a shallow copy and a deep copy?

3. Why do you think a shallow copy of a complex object may lead to unexpected object behavior?

4. (T/F) Static methods can access instance fields. Explain your answer.

5. (T/F) Private members allow vertical access. Explain your answer.

6. What rules, if any, should you apply when overriding the Object.Equals() method?

7. When overriding the Object.Equals() method, what other method must you override?

8. If you own the source code and your user-defined type objects have a natural ordering, what interface should you

implement?

9. What can you do to order objects if you don’t own the source code or you want to provide multiple orderings?

10. What’s the difference between implementing ICloneable and simply using Object.MemberwiseClone() to clone

objects?

References

Joshua Bloch. Effective Java™ Programming Language Guide. Addison-Wesley, Boston, MA. ISBN: 0-201-

31005-8.

Microsoft Developer Network (MSDN) .NET Framework 3.0 and3.5 Reference Documentation

[www.msdn.com]

Derek Ashmore. The J2EE Architect’s Handbook: How To Be A Successful Technical Architect For J2EE Appli-

cations. DVT Press, Lombard, IL. ISBN: 0972954899
C# For Artists © 2008 Rick Miller — All Rights Reserved 639

Notes Chapter 22: Well Behaved Objects
Notes
640 © 2008 Rick Miller — All Rights Reserved C# For Artists

23 Three Design Principles

Learning Objectives
• List the preferred characteristics of an object-oriented application architecture

• State the definition of the Liskov Substitution Principle (LSP)

• State the definition of Bertrand Meyer's Design by Contract (DbC) programming

• Describe the close relationship between the Liskov Substitution Principle and Design by Contract

• State the purpose of class invariants

• State the purpose of method preconditions and postconditions

• Describe the effects weakening and strengthening preconditions have on subclass behavior

• Describe the effects weakening and strengthening postconditions have on subclass behavior

• State the purpose and use of the Open-Closed Principle (OCP)

• State the purpose and use of the Dependency Inversion Principle (DIP)

Chapter 23

Three Design Principles
Nunnery — Chichen Itza , Mexico

C
o
n
ta

x
 T

 /
 K

o
d
ax

 T
ri

-X
C#
For Artists © 2008 Rick Miller — All Rights Reserved 641

Introduction Chapter 23: Three Design Principles
Introduction

Building complex, well-behaved, object-oriented software is a difficult task for several reasons. First, simply

programming in C# does not automatically make your application object-oriented. Second, the process by which you

become proficient at object-oriented design and programming is characterized by experience. It takes a lot of time to

learn the lessons of bad software architecture design and apply those lessons learned to create good object-oriented

architectures.

The objective of this chapter is to help you jump-start your object-oriented architectural design efforts. I begin

with a discussion of the preferred characteristics of a well-designed object-oriented architecture. I then present and

discuss three important object-oriented design principles that you can immediately apply to your software architec-

ture designs to drastically improve performance, reliability, and maintainability.

The three design principles include the Liskov Substitution Principle (LSP), the Open-Closed Principle (OCP),

and the Dependency Inversion Principle (DIP). Bertrand Meyer’s Design by Contract (DbC) programming is dis-

cussed in the context of its close relationship to, and extension of, the Liskov Substitution Principle.

An understanding of these three design principles, coupled with an understanding of how to apply them using the

C# programming language, will significantly improve you ability to design robust, object-oriented software architec-

tures.

The Preferred Characteristics Of An Object-Oriented Architecture

From a programmer’s perspective, a well-designed, object-oriented architecture manifests itself as an inheritance

hierarchy, including a set of abstract data type vertical (inheritance) and horizontal (compositional) relationships, that

exhibits several key characteristics. It is 1) easy to understand, 2) easy to reason about, and 3) easy to extend. These

characteristics are discussed briefly below.

Easy To Understand: How does this thing work?

A programmer, when shown a component diagram of a complex software system, should be able to understand

what it does, or what it is you are trying to do, in about five minutes flat. To do this a software architecture must be

designed to be understood.

The organizational complexity of large software systems can be overwhelming if the architecture is poorly

designed. An application comprised of even a small number of tightly coupled software components requires signifi-

cantly more effort to understand than one designed to be understood quickly. An application software architecture

must be thoroughly understood by a programmer before the effects of changing its components or adding functional-

ity can be accurately assessed.

Easy To Reason About: What are the effects of change?

The effects of changing pieces of a software application must be fully predictable. Programmers must be confi-

dent that the changes they make to one code module will not mysteriously break another, seemingly unrelated, mod-

ule in the system. If the effects of change can be accurately predicted then the architecture can be reasoned about. The

best way to reason about the effects of change is to render code changes unnecessary. (The effects of no change is def-

initely predictable!)

Easy To Extend: Where do I add functionality?

Well-designed application architectures accommodate the addition of features and facilitate component reuse. A

programmer, when tasked with adding new functionality to an application, must know exactly where to put it. The act

of adding functionality should not require the changing of existing code, but rather its extension.
642 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 23: Three Design Principles The Liskov Substitution Principle & Design by Contract
The Liskov Substitution Principle & Design by Contract

Dr. Barbara Liskov and Dr. Bertrand Meyer are both important figures in the object-oriented software research

community. The two design principles and guidelines that bear their names are the Liskov Substitution Principle

(LSP) and Bertrand Meyer’s Design by Contract (DbC). These closely related object-oriented design concepts are

covered together in this section and can be summarized in the following statement:

Subtype objects must be behaviorally substitutable for supertype
objects. Programmers must be able to reason correctly about and

rely upon the behavior of subtypes using only the supertype
behavior specification.

Reasoning About The Behavior Of Supertypes And Subtypes

Programmers must be able to reason correctly about the behavior of abstract data types and their derived sub-

types. The LSP and DbC provide both theoretical and applied foundations upon which programmers can build well-

behaved class inheritance hierarchies that facilitate the object-oriented architectural reasoning process.

Relationship Between The LSP And DbC

The LSP and DbC are closely related concepts primarily because they both draw from largely the same body of

research in the formulation of their theories. They each address the question of how a programmer should be able to

reason about the behavior of a subtype object when it is substituted for a supertype object, they each address the role

of method preconditions and postconditions in the specification of desired object behavior, and they each discuss the

role of class invariants and how method postconditions should ensure invariant state conditions are preserved. They

both seek to provide a mechanism for programmers to create reliable object-oriented software.

Design by Contract differs from the LSP in its emphasis on the notion of contracts between supertype and sub-

type. The base class (supertype) is a contractor that may, at runtime, have its interface methods performed by a sub-

contractor (subtype). Programmers should not need any a priori knowledge of the subtype’s existence when they

write the code that may come to rely on the subtype’s behavior. The subtype, when substituted for the supertype,

should fulfill the contract promised by the supertype. In other words, the subtype object should not pull any surprises.

Another difference between the LSP and DbC is that the LSP is more notional, while DbC is more practical. By

this I mean no language, as of this writing, directly supports the LSP specifically, with perhaps the exception of the

type checking facilities provided by a compiler. Design by Contract, on the other hand, is directly supported by the

Eiffel programming language.

The Common Goal Of The LSP And DbC

The LSB and DbC share a common goal. They both aim to help software developers build correct software from

the start. Given this common goal I will occasionally refer to both concepts collectively as the LSP/DbC.

C# Support For The LSP And DbC

With the exception of type checking, C# does not provide direct language support for either the LSP or DbC.

However, there are techniques you can use to enforce preconditions and postconditions and to ensure the state of class

invariants. Regardless of the level of language support for either the LSP or DbC, programmers can realize significant

improvements in their overall class hierarchy designs by simply keeping the LSP and DbC in mind during the design

process.
C# For Artists © 2008 Rick Miller — All Rights Reserved 643

Preconditions, Postconditions, And Class Invariants Chapter 23: Three Design Principles
Designing With The LSP/DbC In Mind

The LSP/DbC focuses on the correct specification of supertype and subtype behavioral relationships. By keeping

the LSP/DbC in mind when designing class hierarchies programmers are much less likely to create subclasses that

implement behavior incompatible with that specified by the base class.

Class Declarations Viewed As Behavior Specifications

A class declaration introduces a new abstract data type into a programmer’s environment. The class declaration

is, by its very nature, a behavioral specification. The behavior is specified by the set of public interface methods made

available to clients, by the set of possible states an object may assume, and by the side effects resulting from method

execution.

In C#, class declaration and definition is usually combined. A class that specifies behavior only is known in C# as

an interface whereas an abstract class can both specify behavior, and, where necessary, provide behavior implementa-

tion.

An abstract data type can adopt the behavioral specification of another abstract data type. (Like one interface

extending another interface or a class extending another class.) The former would be the subtype and the latter the

supertype. When the supertype is an abstract base class or interface, the subtype inherits only a behavior specifica-

tion. It must then either implement the specified behavior or further defer the implementation to yet another subtype.

When a supertype provides behavior implementation, a subtype may adopt the supertype behavior outright or provide

an overriding behavior. It is the correct implementation of this overriding behavior about which the LSP/DbC is most

concerned. Programmers can create well-behaved subtypes by employing preconditions, postconditions, and class

invariants.

Quick Review

The Liskov Substitution Principle (LSP) and Bertrand Meyer’s Design by Contract (DbC) programming are

closely related principles designed to enable programmers to better reason about subtype behavior.

Preconditions, Postconditions, And Class Invariants

Preconditions, postconditions, and class invariants are the three cornerstones of both the LSP and DbC. I discuss

their definitions and application in this section.

Class Invariant

A class invariant is an assertion about an object property that must hold true for all valid states the object can

assume. For example, suppose an airplane object has a speed property that can be set to a range of integer values

between 0 and 800. This rule should be enforced for all valid states an airplane object can assume. All methods that

can be invoked on an airplane object must ensure they do not set the speed property to less than 0 or greater than 800.

Precondition

A precondition is an assertion about some condition that must be true before a method can be expected to per-

form its operation correctly. For example, suppose the airplane object’s speed property can be incremented by some

value and there exists in the set of airplane’s public interface methods one that increments the speed property any-

where from 1 to 5 depending on the value of the argument supplied to the method. For this method to perform cor-

rectly, it must check that the argument is in fact a valid increment value of 1, 2, 3, 4, or 5. If the increment value tests

valid then the precondition holds true and the increment method should perform correctly.

The precondition must be true before the method is called, therefore it is the responsibility of the caller to make

the precondition true, and the responsibility of the called method to enforce the truth of the precondition.
644 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 23: Three Design Principles Preconditions, Postconditions, And Class Invariants
Postcondition

A postcondition is an assertion that must hold true when a method completes its operations and returns to the

caller. For example, the airplane’s speed increment method should ensure that the class invariant speed property

being 0 <= speed <= 800 holds true when the increment method completes its operations.

An Example

Example 23.1 gives the code for a class named Incrementer. An incrementer object can be incremented by the

values 1, 2, 3, 4, or 5 and maintain a state value between 0 and 100. This example illustrates one approach to enforc-

ing method preconditions and postconditions with the help of the Debug.Assert() method. The Debug class is found

in the System.Diagnostics namespace.

23.1 Incrementer.cs

1 #define DEBUG
2 using System;
3 using System.Diagnostics;
4
5 public class Incrementer {
6 /**
7 Class invariant: 0 <= Incrementer.val <= 100
8 **/
9 private int val = 0;
10
11 /**
12 Constructor Method: Incrementor(int i)
13 precondition: ((0 <= i) && (i <= 100))
14 postcondition: 0 <= Incrementer.val <= 100
15 **/
16 public Incrementer(int i){
17 Debug.Assert((0 <= i) && (i <= 100));
18 val = i;
19 Console.WriteLine("Incrementer object created with initial value of: " + val);
20 CheckInvariant(); // enforce class invariant
21 }
22
23 /**
24 Method: void Increment(int i)
25 precondition: 0 < i <= 5
26 postcondition: 0 <= Incrementer.val <= 100
27 ***/
28 public virtual void Increment(int i){
29 Debug.Assert((0 < i) && (i <= 5)); // enforce precondition
30
31 if((val+i) <= 100){
32 val += i;
33 }else{
34 int temp = val;
35 temp += i;
36 val = (temp - 100);
37 }
38
39 CheckInvariant(); // enforce class invariant
40 Console.WriteLine("Incremeter value is: " + val);
41 }
42
43 /***
44 Method: void CheckInvariant() - called
45 immediately after any change to class
46 invariant to ensure invariant condition
47 is satisfied.
48 ***/
49 private void CheckInvariant(){
50 Debug.Assert((0 <= val) && (val <= 100));
51 }
52 }// end Incrementer class definition

Referring to Example 24.1 — First, in order to use the Debug.Assert() method, you’ll need to add the #define

DEBUG directive at the top of the source file as I’ve done here.

The Incrementer class has a private instance field of type int named val. The class invariant is specified in com-

ments above the field declaration and indicates that the valid range of values val can assume is 0 through 100. This
C# For Artists © 2008 Rick Miller — All Rights Reserved 645

Preconditions, Postconditions, And Class Invariants Chapter 23: Three Design Principles
invariant is enforced with the Debug.Assert() method in the body of the constructor when an instance of Incrementer

is created. The invariant is also validated via the CheckInvariant() method.

The Increment() method’s preconditions and postconditions are stated in the comment above the method. It indi-

cates that the valid range of increment values the parameter i can assume include 1 through 5, and that when the

method completes the class invariant state must be valid. The Increment() method’s precondition is checked by the

Debug.Assert() method on line 29. The class invariant is checked by calling the CheckInvariant() method on line 39.

Example 24.2 gives a short program putting the Incrementer class through its paces.
23.2 MainTestApp.cs

1 using System;
2
3 public class MainTestApp {
4 public static void Main(){
5 Incrementer i1 = new Incrementer(0);
6 i1.Increment(1);
7 i1.Increment(2);
8 i1.Increment(3);
9 i1.Increment(4);
10 i1.Increment(5);
11 i1.Increment(6); // throws an assesrtion exception
12 } // end Main() method
13 }// end MainTestApp clas definition

Referring to Example 23.2 — an Incrementer reference named i1 is declared and initialized on line 5. On lines 6

through 11, I call the Increment method via i1 with different increment values 1, 2, 3, 4, 5, and 6. If you put the

#define DEBUG directive at the top of the Incrementer class’s source file then the assertion will fail when line 11 exe-

cutes, causing the Assertion Failed dialog window to display when the program executes. Figure 23-1 shows the

results of running this program.

A Note On Using The Debug.Assert() Method To Enforce Pre- and Postconditions

As was just demonstrated, you can place the #define DEBUG directive at the top of your source files to enable

the use of the System.Diagnostics.Debug.Assert() method. You can alternatively use the /d:DEBUG compiler switch

when you compile your code.

The use of the assertion mechanism to enforce method preconditions and postconditions and the state of class

invariants is best used during implementation and testing. Remember, it is the responsibility of the calling program to

adhere to a method’s documented precondition.

Consider for a moment the MainTestApp program shown in Example 23.2. When a programmer runs this code

and gets the error produced by trying to call the Increment method with an invalid precondition, he would then be

obliged to fix his code to eliminate the error. From this point forward the assertion mechanism can be safely disabled

and the code will run fine.

Using Incrementer As A Base Class

A programmer using the Incrementer class learns from reading its class invariant, precondition, and postcondi-

tion specifications how those objects can be used in a program and how they should behave. And that is all they

Figure 23-1: Results of Running Example 23.2
646
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 23: Three Design Principles Preconditions, Postconditions, And Class Invariants
should have to know, even when an Incrementer reference points to an object belonging to a class that is derived from

Incrementer.

There are several issues that demand the attention of the programmer who plans to extend the functionality of

Incrementer. First, he must be aware of the point of view of the client program that will use the derived object. That

code expects certain behavior from Incrementer objects. For example, a client program calling the Increment()

method on Incrementer objects can rely on proper behavior if the arguments to the method satisfy the precondition of

being greater than zero or less than or equal to five. If an object derived from Incrementer is substituted at runtime for

an Incrementer object, the derived object must not break the client code by behaving in a manner not anticipated by

the client program.

Second, with the expectations of the client code in mind, what rules should a programmer follow when extending

the functionality of a base class to ensure the derived object continues to live up to or meet the expectations of the cli-

ent code? This section explores these issues further.

Example 23.3 gives the code for a class named DerivedIncrementer that extends the functionality of the Incre-

menter class.
23.3 DerivedIncrementer.cs

1 #define DEBUG
2 using System;
3 using System.Diagnostics;
4
5 public class DerivedIncrementer : Incrementer {
6 /**
7 Class invariant: 0 <= val <= 50
8 **/
9 private int val = 0;
10
11 /**
12 Constructor Method: DerivedIncrementer(int i)
13 precondition: ((0 <= i) && (i <= 50))
14 postcondition: 0 <= val <= 50
15 **/
16 public DerivedIncrementer(int i):base(i){
17 Debug.Assert((0 <= i) && (i <= 50)); // enforce precondition
18 val = i;
19 Console.WriteLine("DerivedIncrementer object created with value: " + val);
20 CheckInvariant();
21 }
22
23 /***
24 Method: void Increment(int i)
25 precondition: ((0 < i) && (i <= 5))
26 postcondition: 0 <= val <= 50
27 **/
28 override public void Increment(int i){
29 Debug.Assert((0 < i) && (i <= 5)); // enforce precondition
30 base.Increment(i);
31 if((val+i) <= 50){
32 val += i;
33 }else{
34 int temp = val;
35 temp += i;
36 val = (temp - 50);
37 }
38 CheckInvariant(); // check invariant
39 Console.WriteLine("DerivedIncrementer value is: " + val);
40 }
41
42 private void CheckInvariant(){
43 Debug.Assert((0 <= val) && (val <= 50));
44 }
45 } // end DerivedIncrementer class definition

Referring to Example 23.3 — the DerivedIncrementer class extends Incrementer and overrides its Increment()

method. DerivedIncrementer has its own val field which has a different class invariant from that of Incrementer’s val.

(But this is perfectly OK!) The DerivedIncrementer’s version of the Increment() method subscribes to the same pre-

condition as that of the base class version of the method it is overriding, namely, that the values of the integer param-

eter i can be anything from 0 through 5. Therefore, an object of type DerivedIncrementer will behave the same as

objects of type Incrementer. Example 23.4 shows the DerivedIncrementer class in action.
C# For Artists © 2008 Rick Miller — All Rights Reserved 647

Preconditions, Postconditions, And Class Invariants Chapter 23: Three Design Principles
23.4 MainTestApp.cs (Mod 1)

1 using System;
2
3 public class MainTestApp {
4 public static void Main(){
5 Incrementer i1 = new Incrementer(0);
6 Incrementer i2 = new DerivedIncrementer(20);
7 i1.Increment(1);
8 i1.Increment(2);
9 i1.Increment(3);
10 i1.Increment(4);
11 i1.Increment(5);
12 Console.WriteLine("-----------------------------");
13 i2.Increment(4);
14 i2.Increment(5);
15 i2.Increment(6); // will cause an assertion error
16 } // end main() method
17 }// end MainTestApp clas definition

Referring to Example 23.4 — an Incrementer type reference named i2 is declared on line 5 and initialized to

point to an object of type DerivedIncrementer. From lines 13 through 15 the Increment() method is called on the

DerivedIncrementer object via i2. When the invalid precondition value of 6 is used in the Increment() method call,

the assertion fails as expected. Figure 23-2 shows the results of running this program.

Changing The Preconditions Of Derived Class Methods

The version of the Increment() method in class DerivedIncrementer discussed above implemented the same pre-

condition as the Incrementer class version, namely, that the integer argument passed to the method was in the range 1

through 5. However, it is possible to specify a different precondition for a derived class version of Increment().

In regards to derived class method preconditions, you can go three ways: 1) adopt the same precondition(s), as

was illustrated in the previous section, 2) weaken the precondition(s), or 3) strengthen the precondition(s).

Adopting The Same Preconditions

Derived class methods can adopt the same preconditions as the base class methods they override. The Incre-

ment() method in class DerivedIncrementer shown in the previous section adopted the same precondition as the

Incrementer class’s version of Increment(). When a derived class method adopts the same preconditions as its base

class counterpart, its behavior is predictable from the point of view of any client program using a base class reference

to a derived class object. In other words, you can safely reason about the behavior of a derived class object whose

overriding methods adopt the same preconditions as their base class counterparts.

Weakening Preconditions

Derived class methods can weaken the preconditions specified in the base class methods they override. Weaken-

ing can also be thought of as a loosening or relaxing of a specified precondition. The Increment() method in class

DerivedIncrementer could have weakened the precondition specified in the base class version of Increment() by

Figure 23-2: Results of Running Example 23.4
648
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 23: Three Design Principles Preconditions, Postconditions, And Class Invariants
allowing a wider range of increment values to be called as arguments. An example of this is shown in the class named

WeakenedDerivedIncrementer whose code is given in Example 23.5.
23.5 WeakenedDerivedIncrementer.cs

1 #define DEBUG
2 using System;
3 using System.Diagnostics;
4
5 public class WeakenedDerivedIncrementer : Incrementer {
6 /**
7 Class invariant: 0 <= val <= 50
8 **/
9 private int val = 0;
10
11 /***
12 Constructor Method: WeakenedDerivedIncrementer(int i)
13 precondition: ((0 <= i) && (i <= 50))
14 postcondition: 0 <= val <= 50
15 **/
16 public WeakenedDerivedIncrementer(int i):base(i){
17 Debug.Assert((0 <= i) && (i <= 50)); // enforce precondition
18 val = i;
19 Console.WriteLine("WeakenedDerivedIncrementer object created with value: " + val);
20 CheckInvariant();
21 }
22
23 /***
24 Method: void Increment(int i)
25 precondition: ((0 < i) && (i <= 10))
26 postcondition: 0 <= val <= 50
27 ***/
28 override public void Increment(int i){
29 Debug.Assert((0 < i) && (i <= 10)); // enforce precondition
30
31 if((0 <= i) && (i <= 5)){ // remember, it's our job to use the base class correctly!
32 base.Increment(i);
33 }
34
35 if((val+i) <= 50){
36 val += i;
37 }else{
38 int temp = val;
39 temp += i;
40 val = (temp - 50);
41 }
42 CheckInvariant(); // check invariant
43 Console.WriteLine("WeakenedDerivedIncrementer value is: " + val);
44 }
45 /***
46 Method: void CheckInvariant() - called
47 immediately after any change to class
48 invariant to ensure invariant condition
49 is satisfied.
50 ***/
51 private void CheckInvariant(){
52 Debug.Assert((0 <= val) && (val <= 50));
53 }
54 } // end WeakenedDerivedIncrementer class definition

Referring to Example 23.5 — the WeakenedDerivedIncrementer class looks a lot like the DerivedIncrementer

class with two notable exceptions. First, the precondition on the Increment() method has been relaxed to allow a

wider range of increment values. Second, the if statement that appears within the body of the Increment() method

starting on line 31 ensures the value of i used in the call to the base class version of Increment() obeys its precondi-

tion. Example 23.6 shows the WeakenedDerivedIncrementer class being put through its paces in a modified version

of the MainTestApp program.
23.6 MainTestApp.cs (Mod 2)

1 using System;
2
3 public class MainTestApp {
4 public static void Main(){
5 Incrementer i1 = new Incrementer(0);
6 Incrementer i2 = new DerivedIncrementer(20);
7 Incrementer i3 = new WeakenedDerivedIncrementer(10);
8 i1.Increment(1);
9 i1.Increment(2);
10 i1.Increment(3);
11 i1.Increment(4);
C# For Artists © 2008 Rick Miller — All Rights Reserved 649

Preconditions, Postconditions, And Class Invariants Chapter 23: Three Design Principles
12 i1.Increment(5);

13 Console.WriteLine("-----------------------------");

14 i2.Increment(4);

15 i2.Increment(5);

16 Console.WriteLine("-----------------------------");

17 i3.Increment(5);

18 i3.Increment(6); // it does not cause an error here...

19 i3.Increment(7); // nor here

20 i3.Increment(8); // nor here

21 i3.Increment(9); // nor here

22 i3.Increment(10); // nor here

23 i3.Increment(11); // ...but here it does!

24 } // end main() method

25 }// end MainTestApp clas definition

Referring to Example 23.6 — a new Incrementer type reference named i3 is declared and initialized to point to

an object of type WeakenedDerivedIncrementer. Lines 17 through 23 call the Increment() method via i3. As you can

see, WeakenedDerivedIncrementer’s version of Increment() allows a wider range of increment values. If steps

weren’t taken within the body of its Increment() method to obey the contract of Incrementer.Increment() then an

assertion error would have been occured on line 18.

However, from the point of view of a programmer who is expecting derived class objects to fulfill the contract of

the base class Increment() method, WeakenedDerivedIncrementer objects work just fine because they allow the valid

increment ranges of 1 through 5, which is exactly what Incrementer.Increment() methods expect. Figure 23-3 shows

the results of running this modified version of MainTestApp.

Strengthening Preconditions

So far you have seen how a derived class object can be substituted for an Incrementer class object when the

derived class’s Increment() method adopts the same precondition or weakens the precondition of the Incrementer

class’s Increment() method. When preconditions are kept the same or weakened in the overriding methods of a

derived class, objects of the derived class type can be substituted for base class objects with little problem. However,

if you happen to strengthen the precondition of an overriding derived class method then you will break the code that

relies on the original preconditions specified for the base class method.

A strengthening precondition in a derived class method places limits on or restricts the original precondition

specified in the base class method it is overriding. In the case of Incrementer and its possible derived classes, the pre-

conditions on a derived version of Increment() can be strengthened to limit the range of authorized increment values

to, say, 1 through 3. This would effectively break any code that relies on the Incrementer’s version of the Increment()

method that allows the increment values 1 through 5.

Example 23.7 gives the code for a class named StrengthenedDerivedIncrementer whose Increment() method

overrides the base class version and strengthens the precondition.

Figure 23-3: Results of Running Example 23.6
650
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 23: Three Design Principles Preconditions, Postconditions, And Class Invariants
23.7 StrengthenedDerivedIncrementer.cs

1 #define DEBUG
2 using System;
3 using System.Diagnostics;
4
5 public class StrengthenedDerivedIncrementer : Incrementer {
6 /**
7 Class invariant: 0 <= val <= 50
8 **/
9 private int val = 0;
10
11 /***
12 Constructor Method: StrengthenedDerivedIncrementer(int i)
13 precondition: ((0 <= i) && (i <= 50))
14 postcondition: 0 <= val <= 50
15 ***/
16 public StrengthenedDerivedIncrementer(int i):base(i){
17 Debug.Assert((0 <= i) && (i <= 50)); // enforce precondition
18 val = i;
19 Console.WriteLine("StrengthenedDerivedIncrementer object created with value: " + val);
20 CheckInvariant();
21 }
22
23 /***
24 Method: void Increment(int i)
25 precondition: ((0 < i) && (i <= 3))
26 postcondition: 0 <= val <= 50
27 ***/
28 override public void Increment(int i){
29 Debug.Assert((0 < i) && (i <= 3)); // enforce precondition
30 base.Increment(i);
31 if((val+i) <= 50){
32 val += i;
33 }else{
34 int temp = val;
35 temp += i;
36 val = (temp - 50);
37 }
38 CheckInvariant(); // check invariant
39 Console.WriteLine("StrengthenedDerivedIncrementer value is: " + val);
40 }
41 /***
42 Method: void CheckInvariant() - called
43 immediately after any change to class
44 invariant to ensure invariant condition
45 is satisfied.
46 ***/
47 private void CheckInvariant(){
48 Debug.Assert((0 <= val) && (val <= 50));
49 }
50
51 } // end StrengthenedDerivedIncrementer class definition

Referring to Example 23.7 — the StrengthenedDerivedIncrementer class places a restriction on the original

Increment() method precondition by limiting the authorized increment values to 1 through 3. Example 23.8 shows the

StrengthenedDerivedIncrementer class in action. Figure 23-4 shows the results of running this program.
23.8 MainTestApp.cs (Mod 3)

1 using System;
2
3 public class MainTestApp {
4 public static void Main(){
5 Incrementer i1 = new Incrementer(0);
6 Incrementer i2 = new DerivedIncrementer(20);
7 Incrementer i3 = new WeakenedDerivedIncrementer(10);
8 Incrementer i4 = new StrengthenedDerivedIncrementer(10);
9
10 i1.Increment(1);
11 i1.Increment(2);
12 i1.Increment(3);
13 i1.Increment(4);
14 i1.Increment(5);
15 Console.WriteLine("-----------------------------");
16 i2.Increment(4);
17 i2.Increment(5);
18 Console.WriteLine("-----------------------------");
19 i3.Increment(5);
20 Console.WriteLine("-----------------------------");
21 i4.Increment(2); // OK so far...
22 i4.Increment(3); // OK here too...
23 i4.Increment(4); // Wait a minute...this should work!
C# For Artists © 2008 Rick Miller — All Rights Reserved 651

Preconditions, Postconditions, And Class Invariants Chapter 23: Three Design Principles
24

25 } // end main() method

26 }// end MainTestApp clas definition

Changing The Postconditions Of Derived Class Methods

Derived class method postconditions can be adopted, weakened, or strengthened just like preconditions. How-

ever, unlike preconditions, where a weakening condition is preferred to a strengthening condition, the opposite is true

for postconditions: A derived class method should specify and implement a stronger, rather than weaker, postcondi-

tion.

The Incrementer and its derived class examples shown previously each had their own private attribute that was

part if each class’s invariant. (Incrementer.val, DerivedIncrementer.val, etc.) Each class’s Increment() method had a

separate postcondition to preserve each class’s invariant. The two postconditions did not conflict or contradict and

were therefore compatible.

If, on the other hand, Incrementer.val had been declared protected and was inherited and used by its derived

classes, then derived versions of the Increment() method would need a postcondition that either maintained the class

invariant specified by the Incrementer class (adopting postcondition) or a postcondition that strengthened Incre-

menter’s class invariant (strengthening postcondition).

A weakening postcondition will cause problems. Consider for a moment what would happen if a derived class

version of Increment() allowed inherited Incrementer.val to assume values outside the range of those allowed by

Incrementer’s class invariant specification. Disaster would strike the code sooner than later. (Assuming some code

somewhere depended upon Incrementer objects being within their specified, valid states.)

Special Cases Of Preconditions And Postconditions

Method preconditions can specify and enforce more than just the values of method parameters, and postcondi-

tions can specify and enforce more than just class invariant states.

A method precondition can, for example, specify that the class invariant must hold true or that a combination of

conditions hold true before it can do its job properly. A method postcondition can, in addition to enforcing the class

invariant, specify the state of the object or reference the method returns (if any), or it can specify any number of con-

ditions hold true upon completion of the method call. The conditions or combination of conditions imposed by

derived class overriding method preconditions and postconditions can be weakening or strengthening.

The weakening and strengthening effects of preconditions and postconditions can apply to more than just simple

conditions. Method parameter types and return types all play a part and are discussed below.

Figure 23-4: Results of Running Example 24.8
652
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 23: Three Design Principles Preconditions, Postconditions, And Class Invariants
Method Argument Types

Derived class method preconditions can be weakened or strengthened by their method parameter types. An over-

riding method must agree with the method it overrides in the type, number, and order of its method parameters.

Method parameter types can belong to a type hierarchy. This means that a method parameter might be related to

another class via a subtype or supertype relationship.

A derived class method that declares a parameter whose type is a base class to the matching parameter declared

by the base class’s version of the method is an overriding method. If, however, the derived class method declares a

parameter that is a subclass of the parameter type declared by the base class method then the derived class method

hides the base class’s version of the method. This is due to the transitive nature of subtypes. (i.e., Given two types,

Base and Derived, if Derived extends or implements Base, then Derived is a Base but a Base is not a Derived.)

In other words, an overriding method can only provide a weakening precondition with regards to parameter types

because to strengthen the parameter type required would result in the declaration of a new method, (i.e., method over-

loading) (requiring a new type from the point of view of the base class version of the method) not the overriding of

the base class method. To illustrate this point assume there exists the class inheritance hierarchy shown in Figure 23-

5.

Each method f() in each class A and C requires a reference to an object of type A. Method f() in class B specifies

a reference to an object of type B. Therefore, method B.f() is an overloading method while method C.f() is an overrid-

ing method. Examples 23.9 through 23.11 give the code for classes A, B, and C. Example 23.12 puts these classes

through their paces, and Figure 23-6 shows the results of running this program.
23.9 A.cs

1 using System;
2
3 public class A {
4 public A(){
5 Console.WriteLine("A object created!");
6 }
7
8 public virtual void f(A a){
9 Console.WriteLine("A.f() called!");
10 }
11 }

23.10 B.cs

1 using System;
2
3 public class B : A {
4 public B(){

Figure 23-5: Strong vs. Weak Types

Weaker Type

Stronger Type
C# For Artists
 © 2008 Rick Miller — All Rights Reserved 653

Preconditions, Postconditions, And Class Invariants Chapter 23: Three Design Principles
5 Console.WriteLine("B object created!");
6 }
7
8 public virtual void f(B b){
9 Console.WriteLine("B.f() called!");
10 }
11 }

23.11 C.cs

1 using System;
2
3 public class C : B {
4 public C(){
5 Console.WriteLine("C object created!");
6 }
7
8 public override void f(A a){
9 Console.WriteLine("C.f() called!");
10 }
11 }

23.12 MainApp.cs

1 using System;
2
3 public class MainApp {
4 public static void Main(){
5 A a1 = new A();
6 a1.f(new A()); // A's method called
7
8 Console.WriteLine("------------------");
9
10 A a2 = new B();
11 a2.f(new A()); // A's method called
12 a2.f(new B()); // A's method called
13
14 Console.WriteLine("------------------");
15
16 B b1 = new C();
17 b1.f(new A()); // C's overriding method called
18 b1.f(new B()); // B's overloaded method called
19 b1.f(new C()); // B's overloaded method called
20
21 Console.WriteLine("------------------");
22
23 A a3 = new C();
24 a3.f(new A()); // C's overriding method called
25 a3.f(new B()); // C's overriding method called
26 a3.f(new C()); // C's overriding method called
27
28 } // end Main() method
29 } // end MainApp program

Method Return Types

Method return types are considered special cases of postconditions. A reference to an object may be returned

from a method as a result of its execution. Refer again to the inheritance hierarchy illustrated in Figure 23-5. If a snip-

pet of client code expects a return type from a method to be of a certain type, the method can strengthen that condition

and return a subtype of the type expected. This strengthening of return types is in line with the strengthening usually

required of postconditions.

Three Rules Of The Substitution Principle

In their book Program Development in Java: Abstraction, Specification, and Object-Oriented Design, Barbara

Liskov and John Guttag say that the substitution principle must support three properties: the signature rule, the meth-

ods rule, and the properties rule. Each of these rules are discussed below.
654 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 23: Three Design Principles Preconditions, Postconditions, And Class Invariants
Signature Rule

The signature rule deals with the methods published or made public by a type specification. In C# these methods

would have public accessibility. For a subtype to obey the signature rule it must support all the methods published by

its base class and that each overriding method is compatible with the method it overrides. C# enforces this type com-

patibility.

Methods Rule

The methods rule says that calls to overriding methods should behave like the base class methods they override.

A type may be substitutable from a strictly type perspective but the behavior may be all wrong. Correct behavior of

overriding methods is the aim of LSP and DbC.

Properties Rule

The properties rule is concerned with the preservation of provable base class properties by subtype behavior. A

subtype should preserve the base class invariant. If a subtype’s behavior violates a base class invariant then it is

breaking the properties rule.

Quick Review

The preconditions of a derived class method should either adopt the same or weaker preconditions as the base

class method it is overriding. A derived class method should never strengthen the preconditions specified in a base

class version of the method. Derived class methods that strengthen base class method preconditions will render it

impossible for programmers to reason about the behavior of subtype objects and lead to broken code should the ill-

behaved derived class object be substituted for a base class object.

Figure 23-6: Results of Running Example 24.12
C# Fo
r Artists © 2008 Rick Miller — All Rights Reserved 655

The Open-Closed Principle Chapter 23: Three Design Principles
Method parameter types are considered special cases of preconditions. Preconditions should be weakened in the

overriding method, therefore, parameter types should be the same or weaker than the parameter types of the method

being overridden. A base class is considered a weaker type than one of its subclasses.

Method return types are considered special cases of postconditions. The return type of an overriding method

should be stronger than the type expected by the client code. A subclass is considered a stronger type than its base

class.

The Open-Closed Principle

Software systems change over time. Change takes many forms, but changing and evolving system requirements

provide the primary catalyst. A software system must accommodate change. It must evolve gracefully throughout its

useful life cycle. A software system that is rigid, fragile, and change-resistant exhibits bad design. A software system

that is resilient, flexible, and extensible possesses the hallmark characteristics of a well-founded object-oriented

architecture. The open-closed principle (OCP) provides the necessary framework for achieving an extensible and

accommodating software architecture.

Formulated by Bertrand Meyer, the open-closed principle makes the following assertion:

Software modules must be designed and implemented in a manner
that opens them for extension but closes them for modification.

Said another way, changes to software modules should be avoided and new system functionality added by writ-

ing new code. It should be noted that writing code that is easy to extend and maintain is a requirement in and of itself.

Writing such code takes longer initially but pays a big dividend later. I call it the design dividend.

Achieving The Open-Closed Principle

The key to writing code that conforms to the open-closed principle is to depend upon abstractions, not upon

implementations. The reason is because abstractions tend to be more stable. (Correctly designed abstractions are very

stable!) This is achieved in C# through the use of abstract base classes or interfaces and dynamic polymorphic behav-

ior. Code should rely only upon the interface methods and behavior promised via abstract methods. A code module

that relies only upon abstractions will exhibit the characteristic of being closed to the need for modification yet open

to the possibility of extension.

An OCP Example

A good example of code written with the OCP in mind given in Examples 23.13 through 23.24. This code imple-

ments a simple naval fleet model where vessels of various types can be constructed with different types of power

plants and weapons. Figure 23-7 gives the UML diagram for the naval fleet class inheritance hierarchy. Example

23.24 offers a short program showing the naval fleet classes in action, and Figure 23-8 shows the results of running

this program.
23.13 Vessel.cs

1 using System;
2
3 public abstract class Vessel {
4 private Plant its_plant = null;
5 private Weapon its_weapon = null;
6 private String its_name = null;
7
8 // protected properties
9 protected Weapon Weapon {
10 get { return its_weapon; }
11 }
12
13
14 protected Plant Plant {
15 get { return its_plant; }
16 }
656 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 23: Three Design Principles The Open-Closed Principle
F
ig

u
re

 2
3
-7

:
N

av
al

 F
le

et
 C

la
ss

 I
n
h
er

it
an

ce
 H

ie
ra

rc
h
y

C# For Artists © 2008 Rick Miller — All Rights Reserved
 657

The Open-Closed Principle Chapter 23: Three Design Principles
17
18
19 public Vessel(Plant plant, Weapon weapon, String name){
20 its_weapon = weapon;
21 its_plant = plant;
22 its_name = name;
23 Console.WriteLine("The vessel " + its_name + " created!");
24 }
25
26 /* **
27 Public Abstract Methods - must be implemented in
28 derived classes.
29 ***/
30 public abstract void LightoffPlant();
31 public abstract void ShutdownPlant();
32 public abstract void TrainWeapon();
33 public abstract void FireWeapon();
34
35 /* **
36 ToString() Method - may be overridden in subclasses.
37 ***/
38 public override String ToString(){
39 return "Vessel name: " + its_name + " " + its_plant.ToString() +
40 " " + its_weapon.ToString();
41 }
42
43
44 }// end Vessel class definition

23.14 Plant.cs

1 using System;
2
3 public abstract class Plant {
4 private String its_model = null;
5 public Plant(String model){
6 its_model = model;
7 }
8 public abstract void LightoffPlant();
9 public abstract void ShutdownPlant();
10
11 public override String ToString(){ return "Plant model: " + its_model; }
12 }

23.15 Weapon.cs

1 using System;
2
3 public abstract class Weapon {
4 private String its_model = null;
5
6 public Weapon(String model){
7 its_model = model;
8 Console.WriteLine("Weapon object created!");
9 }
10
11 public abstract void TrainWeapon();
12 public abstract void FireWeapon();
13
14 public override String ToString(){ return "Weapon model: " + its_model; }
15 }

23.16 CIWS.cs

1 using System;
2
3 public class CIWS : Weapon {
4
5 public CIWS(String model):base(model){
6 Console.WriteLine("CIWS object created!");
7 }
8
9 public override void TrainWeapon(){
10 Console.WriteLine("CIWS is locked on target!");
11 }
12
13 public override void FireWeapon(){
14 Console.WriteLine("The CIWS roars to life and fires a zillion bullets at the target!");
658 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 23: Three Design Principles The Open-Closed Principle
15 }
16 }

23.17 Torpedo.cs

1 using System;
2
3 public class Torpedo : Weapon {
4
5 public Torpedo(String model):base(model) {
6 Console.WriteLine("Torpedo object created!");
7 }
8
9 public override void TrainWeapon(){
10 Console.WriteLine("Torpedo is locked on target!");
11 }
12
13 public override void FireWeapon(){
14 Console.WriteLine("Fish in the water, heading towards target!");
15 }
16 }

23.18 Five_Inch_Gun.cs

1 using System;
2
3 public class Five_Inch_Gun : Weapon {
4
5 public Five_Inch_Gun(String model):base(model){
6 Console.WriteLine("Five Inch Gun object created!");
7 }
8
9 public override void TrainWeapon(){
10 Console.WriteLine("Five Inch Gun is locked on target!");
11 }
12
13 public override void FireWeapon(){
14 Console.WriteLine("Blam! Blam! Blam!");
15 }
16 }

23.19 SteamPlant.cs

1 using System;
2
3 public class SteamPlant : Plant {
4
5 public SteamPlant(String model):base(model) {
6 Console.WriteLine("SteamPlant object created!");
7 }
8
9 public override void LightoffPlant(){
10 Console.WriteLine("Steam pressure is rising!");
11 }
12
13 public override void ShutdownPlant(){
14 Console.WriteLine("Steam plant is secure!");
15 }
16 }

23.20 NukePlant.cs

1 using System;
2
3 public class NukePlant : Plant {
4
5 public NukePlant(String model):base(model) {
6 Console.WriteLine("NukePlant object created!");
7 }
8
9 public override void LightoffPlant(){
10 Console.WriteLine("Nuke plant is critical!");
11 }
12
13 public override void ShutdownPlant(){
14 Console.WriteLine("Nuke plant is secure!");
C# For Artists © 2008 Rick Miller — All Rights Reserved 659

The Open-Closed Principle Chapter 23: Three Design Principles
15 }
16 }

23.21 GasTurbinePlant.cs

1 using System;
2
3 public class GasTurbinePlant : Plant {
4
5 public GasTurbinePlant(String model):base(model) {
6 Console.WriteLine("GasTurbinePlant object created!");
7 }
8
9 public override void LightoffPlant(){
10 Console.WriteLine("Gas Turbine is running and ready to go!");
11 }
12
13 public override void ShutdownPlant(){
14 Console.WriteLine("Gas Turbine is secure!");
15 }
16 }

23.22 Submarine.cs

1 using System;
2
3 public class Submarine : Vessel {
4
5 public Submarine(Plant plant, Weapon weapon, String name):base(plant, weapon, name){
6 Console.WriteLine("Submarine object created: " + base.ToString());
7 }
8
9 public override void LightoffPlant(){
10 Plant.LightoffPlant();
11 }
12
13 public override void ShutdownPlant(){
14 Plant.ShutdownPlant();
15 }
16
17 public override void TrainWeapon(){
18 Weapon.TrainWeapon();
19 }
20
21 public override void FireWeapon(){
22 Weapon.FireWeapon();
23 }
24
25 } // end Submarine class definition

23.23 SurfaceShip.cs

1 using System;
2
3 public class SurfaceShip : Vessel {
4
5 public SurfaceShip(Plant plant, Weapon weapon, String name):base(plant, weapon, name){
6 Console.WriteLine("SurfaceShip object created: " + base.ToString());
7 }
8
9 public override void LightoffPlant(){
10 Plant.LightoffPlant();
11 }
12
13 public override void ShutdownPlant(){
14 Plant.ShutdownPlant();
15 }
16
17 public override void TrainWeapon(){
18 Weapon.TrainWeapon();
19 }
20
21 public override void FireWeapon(){
22 Weapon.FireWeapon();
23 }
24
25 } // end SurfaceShip class definition

23.24 FleetTestApp.cs

1 using System;
2

660 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 23: Three Design Principles The Dependency Inversion Principle
3 public class FleetTestApp {
4 public static void Main(){
5 Vessel v1 = new Submarine(new NukePlant("Preasureized Water Mk 85"), new Torpedo("MK 50"),
6 "USS Falls Church");
7 v1.LightoffPlant();
8 v1.TrainWeapon();
9 v1.FireWeapon();
10 v1.ShutdownPlant();
11 }
12 }// end FleetTestApp class definition

Quick Review

The open-closed principle (OCP) attempts to optimize object-oriented software architecture design so it can

accommodate change. Software modules should be designed so they are closed to modification yet open to extension.

The OCP is achieved by depending upon software abstractions. In C# this means designing with abstract base classes

or interfaces while keeping the goal of dynamic polymorphic behavior in mind. The OCP relies heavily upon the

Liskov substitution principle and Design by Contract (LSP/DbC).

The Dependency Inversion Principle

When used together in a disciplined approach, the OCP and the LSP/DbC yield a desirable inversion of program

module dependencies that is different from the usual top-down module dependencies attained with functional decom-

position. This dependency inversion is generalized into a principle in its own right known as the Dependency Inver-

sion Principle (DIP). Robert C. Martin stated the definition of the DIP in two parts that I’ve paraphrased here:

A. High-level modules should not depend upon low-level modules.
Both should depend upon abstractions.

B. Abstractions should not depend upon details. Details should
depend upon abstractions.

Characteristics Of Bad Software Architecture

When a software module depends on the details of a lower-level software module it is hard to change and hard to

reuse. Consider the software module hierarchy shown in Figure 23-9 where high-level modules depend on low-level

modules. Referring to Figure 23-9 — the behavior of module A depends on modules B, C, and D. The behavior of

module B depends on module E, module C depends on the behavior of modules F and G, and module D depends on

module H. A change to module E affects module B, which in turn affects module A. Any intermodule dependencies

such as global variables will further complicate the issue. A complex software system sporting this sort of architec-

ture will have the undesirable characteristics of bad design, namely, it will be fragile, rigid, and immobile.

Figure 23-8: Results of Running Example 24.22
C
For Artists © 2008 Rick Miller — All Rights Reserved 661

The Dependency Inversion Principle Chapter 23: Three Design Principles
A fragile software architecture is one that breaks in unexpected ways when a change is made to one or more soft-

ware modules. Fragile software leads to rigid software.

A rigid software architecture is one that is so difficult and painful to change that programmers do not want to

change it.

An immobile software architecture is characterized by the inability to successfully extract software modules for

reuse in other systems. A software module may exhibit desirable behavior but if it is too dependent on other modules

or anchored to the application architecture by intermodule dependencies then it will be difficult if not impossible to

reuse it in another similar context. If it is easier to rewrite a module from scratch than it is to adopt and reuse the mod-

ule then the module is immobile.

Characteristics Of Good Software Architecture

Object-oriented software architectures that subscribe to the OCP and the LSP/DbC will depend heavily upon

abstractions. These abstractions will appear at or near the top of the software module hierarchy. Refer again to the

naval fleet class hierarchy shown in Figure 23-7. The Vessel, Weapon, and Plant abstract base classes serve as the

foundation for all behavior inherited by the lower-level implementation classes. This inheritance relationship means

that the lower-level derived classes are dependent upon the behavior specified by the higher-level base class abstrac-

tions.

The key to success with the DIP lies in choosing the right software abstractions. A software architecture based

upon the right kinds of abstractions will exhibit the desirable characteristic of being easy to extend. It will be flexible

because of its extensibility, it will be non-rigid in that the addition of new functionality via new derived classes will

not affect the behavior of existing abstractions. Lastly, software modules that depend upon abstractions can generally

be reused in a wider variety of contexts, thus achieving a greater degree of mobility.

Selecting The Right Abstractions Takes Experience

The ability to identify essential software component abstractions takes practice and experience. However, apply-

ing the OCP and the LSP/DbC in your object-oriented software architecture design will yield a better design, even if

you do not get all the abstractions right the first time around.

Quick Review

The OCP and the LSP/DbC, when applied together, result in the realization of a third design principle known as

the Dependency Inversion Principle (DIP). The key to the DIP is that high-level software modules should not rely on

low-level details and that software modules at all hierarchy levels should rely upon abstractions. When a software

architecture achieves the goals of the DIP it is easier to extend and maintain (i.e., it is flexible and non-rigid). Soft-

ware modules that conform to the DIP are easier to reuse in other contexts (i.e., they are mobile).

Intermodule

dependencies

complicate the

architecture.

Application behavior

exhibited here...

...is affected by changes

made to lower-level

modules.

Figure 23-9: Traditional Top-Down Functional Dependencies
662 © 2008 Rick Miller — All Rights Reserved
 C# For Artists

Chapter 23: Three Design Principles Terms and Definitions
Terms and Definitions

The terms and definitions listed in Table 23-1 were used throughout this chapter:

Summary

Well-designed software architectures exhibit three characteristics: 1) they are easy to understand, 2) they are easy

to reason about, and 3) they are easy to extend.

The Liskov Substitution Principle (LSP) and Bertrand Meyer’s Design by Contract (DbC) programming are

closely related principles designed to enable programmers to better reason about subtype behavior.

The preconditions of a derived class method should either adopt the same or weaker preconditions as the base

class method it is overriding. A derived class method should never strengthen the preconditions specified in a base

class version of the method. Derived class methods that strengthen base class method preconditions will render it

Term Definition

Abstraction The separation of the important from the unimportant. (i.e., interface vs. implementa-

tion)

Abstract Data Type A type specification that separates the interface to the type from the type’s implementa-

tion. An abstract data type represents a set of objects that can be manipulated via a set

of interface methods.

Supertype An abstract data type that serves as a specification for related subtypes.

Subtype An abstract data type that derives all or part of its specification from another abstract

data type. A subtype can inherit the specification of a supertype and then add specialized

behavior if required.

Type Specification A declaration of the behavioral properties of an abstract data type. A specification de-

scribes the important characteristics of the data abstraction.

Encapsulation The act of hiding private implementation details behind a publicly accessible interface.

Precondition A condition, constraint, or set of constraints that must hold true during a call to an ab-

stract data type interface method to ensure its proper operation.

Postcondition A condition, constraint, or set of constraints that must be satisfied when an abstract data

type method completes execution.

Inheritance Hierarchy A set of abstract data type specifications that implement a supertype and subtype rela-

tionship between each abstract data type.

Class The declaration of an abstract data type specifying a set of attributes and interface meth-

ods common to a set of objects.

Abstract Class The declaration of an abstract data type specifying a set of attributes and interface meth-

ods common to a set of objects. One or more interface methods are declared to be ab-

stract and are therefore deferred to subclasses for implementation.

Subclass A declaration of an abstract data type taking all or part of its specification from another,

possibly abstract, class.

Class Invariant An assertion about the state of an object which must hold true for all possible states the

object may assume.

Table 23-1: Terms and Definitions Used in this Chapter
C# For Artists © 2008 Rick Miller — All Rights Reserved 663

Skill-Building Exercises Chapter 23: Three Design Principles
impossible for programmers to reason about the behavior of subtype objects and lead to broken code should the ill-

behaved derived class object be substituted for a base class object.

Method parameter types are considered special cases of preconditions. Preconditions should be weakened in the

overriding method, therefore, parameter types should be the same or weaker than the parameter types of the method

being overridden. A base class is considered a weaker type than one of its subclasses.

Method return types are considered special cases of postconditions. The return type of an overriding method

should be stronger than the type expected by the client code. A subclass is considered a stronger type than its base

class.

The open-closed principle (OCP) attempts to optimize object-oriented software architecture design so it can

accommodate change. Software modules should be designed so they are closed to modification yet open to extension.

The OCP is achieved by depending upon software abstractions. In C# this means designing with abstract base classes

or interfaces while keeping the goal of dynamic polymorphic behavior in mind. The OCP relies heavily upon the

Liskov substitution principle and Design by Contract (LSP/DbC).

The OCP and the LSP/DbC, when applied together, result in the realization of a third design principle known as

the Dependency Inversion Principle (DIP). The key to the DIP is that high-level software modules should not rely on

low-level details, and that software modules at all hierarchy levels should rely upon abstractions. When a software

architecture achieves the goals of the DIP it is easier to extend and maintain (i.e., it is flexible and non-rigid). Soft-

ware modules that conform to the DIP are easier to reuse in other contexts (i.e., they are mobile).

Skill-Building Exercises

1. Research: Procure a copy of Bertrand Meyer’s excellent book Object-Oriented Software Construction, Second

Edition, and read it from front to back.

2. Research: Procure a copy of Robert C. Martin’s book Designing Object-Oriented C++ Applications Using The

Booch Method. Although the Booch diagramming notation has been superseded by the Unified Modeling Lan-

guage, and the code examples are given in C++, the C# student will still gain much from reading this excellent

work.

3. Research: Conduct a web search for the keywords “Liskov substitution principle”, “open-closed principle”,

“dependency inversion principle”, and “Meyer design by contract” programming.

4. API Drill: Study the System.Diagnostics namespace. List each class and write a brief description about each one.

Suggested Projects

1. Robot Rat: Evaluate your latest version of Robot Rat and apply each of the three design principles to your design.

What improvements, if any, can be realized by applying each principle? How would your design have to be modi-

fied to take full advantage of each of the three design principles?

Self-Test Questions

1. List and describe the preferred characteristics of an object-oriented architecture.

2. State the definition of the Liskov substitution principle.
664 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 23: Three Design Principles References
3. Define the term “class invariant”.

4. What is the purpose of a method precondition?

5. What is the purpose of a method postcondition?

6. List and describe the three rules of the substitution principle.

7. Write the definition and goals of the open-closed principle.

8. Explain how the open-closed principle uses the Liskov substitution principle and Meyer Design by Contract pro-

gramming to achieve its goals.

9. Write the definition and goals of the dependency inversion principle.

10. Explain how the dependency inversion principle builds upon the open-closed principle and the Liskov substitu-

tion principle/Meyer Design by Contract programming.

References

Barbara Liskov, Data Abstraction and Hierarchy, SIGPLAN Notices, 23,5 (May 1988).

W. Al-Ahmad, On The Interaction of Programming By Contract and Liskov Substitution Principle.

Bertrand Meyer, Applying “Design by Contract”, IEEE Computer, Vol. 25 Number 10, October 1992, pp. 40 -

51.

Barbara H. Liskov, Jeannette M. Wing, A Behavioral Notion of Subtyping. ACM Transactions on Programming

Languages and Systems, Vol 16, No 6, November 1994, pp. 1811-1841.

James O. Coplien, Advanced C++: Programming Styles and Idioms. Addison-Wesley Publishing Company,

Reading, Massachusetts, 1992. ISBN: 0-201-54855-0

Barbara Liskov, John Guttag, Program Development in Java: Abstraction, Specification, and Object-Oriented

Design. Addison-Wesley, Boston, Massachusetts, 2001. ISBN: 0-201-65768-6

Robert C. Martin. Designing Object-Oriented C++ Applications Using The Booch Method. Prentice Hall, Engle-

wood Cliffs, New Jersey, 1995. ISBN: 0-13-203837-4

Bertrand Meyer. Towards practical proofs of class correctness, to appear in Proc. 3rd International B and Z Users

Conference (ZB 2003), Turku (Finland), June 2003, ed. Didier Bert, Springer-Verlag, 2003.

Bertrand Meyer. Object-Oriented Software Construction, Second Edition. Prentice Hall PTR, Upper Saddle

River, New Jersey 07458. ISBN: 0-13-629155-4

Rick Miller. C++ For Artists: The Art, Philosophy, And Science Of Object-Oriented Programming. Pulp Free

Press, Falls Church, VA. ISBN: 1-932504-02-8
C# For Artists © 2008 Rick Miller — All Rights Reserved 665

Notes Chapter 23: Three Design Principles
Notes
666 © 2008 Rick Miller — All Rights Reserved C# For Artists

24 Inheritance, Composition, Interfaces, Polymorphism

Learning Objectives
• List and discuss the benefits offered by the use of inheritance
• List and discuss the benefits offered by the use of composition
• Describe when inheritance is an appropriate design mechanism
• List the three essential purposes of inheritance
• List and describe the inheritance forms included in Meyer’s Inheritance Taxonomy
• Utilize Coad’s five inheritance checkpoints to determine the effective use of inheritance
• Describe the purpose of an interface
• State the definition of the term “polymorphism”
• Describe the role polymorphism plays in program design and implementation
• Describe when composition is an appropriate design mechanism
• State the definition of the term “polymorphic containment”
• Describe why composition is considered a force multiplier
• Utilize inheritance, interfaces, composition, and polymorphism together to achieve optimal design

Chapter 24

Inheritance, Composition
Interfaces, Polymorphism

Line Handlers Assemble

N
ik

o
n
 F

3
H

P
 /

 Z
o
o
m

-N
ik

k
o
r

3
5
-1

0
5
 /

 K
o
d
ak

 T
ri

-X
C#
 For Artists © 2008 Rick Miller — All Rights Reserved 667

Introduction Chapter 24: Inheritance, Composition, Interfaces, Polymorphism
Introduction

I want to focus your attention again on the topics of inheritance, interfaces, composition, and polymorphism —

the four enablers of object-oriented design and programming. I introduced you to these topics earlier in the book in

their isolated contexts, but now I’d like to present them to you collectively to highlight several important issues

regarding their utilization in program design. At this point in the text, you should be familiar with these concepts and

comfortable with C# .NET. This will be the case especially if you’ve attempted several of the more challenging sug-

gested projects.

Inheritance, interfaces, composition, and polymorphism are employed together to achieve an optimal object-ori-

ented design and implementation. However, there are no guarantees that your design, and the resulting implementa-

tion, will be anything close to optimal unless you understand the ramifications of your design decisions.

The great photographer Ansel Adams so completely mastered the photographic arts that he could produce the

scene he visualized by expertly manipulating every phase of the process from exposure to print. So too must you

visualize the desired characteristics of the end system and effectively employ object-oriented analysis, design, and

implementation techniques to achieve your goal.

In this chapter, I will review the concepts and principles of inheritance and composition. I will discuss how each

contributes to code reuse and offer guidance on how to choose between the two design approaches. I will then discuss

the benefits of interfaces and show you how to use them to break functional dependencies between code modules.

As you gain programming experience and begin to grasp the subtleties and nuances of good object-oriented

design, you will encounter programmers and architects who have adopted one particular design methodology and

extol its virtues with religious fervor. In reality, there is no absolute right object-oriented design. (Although I do

believe there are absolute wrong ones!) A particular design’s suitability is dictated primarily by application require-

ments. And although application requirements can be expected to evolve over time, a design, no matter how good,

cannot be expected to graciously accommodate major shifts in application requirements that derive from a complete

misunderstanding of the application’s intended purpose.

You can, however, with the right amount of forethought, create an application architecture that accommodates

major and minor feature additions with little or no negative impact to existing code modules. But you must have fore-

seen and accounted for the requirement to extend and change the application before making your first design deci-

sion. These issues are at the heart of the material in this chapter.

Inheritance Vs. Composition: The Great Debate

A continuing debate simmers between object-oriented design theorists and practitioners. I draw your attention to

this debate only because sooner or later you will encounter it either in person or by reading the existing literature.

Each group is philosophically divided into three camps: 1) the compositionists, and 2) the inheritists, and 3) the

design pragmatists. The issue revolves around the answer to this question: “What is the preferred approach to achiev-

ing code reuse within an object-oriented program?”

The compositionists are the most radical. They believe the only way to achieve code reuse within a program is

through compositional design. All forms of inheritance as a reuse mechanism are suspect and should be avoided.

They believe that anyone who advocates inheritance as a code reuse mechanism is a heretic and would be better

burned at the stake than left free to wreak havoc on object-oriented programs.

The inheritists believe that inheritance is a valid form of code reuse. They know of the term composition but in

their textbooks they provide the topic only superficial treatment at best. I get the distinct impression that an inheritist

has little or no practical experience in object-oriented programming in a production environment.

The design pragmatists understand the meaning of the term engineering trade-off. They use inheritance where it

makes sense to do so and composition when the situation dictates. They understand what it means to compromise in

order to make progress while at the same time taking every practical measure to ensure design goals are achieved.

They realize several important facts of life: 1) the world in which we live may be perfect but human understanding of

the world is decidedly imperfect, 2) it follows, then, that a human-derived model of any problem will suffer from

imperfection, 3) mapping an imperfect model to a object-oriented design results in an imperfect design, 4) mapping
668 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 24: Inheritance, Composition, Interfaces, Polymorphism Inheritance Vs. Composition: The Great Debate
the imperfect design to an implementation results in an imperfect implementation, and 5) C# and the .NET Frame-

work both suffer from imperfection, as do all object-oriented programming languages and frameworks humans cre-

ate. Therefore — to argue perfect design is a waste of time.

Design pragmatists will attempt to achieve reuse at very step. My use of the term reuse here includes reuse in all

its forms. (code, design, knowledge, etc.) To a design pragmatist, therefore, the issue is not strictly reuse, but rather

what amount of design is appropriate to the task at hand.

What’s The End Game?

Most programming endeavors are business ventures; there’s a very real need to make a profit. If every class in

every system had to be reusable in every context all projects would end in failure. So, the right amount of design

depends on system requirements. Not functional requirements, per se, but implicit requirements common to all

object-oriented application architectures that concern ease of maintenance, modularity, flexibility, and reusability.

Theorists can afford to argue design aesthetics all the live-long day, but production coders cannot. They must

deliver the goods on what always seems to be a tight schedule. Production programmers continuously make engineer-

ing trade-offs. So long as they are not completely off target design-wise, they’ll make their schedule with a product

that’s not impossible to maintain.

I take the metaphor of “hitting the design target” literally. On a recent project, I gathered my developers around a

white board periodically to conduct a design gut check. I’d draw a target on the board complete with a bullseye in the

center. I would then ask each developer to place a mark on the target indicating where they thought our design and

coding efforts placed us, with the bullseye representing 100% perfection. We never hit the bullseye; no project ever

will. What mattered most was that we did not completely miss the target, and that with each iteration we moved

closer to the bullseye.

Since hitting the design bullseye on your first shot is unlikely, what then are you trying to achieve in terms of

design and implementation? The answer is simply that you don’t want to program yourself into a corner from which

there is no escape. Your application architecture must be flexible so that it can accommodate change, it must be mod-

ular and reliable, and it must be stable.

Flexible Application Architectures

Application architectures must be flexible enough to accommodate anticipated feature additions gracefully.

Graceful change accommodation is an application requirement, and in most cases this application requirement is not

explicitly stated. To achieve this requirement you must have it in mind at the start of your design, otherwise you will

end up eroding the application’s architectural foundation as you try and shoehorn new features into the application.

Modularity And Reliability

Application components must be both modular and reliable. In an object-oriented application the natural bound-

ary for modularity is at the class level. A class represents an abstraction of a problem domain entity. If you do a good

job at maximizing class cohesion (i.e., give the class a focused purpose) and minimizing class coupling (i.e., limiting

its dependency on other classes) you will find it significantly easier to reuse such classes.

Reliability does not necessarily follow from modularity, and indeed, code reliability depends upon a multitude of

factors, but well-designed classes (i.e., maximally cohesive and minimally coupled) lend themselves to more thor-

ough testing. A class that is designed to serve one purpose and that is reused in many locations within an application

will tend to have its behavior exhaustively tested.

Architectural Stability Via Managed Dependencies

Application architectures must be stable. This means that a change to the application must have predictable

results. The ability to correctly anticipate the effects that change will have on an application varies inversely with the

number of inter-module dependencies. The more dependencies, the harder it is to anticipate the effects of change.
C# For Artists © 2008 Rick Miller — All Rights Reserved 669

Inheritance-Based Design Chapter 24: Inheritance, Composition, Interfaces, Polymorphism
Knowing When To Accept A Design That’s Good Enough

The answer to the question of when a design has reached “good enough” is always the same — it depends. It

depends on the application’s intended purpose and its associated requirements. The decision is usually made in the

context of time spent making the application architecture completely generic (never a requirement I’ve personally

encountered) vs. crafting an architecture that’s flexible enough to accommodate contextually similar feature addi-

tions.

Quick Review

There are three philosophical camps regarding the attainment of code reuse within an application: composition-

ists, inheritists, and design pragmatists. Design pragmatists utilize the full spectrum of object-oriented design mecha-

nisms to achieve reuse on all possible fronts. Their approach to design is rooted in making intelligent engineering

trade-offs. The end game of good design is an application architecture that is flexible, modular, reliable, and stable.

Inheritance-Based Design

As you learned in Chapter 11, inheritance plays a critical role in object-oriented design and implementation.

However, as with all design strategies, it should be applied in right measure. In this section I want to raise your

awareness of the appropriate uses of inheritance and the different forms an inheritance hierarchy can assume. Follow-

ing these discussions the Person-Employee inheritance example originally presented in Chapter 11 will be examined

in the context of Meyer’s inheritance taxonomy and Coad’s inheritance criteria.

Three Good Reasons To Use Inheritance

There are at least three good reasons to use inheritance: 1) it provides you with an object-oriented design mecha-

nism that enables you to think and reason about the structure and behavior of your code in terms of generalized and

specialized classes, 2) it offers a measure of code reuse within your program, and 3) it provides you with a way to

incrementally develop code.

As A Means To Reason About Code Behavior

Thoughtfully designed inheritance hierarchies help tame conceptual complexity. If you are fortunate enough to

correctly formulate the abstractions (base classes/supertypes) at the upper-most level of the hierarchy then you can

make reasonable assumptions about the behavior of the concrete implementations (derived classes/subtypes) when

they are used in situations expecting supertype behavior. Well-designed inheritance hierarchies enable polymorphic

behavior which is the cornerstone of object-oriented programming.

To Gain A Measure Of Code Reuse

Classes may contain code that can be potentially reused within your application. You need look no further than to

the .NET Framework API for an example. The key to gaining code reuse via inheritance is to have correctly modeled

the application domain in the class hierarchy in the first place and placed common behavior in classes that sit at the

root of the inheritance hierarchy. The root in this case means the top since inheritance hierarchies are typically mod-

eled as inverted tree structures.

To Facilitate Incremental Development

Inheritance facilitates incremental development by allowing programmers to extend existing classes (i.e. adopt

existing behavior) when necessary and appropriate. Complex applications are typically built in an iterative fashion.
670 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 24: Inheritance, Composition, Interfaces, Polymorphism Inheritance-Based Design
Initially, an overall application architecture is laid down and one or more application features, each satisfying one or

perhaps several outstanding requirements, are implemented with each iterative development cycle. (See Chapter 20)

Forms Of Inheritance: Meyer’s Inheritance Taxonomy

In this book I have favored the use of four inheritance forms: subtype, extension, functional variation, and imple-

mentation. However, there are many forms of inheritance I have not discussed. These can be seen in Bertrand

Meyer’s Inheritance Taxonomy shown in Figure 24-1. Table 24-1 provides a brief description of each inheritance

form. (Note: The lightly shaded rows of Table 24-1 highlight the most often used inheritance forms.) Readers inter-

ested in a complete treatment of each inheritance form are referred to Meyer’s book, which is listed in the references

section at the end of this chapter.

Inheritance
Form

Inheritance
Form

Inheritance Form Or Description

Model Subtype The most obvious form of inheritance. Used to model application domain objects

into categories (base classes) and subcategories (derived classes). Base classes

serve to specify behavior only and are therefore abstract. (Or, in C#, an inter-

face.) Derived classes represent separate and distinct types.

Restriction Derived classes introduce a constraint upon base class behavior. The constraint

is usually applied to the base class invariant. (An invariant is a property that must

hold true at all times. I discussed class invariants in detail in Chapter 23.)

Extension Derived classes introduce new behavior not found in the base class.

Table 24-1: Inheritance Form Descriptions

Figure 24-1: Meyer’s Inheritance Taxonomy
C
For Artists © 2008 Rick Miller — All Rights Reserved 671

Inheritance-Based Design Chapter 24: Inheritance, Composition, Interfaces, Polymorphism
Coad’s Inheritance Criteria

Peter Coad, in his book Java Design: Building Better Apps And Applets, provides a set of five checkpoints that

can be used to ensure the effective use of inheritance. The inheritance form(s) each checkpoint seeks to avoid is listed

in parentheses.

1. The derived class models an “is a special kind of,” relationship to the base class not an “is

a role played by a” relationship. (view)

2. The derived class never needs to transmute to be an object in some other class. (view)

3. The derived class extends rather than overrides or nullifies the base class. (functional, unef-

fecting)

4. The baseclass is not merely a utility class representing functionality you would simply like to

reuse. (constant, machine)

5. The inheritance hierarchy you are trying to build represents special kinds of roles, transac-

tions, or devices within the application domain.

View Derived classes do not fit nicely into disjoint types. Subclasses do not represent

distinct types but rather various ways of classifying instances of the base class.

View inheritance is best applied when base and derived classes are abstract (or

interfaces).

Variation Functional

Variation

Derived classes redefine (override) base class methods.

Type

Variation

Derived classes redefine base class method signatures. This type of inheritance is

not authorized in C#. An overriding method in a derived class must have the exact

method signature, including return type, of the base class method it’s overriding.

Uneffecting

Inheritance

A derived class redefines a non-abstract base class method into an abstract meth-

od. This effectively removes the unwanted base class behavior.

Software Reification The base class represents a general kind of data structure, say a linked-list, and

the derived class wants to adopt the functionality of the linked-list with the intent

of making it into a different kind of data structure behavior-wise, say a queue. In

the case of reification inheritance, the base class provides behavior (non-ab-

stract).

Structure Structure inheritance differs from reification inheritance in that the base class is

abstract and provides only a set of specifications for the behavior of the data

structure (abstract methods). The derived class may provide full or partial imple-

mentation of the behavior specified by the base class. This form of inheritance

occurs frequently in the .NET Collections API.

Implementation The derived class inherits the behavior specified by the base class and uses it as-

is.

Facility Constant The base class consists of static const fields (constants)

and methods whose bodies are executed only once to re-

turn a reference to a common object. A method that re-

turned a singleton instance would fit the bill.

Machine The base class consists of methods the derived class finds

useful to perform its mission.

Inheritance
Form

Inheritance
Form

Inheritance Form Or Description

Table 24-1: Inheritance Form Descriptions
672 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 24: Inheritance, Composition, Interfaces, Polymorphism Inheritance-Based Design
Person - Employee Example Revisited

Given Meyer’s taxonomy of inheritance forms and Coad’s criteria for the effective use of inheritance, let’s

reevaluate the Person-Employee inheritance hierarchy originally presented in Chapter 11. It would be helpful if you

print out the source code for this example to refer to while reading the assessment presented in this section. Figure 24-

2 gives the UML class diagram.

Referring to Figure 24-2 — the Person class provides complete functionality for a generic person. The Person

class is fully implemented and therefore not abstract. The Employee class utilizes implementation inheritance by

extending the Person class, and subtype inheritance by implementing the Payable interface. However, since the

Employee class fails to provide an implementation for the Payable interface’s Pay() method it is declared to be

abstract and pushes the responsibility of Pay()’s ultimate implementation to its derived classes. The HourlyEmployee

and SalariedEmployee classes both employ implementation, subtype, and functional variation inheritance since each

fully accepts Employee’s Person-based behavior, each is a subtype of Employee, which is a subtype of both Payable

and Person, and each overrides the Pay() method to provide custom-derived class functionality.

When evaluated against Coad’s criteria this design fails a few of the checkpoints: 1) The Employee class does

not strictly model an “is a special kind of” relationship between itself and the Person base class, 2) The Person class,

which sits at the root of the inheritance hierarchy, does not model a role, transaction, or device, and 3) although not

evident in this limited example, subclasses may need to transmute to other subclass types. This difficulty might not be

encountered until we are asked to extend the current design in response to a seemingly innocent feature request and

found we had programmed ourselves into a tight corner indeed.

The following questions arise from this example: “Can this design be improved and how?” and “Is the current

design completely invalid and unusable?” I will address these questions after discussing the role of interfaces, poly-

morphism, and compositional design in the following sections.

Quick Review

There are at least three good reasons to use inheritance: 1) it provides you with an object-oriented design mecha-

nism that enables you to think and reason about the structure and behavior of your code in terms of generalized and

specialized classes, 2) it offers a measure of code reuse within your program, and 3) it provides you with a way to

incrementally develop code.

The most often used forms of inheritance include subtype, extension, functional variation, and implementation.

Coad’s criteria provides five checkpoints that can be used to validate the use of inheritance.

Figure 24-2: Person-Employee Inheritance Diagram
C# For Artist
s © 2008 Rick Miller — All Rights Reserved 673

The Role Of Interfaces Chapter 24: Inheritance, Composition, Interfaces, Polymorphism
The Role Of Interfaces

The interface construct provides the means to specify type behavior. Interfaces can inherit from other interfaces.

This facilitates the application of a rich variety of inheritance forms to include: subtype inheritance and extension

inheritance.

A class can inherit from only one other class, but can implement any number of interfaces. This is one of the key

advantages of using interfaces; any class, from any inheritance hierarchy, can implement any interface as required.

Such classes are not tied to the static typing enforced by their inheritance hierarchy; they can become any type they

need to be by simply implementing the required interface. For example, you can make any class an IComparable<T>

by implementing the IComparable<T> interface and providing behavior for its CompareTo() method.

Reducing Or Limiting Intermodule Dependencies

Another powerful advantage interfaces provide is the ability to reduce intermodule dependencies upon concrete

implementation classes. If you program to an interface you free the code from its dependency on any particular

implementation of that interface. (The same effect can be achieved by programming to abstract classes.) Any object

that implements the interface can be used where objects of that interface type are called for in the code. (polymorphic

substitution)

However, simply using interfaces does not automatically result in reduced functional dependencies. You must

also be aware that you cannot fully eliminate all functional dependencies from your code, but you can architecturally

organize your application in a way that limits them to a handful of classes. It’s kind of like herding cattle; the beasts

must be rounded up and concentrated.

One way to approach such a task is to use the Factory class pattern. A Factory is an object that is used to create

instances of objects of a specified type. This type is usually an interface. (Either an interface proper or an abstract

class.) In practice, there are usually two interfaces involved in employing the Factory class pattern; 1) the interface

that corresponds to the type of objects the factory creates, and 2) an interface to the Factory itself so that when the

application starts up different factory instances can be used.

The Factory class pattern is usually employed together with the Singleton pattern since only one instance of a

factory object is utilized by all objects that need objects of the type the factory creates. Factory and Singleton patterns

are covered formally in Chapter 25.

Modeling Dominant, Collateral, and Dynamic Roles

The obvious question arises: “When should you model an application domain entity or concept as an interface, a

class, or as a hierarchy of interfaces or classes?”

Interfaces serve primarily as behavioral specifications and thus they are the natural choice for implementing sub-

type inheritance hierarchies (subtype inheritance). And since one interface can extend another existing interface, and

in the process specify additional behavior (i.e., add more method declarations specific to the subtype), they can also

be used to implement extension inheritance. But classes can be used to implement the same types of inheritance

forms, so how do you choose between the two?

I would suggest that when modeling dominant roles favor the use of a class hierarchy, and when modeling collat-

eral roles favor the use of interfaces. When attempting to model the many possible roles some object might assume

dynamically during application runtime, model these as a collection of strings (i.e., a list of strings perhaps), con-

tained within the object. These concepts are discussed in detail below.

Dominant Roles

A dominant role is one that is unlikely to change or transmute once modeled. An example of this would be the

Employee/HourlyEmployee or Employee/SalariedEmployee inheritance relationships. Behavior can be safely imple-

mented in the base class and subclasses can extend base class functionality as required. However, you must always

keep in mind how you intend to polymorphically utilize objects within the application. Such a consideration might
674 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 24: Inheritance, Composition, Interfaces, Polymorphism Applied Polymorphism
mean the difference between choosing functional variation inheritance over extension inheritance. This topic will be

explored more thoroughly later in the Applied Polymorphism section.

The use of interfaces is not precluded when modeling dominant roles and in some cases an interface will serve as

the root type of a dominant role class hierarchy. An example of this is offered later in the chapter.

Collateral Roles

A collateral role is one that is likely to be utilized in combination with other dominant or collateral roles but,

once modeled, is unlikely to change. Examples of collateral roles abound in the .NET Framework. For example, the

DateTime structure whose primary role is a value type that stores date and time values can be compared with other

DateTime object because it implements the IComparable interface, it also implements IFormattable, IConvertible,

and ISerializable.

Dynamic Roles

In C#, an object’s type cannot be dynamically changed at runtime. Therefore dominant and collateral roles, once

modeled, are static in nature. However, an object often needs to assume roles dynamically. An example of when this

is necessary can be found in applications where a user has access to different levels of application functionality based

upon the type of access authority they have been granted. (The “user” application domain entity might be represented

by a class named “User”.) These types of user access roles are dynamic because a user might be granted increased or

decreased access rights at application runtime. Role types such as these are often stored in persistent storage (i.e.,

relational databases). An application that utilizes such roles to restrict user access is usually modeled as an access

control graph (ACG).

Quick Review

The interface construct provides the means to specify type behavior and supports a rich variety of inheritance

forms to include: subtype inheritance, extension inheritance, and constant inheritance. Interfaces, when used in con-

junction with the Factory and Singleton patterns, can reduce inter-module functional dependencies to a handful of

classes.

When modeling dominant roles favor the use of a class hierarchy. When modeling collateral roles favor the use

of interfaces. When attempting to model the many possible roles some object might assume dynamically during

application runtime, model these as a collection of Strings contained within the object.

Applied Polymorphism

Chapter 11 touched on the topic of polymorphic behavior and conceptually it is easy to grasp. Polymorphism is

the ability to treat different objects in the same manner. In object-oriented programming this means that your program

utilizes references to base class types (preferably interfaces or abstract class types) that at runtime actually contain

references to derived class objects.

You must plan for the proper use of polymorphic behavior from the moment you start laying the foundation of

your application architecture. This means you must consider carefully your choice of inheritance forms when design-

ing your class inheritance hierarchies.

Since the goal of polymorphic programming is the uniform treatment of derived class objects it follows that

derived classes should conform to the interface specified by the base class. It also follows then that the preferred form

of inheritance to satisfy this requirement would be functional variation, where the base class specifies behavior via an

abstract method and derived classes override the method to provide a custom implementation.

Using extension inheritance instead of functional variation adds complications. For example, if a derived class

extends the behavior of a base class by defining additional methods, then objects of this new type, accessed via a base

class reference, must be cast to the proper type before the new functionality can be accessed.

Refer to the Person-Employee class diagram shown in Figure 24-2. There are four ways to get polymorphic

behavior from this inheritance hierarchy: 1) create an Object type reference and initialize it to point to either an Hour-
C# For Artists © 2008 Rick Miller — All Rights Reserved 675

Composition-Based Design As A Force Multiplier Chapter 24: Inheritance, Composition, Interfaces, Polymorphism
lyEmployee or SalariedEmployee type object, 2) create a Person type reference and initialize it to point to either an

HourlyEmployee or SalariedEmployee type object, 3) create an Employee type reference and initialize it to point to

either an HourlyEmployee or SalariedEmployee type object, or 4) create a Payable type reference and initialize it to

point to either an HourlyEmployee or SalariedEmployee type object. Each approach places restrictions on what func-

tionality can be accessed via the reference without casting. The Object reference will only allow methods defined in

the Object class to be called. If a Person reference is used then Person and Object methods can be called. If a Payable

reference is used then only the Pay() method can be called, while the use of the Employee reference allows Person,

Object, and Payable methods to be called.

Quick Review

Polymorphism is the ability to treat different objects in the same manner. In object-oriented programming this

means that your program utilizes references to base class types (preferably interfaces or abstract class types) that, at

runtime, actually contain references to derived class objects.

You must plan for the proper use of polymorphic behavior from the moment you start laying the foundation of

your application architecture. This means you must consider carefully your choice of inheritance forms when design-

ing your class inheritance hierarchies.

Composition-Based Design As A Force Multiplier

Good compositional design has its foundations in the thorough understanding of inheritance, interfaces, and

polymorphism. Compositional design acts as a force multiplier in that it combines the power of all these design tech-

niques. In this regard you should never be forced to chose composition over inheritance, but rather, you should apply

composition in a way that compliments inheritance, considers the use of interfaces, and keeps the goal of polymor-

phic behavior in mind from the very beginning.

Two Types Of Aggregation

An object is an aggregate if it contains and uses the services of other objects. An aggregate object consists of

itself (the whole) and the objects it contains (its parts).

Recall from Chapter 10 that there are two types of aggregation: 1) simple aggregation, and 2) composite aggrega-

tion. Simple aggregation occurs when the whole object does not control the lifetime of its part objects. Conversely, a

composite aggregate has complete control over the lifetime of its part objects.

Polymorphic Containment

An aggregate object is dependent upon the behavior of its part objects. Complex aggregates may comprise many

different types of part objects, each providing specialized behavior. A careful consideration of polymorphic behavior

can offer a uniform treatment of these differing part types. This can be achieved via polymorphic containment where

the whole class targets the interface(s) of its part class(es), treats its part objects as a collection of parts, and obtains its

part objects from a part object factory.

In some cases polymorphic containment may not be strictly necessary. An example of this would be when the

concrete part class is considered fairly stable design-wise, meaning there is a low probability that its interface will

change during the application’s maintenance lifetime. This is an example of an engineering trade-off.
676 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 24: Inheritance, Composition, Interfaces, Polymorphism An Extended Example
An Extended Example

Considering all that’s been said about inheritance, interfaces, polymorphic behavior, and compositional design,

I’d like to present a different approach to the Person-Employee example. Figure 24-3 gives the class diagram for the

complete application.

Referring to Figure 24-3 — the IEmployee interface serves as the interface specification for employee objects.

The Employee class no longer inherits from Person. Instead, the Employee class implements the IEmployee interface

and contains a Person object by value. The rationale for this design decision might be as follows: a company has a

number of employee positions available. These positions are filled by people. In most corporations, there is a perma-

nent association between an employee position, signified by an employee number, and the person who fills the posi-

tion. If you leave the company and return you are usually assigned the same employee number.

Having the Employee class contain the Person class breaks the inheritance relationship between Person and

Employee, and, as you learned earlier, based on Coad’s Criteria, this inheritance relationship may have been invalid

from the start. The revised Employee/HourlyEmployee and Employee/SalariedEmployee inheritance hierarchy mod-

els dominant roles within the company (and within the app) that are unlikely to change. For instance, there will

always be a clear distinction between hourly employees and salaried employees.

The MainTestApp class has dependencies upon the IEmployee interface, the IEmployeeFactory interface, the

EmployeeFactory class, and the PayInfo class. The EmployeeFactory has a dependency upon the HourlyEmployee

and SalariedEmployee classes, but limits this dependency to their constructors. The HourlyEmployee and Sala-

riedEmployee classes each depend upon the PayInfo class. However, this dependency is not necessarily bad in that it

is unlikely that the PayInfo class will undergo future change.

There is a simple association between the IEmployeeFactory interface and the IEmployee interface as well as

between the PayInfo class, IEmployee, and the classes in the Employee inheritance hierarchy, but they have been

omitted from the diagram for clarity. Examples 24.1 through 24.10 provide the code for this application.

Figure 24-3: Revised Person - Employee Example
C# F
or Artists © 2008 Rick Miller — All Rights Reserved 677

An Extended Example Chapter 24: Inheritance, Composition, Interfaces, Polymorphism
24.1 IEmployee.cs

1 using System;
2
3 public interface IEmployee : IComparable<IEmployee> {
4 int Age { get; }
5 String FullName { get; }
6 String FullNameAndAge { get; }
7 String FirstName { get; set; }
8 String MiddleName { get; set; }
9 String LastName { get; set; }
10 String EmployeeNumber { get; set; }
11 DateTime Birthday { get; set; }
12 Sex Gender { get; set; }
13 PayInfo PayInfo { set; get; }
14 double Pay { get; }
15 }
16 }

24.2 Employee.cs

1 using System;
2
3 [Serializable]
4 public abstract class Employee : IEmployee {
5 private Person _person = null;
6 private String _employee_number = null;
7 private PayInfo _payInfo = null;
8
9 protected Employee(){
10 _person = new Person();
11 }
12
13 protected Employee(String f_name, String m_name, String l_name, Sex gender, DateTime birthday,
14 String employee_number){
15 _person = new Person(f_name, m_name, l_name, gender, birthday);
16 _employee_number = employee_number;
17 } // end constructor
18
19 public int Age {
20 get{ return _person.Age; }
21 }
22 public String FullName {
23 get { return _person.FullName; }
24 }
25 public String FullNameAndAge {
26 get { return _person.FullNameAndAge; }
27 }
28 public String FirstName {
29 get { return _person.FirstName; }
30 set { _person.FirstName = value; }
31 }
32 public String MiddleName {
33 get { return _person.MiddleName; }
34 set { _person.MiddleName = value; }
35 }
36 public String LastName {
37 get { return _person.LastName; }
38 set { _person.LastName = value; }
39 }
40 public Sex Gender {
41 get { return _person.Gender; }
42 set { _person.Gender = value; }
43 }
44 public String EmployeeNumber {
45 get { return _employee_number; }
46 set { _employee_number = value; }
47 }
48 public DateTime Birthday {
49 get { return _person.BirthDay; }
50 set { _person.BirthDay = value; }
51 }
52
53 public PayInfo PayInfo {
54 get { return _payInfo; }
55 set { _payInfo = value; }
56 }
57
58 // defer implementation of this property
59 public abstract double Pay { get; }
60
61 public override String ToString(){
678 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 24: Inheritance, Composition, Interfaces, Polymorphism An Extended Example
62 return (_person.ToString() + " " + EmployeeNumber + " ");
63 }
64
65 public int CompareTo(IEmployee other){
66 return this.ToString().CompareTo(other.ToString());
67 }
68 } // end Employee class definition

24.3 Person.cs

1 using System;
2
3 [Serializable]
4 public class Person : IComparable<Person> {
5
6 // private instance fields
7 private String _firstName;
8 private String _middleName;
9 private String _lastName;
10 private Sex _gender;
11 private DateTime _birthday;
12
13
14 //private default constructor
15 public Person(){}
16
17 public Person(String firstName, String middleName, String lastName,
18 Sex gender, DateTime birthday){
19 FirstName = firstName;
20 MiddleName = middleName;
21 LastName = lastName;
22 Gender = gender;
23 BirthDay = birthday;
24 }
25
26 // public properties
27 public String FirstName {
28 get { return _firstName; }
29 set { _firstName = value; }
30 }
31
32 public String MiddleName {
33 get { return _middleName; }
34 set { _middleName = value; }
35 }
36
37 public String LastName {
38 get { return _lastName; }
39 set { _lastName = value; }
40 }
41
42 public Sex Gender {
43 get { return _gender; }
44 set { _gender = value; }
45 }
46
47 public DateTime BirthDay {
48 get { return _birthday; }
49 set { _birthday = value; }
50 }
51
52 public int Age {
53 get {
54 int years = DateTime.Now.Year - _birthday.Year;
55 int adjustment = 0;
56 if(DateTime.Now.Month < _birthday.Month){
57 adjustment = 1;
58 }else if((DateTime.Now.Month == _birthday.Month) && (DateTime.Now.Day < _birthday.Day)){
59 adjustment = 1;
60 }
61 return years - adjustment;
62 }
63 }
64
65 public String FullName {
66 get { return FirstName + " " + MiddleName + " " + LastName; }
67 }
68
69 public String FullNameAndAge {
70 get { return FullName + " " + Age; }
71 }
C# For Artists © 2008 Rick Miller — All Rights Reserved 679

An Extended Example Chapter 24: Inheritance, Composition, Interfaces, Polymorphism
72
73 public override String ToString(){
74 return FullName + ", " + Gender + ", " + Age;
75 }
76
77 public int CompareTo(Person other){
78 return this.FullName.CompareTo(other.FullName);
79 }
80
81 } // end Person class

24.4 SexEnum.cs

1 using System;
2
3 [Serializable]
4 public enum Sex {MALE, FEMALE}

24.5 HourlyEmployee.cs

1 using System;
2
3 [Serializable]
4 public class HourlyEmployee : Employee {
5
6 public HourlyEmployee():base() { }
7
8 public HourlyEmployee(String f_name, String m_name, String l_name, Sex gender, DateTime birthday,
9 String employee_number)
10 :base(f_name, m_name, l_name, gender, birthday, employee_number){ }
11
12 public override double Pay {
13 get { return base.PayInfo.HoursWorked * base.PayInfo.HourlyRate; }
14 }
15
16 public override String ToString() {
17 return (base.ToString() + " " + Pay.ToString("C3"));
18
19 }
20 } // end HourlyEmployee class definition

24.6 SalariedEmployee.cs

1 using System;
2
3 [Serializable]
4 public class SalariedEmployee : Employee {
5
6 public SalariedEmployee():base() { }
7
8 public SalariedEmployee(String f_name, String m_name, String l_name, Sex gender, DateTime birthday,
9 String employee_number)
10 :base(f_name, m_name, l_name, gender, birthday, employee_number){ }
11
12 public override double Pay {
13 get { return ((base.PayInfo.Salary/12.0)/2.0); }
14 }
15
16 public override String ToString() {
17 return (base.ToString() + " " + Pay.ToString("C3"));
18 }
19 } // end SalariedEmployee class definition

24.7 PayInfo.cs

1 using System;
2
3 [Serializable]
4 public class PayInfo {
5 // fields
6 private double _salary = 0;
7 private double _hours_worked = 0;
8 private double _hourly_rate = 0;
9
10 // properties
11 public double Salary {
12 get { return _salary; }
13 set { _salary = value; }
14 }
15
16 public double HoursWorked {
17 get { return _hours_worked; }
680 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 24: Inheritance, Composition, Interfaces, Polymorphism An Extended Example
18 set { _hours_worked = value; }
19 }
20
21 public double HourlyRate {
22 get { return _hourly_rate; }
23 set { _hourly_rate = value; }
24 }
25
26 // constructors
27 public PayInfo(){ }
28
29 public PayInfo(double salary){
30 _salary = salary;
31 }
32 public PayInfo(double hours_worked, double hourly_rate){
33 _hours_worked = hours_worked;
34 _hourly_rate = hourly_rate;
35 }
36 } // end PayInfo class definition

24.8 IEmployeeFactory.cs

1 using System;
2
3 public interface IEmployeeFactory {
4 IEmployee GetNewSalariedEmployee(String f_name, String m_name, String l_name,Sex gender,
5 DateTime birthday, String employee_number);
6 IEmployee GetNewHourlyEmployee(String f_name, String m_name, String l_name, Sex gender,
7 DateTime birthday, String employee_number);
8 }

24.9 EmployeeFactory.cs

1 using System;
2
3 public class EmployeeFactory : IEmployeeFactory {
4
5 public IEmployee GetNewSalariedEmployee(String f_name, String m_name, String l_name, Sex gender,
6 DateTime birthday, String employee_number){
7 return new SalariedEmployee(f_name, m_name, l_name, gender, birthday, employee_number);
8 }
9
10 public IEmployee GetNewHourlyEmployee(String f_name, String m_name, String l_name, Sex gender,
11 DateTime birthday, String employee_number){
12 return new HourlyEmployee(f_name, m_name, l_name, gender, birthday, employee_number);
13 }
14 } // end EmployeeFactory class definition

24.10 MainTestApp.cs

1 using System;
2 using System.Collections.Generic;
3
4 public class MainTestApp {
5
6 private IEmployeeFactory _employee_factory = null;
7 private List<IEmployee> _employee_list = null;
8
9 public MainTestApp(){
10 _employee_factory = new EmployeeFactory();
11 _employee_list = new List<IEmployee>();
12 }
13
14 public void CreateEmployees(){
15 _employee_list.Add(_employee_factory.GetNewSalariedEmployee("Rick", "Warren", "Miller",
16 Sex.MALE, new DateTime(1968, 2, 4),
17 "0001"));
18 _employee_list[0].PayInfo = new PayInfo(78000);
19 _employee_list.Add(_employee_factory.GetNewHourlyEmployee("Coralie", "Sylvia", "Powell",
20 Sex.FEMALE, new DateTime(1969, 4, 8),
21 "0002"));
22 _employee_list[1].PayInfo = new PayInfo(80, 57);
23 }
24
25 public void ListEmployees(){
26 foreach(IEmployee e in _employee_list){
27 Console.WriteLine(e);
28 }
29 }
30
31 public static void Main(){
C# For Artists © 2008 Rick Miller — All Rights Reserved 681

Summary Chapter 24: Inheritance, Composition, Interfaces, Polymorphism
32 MainTestApp mta = new MainTestApp();
33 mta.CreateEmployees();
34 mta._employee_list.Sort();
35 mta.ListEmployees();
36 } // end Main
37 } // end class definition

Referring to Example 24.10 — the MainTestApp has two private fields: one of type IEmployeeFactory and the

other a generic list of type IEmployee. The constructor method on line 9 initializes the _employee_factory reference

to point to an EmployeeFactory instance. The constructor also initializes the _employee_list reference.

The CreateEmployees() method beginning on line 14 uses the _employee_factory reference to create an Hourly-

Employee and a SalariedEmployee, adding each to the _employee_list. (Remember, the EmployeeFactory returns

references to objects that implement the IEmployee interface.) The CreateEmployees() method then sets each

employee’s pay information by assigning an appropriately initialized PayInfo object to the PayInfo property.

The ListEmployees() method beginning on line 25 simply iterates through the _employee_list and prints infor-

mation about each employee to the console.

The Main() method starts on line 31 and creates an instance of the MainTestApp class followed by a call to the

CreateEmployees() and ListEmployees() methods respectively. In between these method calls it sorts the list by call-

ing the _employee_list.Sort() method. Figure 24-4 shows the results of running this program.

Quick Review

Good compositional design has its foundations in the thorough understanding of inheritance, interfaces, and

polymorphism. Compositional design acts as a force multiplier in that it combines the power of all these design tech-

niques. In this regard you should never be forced to chose composition over inheritance, but rather, you should apply

composition in a way that compliments inheritance, considers the use of interfaces, and keeps the goal of polymor-

phic behavior in mind from the very beginning.

An object is an aggregate if it contains and uses the services of other objects. An aggregate object consists of

itself (the whole) and the objects it contains (its parts).

There are two types of aggregation: 1) simple aggregation, and 2) composite aggregation. Simple aggregation

occurs when the whole object does not control the lifetime of its part objects. Conversely, a composite aggregate has

complete control over the lifetime of its part objects.

Complex aggregates may comprise many different types of part objects, each providing specialized behavior. A

careful consideration of polymorphic behavior can offer a uniform treatment of these differing part types. This can be

achieved via polymorphic containment where the whole class targets the interface(s) of its part class(es), treats its

part objects as a collection of parts, and obtains its part objects from a part object factory.

Summary

There are three philosophical camps regarding the attainment of code reuse within an application: composition-

ists, inheritists, and design pragmatists. Design pragmatists utilize the full spectrum of object-oriented design mecha-

nisms to achieve reuse on all possible fronts. Their approach to design is rooted in making intelligent engineering

trade-offs. The end game of good design is an application architecture that is flexible, modular, reliable, and stable.

There are at least three good reasons to use inheritance: 1) it provides you with an object-oriented design mecha-

nism that enables you to think and reason about the structure and behavior of your code in terms of generalized and

specialized classes, 2) it offers a measure of code reuse within your program, and 3) it provides you with a way to

incrementally develop code.

Figure 24-4: Results of Running Example 24.9
682
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 24: Inheritance, Composition, Interfaces, Polymorphism Skill-Building Exercises
The most often used forms of inheritance include subtype, extension, functional variation, and implementation.

Coad’s criteria provides five checkpoints that can be used to validate the use of inheritance.

The interface construct provides the means to specify type behavior and supports a rich variety of inheritance

forms to include: subtype inheritance, extension inheritance, and constant inheritance. Interfaces, when used in con-

junction with the Factory and Singleton patterns, can reduce inter-module functional dependencies to a handful of

classes.

When modeling dominant roles favor the use of a class hierarchy. When modeling collateral roles favor the use

of interfaces. When attempting to model the many possible roles some object might assume dynamically during

application runtime, model these as a collection of strings contained within the object.

Polymorphism is the ability to treat different objects in the same manner. In object-oriented programming this

means that your program utilizes references to base class types (preferably interfaces or abstract class types) that at

runtime actually contain references to derived class objects.

You must plan for the proper use of polymorphic behavior from the moment you start laying the foundation of

your application architecture. This means you must consider carefully your choice of inheritance forms when design-

ing your class inheritance hierarchies.

Good compositional design has its foundations in the thorough understanding of inheritance, interfaces, and

polymorphism. Compositional design acts as a force multiplier in that it combines the power of all these design tech-

niques. In this regard you should never be forced to chose composition over inheritance, but rather, you should apply

composition in a way that compliments inheritance, considers the use of interfaces, and keeps the goal of polymor-

phic behavior in mind from the very beginning.

An object is an aggregate if it contains and uses the services of other objects. An aggregate object consists of

itself (the whole) and the objects it contains (its parts).

There are two types of aggregation: 1) simple aggregation, and 2) composite aggregation. Simple aggregation

occurs when the whole object does not control the lifetime of its part objects. Conversely, a composite aggregate has

complete control over the lifetime of its part objects.

Complex aggregates may comprise many different types of part objects, each providing specialized behavior. A

careful consideration of polymorphic behavior can offer a uniform treatment of these differing part types. This can be

achieved via polymorphic containment where the whole class targets the interface(s) of its part class(es), treats its

part objects as a collection of parts, and obtains its part objects from a part object factory.

Skill-Building Exercises

1. Further Research: Obtain Meyer’s book, listed in the references section, and read the chapters related to inherit-

ance.

2. Further Research: Obtain Coad’s book, listed in the references section, and read the section that talks about the

five inheritance checkpoints. (Coad’s Criteria)

3. Further Research: Obtain Martin’s book, listed in the references section, and read the chapter on designing the

employee payroll system.

4. Programming: Compile and execute the example code listed in this chapter.

5. UML Drill: Create a UML sequence diagram of the Main() method of the MainTestApp class given in Example

24.10.

6. Applied Object-Oriented Theory: Evaluate the Aircraft Engine Simulation code given in Chapter 11 from the

standpoint of Meyer’s Inheritance Taxonomy and Coad’s Criteria.

7. Further Research: Explore the topic of access control graphs.
C# For Artists © 2008 Rick Miller — All Rights Reserved 683

Suggested Projects Chapter 24: Inheritance, Composition, Interfaces, Polymorphism
8. Applied Polymorphism: Consider the following interface and class definitions then answer the following ques-

tions:

1 public interface IFoo {
2 void a();
3 void b();
4 }

1 public class Bar : IFoo {
2 public void a(){ }
3 public void b(){ }
4 public void c(){ }
5 public void d(){ }
6 }

a. What methods can be called without casting if a reference of type IFoo is declared and initialized to point to an

object of type Bar?

b. What types of inheritance forms are applied in this example?

9. Identify Inheritance Form: Consider the following code:

1 public class BaseClass {
2 public virtual void f(){ Console.WriteLine(“Hello from BaseClass f()!”); }
3 }

1 public class DerivedClass : BaseClass {
2 public override void f() { Console.WriteLine(“Hello from DerivedClass f()!; }
3 }

What type of inheritance form is applied in this example?

10. Identify Inheritance Form: If a functional linked-list is extended to create a new type of data structure, what

type of inheritance form is being applied?

Suggested Projects

1. Robot Rat Encore Une Fois: Revisit the Robot Rat project presented in Chapter 3. Use the object-oriented

approach to redesign the application so that different types of remote controlled objects can be moved around the

floor. Consider the rat’s pen and the concept of its position upon the floor as separate entities that comprise a rat.

Give a remote controlled object the capability to display itself as a graphic or text representation. You may imple-

ment this project as a stand-alone application or as a multithreaded client-server application.

2. Networked Home Appliance Control System: Design and implement a networked home appliance control sys-

tem. Assume all appliances have a unique IP address. When an appliance is connected to the network it automati-

cally registers with the central controller. The following systems are connected to the appliance network: house

climate control subsystem (includes automatic windows, air conditioning and heating), hot water heater, lights,

oven and refrigerator.

3. Hi-Tech Building Security System: Design and implement a building security system that includes different types

of identity verification sensors to include voice recognition, finger print recognition, retina scan recognition, key-

pad and card-swipe entry.

5. Biological And Radiological Hazard Detection System: Your country needs your object-oriented design and pro-

gramming talents! Design and implement a biological and radiological hazard detection system for the cities of the

world. Various sensor types will be utilized to detect nuclear radiation (alpha, beta, and gamma particles), and dif-

ferent types of poisonous gases to include sarin, chlorine, and mustard. Your system must be able to monitor sensor

status which includes the sensor’s geographic location.
684 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 24: Inheritance, Composition, Interfaces, Polymorphism Self-Test Questions
Self-Test Questions

1. What are the three essential purposes of inheritance?

2. What is meant by the term engineering trade-off?

3. List at least three benefits provided by inheritance.

4. What’s the purpose of an interface?

5. What’s the difference between an interface and an abstract class?

6. Why is compositional design considered to be a force multiplier?

7. What is meant by the term polymorphism?

8. How much design is good enough?

9. What is the fundamental unit of modularity in an object-oriented program?

10. What are the five checkpoints of Coad’s Criteria?

References

Bertrand Meyer. Object-Oriented Software Construction, Second Edition. Prentice Hall PTR, Upper Saddle

River, New Jersey. ISBN: 0-13-629155-4

Grady Booch. Object-Oriented Analysis And Design With Applications, Second Edition. The Benjamin/Cum-

mings Publishing Company, Inc. Redwood City, CA. ISBN: 0-8053-5340-2

Robert C. Martin. Designing Object-Oriented C++ Applications Using The Booch Method. Prentice Hall, Engle-

wood Cliffs, New Jersey. ISBN: 0-13-203837-4

Peter Coad, et. al. Java Design: Building Better Apps And Applets, Second Edition. Prentice Hall PTR, Upper

Saddle River, New Jersey. ISBN: 0-13-911181-6

Antero Taivalsaari. On the Notion of Inheritance. ACM Computing Surveys, Vol. 28, No. 3, September 1996.

Barbara Liskov, John Guttag. Program Development in Java: Abstraction, Specification, and Object-Oriented

Design. Addison-Wesley, Boston, MA. ISBN: 0-201-65768-6

Rick Miller. C++ For Artists: The Art, Philosophy, And Science Of Object-Oriented Programming. Pulp Free

Press, Falls Church, VA. ISBN: 1-932504-02-8

Rick Miller. Java For Artists: The Art, Philosophy, And Science of Object-Oriented Programming. Pulp Free

Press, Falls Church, VA. ISBN: 1-932504-05-2
C# For Artists © 2008 Rick Miller — All Rights Reserved 685

Notes Chapter 24: Inheritance, Composition, Interfaces, Polymorphism
Notes
686 © 2008 Rick Miller — All Rights Reserved C# For Artists

25 Helpful Design Patterns

Learning Objectives
• State the purpose and use of design patterns

• Explain why design patterns are a form of knowledge reuse

• Describe the purpose of the factory pattern

• Describe the purpose of the singleton pattern

• Describe the purpose of the command pattern

• Describe the use of the model-view-controller (MVC) pattern

• Combine the MVC, factory, singleton, and command patterns to formulate flexible application
architectures

Chapter 25

Helpful Design Patterns
Mayan Ruin — Chichen Itza — Mexico

C
o
n
ta

x
 T

 /
 K

o
d
ak

 T
ri

-X

C#
 For Artists © 2008 Rick Miller — All Rights Reserved 687

Introduction Chapter 25: Helpful Design Patterns
Introduction

This chapter offers a brief introduction to the topic of software design patterns. Throughout this book you infor-

mally encountered several design patterns including the singleton, factory, and the façade. Here I will explain the

meaning of the term design pattern, why they are considered to be a form of knowledge reuse, and how they can help

you write better software.

Too many design patterns exist to offer them complete treatment in the limited space of this chapter. However, I

feel it is important for you to at least understand how design patterns came to be and to learn a few of them to keep in

your back pocket for use on your next project. To this end, I will focus the discussion in this chapter on the purpose

and use of the singleton, factory, model-view-controller, and command patterns. I will show you how to combine

these patterns to create robust, flexible application architectures. I will also show you how to separate business logic

from presentation logic with the help of the model-view-controller pattern. Along the way you will also learn how to

process application commands polymorphically using the command pattern.

An understanding of design patterns will forever change the way you approach the task of building software

architectures.

Software Design Patterns And How They Came To Be

Each new advance in the field of software engineering brings with it the promise to build better software. The

positive impact made upon the software engineering profession by object-oriented analysis, design, and programming

techniques cannot be denied. However, insufficient training and experience can, and usually does, result in poorly-

designed systems that are impossible to maintain. How can you then, if you are a novice, best capitalize on and apply

the lessons-learned by software developers who have come before you? The answer is — learn how to use software

design patterns to build your application architectures.

What Exactly Is A Software Design Pattern?

A software design pattern is a form of knowledge reuse. Many extremely bright, talented software professionals

working hard over the years to produce robust, reliable, flexible software architectures, noticed that for similar design

problems they created similar design solutions. These similar design solutions consisted of a set of one or more

related classes and object interactions. The real intellectual leap came when these engineers realized they could

extract the essence of each design solution into a more general solution specification. These general solution specifi-

cations could then be readily reused and applied as the architectural basis of specific design solutions for the design

problems they addressed. These general design specifications are referred to as software design patterns. When you

apply software design patterns in your application architecture you are standing upon the backs of giants.

Origins

The term design pattern is borrowed from the work of an architect named Christopher Alexander. Alexander is

not a software architect; he is a building architect, and his work has had a tremendous philosophical influence upon

the software design patterns movement. In his book The Timeless Way Of Building, Alexander lists three things neces-

sary to build good buildings and towns: 1) the timeless way, 2) the quality without a name (QWAN), and 3) the gate.

The objective is to create a building that manifests the quality without a name. The QWAN is something you immedi-

ately recognize when experienced yet is impossible to describe exactly. The QWAN can be achieved by building

using the timeless way. The timeless way is the process by which living buildings and towns are created by imple-

menting, or in Alexander’s words, unfolding, one architectural design pattern at a time. Success in the application of

the way depends upon the intensity of each pattern’s implementation. The gate is a pattern language of architectural

features that have been proven through the ages to work well for certain applications. To achieve the QWAN you must

pass through the gate in order to practice the timeless way.
688 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 25: Helpful Design Patterns Software Design Patterns And How They Came To Be
Pattern Specification

A pattern language manifests itself as a catalog of design patterns. In their book Design Patterns: Elements of

Reusable Object-Oriented Software, Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (referred to in

the software community as the Gang-of-Four) describe each design pattern according to the following template:

I will not completely describe the few patterns I discuss in this chapter according to the template shown in Table

25-1. I do, however, urge you to refer to the references listed at the end of the chapter to learn more about software

design patterns and how you can use them to build better software.

Applying Software Design Patterns

Some software design patterns can be used stand-alone while others are meant to be combined with other pat-

terns to form a complete solution. The best way to learn about design patterns is to review a design pattern catalog,

such as that given in the book Design Patterns: Elements of Reusable Object-Oriented Software by the Gang-of-Four,

to get a feel for the different types of patterns and their application.

You don’t have to be a pattern wizard to realize the benefits of using patterns in your programs. The rest of this

chapter is devoted to showing you how four design patterns can be used to produce a robust, flexible application

architecture.

Quick Review

Software design patterns are a form of knowledge reuse. Design patterns are general software architectural solu-

tions to general software architectural problems. A design pattern serves as the basis for a specific solution implemen-

tation. A complete design pattern specification includes more than just a graphical representation. Some design

patterns can be applied alone while others are meant to be combined with other design patterns.

Section Name Contents

Pattern Name

and Classification

The name of the pattern.

Intent A description of the pattern’s purpose and use.

Also Known As Other names the pattern may be known by.

Motivation The problem the pattern is trying to solve.

Applicability Under what situations the pattern should be applied.

Structure A graphical representation of the pattern in a notational language like UML.

Participants The pattern’s classes and/or objects and their responsibilities.

Collaborations How a pattern’s participants execute their responsibilities.

Consequences The ramifications of the pattern’s use.

Implementation Advice on using the pattern.

Sample Code Concrete pattern implementation example in a programming language like C#.

Known Uses Examples of the pattern’s application in the real world.

Related Patterns Closely-related design patterns.

Table 25-1: Pattern Specification Template
C# For Artists © 2008 Rick Miller — All Rights Reserved 689

The Singleton Pattern Chapter 25: Helpful Design Patterns
The Singleton Pattern

The singleton is used when your application needs only one instance, or a controlled number of instances, of a

particular type. Examples of singletons include application session objects and application configuration objects. The

singleton is often used to implement other patterns such as the factory. (The factory pattern is discussed in detail later

in a separate section.)

The general approach to implementing a singleton is to create a class that has a protected or private constructor

and a public static method named GetInstance(). The following examples together implement an XML properties

class that is used to create, store, and retrieve application properties in an XML file. This example uses the XmlSeri-

alizer to persist a list of PropertyEntry objects. (i.e, List<PropertyEntry>). The properties are maintained in a Dictio-

nary<String, String> object but curiously, you cannot use the XmlSerializer to serialize a generic dictionary object.

Thus the need to convert the entries in the dictionary into a list of structures which can be serialized to an XML file.
25.1 PropertyEntry.cs

1 public struct PropertyEntry {
2 public string PropertyName;
3 public string Value;
4 }

Referring to Example 25.1 — this simple structure is all it takes to store individual property entries. You’ll see

how this structure is used in the next example.
25.2 XMLProperties.cs

1 using System;
2 using System.Collections.Generic;
3 using System.IO;
4 using System.Xml;
5 using System.Xml.Serialization;
6
7 public class XMLProperties {
8
9 // private fields
10 private Dictionary<String, String> _properties = null;
11 private String _filename = null;
12
13 // constants
14 protected const String DEFAULT_PROPERTIES_FILENAME = "properties.xml";
15
16 // protected constructors
17 protected XMLProperties():this(DEFAULT_PROPERTIES_FILENAME){ }
18
19 protected XMLProperties(String filename){
20 if((filename == null) || (filename == String.Empty)){
21 _filename = DEFAULT_PROPERTIES_FILENAME;
22 }else {
23 _filename = filename;
24 }
25 _properties = new Dictionary<String, String>();
26
27 }
28
29 /***
30 Converts _properties dictionary into List<PropertyEntry> object
31 and serializes it to an xml file.
32 **/
33 public void Store(String filename){
34 TextWriter writer = null;
35 try {
36 writer = new StreamWriter(filename);
37 List<PropertyEntry> entry_list = new List<PropertyEntry>();
38 foreach(KeyValuePair<String, String> entry in _properties){
39 PropertyEntry pe;
40 pe.PropertyName = entry.Key;
41 pe.Value = entry.Value;
42 entry_list.Add(pe);
43 }
44 //remove
45 foreach(PropertyEntry entry in entry_list){
46 Console.WriteLine(entry.PropertyName + ", " + entry.Value);
47 }
48
49 XmlSerializer serializer = new XmlSerializer(typeof(List<PropertyEntry>));
50 serializer.Serialize(writer, entry_list);
51 } catch(IOException ioe){
690 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 25: Helpful Design Patterns The Singleton Pattern
52 Console.WriteLine(ioe);
53 } catch(Exception ex){
54 Console.WriteLine(ex);
55 } finally {
56 if(writer != null) writer.Close();
57 }
58 _filename = filename;
59 }
60
61 /**
62 Stores property entries to default file
63 **/
64 public void Store(){
65 this.Store(_filename);
66 }
67
68 /**
69 Reads the XML properties file and populates the _properties
70 dictionary. Throws an IOException if the specified filename does
71 not exist.
72 **/
73 public void Read(String filename){
74
75 if(!File.Exists(filename)){
76 throw new IOException("Requested file does not exist!");
77 }
78 FileStream fs = null;
79 try {
80 fs = new FileStream(filename, FileMode.Open);
81 XmlSerializer serializer = new XmlSerializer(typeof(List<PropertyEntry>));
82 List<PropertyEntry> entry_list = (List<PropertyEntry>)serializer.Deserialize(fs);
83 foreach(PropertyEntry entry in entry_list){
84 _properties[entry.PropertyName] = entry.Value;
85 }
86
87 }catch(IOException ioe){
88 Console.WriteLine(ioe);
89 }catch(Exception ex){
90 Console.WriteLine(ex);
91 }finally{
92 if(fs != null){
93 fs.Close();
94 }
95 }
96 }
97
98 /**
99 Reads the default XML properties file.
100 ***/
101 public void Read(){
102 this.Read(_filename);
103 }
104
105 /***
106 Sets a property with given key and value
107 ***/
108 public void SetProperty(String key, String value){
109 _properties[key] = value; // overrites old value if it already exists
110 }
111
112 /**
113 Gets the value of the specified property key. Will throw an exception
114 if the property does not exist.
115 **/
116 public String GetProperty(String key){
117 return _properties[key];
118 }
119 } // end class definition

Referring to Example 25.2 — the XmlProperties class is meant to serve as a base class as its two constructors are

protected. This class contains the Dictionary<String, String> object which holds the properties as key/value pairs.

However, as stated earlier, a generic dictionary object cannot be serialized with the XmlSerializer. To circumvent this

limitation I convert the dictionary entries into a list of PropertyEntry objects (List<PropertyEntry>) before serializing

them to a file with the XmlSerializer. To trace this conversion see the Store(String filename) method which starts on

line 33.

The XmlProperties class has two overloaded Read() methods and two overloaded Store() methods. It also pro-

vides a SetProperty() method and a GetProperty() method.
25.3 MyProperties.cs
C# For Artists © 2008 Rick Miller — All Rights Reserved 691

The Singleton Pattern Chapter 25: Helpful Design Patterns
1 using System;
2
3 public class MyProperties : XMLProperties {
4
5 // private fields
6 private static MyProperties _props = null;
7
8 //private constructors
9 private MyProperties() { }
10
11 private MyProperties(String filename):base(filename){ }
12
13 // default GetInstance() method
14 public static MyProperties GetInstance(){
15 return MyProperties.GetInstance(XMLProperties.DEFAULT_PROPERTIES_FILENAME);
16 }
17
18 // GetInstance() method
19 public static MyProperties GetInstance(String filename){
20 if((filename == null) || (filename == String.Empty)){
21 if(_props == null){
22 _props = new MyProperties();
23 }
24 } else {
25 if(_props == null){
26 _props = new MyProperties(filename);
27 }
28 }
29 return _props;
30 }
31 } // end class definition

Referring to Example 25.3 — the MyProperties class extends the XMLProperties class and implements the sin-

gleton design pattern. Note that both its constructors are private and it contains two overloaded GetInstance() meth-

ods. Example 25.4 shows the MyProperties class in action.
25.4 MainApp.cs

1 using System;
2
3 public class MainApp {
4 public static void Main(){
5 MyProperties props = MyProperties.GetInstance();
6 props.SetProperty("Rick", "Pine Forest Senior High");
7 props.SetProperty("Steve", "Pine Forest Senior High");
8 props.SetProperty("Jake", "Pine Forest Senior High");
9 props.SetProperty("Laura", "Pine Forest Senior High");
10 props.SetProperty("Bob", "Pine Forest Senior High");
11 props.Store();
12 props.Read();
13 Console.WriteLine("----------------------------------");
14 Console.WriteLine(props.GetProperty("Rick"));
15 Console.WriteLine(props.GetProperty("Steve"));
16 Console.WriteLine(props.GetProperty("Laura"));
17 Console.WriteLine(props.GetProperty("Jake"));
18 }
19 }

Referring to Example 25.4 — a MyProperties reference named props is declared on line 5 and initialized with a

call to the MyProperties.GetInstance() method. Next, several properties are set, stored, read, and finally written to the

console. The results of running this program are shown in Figure 25-1.The contents of the properties.xml file is given

in Example 25.5.

25.5 properties.xml

Figure 25-1: Results of Running Example 25.4
692
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 25: Helpful Design Patterns The Factory Pattern
1 <?xml version="1.0" encoding="utf-8"?>
2 <ArrayOfPropertyEntry xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
3 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
4 <PropertyEntry>
5 <PropertyName>Rick</PropertyName>
6 <Value>Pine Forest Senior High</Value>
7 </PropertyEntry>
8 <PropertyEntry>
9 <PropertyName>Steve</PropertyName>
10 <Value>Pine Forest Senior High</Value>
11 </PropertyEntry>
12 <PropertyEntry>
13 <PropertyName>Jake</PropertyName>
14 <Value>Pine Forest Senior High</Value>
15 </PropertyEntry>
16 <PropertyEntry>
17 <PropertyName>Laura</PropertyName>
18 <Value>Pine Forest Senior High</Value>
19 </PropertyEntry>
20 <PropertyEntry>
21 <PropertyName>Bob</PropertyName>
22 <Value>Pine Forest Senior High</Value>
23 </PropertyEntry>
24 </ArrayOfPropertyEntry>

Quick Review

The singleton pattern is used when only one instance of a particular class type is required to exist in your pro-

gram. The general approach to creating a singleton is to make the constructor protected or private and provide a pub-

lic static method named GetInstance() that returns the same instance of the class in question.

The Factory Pattern

The factory pattern is used to create a class whose purpose is to create and return objects or references to objects.

Two well known factory patterns include the abstract factory and the factory method. For more information about

these factory patterns please consult the excellent references at the end of this chapter. In this chapter I want to dis-

cuss the dynamic factory pattern.

The Dynamic Factory

In many programming situations it would be nice to simply name the type of object we need, send that name to a

factory, and have the factory make us an object of that type. You can do this with the dynamic factory. The dynamic

factory combines the factory pattern with dynamic class loading to achieve a flexible mechanism for object creation.

The general approach to creating a dynamic factory is to create a class that contains a public method that takes a

string argument representing the class name of the type of object you need to create. The method will then try to

dynamically load the class into the .NET virtual machine and, if successful, create an object of that type and return its

reference. The objects a dynamic factory creates must have default (i.e., no argument) constructors. Example 25.6

gives a simple example of a dynamic factory named InterfaceTypeFactory.
25.6 InterfaceTypeFactory.cs

1 using System;
2 using System.Reflection;
3
4 public class InterfaceTypeFactory {
5
6 public static InterfaceType NewObjectByClassName(String classname) {
7 Object o = null;
8 try{
9 Assembly assembly = Assembly.LoadFrom(classname + ".dll");
10 foreach(Type t in assembly.GetTypes()){
11 if(t.Name == classname){
12 o = Activator.CreateInstance(t);
13 }
14 }
15 }catch(Exception e){
16 Console.WriteLine("Problem loading class or creating instance!");
C# For Artists © 2008 Rick Miller — All Rights Reserved 693

The Factory Pattern Chapter 25: Helpful Design Patterns
17 }
18 return (InterfaceType)o;
19 }
20 } // end InterfaceTypeFactory class definition

Referring to Example 25.6 — the InterfaceTypeFactory class has one public static method named NewObjectBy-

ClassName(String classname). It takes a string argument representing the fully-qualified class name of the object to

be created and returns a reference of type InterfaceType. For the method to work the class requested must exist and be

located in a dynamically linked library (dll) with the name classname + “.dll”.

The following examples give the code for the InterfaceType interface and several classes that implement the

interface. These are followed by a short program showing the InterfaceTypeFactory class in action.
25.7 InterfaceType.cs

1 public interface InterfaceType {
2 string Message {
3 get;
4 }
5 }

25.8 ClassA.cs

1 public class ClassA : InterfaceType {
2 private string message = "ClassA's message";
3 public string Message {
4 get { return message; }
5 }
6 }

25.9 ClassB.cs

1 public class ClassB : InterfaceType {
2 private string message = "ClassB's message";
3 public string Message {
4 get { return message; }
5 }
6 }

25.10 ClassC.cs

1 public class ClassC : InterfaceType {
2 private string message = "ClassC's message";
3 public string Message {
4 get { return message; }
5 }
6 }

25.11 MainApp.cs

1 using System;
2
3 public class MainApp {
4 public static void Main(){
5 InterfaceType t1 = InterfaceTypeFactory.NewObjectByClassName("ClassA");
6 InterfaceType t2 = InterfaceTypeFactory.NewObjectByClassName("ClassB");
7 InterfaceType t3 = InterfaceTypeFactory.NewObjectByClassName("ClassC");
8
9 Console.WriteLine(t1.Message);
10 Console.WriteLine(t2.Message);
11 Console.WriteLine(t3.Message);
12 }
13 }

Ok, to get this example to work, you need to first compile each of the files InterfaceType, ClassA, ClassB, and

ClassC into separate dlls. Start with the InterfaceType interface and compile it into a dll with the following command:

csc /t:library InterfaceType.cs
Next, compile ClassA into a dll with the following command:

csc /t:library /r:InterfaceType.dll ClassA.cs
Repeat this command to compile ClassB and ClassC into separate dlls as well. At this stage, you should have

four dlls named InterfaceType.dll, ClassA.dll, ClassB.dll, and ClassC.dll. Next, compile the InterfaceTypeFactory

and MainApp classes together to create the main application with the following command:

csc /r:InterfaceType.dll InterfaceTypeFactory.cs MainApp.cs
Figure 25-2 shows the results of running this program.
694 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 25: Helpful Design Patterns The Model-View-Controller Pattern
Advantages Of The Dynamic Factory Pattern

One of the primary advantages of the dynamic factory pattern is that certain enhancements to an application that

uses a dynamic factory can be made and implemented without the need to shut down the application. This can be

done by making the necessary changes to any of the classes that are dynamically loaded and dropping them into the

application directory as an upgrade to the previous version of that class. The next time the class is dynamically loaded

the change will be effective. You will also have to structure your application architecture in such a way as to limit the

number of outstanding references to the old version of the class otherwise the change will not propagate completely

through the application.

Quick Review

The factory pattern is used to create classes whose purpose is to create objects of a specified type. The dynamic

factory can be used to create objects with the System.Activator.CreateInstance() method. One of the primary advan-

tages of the dynamic factory pattern is that certain enhancements can be deployed without the need to shut down the

application.

The Model-View-Controller Pattern

The model-view-controller (MVC) pattern is used to separate the visual representation of an application object

from the application object itself. The MVC pattern consists of three primary components: 1) the model, which can

consist of one or more classes working together to realize the functionality of a particular application, 2) the view,

which can consist of one or more classes working together to implement the visual representation of the model, (For

example, the view could provide a user interface on the model’s behalf.), and 3) the controller, which can consist of

one or more classes working together to coordinate messaging between the model and the view.

The approach I like to take when implementing the MVC pattern is to completely isolate the model from the

view. In other words, the model should know nothing about the view, and the view should know nothing about the

model. The controller functions as a liaison between the model and view components, coordinating intercomponent

messaging between the two. This state of affairs is illustrated in Figure 25-3.

Figure 25-2: Results of Running Example 25.8

Figure 25-3: Model-View-Controller Pattern
C# For Arti
sts
 © 2008 Rick Miller — All Rights Reserved 695

The Model-View-Controller Pattern Chapter 25: Helpful Design Patterns
The model is the most independent component in the MVC relationship. It should provide an interface and make

no assumptions about the existence of the view or the controller. The view, especially if it’s a GUI, may or may not

need to know something about the controller. For example, you’ll need to pass in a reference to the controller object,

especially if it’s the controller that contains event handler methods you want to assign to buttons or other GUI compo-

nents.

Examples 25.12 through 25.14 gives the code for a simple implementation of the MVC pattern. I call this appli-

cation Inspirational Messages. When the application runs it presents a simple user interface consisting of a form and

a button. These components are contained in a class named View. When the button is clicked the Controller object

handles the Click event and calls a method on the Model object to get the next message, passing it on to the View

object to set the message. This is an example of interobject message coordination provided by a controller object. The

Controller class in this example also serves as the application. The results of running this program are shown in Fig-

ure 25-4.
25.12 Model.cs

1 using System;
2
3 public class Model {
4
5 private int i = 0;
6
7 private String[] messages = { "Eat right, get plenty of rest, and exercise daily.",
8 "Make love not war.",
9 "Carpe Diem!",
10 "Eat your vegatables.",
11 "Brush and floss your teeth three times daily.",
12 "A penny saved is a penny earned.",
13 "What you do today prepares you for tomorrow.",
14 "All work and no play makes Jack a dull boy.", };
15
16
17
18 public String GetMessage(){
19 if(i++ == (messages.Length-1)) i = 0;
20 return messages[i];
21 }
22
23 } // end Model class

25.13 View.cs

1 using System;
2 using System.Drawing;
3 using System.Windows.Forms;
4
5 public class View : Form {
6
7
8 private Button button = null;
9 private Label label = null;
10 private TableLayoutPanel panel = null;
11
12 public View(Controller c){
13 button = new Button();
14 button.Text = "Next Message";
15 button.Click += c.ClickHandler;
16 button.Anchor = AnchorStyles.Top | AnchorStyles.Bottom | AnchorStyles.Left | AnchorStyles.Right;
17 label = new Label();
18 label.Text = "";
19 label.Font = new Font(label.Font, FontStyle.Bold);
20 label.Height = 50;
21 label.Anchor = AnchorStyles.Top | AnchorStyles.Bottom | AnchorStyles.Left | AnchorStyles.Right;
22 panel = new TableLayoutPanel();
23 panel.RowCount = 2;
24 panel.ColumnCount = 1;
25 panel.Dock = DockStyle.Top;
26 panel.Height = 100;
27 panel.Controls.Add(label);
28 panel.Controls.Add(button);
29 this.Controls.Add(panel);
30 this.Text = "Inspirational Messages";
31 this.Width = 400;
32 this.Height = 125;
33 this.Visible = true;
34 }
35
36 public void SetMessage(String message){
696 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 25: Helpful Design Patterns The Command Pattern
37 label.Text = message;
38 this.Update();
39 }
40
41 } // end View clas definition

25.14 Controller.cs

1 using System;
2 using System.Windows.Forms;
3
4 public class Controller {
5 private Model its_model = null;
6 private View its_view = null;
7
8 public Controller(){
9 its_model = new Model();
10 its_view = new View(this);
11 Application.Run(its_view);
12 }
13
14 public void ClickHandler(Object sender, EventArgs e){
15 its_view.SetMessage(its_model.GetMessage());
16 }
17
18 public static void Main(){
19 new Controller();
20 }
21
22 } // end Controller class definition

Quick Review

The model-view-controller (MVC) pattern is used to separate the visual representation of an application object

from the application object itself. The MVC pattern consists of three primary components: 1) the model, which can

consist of one or more classes working together to realize the functionality of a particular application, 2) the view,

which can consist of one or more classes working together to implement the visual representation of the model, and

3) the controller, which can consist of one or more classes working together to coordinate messaging between the

model and the view.

The Command Pattern

The command pattern is used to 1) decouple the knowledge of a particular action from an object that needs the

action carried out, and 2) to encapsulate the action in the form of an object.

The command pattern manifests itself to a certain degree in the Control/EventHandler delegate relationship as

you saw in the previous section. Components such as Buttons can add any number of EventHandler delegate methods

to their Click event. When a button is clicked the assigned event handler methods are called, passing to them a refer-

ence to the object that was clicked and an instance of EventArgs. If only one EventHandler delegate method exists to

handle all button clicks then it’s the responsibility of the event handler method to determine the source component

and perform the necessary actions. In large application this can lead to a large method.

Another approach to implementing the command pattern in C# that you see frequent examples of is to extend

components like Button and make them commands. I don’t like this approach because it violates Coad’s criteria. (i.e.,

Is a command really a button? I discussed Coad’s criteria in Chapter 24.)

Figure 25-4: Results of Running Example 25.11 and Clicking the “Next Message” Button Several Times
C
For Artists © 2008 Rick Miller — All Rights Reserved 697

The Command Pattern Chapter 25: Helpful Design Patterns
The command pattern implementation strategy I prefer is to combine the dynamic factory pattern with a separate

command class hierarchy. At the root of the hierarchy is an abstract class I will call BaseCommand and is given in

Example 25.15.

25.15 BaseCommand.cs

1 using System;
2 using Com.PulpFreePress.Common;
3
4 namespace Com.PulpFreePress.Commands {
5 public abstract class BaseCommand {
6 protected static IModel its_model = null;
7 protected static IView its_view = null;
8
9 public IModel Model {
10 set {
11 if(its_model == null){
12 its_model = value;
13 }
14 }
15 }
16
17 public IView View {
18 set {
19 if(its_view == null){
20 its_view = value;
21 }
22 }
23 }
24
25 public abstract void Execute(); // must be implemented in derived classes
26
27 } // end BaseCommand class definition
28 } // end namespace

Referring to Example 25-15 — The BaseCommand class contains two protected static fields of type IModel and

IView. These fields are protected so that subclasses can access them directly. Two properties Model and View initial-

ize the its_model and its_view references accordingly. There is one abstract method named Execute(). This method

must be implemented by derived classes. It is the concrete command classes that implement the actions unique to

each command. Some commands may interact with the model only while others may interact only with the view.

Other commands may execute actions having nothing to do with the model or the view.

This approach to the command pattern preserves the relationship between the MVC components as presented

earlier but greatly simplifies the Controller’s event handler method as is shown in Example 25.16.
25.16 Controller.cs

1 using System;
2 using System.Windows.Forms;
3 using Com.PulpFreePress.Common;
4 using Com.PulpFreePress.Exceptions;
5 using Com.PulpFreePress.Commands;
6 using Com.PulpFreePress.Model;
7 using Com.PulpFreePress.View;
8 using Com.PulpFreePress.Utils;
9
10 public class Controller : IController {
11
12 private CommandFactory command_factory = null;
13 private IModel its_model;
14 private IView its_view;
15
16 public Controller(){
17 command_factory = CommandFactory.GetInstance();
18 its_model = new Model();
19 its_view = new Com.PulpFreePress.View.View(this);
20 Application.Run((Form)its_view);
21 }
22
23 public void UniversalHandler(Object sender, EventArgs e){
24 try{
25 BaseCommand command = null;
26 if(sender.GetType() == typeof(Button)){
27 command = command_factory.GetCommand(((Button)sender).Name);
28 }else{
29 command = command_factory.GetCommand(((ToolStripMenuItem)sender).Name);
30 }
31 command.Model = its_model;
698 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 25: Helpful Design Patterns The Command Pattern
32 command.View = its_view;
33 command.Execute();
34 }catch(CommandNotFoundException cnfe){
35 Console.WriteLine("Command not found!");
36 }
37 }
38
39 public static void Main(){
40 new Controller();
41 } // end Main() method
42 } // end Controller class definition

Referring to Example 25.16 — the Controller class presented here is used in the comprehensive example pre-

sented in the next section so bear with me. Let’s focus on the UniversalHandler() method beginning on line 23. The

command_factory reference is used to dynamically load and create an instance of a command based on the Name

property of a clicked control. (Unfortunately, ToolStripMenuItems are not Controls so I can’t treat the two polymor-

phically, I must use the typeof operator to distinguish between Buttons and ToolStripMenuItems!) Once the command

is created, I set its Model and View properties and then call its Execute() method. So long as the command class exists

in the Command.dll library things will work as expected.

Example 25.17 gives the code for the CommandFactory class.
25.17 CommandFactory.cs

1 using System;
2 using System.Reflection;
3 using Com.PulpFreePress.Commands;
4 using Com.PulpFreePress.Exceptions;
5
6 namespace Com.PulpFreePress.Utils {
7 public class CommandFactory {
8
9 private static CommandFactory command_factory_instance = null;
10 private static CommandProperties command_properties = null;
11
12 static CommandFactory() {
13 command_properties = CommandProperties.GetInstance();
14 }
15
16
17 private CommandFactory(){}
18
19 public static CommandFactory GetInstance(){
20 if(command_factory_instance == null){
21 command_factory_instance = new CommandFactory();
22 }
23 return command_factory_instance;
24 }
25
26 /**
27 Thorws CommandNotFoundException if command does not exist or
28 command_string equals null.
29 **/
30 public BaseCommand GetCommand(String command_string){
31 BaseCommand command = null;
32 if(command_string == null){
33 throw new CommandNotFoundException(command_string + " command class not found!");
34 } else{
35 try {
36 Assembly assembly = Assembly.LoadFrom("Commands.dll"); // expect to find commands in Commands.dll
37 String command_type_name = command_properties.GetProperty(command_string);
38 foreach(Type t in assembly.GetTypes()){
39 if(t.Name == command_type_name){
40 command = (BaseCommand) Activator.CreateInstance(t);
41 }
42 }
43 }catch(Exception ex){
44 Console.WriteLine(ex);
45 throw new CommandNotFoundException(ex.ToString(), ex);
46 }
47 } // end else
48 return command;
49 } // end etCommand() method
50
51 } // end CommandFactory class definition
52 } // end namespace
C# For Artists © 2008 Rick Miller — All Rights Reserved 699

The Command Pattern Chapter 25: Helpful Design Patterns
Referring to Example 25.17 — The CommandFactory implements the singleton pattern. Most of the work of this

class is done in the GetCommand() method. Here the command_string argument is used to look up the name of the

command class that will actually perform the work. If the class exists it is loaded. If it loads successfully, an instance

of the class is created and returned. This class also utilizes the services of the CommandProperties class which is pre-

sented in Example 25.18.
25.18 CommandProperties.cs

1 using System;
2
3 namespace Com.PulpFreePress.Utils {
4 public class CommandProperties : XMLProperties {
5
6 // class constants - default key strings
7 public const String PROPERTIES_FILE = "PROPERTIES_FILE";
8 public const String NEWHOURLYEMPLOYEE_COMMAND = "NewHourlyEmployee";
9 public const String NEWSALARIEDEMPLOYEE_COMMAND = "NewSalariedEmployee";
10 public const String EXIT_COMMAND = "Exit";
11 public const String LIST_COMMAND = "List";
12 public const String SORT_COMMAND = "Sort";
13 public const String SAVE_COMMAND = "Save";
14 public const String EDITEMPLOYEE_COMMAND = "EditEmployee";
15 public const String DELETEEMPLOYEE_COMMAND = "DeleteEmployee";
16 public const String LOAD_COMMAND = "Load";
17 public const String CLEAR_COMMAND = "Clear";
18 public const String SUBMIT_COMMAND = "Submit";
19
20
21 // class constants - default value strings
22 private const String PROPERTIES_FILE_VALUE
23 = "CommandProperties.XML";
24 private const String NEWHOURLYEMPLOYEE_COMMAND_CLASSNAME = "NewHourlyEmployeeCommand";
25 private const String NEWSALARIEDEMPLOYEE_COMMAND_CLASSNAME = "NewSalariedEmployeeCommand";
26 private const String EXIT_COMMAND_CLASSNAME = "ApplicationExitCommand";
27 private const String LIST_COMMAND_CLASSNAME = "ListEmployeesCommand";
28 private const String SORT_COMMAND_CLASSNAME = "SortEmployeesCommand";
29 private const String SAVE_COMMAND_CLASSNAME = "SaveEmployeesCommand";
30 private const String EDITEMPLOYEE_COMMAND_CLASSNAME = "EditEmployeeCommand";
31 private const String DELETEEMPLOYEE_COMMAND_CLASSNAME = "DeleteEmployeeCommand";
32 private const String LOAD_COMMAND_CLASSNAME = "LoadEmployeesCommand";
33 private const String CLEAR_COMMAND_CLASSNAME = "ClearInputFieldsCommand";
34 private const String SUBMIT_COMMAND_CLASSNAME = "SubmitCommand";
35
36
37 // private fields
38 private static CommandProperties _props = null;
39
40 //private constructor
41 private CommandProperties():this(PROPERTIES_FILE_VALUE) { }
42
43 private CommandProperties(String filename):base(filename){
44 SetProperty(PROPERTIES_FILE, PROPERTIES_FILE_VALUE);
45 SetProperty(NEWHOURLYEMPLOYEE_COMMAND, NEWHOURLYEMPLOYEE_COMMAND_CLASSNAME);
46 SetProperty(NEWSALARIEDEMPLOYEE_COMMAND, NEWSALARIEDEMPLOYEE_COMMAND_CLASSNAME);
47 SetProperty(EXIT_COMMAND, EXIT_COMMAND_CLASSNAME);
48 SetProperty(LIST_COMMAND, LIST_COMMAND_CLASSNAME);
49 SetProperty(SORT_COMMAND, SORT_COMMAND_CLASSNAME);
50 SetProperty(SAVE_COMMAND, SAVE_COMMAND_CLASSNAME);
51 SetProperty(EDITEMPLOYEE_COMMAND, EDITEMPLOYEE_COMMAND_CLASSNAME);
52 SetProperty(DELETEEMPLOYEE_COMMAND, DELETEEMPLOYEE_COMMAND_CLASSNAME);
53 SetProperty(LOAD_COMMAND, LOAD_COMMAND_CLASSNAME);
54 SetProperty(CLEAR_COMMAND, CLEAR_COMMAND_CLASSNAME);
55 SetProperty(SUBMIT_COMMAND, SUBMIT_COMMAND_CLASSNAME);
56 base.Store();
57 }
58
59 // default GetInstance() method
60 public static CommandProperties GetInstance(){
61 return CommandProperties.GetInstance(PROPERTIES_FILE_VALUE);
62 }
63
64 // GetInstance() method
65 public static CommandProperties GetInstance(String filename){
66 if((filename == null) || (filename == String.Empty)){
67 if(_props == null){
68 _props = new CommandProperties();
69 }
70 } else {
71 if(_props == null){
72 _props = new CommandProperties(filename);
700 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 25: Helpful Design Patterns The Command Pattern
73 }
74 }
75 return _props;
76 }
77 } // end class definition
78 } // end namespace

Referring to Example 25.18 — the CommandProperties class extends the XMLProperties class presented earlier

in Example 25.2. The CommandProperties class defines two types of string constants: 1) command names, and 2)

their corresponding class names. When an instance of the CommandProperties class is created, these string constants

are then used as key/value pairs to set the dictionary values of the XMLProperties class via the SetProperty() method.

The Store() method is then called to persist the properties in an XML file that can later be manually edited if more

commands are added. (Or, command properties can be added via the CommandProperties object programmatically.)

Command strings are mapped to their respective command classes in the CommandProperties.XML file which is

shown in Example 25.19.
25.19 CommandProperties.XML file contents

1 <?xml version="1.0" encoding="utf-8"?>
2 <ArrayOfPropertyEntry xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
3 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
4
5 <PropertyEntry>
6 <PropertyName>PROPERTIES_FILE</PropertyName>
7 <Value>CommandProperties.XML</Value>
8 </PropertyEntry>
9 <PropertyEntry>
10 <PropertyName>NewHourlyEmployee</PropertyName>
11 <Value>NewHourlyEmployeeCommand</Value>
12 </PropertyEntry>
13 <PropertyEntry>
14 <PropertyName>NewSalariedEmployee</PropertyName>
15 <Value>NewSalariedEmployeeCommand</Value>
16 </PropertyEntry>
17 <PropertyEntry>
18 <PropertyName>Exit</PropertyName>
19 <Value>ApplicationExitCommand</Value>
20 </PropertyEntry>
21 <PropertyEntry>
22 <PropertyName>List</PropertyName>
23 <Value>ListEmployeesCommand</Value>
24 </PropertyEntry>
25 <PropertyEntry>
26 <PropertyName>Sort</PropertyName>
27 <Value>SortEmployeesCommand</Value>
28 </PropertyEntry>
29 <PropertyEntry>
30 <PropertyName>Save</PropertyName>
31 <Value>SaveEmployeesCommand</Value>
32 </PropertyEntry>
33 <PropertyEntry>
34 <PropertyName>EditEmployee</PropertyName>
35 <Value>EditEmployeeCommand</Value>
36 </PropertyEntry>
37 <PropertyEntry>
38 <PropertyName>DeleteEmployee</PropertyName>
39 <Value>DeleteEmployeeCommand</Value>
40 </PropertyEntry>
41 <PropertyEntry>
42 <PropertyName>Load</PropertyName>
43 <Value>LoadEmployeesCommand</Value>
44 </PropertyEntry>
45 <PropertyEntry>
46 <PropertyName>Clear</PropertyName>
47 <Value>ClearInputFieldsCommand</Value>
48 </PropertyEntry>
49 <PropertyEntry>
50 <PropertyName>Submit</PropertyName>
51 <Value>SubmitCommand</Value>
52 </PropertyEntry>
53 </ArrayOfPropertyEntry>
C# For Artists © 2008 Rick Miller — All Rights Reserved 701

A Comprehensive Pattern-Based Example Chapter 25: Helpful Design Patterns
Quick Review

The command pattern is used to 1) decouple the knowledge of a particular action from an object that needs the

action carried out, and 2) to encapsulate the action in the form of an object. The command pattern can be combined

with the dynamic factory pattern to map command names to class handlers and dynamically load and execute the

command handler.

A Comprehensive Pattern-Based Example

This section presents the code for a comprehensive example application that utilizes all the patterns discussed in

this chapter. The application presented here allows you to create, edit, and delete hourly and salaried employees. It

also lets you sort employees and save and retrieve employee data to and from disk.

Complete Code Listing

This section gives the complete code listing for the comprehensive pattern example by namespace. This code

resides in the folder named EmployeeMVC in the Chapter 25 projects folder. Figure 25-5 shows the project folder

directory structure.

Com.PulpFreePress.Exceptions

25.20 CommandNotFoundException.cs

1 using System;
2
3 namespace Com.PulpFreePress.Exceptions {
4 public class CommandNotFoundException : Exception {
5 public CommandNotFoundException(String message, Exception ex):base(message, ex){}
6
7 public CommandNotFoundException(String message):base(message){}
8
9 public CommandNotFoundException():this("Command not found exception"){ }
10 } // end CommandNotFoundException class definition
11 } // end namespace

Com.PulpFreePress.Common

25.21 IEmployee.cs

1 using System;
2
3 namespace Com.PulpFreePress.Common {

Figure 25-5: EmployeeMVC Project Directory Structure
702
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 25: Helpful Design Patterns A Comprehensive Pattern-Based Example
4
5 public interface IEmployee : IComparable<IEmployee> {
6 int Age { get; }
7 String FullName { get; }
8 String FullNameAndAge { get; }
9 String FirstName { get; set; }
10 String MiddleName { get; set; }
11 String LastName { get; set; }
12 String EmployeeNumber { get; set; }
13 DateTime Birthday { get; set; }
14 Sex Gender { get; set; }
15 PayInfo PayInfo { set; get; }
16 double Pay { get; }
17 }
18 } //namespace

25.22 Person.cs

1 using System;
2
3 namespace Com.PulpFreePress.Common {
4 [Serializable]
5 public class Person : IComparable<Person> {
6
7 // private instance fields
8 private String _firstName;
9 private String _middleName;
10 private String _lastName;
11 private Sex _gender;
12 private DateTime _birthday;
13
14
15 //private default constructor
16 public Person(){}
17
18 public Person(String firstName, String middleName, String lastName,
19 Sex gender, DateTime birthday){
20 FirstName = firstName;
21 MiddleName = middleName;
22 LastName = lastName;
23 Gender = gender;
24 BirthDay = birthday;
25 }
26
27 // public properties
28 public String FirstName {
29 get { return _firstName; }
30 set { _firstName = value; }
31 }
32
33 public String MiddleName {
34 get { return _middleName; }
35 set { _middleName = value; }
36 }
37
38 public String LastName {
39 get { return _lastName; }
40 set { _lastName = value; }
41 }
42
43 public Sex Gender {
44 get { return _gender; }
45 set { _gender = value; }
46 }
47
48 public DateTime BirthDay {
49 get { return _birthday; }
50 set { _birthday = value; }
51 }
52
53 public int Age {
54 get {
55 int years = DateTime.Now.Year - _birthday.Year;
56 int adjustment = 0;
57 if(DateTime.Now.Month < _birthday.Month){
58 adjustment = 1;
59 }else if((DateTime.Now.Month == _birthday.Month) && (DateTime.Now.Day < _birthday.Day)){
60 adjustment = 1;
61 }
62 return years - adjustment;
63 }
C# For Artists © 2008 Rick Miller — All Rights Reserved 703

A Comprehensive Pattern-Based Example Chapter 25: Helpful Design Patterns
64 }
65
66 public String FullName {
67 get { return FirstName + " " + MiddleName + " " + LastName; }
68 }
69
70 public String FullNameAndAge {
71 get { return FullName + " " + Age; }
72 }
73
74 public override String ToString(){
75 return FullName + ", " + Gender + ", " + Age;
76 }
77
78 public int CompareTo(Person other){
79 return this.FullName.CompareTo(other.FullName);
80 }
81
82 } // end Person class
83 } // namespace

25.23 Employee.cs

84 using System;
85
86 namespace Com.PulpFreePress.Common {
87 [Serializable]
88 public abstract class Employee : IEmployee {
89 private Person _person = null;
90 private String _employee_number = null;
91 private PayInfo _payInfo = null;
92
93 protected Employee(){
94 _person = new Person();
95 }
96
97 protected Employee(String f_name, String m_name, String l_name, Sex gender, DateTime birthday,
98 String employee_number){
99 _person = new Person(f_name, m_name, l_name, gender, birthday);
100 _employee_number = employee_number;
101 } // end constructor
102
103 public int Age {
104 get{ return _person.Age; }
105 }
106 public String FullName {
107 get { return _person.FullName; }
108 }
109 public String FullNameAndAge {
110 get { return _person.FullNameAndAge; }
111 }
112 public String FirstName {
113 get { return _person.FirstName; }
114 set { _person.FirstName = value; }
115 }
116 public String MiddleName {
117 get { return _person.MiddleName; }
118 set { _person.MiddleName = value; }
119 }
120 public String LastName {
121 get { return _person.LastName; }
122 set { _person.LastName = value; }
123 }
124 public Sex Gender {
125 get { return _person.Gender; }
126 set { _person.Gender = value; }
127 }
128 public String EmployeeNumber {
129 get { return _employee_number; }
130 set { _employee_number = value; }
131 }
132 public DateTime Birthday {
133 get { return _person.BirthDay; }
134 set { _person.BirthDay = value; }
135 }
136
137 public PayInfo PayInfo {
138 get { return _payInfo; }
139 set { _payInfo = value; }
140 }
141
704 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 25: Helpful Design Patterns A Comprehensive Pattern-Based Example
142 // defer implementation of this property
143 public abstract double Pay { get; }
144
145 public override String ToString(){
146 return (_person.ToString() + " " + EmployeeNumber + " ");
147 }
148
149 public int CompareTo(IEmployee other){
150 return this.ToString().CompareTo(other.ToString());
151 }
152 } // end Employee class definition
153 } // namespace

25.24 HourlyEmployee.cs

1 using System;
2
3 namespace Com.PulpFreePress.Common {
4 [Serializable]
5 public class HourlyEmployee : Employee {
6
7 public HourlyEmployee():base() { }
8
9 public HourlyEmployee(String f_name, String m_name, String l_name, Sex gender, DateTime birthday,
10 String employee_number)
11 :base(f_name, m_name, l_name, gender, birthday, employee_number){ }
12
13 public override double Pay {
14 get { return base.PayInfo.HoursWorked * base.PayInfo.HourlyRate; }
15 }
16
17 public override String ToString() {
18 return (base.ToString() + " " + Pay.ToString("C3"));
19
20 }
21 } // end HourlyEmployee class definition
22 } // namespace

25.25 SalariedEmployee.cs

1 using System;
2
3 namespace Com.PulpFreePress.Common {
4 [Serializable]
5 public class SalariedEmployee : Employee {
6
7 public SalariedEmployee():base() { }
8
9 public SalariedEmployee(String f_name, String m_name, String l_name, Sex gender, DateTime birthday,
10 String employee_number)
11 :base(f_name, m_name, l_name, gender, birthday, employee_number){ }
12
13 public override double Pay {
14 get { return ((base.PayInfo.Salary/12.0)/2.0); }
15 }
16
17 public override String ToString() {
18 return (base.ToString() + " " + Pay.ToString("C3"));
19 }
20 } // end SalariedEmployee class definition
21 } // namespace

25.26 PayInfo.cs

1 using System;
2
3 namespace Com.PulpFreePress.Common {
4 [Serializable]
5 public class PayInfo {
6 // fields
7 private double _salary = 0;
8 private double _hours_worked = 0;
9 private double _hourly_rate = 0;
10
11 // properties
12 public double Salary {
13 get { return _salary; }
14 set { _salary = value; }
15 }
16
C# For Artists © 2008 Rick Miller — All Rights Reserved 705

A Comprehensive Pattern-Based Example Chapter 25: Helpful Design Patterns
17 public double HoursWorked {
18 get { return _hours_worked; }
19 set { _hours_worked = value; }
20 }
21
22 public double HourlyRate {
23 get { return _hourly_rate; }
24 set { _hourly_rate = value; }
25 }
26
27 // constructors
28 public PayInfo(){ }
29
30 public PayInfo(double salary){
31 _salary = salary;
32 }
33 public PayInfo(double hours_worked, double hourly_rate){
34 _hours_worked = hours_worked;
35 _hourly_rate = hourly_rate;
36 }
37 } // end PayInfo class definition
38 } // namespace

25.27 IModel.cs

1 using System;
2 using System.IO;
3
4 namespace Com.PulpFreePress.Common {
5 public interface IModel {
6 void AddEmployee(IEmployee employee);
7
8 void EditEmployee(IEmployee employee, int index);
9
10 String[] GetAllEmployeesInfo();
11
12 IEmployee GetEmployeeByEmployeeNumber(String employee_number);
13
14 IEmployee GetEmployeeByIndex(int index);
15
16 void SortEmployees();
17
18 void DeleteEmployeeByIndex(int index);
19
20 void SaveEmployeesToFile(String filename);
21
22 void LoadEmployeesFromFile(String filename);
23
24 } // end IModel interface definition
25 } // end namespace

25.28 IView.cs

1 using System;
2 using System.IO;
3
4 namespace Com.PulpFreePress.Common {
5 public interface IView {
6 IEmployee EditingEmployee { get; set; }
7 String FirstName { get; set; }
8 String MiddleName { get; set; }
9 String LastName { get; set; }
10 String EmployeeNumber { get; set; }
11 String Salary { get; set; }
12 String HoursWorked { get; set; }
13 String HourlyRate { get; set; }
14 DateTime Birthday { get; set; }
15 Sex Gender { get; set; }
16 IEmployee GetNewSalariedEmployee();
17 IEmployee GetNewHourlyEmployee();
18 IEmployee GetEditedEmployee();
19 void PopulateEditFields(HourlyEmployee employee);
20 void PopulateEditFields(SalariedEmployee employee);
21 ViewMode Mode { get; set; }
22 void DisplayEmployeeInfo(String[] employees_info);
23 String GetSaveFile();
24 String GetLoadFile();
25 void ClearInputFields();
26 void EnableSubmitButton(bool state);
27 void EnableSalaryFields(bool state);
28 void EnableHourlyFields(bool state);
706 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 25: Helpful Design Patterns A Comprehensive Pattern-Based Example
29 void SetWindowTitleBasedOnMode();
30 int SelectedLineNumber();
31 } // end IView interface definition
32 } // end namespace

25.29 SexEnum.cs

1 using System;
2
3 namespace Com.PulpFreePress.Common {
4 //enumeration
5 [Serializable]
6 public enum Sex {MALE, FEMALE}
7 } // end namespace

25.30 ViewModeEnum.cs

1 namespace Com.PulpFreePress.Common {
2 public enum ViewMode { RESTING, SALARIED, HOURLY, EDIT }
3 }

25.31 IController.cs

1 using System;
2
3 namespace Com.PulpFreePress.Common {
4 public interface IController {
5 void UniversalHandler(Object sender, EventArgs e);
6 }
7 } // end namespace

Com.PulpFreePress.Utils
1 PropertyEntry.cs
2 namespace Com.PulpFreePress.Utils {
3 public struct PropertyEntry {
4 public string PropertyName;
5 public string Value;
6 }
7 } // end namespace definition

25.32 XMLProperties.cs

1 using System;
2 using System.Collections.Generic;
3 using System.IO;
4 using System.Xml;
5 using System.Xml.Serialization;
6
7 namespace Com.PulpFreePress.Utils {
8 public class XMLProperties {
9 // private fields
10 private Dictionary<String, String> _properties = null;
11 private String _filename = null;
12
13 // constants
14 protected const String DEFAULT_PROPERTIES_FILENAME = "properties.xml";
15
16 // protected constructors
17 protected XMLProperties():this(DEFAULT_PROPERTIES_FILENAME){ }
18
19 protected XMLProperties(String filename){
20 if((filename == null) || (filename == String.Empty)){
21 _filename = DEFAULT_PROPERTIES_FILENAME;
22 }else {
23 _filename = filename;
24 }
25 _properties = new Dictionary<String, String>();
26
27 }
28
29 /***
30 Converts _properties dictionary into List<PropertyEntry> object
31 and serializes it to an xml file.
32 **/
33 public void Store(String filename){
34 TextWriter writer = null;
35 try {
36 writer = new StreamWriter(filename);
37 List<PropertyEntry> entry_list = new List<PropertyEntry>();
C# For Artists © 2008 Rick Miller — All Rights Reserved 707

A Comprehensive Pattern-Based Example Chapter 25: Helpful Design Patterns
38 foreach(KeyValuePair<String, String> entry in _properties){
39 PropertyEntry pe;
40 pe.PropertyName = entry.Key;
41 pe.Value = entry.Value;
42 entry_list.Add(pe);
43 }
44 //remove
45 foreach(PropertyEntry entry in entry_list){
46 Console.WriteLine(entry.PropertyName + ", " + entry.Value);
47 }
48
49 XmlSerializer serializer = new XmlSerializer(typeof(List<PropertyEntry>));
50 serializer.Serialize(writer, entry_list);
51 } catch(IOException ioe){
52 Console.WriteLine(ioe);
53 } catch(Exception ex){
54 Console.WriteLine(ex);
55 } finally {
56 if(writer != null) writer.Close();
57 }
58 _filename = filename;
59 }
60
61 /**
62 Stores property entries to default file
63 **/
64 public void Store(){
65 this.Store(_filename);
66 }
67
68 /**
69 Reads the XML properties file and populates the _properties
70 dictionary. Throws an IOException if the specified filename does
71 not exist.
72 **/
73 public void Read(String filename){
74
75 if(!File.Exists(filename)){
76 throw new IOException("Requested file does not exist!");
77 }
78 FileStream fs = null;
79 try {
80 fs = new FileStream(filename, FileMode.Open);
81 XmlSerializer serializer = new XmlSerializer(typeof(List<PropertyEntry>));
82 List<PropertyEntry> entry_list = (List<PropertyEntry>)serializer.Deserialize(fs);
83 foreach(PropertyEntry entry in entry_list){
84 _properties[entry.PropertyName] = entry.Value;
85 }
86
87 }catch(IOException ioe){
88 Console.WriteLine(ioe);
89 }catch(Exception ex){
90 Console.WriteLine(ex);
91 }finally{
92 if(fs != null){
93 fs.Close();
94 }
95 }
96 }
97
98 /**
99 Reads the default XML properties file.
100 ***/
101 public void Read(){
102 this.Read(_filename);
103 }
104
105 /***
106 Sets a property with given key and value
107 ***/
108 public void SetProperty(String key, String value){
109 _properties[key] = value; // overrites old value if it already exists
110 }
111
112 /**
113 Gets the value of the specified property key. Will throw an exception
114 if the property does not exist.
115 **/
116 public String GetProperty(String key){
117 return _properties[key];
118 }
708 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 25: Helpful Design Patterns A Comprehensive Pattern-Based Example
119 } // end class definition
120 } // end namespace

25.33 CommandProperties.cs

1 using System;
2
3 namespace Com.PulpFreePress.Utils {
4 public class CommandProperties : XMLProperties {
5
6 // class constants - default key strings
7 public const String PROPERTIES_FILE = "PROPERTIES_FILE";
8 public const String NEWHOURLYEMPLOYEE_COMMAND = "NewHourlyEmployee";
9 public const String NEWSALARIEDEMPLOYEE_COMMAND = "NewSalariedEmployee";
10 public const String EXIT_COMMAND = "Exit";
11 public const String LIST_COMMAND = "List";
12 public const String SORT_COMMAND = "Sort";
13 public const String SAVE_COMMAND = "Save";
14 public const String EDITEMPLOYEE_COMMAND = "EditEmployee";
15 public const String DELETEEMPLOYEE_COMMAND = "DeleteEmployee";
16 public const String LOAD_COMMAND = "Load";
17 public const String CLEAR_COMMAND = "Clear";
18 public const String SUBMIT_COMMAND = "Submit";
19
20
21 // class constants - default value strings
22 private const String PROPERTIES_FILE_VALUE
23 = "CommandProperties.XML";
24 private const String NEWHOURLYEMPLOYEE_COMMAND_CLASSNAME = "NewHourlyEmployeeCommand";
25 private const String NEWSALARIEDEMPLOYEE_COMMAND_CLASSNAME = "NewSalariedEmployeeCommand";
26 private const String EXIT_COMMAND_CLASSNAME = "ApplicationExitCommand";
27 private const String LIST_COMMAND_CLASSNAME = "ListEmployeesCommand";
28 private const String SORT_COMMAND_CLASSNAME = "SortEmployeesCommand";
29 private const String SAVE_COMMAND_CLASSNAME = "SaveEmployeesCommand";
30 private const String EDITEMPLOYEE_COMMAND_CLASSNAME = "EditEmployeeCommand";
31 private const String DELETEEMPLOYEE_COMMAND_CLASSNAME = "DeleteEmployeeCommand";
32 private const String LOAD_COMMAND_CLASSNAME = "LoadEmployeesCommand";
33 private const String CLEAR_COMMAND_CLASSNAME = "ClearInputFieldsCommand";
34 private const String SUBMIT_COMMAND_CLASSNAME = "SubmitCommand";
35
36 // private fields
37 private static CommandProperties _props = null;
38
39 //private constructor
40 private CommandProperties():this(PROPERTIES_FILE_VALUE) { }
41
42 private CommandProperties(String filename):base(filename){
43 SetProperty(PROPERTIES_FILE, PROPERTIES_FILE_VALUE);
44 SetProperty(NEWHOURLYEMPLOYEE_COMMAND, NEWHOURLYEMPLOYEE_COMMAND_CLASSNAME);
45 SetProperty(NEWSALARIEDEMPLOYEE_COMMAND, NEWSALARIEDEMPLOYEE_COMMAND_CLASSNAME);
46 SetProperty(EXIT_COMMAND, EXIT_COMMAND_CLASSNAME);
47 SetProperty(LIST_COMMAND, LIST_COMMAND_CLASSNAME);
48 SetProperty(SORT_COMMAND, SORT_COMMAND_CLASSNAME);
49 SetProperty(SAVE_COMMAND, SAVE_COMMAND_CLASSNAME);
50 SetProperty(EDITEMPLOYEE_COMMAND, EDITEMPLOYEE_COMMAND_CLASSNAME);
51 SetProperty(DELETEEMPLOYEE_COMMAND, DELETEEMPLOYEE_COMMAND_CLASSNAME);
52 SetProperty(LOAD_COMMAND, LOAD_COMMAND_CLASSNAME);
53 SetProperty(CLEAR_COMMAND, CLEAR_COMMAND_CLASSNAME);
54 SetProperty(SUBMIT_COMMAND, SUBMIT_COMMAND_CLASSNAME);
55 base.Store();
56 }
57
58 // default GetInstance() method
59 public static CommandProperties GetInstance(){
60 return CommandProperties.GetInstance(PROPERTIES_FILE_VALUE);
61 }
62
63 // GetInstance() method
64 public static CommandProperties GetInstance(String filename){
65 if((filename == null) || (filename == String.Empty)){
66 if(_props == null){
67 _props = new CommandProperties();
68 }
69 } else {
70 if(_props == null){
71 _props = new CommandProperties(filename);
72 }
73 }
74 return _props;
75 }
76 } // end class definition
77 } // end namespace
C# For Artists © 2008 Rick Miller — All Rights Reserved 709

A Comprehensive Pattern-Based Example Chapter 25: Helpful Design Patterns
Com.PulpFreePress.Commands

25.34 BaseCommand.cs

1 using System;
2 using Com.PulpFreePress.Common;
3
4 namespace Com.PulpFreePress.Commands {
5 public abstract class BaseCommand {
6 protected static IModel its_model = null;
7 protected static IView its_view = null;
8
9 public IModel Model {
10 set {
11 if(its_model == null){
12 its_model = value;
13 }
14 }
15 }
16
17 public IView View {
18 set {
19 if(its_view == null){
20 its_view = value;
21 }
22 }
23 }
24
25 public abstract void Execute(); // must be implemented in derived classes
26
27 } // end BaseCommand class definition
28 } // end namespace

25.35 ApplicationExitCommand.cs

1 using System;
2 using System.Windows.Forms;
3
4 namespace Com.PulpFreePress.Commands {
5 public class ApplicationExitCommand : BaseCommand {
6 public override void Execute(){
7 Application.Exit();
8 }
9 }
10 } // end namespace

25.36 ClearInputFieldsCommand.cs

1 using System;
2 using Com.PulpFreePress.Common;
3
4 namespace Com.PulpFreePress.Commands {
5 public class ClearInputFieldsCommand : BaseCommand {
6 public override void Execute(){
7 if(its_view != null){
8 its_view.ClearInputFields();
9 its_view.EnableSubmitButton(false);
10 its_view.EnableHourlyFields(false);
11 its_view.EnableSalaryFields(false);
12 its_view.Mode = ViewMode.RESTING;
13 }
14 } // end Execute() method
15 } // end NewSalariedEmployeeCommand class definition
16 } // end namespace

25.37 DeleteEmployeeCommand.cs

1 using System;
2
3 namespace Com.PulpFreePress.Commands {
4 public class DeleteEmployeeCommand : BaseCommand {
5
6 public override void Execute(){
7 if((its_model != null) && (its_view != null)){
8 int index = its_view.SelectedLineNumber();
9 Console.WriteLine(index);
10 its_model.DeleteEmployeeByIndex(index);
11 its_view.DisplayEmployeeInfo(its_model.GetAllEmployeesInfo());
710 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 25: Helpful Design Patterns A Comprehensive Pattern-Based Example
12 its_view.ClearInputFields();
13 }
14 } // end Execute() method
15 } // end DeleteEmployeeCommand class definition
16 } // end namespace

25.38 EditEmployeeCommand.cs

1 using System;
2 using Com.PulpFreePress.Common;
3
4 namespace Com.PulpFreePress.Commands {
5 public class EditEmployeeCommand : BaseCommand {
6
7 public override void Execute(){
8 if((its_model != null) && (its_view != null)){
9 int index = its_view.SelectedLineNumber();
10 Console.WriteLine(index);
11 IEmployee employee = its_model.GetEmployeeByIndex(index);
12 if(employee != null){
13 its_view.EditingEmployee = employee;
14 its_view.EnableSubmitButton(true);
15 its_view.Mode = ViewMode.EDIT;
16 }
17 }
18 } // end Execute() method
19 } // end EditEmployeeCommand class definition
20 } // end namespace

25.39 ListEmployeesCommand.cs

1 using System;
2
3 namespace Com.PulpFreePress.Commands {
4 public class ListEmployeesCommand : BaseCommand {
5 public override void Execute(){
6 if((its_model != null) && (its_view != null)){
7 its_model.LoadEmployeesFromFile(null); // will load default data file
8 its_view.DisplayEmployeeInfo(its_model.GetAllEmployeesInfo());
9 }
10 }
11 }
12 } // end namespace

25.40 LoadEmployeesCommand.cs

1 using System;
2
3 namespace Com.PulpFreePress.Commands {
4 public class LoadEmployeesCommand : BaseCommand {
5
6 public override void Execute(){
7 if((its_model != null) && (its_view != null)){
8 its_model.LoadEmployeesFromFile(its_view.GetLoadFile());
9
10 }
11 its_view.DisplayEmployeeInfo(its_model.GetAllEmployeesInfo());
12 } // end Execute() method
13 } // end DeleteEmployeeCommand class definition
14 } // end namespace

25.41 NewHourlyEmployeeCommand.cs

1 using System;
2 using Com.PulpFreePress.Common;
3
4 namespace Com.PulpFreePress.Commands {
5 public class NewHourlyEmployeeCommand : BaseCommand {
6 public override void Execute(){
7 if(its_view != null){
8 its_view.EnableHourlyFields(true);
9 its_view.EnableSalaryFields(false);
10 its_view.ClearInputFields();
11 its_view.EnableSubmitButton(true);
12 its_view.Mode = ViewMode.HOURLY;
13 its_view.SetWindowTitleBasedOnMode();
14 }
15 } // end Execute() method
16 } // end NewHourlyEmployeeCommand class definition
17 } // end namespace
C# For Artists © 2008 Rick Miller — All Rights Reserved 711

A Comprehensive Pattern-Based Example Chapter 25: Helpful Design Patterns
25.42 NewSalariedEmployeeCommand.cs

1 using System;
2 using Com.PulpFreePress.Common;
3
4 namespace Com.PulpFreePress.Commands {
5 public class NewSalariedEmployeeCommand : BaseCommand {
6 public override void Execute(){
7 if(its_view != null){
8 its_view.EnableHourlyFields(false);
9 its_view.EnableSalaryFields(true);
10 its_view.ClearInputFields();
11 its_view.EnableSubmitButton(true);
12 its_view.Mode = ViewMode.SALARIED;
13 its_view.SetWindowTitleBasedOnMode();
14 }
15 } // end Execute() method
16 } // end NewSalariedEmployeeCommand class definition
17 } // end namespace

25.43 SaveEmployeesCommand.cs

1 using System;
2
3 namespace Com.PulpFreePress.Commands {
4 public class SaveEmployeesCommand : BaseCommand {
5
6 public override void Execute(){
7 if((its_model != null) && (its_view != null)){
8 its_model.SaveEmployeesToFile(its_view.GetSaveFile());
9
10 }
11 its_view.DisplayEmployeeInfo(its_model.GetAllEmployeesInfo());
12 } // end Execute() method
13 } // end DeleteEmployeeCommand class definition
14 } // end namespace

25.44 SortEmployeesCommand.cs

1 using System;
2 using Com.PulpFreePress.Common;
3
4 namespace Com.PulpFreePress.Commands {
5 public class SortEmployeesCommand : BaseCommand {
6 public override void Execute(){
7 if(its_model != null){
8 its_model.SortEmployees();
9 its_view.DisplayEmployeeInfo(its_model.GetAllEmployeesInfo());
10 }
11 } // end Execute() method
12 } // end SortEmployeesCommand class definition
13 } // end namespace

25.45 SubmitCommand.cs

1 using System;
2 using Com.PulpFreePress.Common;
3
4 namespace Com.PulpFreePress.Commands {
5 public class SubmitCommand : BaseCommand {
6 public override void Execute(){
7 if((its_view != null) && (its_model != null)){
8 switch(its_view.Mode){
9 case ViewMode.SALARIED:
10 its_model.AddEmployee(its_view.GetNewSalariedEmployee());
11 its_view.DisplayEmployeeInfo(its_model.GetAllEmployeesInfo());
12 its_view.ClearInputFields();
13 its_view.EnableSubmitButton(false);
14 its_view.EnableSalaryFields(false);
15 its_view.Mode = ViewMode.RESTING;
16 break;
17 case ViewMode.HOURLY:
18 its_model.AddEmployee(its_view.GetNewHourlyEmployee());
19 its_view.DisplayEmployeeInfo(its_model.GetAllEmployeesInfo());
20 its_view.ClearInputFields();
21 its_view.EnableSubmitButton(false);
22 its_view.EnableHourlyFields(false);
23 its_view.Mode = ViewMode.RESTING;
24 break;
25 case ViewMode.EDIT:
26 int index = its_view.SelectedLineNumber();
712 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 25: Helpful Design Patterns A Comprehensive Pattern-Based Example
27 its_model.EditEmployee(its_view.GetEditedEmployee(), index);
28 its_view.DisplayEmployeeInfo(its_model.GetAllEmployeesInfo());
29 its_view.ClearInputFields();
30 its_view.EnableSubmitButton(false);
31 its_view.EnableHourlyFields(false);
32 its_view.EnableSalaryFields(false);
33 its_view.Mode = ViewMode.RESTING;
34 break;
35 }
36 }
37 } // end Execute() method
38
39 } // end NewSalariedEmployeeCommand class definition
40 } // end namespace

Com.PulpFreePress.Model

25.46 Model.cs

1 using System;
2 using System.Collections.Generic;
3 using System.Runtime.Serialization;
4 using System.Runtime.Serialization.Formatters.Binary;
5 using System.IO;
6 using Com.PulpFreePress.Common;
7
8 namespace Com.PulpFreePress.Model {
9 public class Model : IModel {
10
11 private List<IEmployee> _employee_list = null;
12 private IEmployeeFactory _employee_factory = null;
13
14 public Model(){
15 _employee_list = new List<IEmployee>();
16 _employee_factory = new EmployeeFactory();
17 }
18
19 public void AddEmployee(IEmployee employee){
20 _employee_list.Add(employee);
21 }
22
23 public void EditEmployee(IEmployee employee, int index){
24 _employee_list[index] = employee;
25 }
26
27
28
29 public String[] GetAllEmployeesInfo(){
30 String[] emp_info = new String[_employee_list.Count];
31 for(int i = 0; i<_employee_list.Count; i++){
32 emp_info[i] = _employee_list[i].ToString();
33 }
34 return emp_info;
35 }
36
37 public IEmployee GetEmployeeByEmployeeNumber(String employee_number){
38 IEmployee employee = null;
39 foreach(IEmployee emp in _employee_list){
40 employee = emp;
41 if(employee.EmployeeNumber.Equals(employee_number)) break;
42 }
43 return employee;
44 }
45
46 public IEmployee GetEmployeeByIndex(int index){
47 if((index < 0) || (index >= _employee_list.Count)){ // adjust index
48 index = _employee_list.Count-1;
49 }
50 if(_employee_list.Count > 0) {
51 return _employee_list[index];
52 }
53 return null;
54 }
55
56 public void SortEmployees(){
57 _employee_list.Sort();
58 }
59
60 public void DeleteEmployeeByIndex(int index){
61 if((index < 0) || (index >= _employee_list.Count)){ // adjust index if out of range
C# For Artists © 2008 Rick Miller — All Rights Reserved 713

A Comprehensive Pattern-Based Example Chapter 25: Helpful Design Patterns
62 index = _employee_list.Count-1;
63 }
64 if(_employee_list.Count > 0) {
65 _employee_list.RemoveAt(index);
66 }
67 }
68
69 public void SaveEmployeesToFile(String filename){
70 if((filename == null) || (filename == String.Empty)){
71 filename = "employees.dat";
72 }
73 FileStream fs = null;
74 try {
75 fs = new FileStream(filename, FileMode.Create);
76 BinaryFormatter bf = new BinaryFormatter();
77 bf.Serialize(fs, _employee_list);
78 }catch(Exception e){
79 Console.WriteLine(e);
80 }finally{
81 if(fs != null){
82 fs.Close();
83 }
84 }
85
86 }
87
88 public void LoadEmployeesFromFile(String filename){
89 if((filename == null) || (filename == String.Empty)){
90 filename = "employees.dat";
91 }
92 FileStream fs = null;
93 try {
94 fs = new FileStream(filename, FileMode.Open);
95 BinaryFormatter bf = new BinaryFormatter();
96 _employee_list = (List<IEmployee>)bf.Deserialize(fs);
97 }catch(FileNotFoundException fnfe){
98 Console.WriteLine("employees.dat file not found!");
99 }catch(Exception ex){
100 Console.WriteLine(ex);
101 }finally{
102 if(fs != null){
103 fs.Close();
104 }
105 }
106 }
107 } // end Model class definition
108 } // namespace

Com.PulpFreePress.View

25.47 View.cs

1 using System;
2 using System.Text;
3 using System.Drawing;
4 using System.Windows.Forms;
5 using Com.PulpFreePress.Common;
6
7 namespace Com.PulpFreePress.View {
8 public class View : Form, IView {
9 // constants
10 private const int WINDOW_HEIGHT = 425;
11 private const int WINDOW_WIDTH = 800;
12 private const String WINDOW_TITLE = "Employee Management Application ";
13 private IEmployee _editing_employee = null;
14 private int _editing_employee_index = 0;
15
16 //menu fields
17 private MenuStrip _ms;
18 private ToolStripMenuItem _fileMenu;
19 private ToolStripMenuItem _loadMenuItem;
20 private ToolStripMenuItem _saveMenuItem;
21 private ToolStripMenuItem _exitMenuItem;
22 private ToolStripMenuItem _editMenu;
23 private ToolStripMenuItem _listMenuItem;
24 private ToolStripMenuItem _sortMenuItem;
25 private ToolStripMenuItem _newSalariedEmployeeMenuItem;
26 private ToolStripMenuItem _newHourlyEmployeeMenuItem;
27 private ToolStripMenuItem _editEmployeeMenuItem;
28 private ToolStripMenuItem _deleteEmployeeMenuItem;
714 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 25: Helpful Design Patterns A Comprehensive Pattern-Based Example
29
30 // fields
31 private ViewMode _mode = ViewMode.RESTING;
32 private TableLayoutPanel _mainTablePanel;
33 private TableLayoutPanel _infoTablePanel;
34 private FlowLayoutPanel _buttonPanel;
35 private TextBox _mainTextBox;
36 private Label _firstNameLabel;
37 private Label _middleNameLabel;
38 private Label _lastNameLabel;
39 private Label _birthdayLabel;
40 private Label _genderLabel;
41 private Label _hoursWorkedLabel;
42 private Label _hourlyRateLabel;
43 private Label _salaryLabel;
44 private Label _employeeNumberLabel;
45
46 private TextBox _firstNameTextBox;
47 private TextBox _middleNameTextBox;
48 private TextBox _lastNameTextBox;
49 private TextBox _hoursWorkedTextBox;
50 private TextBox _hourlyRateTextBox;
51 private TextBox _salaryTextBox;
52 private TextBox _employeeNumberTextBox;
53
54 private DateTimePicker _birthdayPicker;
55 private GroupBox _genderBox;
56 private RadioButton _maleRadioButton;
57 private RadioButton _femaleRadioButton;
58 private Button _clearButton;
59 private Button _submitButton;
60 private OpenFileDialog _openFileDialog;
61 private SaveFileDialog _saveFileDialog;
62 private bool _createMode;
63
64
65 // public properties -
66 public ViewMode Mode {
67 get { return _mode; }
68 set {
69 _mode = value;
70 this.SetWindowTitleBasedOnMode();
71 }
72 }
73
74 public IEmployee EditingEmployee {
75 get { return _editing_employee; }
76 set {
77 _editing_employee = value;
78 if(_editing_employee.GetType() == typeof(HourlyEmployee)){
79 this.PopulateEditFields((HourlyEmployee)_editing_employee); // ugly baby!
80 }else {
81 this.PopulateEditFields((SalariedEmployee)_editing_employee); // ugly baby!
82 }
83 }
84 }
85
86 public int EditingEmployeeIndex {
87 get { return _editing_employee_index; }
88 set { _editing_employee_index = value; }
89 }
90
91 public String FirstName {
92 get { return _firstNameTextBox.Text; }
93 set { _firstNameTextBox.Text = value; }
94 }
95
96 public String MiddleName {
97 get { return _middleNameTextBox.Text; }
98 set { _middleNameTextBox.Text = value; }
99 }
100
101 public String LastName {
102 get { return _lastNameTextBox.Text; }
103 set { _lastNameTextBox.Text = value; }
104 }
105
106 public DateTime Birthday {
107 get { return _birthdayPicker.Value; }
108 set { _birthdayPicker.Value = value; }
109 }
C# For Artists © 2008 Rick Miller — All Rights Reserved 715

A Comprehensive Pattern-Based Example Chapter 25: Helpful Design Patterns
110
111 public String MainTextBoxText {
112 set { _mainTextBox.Text = value; }
113 }
114
115 public Sex Gender {
116 get { return this.RadioButtonToSexEnum(); }
117 set { this.SetRadioButton(value); }
118 }
119
120 public bool CreateMode {
121 get { return _createMode; }
122 set { _createMode = value; }
123 }
124
125 public String Salary {
126 get { return _salaryTextBox.Text; }
127 set { _salaryTextBox.Text = value; }
128 }
129
130 public String HoursWorked {
131 get { return _hoursWorkedTextBox.Text; }
132 set { _hoursWorkedTextBox.Text = value; }
133 }
134
135 public String HourlyRate {
136 get { return _hourlyRateTextBox.Text; }
137 set { _hourlyRateTextBox.Text = value; }
138 }
139
140 public String EmployeeNumber {
141 get { return _employeeNumberTextBox.Text; }
142 set { _employeeNumberTextBox.Text = value; }
143 }
144
145 public bool SubmitOK {
146 set { _submitButton.Enabled = value; }
147 }
148
149 public View(IController externalHandler){
150 this.InitializeComponent(externalHandler);
151 }
152
153 private void InitializeComponent(IController controller){
154 this.InitializeMenus(controller);
155 _mainTablePanel = new TableLayoutPanel();
156 _mainTablePanel.RowCount = 2;
157 _mainTablePanel.ColumnCount = 2;
158 _mainTablePanel.Anchor = AnchorStyles.Top | AnchorStyles.Bottom | AnchorStyles.Right
159 | AnchorStyles.Left;
160 _mainTablePanel.Padding = new Padding(10, 50, 10, 10);
161 // _mainTablePanel.Dock = DockStyle.Left;
162 _mainTablePanel.Height = 475;
163 _mainTablePanel.Width = 700;
164 _infoTablePanel = new TableLayoutPanel();
165 _infoTablePanel.Anchor = AnchorStyles.Top | AnchorStyles.Bottom | AnchorStyles.Right
166 | AnchorStyles.Left;
167 _infoTablePanel.RowCount = 9; // was 2
168 _infoTablePanel.ColumnCount = 2;
169 _infoTablePanel.Height = 300;
170 _infoTablePanel.Width = 425;
171 _buttonPanel = new FlowLayoutPanel();
172 _buttonPanel.Anchor = AnchorStyles.Top | AnchorStyles.Bottom | AnchorStyles.Right | AnchorStyles.Left;
173 _buttonPanel.Width = 500;
174 _buttonPanel.Height = 200;
175
176 _mainTextBox = new TextBox();
177 _mainTextBox.Height = 200;
178 _mainTextBox.Width = 400;
179 _mainTextBox.Multiline = true;
180 _mainTextBox.Anchor = AnchorStyles.Top | AnchorStyles.Bottom | AnchorStyles.Right | AnchorStyles.Left;
181
182 _firstNameLabel = new Label();
183 _firstNameLabel.Text = "First Name:";
184 _middleNameLabel = new Label();
185 _middleNameLabel.Text = "Middle Name:";
186 _lastNameLabel = new Label();
187 _lastNameLabel.Text = "Last Name:";
188 _hoursWorkedLabel = new Label();
189 _hoursWorkedLabel.Text = "Hours Worked:";
190 _hourlyRateLabel = new Label();
716 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 25: Helpful Design Patterns A Comprehensive Pattern-Based Example
191 _hourlyRateLabel.Text = "Hourly Rate:";
192 _salaryLabel = new Label();
193 _salaryLabel.Text = "Salary:";
194 _employeeNumberLabel = new Label();
195 _employeeNumberLabel.Text = "Employee Number:";
196 _employeeNumberLabel.Width = 125;
197
198
199 _birthdayLabel = new Label();
200 _birthdayLabel.Text = "Birthday";
201 _genderLabel = new Label();
202 _genderLabel.Text = "Gender";
203 _firstNameTextBox = new TextBox();
204 _firstNameTextBox.Width = 200;
205 _middleNameTextBox = new TextBox();
206 _middleNameTextBox.Width = 200;
207 _lastNameTextBox = new TextBox();
208 _lastNameTextBox.Width = 200;
209 _hoursWorkedTextBox = new TextBox();
210 _hoursWorkedTextBox.Width = 200;
211 _hourlyRateTextBox = new TextBox();
212 _hourlyRateTextBox.Width = 200;
213 _salaryTextBox = new TextBox();
214 _salaryTextBox.Width = 200;
215 _employeeNumberTextBox = new TextBox();
216 _employeeNumberTextBox.Width = 200;
217
218 _birthdayPicker = new DateTimePicker();
219 _genderBox = new GroupBox();
220 _genderBox.Text = "Gender";
221 _genderBox.Height = 75;
222 _genderBox.Width = 200;
223 _maleRadioButton = new RadioButton();
224 _maleRadioButton.Text = "Male";
225 _maleRadioButton.Checked = true;
226 _maleRadioButton.Location = new Point(10, 20);
227 _femaleRadioButton = new RadioButton();
228 _femaleRadioButton.Text = "Female";
229 _femaleRadioButton.Location = new Point(10, 40);
230 _genderBox.Controls.Add(_maleRadioButton);
231 _genderBox.Controls.Add(_femaleRadioButton);
232 _clearButton = new Button();
233 _clearButton.Text = "Clear";
234 _clearButton.Name = "Clear";
235 _clearButton.Click += controller.UniversalHandler;
236
237 _submitButton = new Button();
238 _submitButton.Text = "Submit";
239 _submitButton.Name = "Submit";
240 _submitButton.Click += controller.UniversalHandler;
241 _submitButton.Enabled = false;
242
243 _infoTablePanel.SuspendLayout();
244 _infoTablePanel.Controls.Add(_firstNameLabel);
245 _infoTablePanel.Controls.Add(_firstNameTextBox);
246 _infoTablePanel.Controls.Add(_middleNameLabel);
247 _infoTablePanel.Controls.Add(_middleNameTextBox);
248 _infoTablePanel.Controls.Add(_lastNameLabel);
249 _infoTablePanel.Controls.Add(_lastNameTextBox);
250 _infoTablePanel.Controls.Add(_birthdayLabel);
251 _infoTablePanel.Controls.Add(_birthdayPicker);
252 _infoTablePanel.Controls.Add(_genderLabel);
253 _infoTablePanel.Controls.Add(_genderBox);
254 _infoTablePanel.Controls.Add(_employeeNumberLabel);
255 _infoTablePanel.Controls.Add(_employeeNumberTextBox);
256 _infoTablePanel.Controls.Add(_hoursWorkedLabel);
257 _infoTablePanel.Controls.Add(_hoursWorkedTextBox);
258 _infoTablePanel.Controls.Add(_hourlyRateLabel);
259 _infoTablePanel.Controls.Add(_hourlyRateTextBox);
260 _infoTablePanel.Controls.Add(_salaryLabel);
261 _infoTablePanel.Controls.Add(_salaryTextBox);
262 _infoTablePanel.Dock = DockStyle.Top;
263
264 _buttonPanel.SuspendLayout();
265 _buttonPanel.Controls.Add(_clearButton);
266 _buttonPanel.Controls.Add(_submitButton);
267
268 _mainTablePanel.SuspendLayout();
269 _mainTablePanel.Controls.Add(_mainTextBox);
270 _mainTablePanel.Controls.Add(_infoTablePanel);
271 _mainTablePanel.Controls.Add(_buttonPanel);
C# For Artists © 2008 Rick Miller — All Rights Reserved 717

A Comprehensive Pattern-Based Example Chapter 25: Helpful Design Patterns
272 _mainTablePanel.SetColumnSpan(_buttonPanel, 2);
273
274 this.SuspendLayout();
275 this.Controls.Add(_mainTablePanel);
276 this.Width = WINDOW_WIDTH;
277 this.Height = WINDOW_HEIGHT;
278 this.MinimumSize = new Size(WINDOW_WIDTH, WINDOW_HEIGHT);
279 //this.MaximumSize = new Size(WINDOW_WIDTH, WINDOW_HEIGHT);
280 this.Text = WINDOW_TITLE;
281 _infoTablePanel.ResumeLayout();
282 _buttonPanel.ResumeLayout();
283 _mainTablePanel.ResumeLayout();
284 this.ResumeLayout();
285 _openFileDialog = new OpenFileDialog();
286 _saveFileDialog = new SaveFileDialog();
287 this.EnableHourlyFields(false);
288 this.EnableSalaryFields(false);
289 this.SetWindowTitleBasedOnMode();
290
291 }
292
293 private void InitializeMenus(IController controller){
294 // setup the menus
295 _ms = new MenuStrip();
296
297 _fileMenu = new ToolStripMenuItem("File");
298 _loadMenuItem = new ToolStripMenuItem("Load...", null,
299 new EventHandler(controller.UniversalHandler));
300 _loadMenuItem.Name = "Load";
301 _saveMenuItem = new ToolStripMenuItem("Save...", null,
302 new EventHandler(controller.UniversalHandler));
303 _saveMenuItem.Name = "Save";
304 _exitMenuItem = new ToolStripMenuItem("Exit", null, new EventHandler(controller.UniversalHandler));
305 _exitMenuItem.Name = "Exit";
306
307 _editMenu = new ToolStripMenuItem("Edit");
308 _listMenuItem = new ToolStripMenuItem("List", null, new EventHandler(controller.UniversalHandler));
309 _listMenuItem.Name = "List";
310 _sortMenuItem = new ToolStripMenuItem("Sort", null, new EventHandler(controller.UniversalHandler));
311 _sortMenuItem.Name = "Sort";
312 _newSalariedEmployeeMenuItem = new ToolStripMenuItem("New Salaried Employee", null,
313 new EventHandler(controller.UniversalHandler));
314 _newSalariedEmployeeMenuItem.Name = "NewSalariedEmployee";
315 _newHourlyEmployeeMenuItem = new ToolStripMenuItem("New Hourly Employee", null,
316 new EventHandler(controller.UniversalHandler));
317 _newHourlyEmployeeMenuItem.Name = "NewHourlyEmployee";
318 _editEmployeeMenuItem = new ToolStripMenuItem("Edit Employee", null,
319 new EventHandler(controller.UniversalHandler));
320 _editEmployeeMenuItem.Name = "EditEmployee";
321 _deleteEmployeeMenuItem = new ToolStripMenuItem("Delete Employee", null,
322 new EventHandler(controller.UniversalHandler));
323 _deleteEmployeeMenuItem.Name = "DeleteEmployee";
324
325
326 _fileMenu.DropDownItems.Add(_loadMenuItem);
327 _fileMenu.DropDownItems.Add(_saveMenuItem);
328 _fileMenu.DropDownItems.Add(_exitMenuItem);
329 _ms.Items.Add(_fileMenu);
330
331 _editMenu.DropDownItems.Add(_listMenuItem);
332 _editMenu.DropDownItems.Add(_sortMenuItem);
333 _editMenu.DropDownItems.Add("-");
334 _editMenu.DropDownItems.Add(_newSalariedEmployeeMenuItem);
335 _editMenu.DropDownItems.Add(_newHourlyEmployeeMenuItem);
336 _editMenu.DropDownItems.Add(_editEmployeeMenuItem);
337 _editMenu.DropDownItems.Add("-");
338 _editMenu.DropDownItems.Add(_deleteEmployeeMenuItem);
339 _ms.Items.Add(_editMenu);
340
341 _ms.Dock = DockStyle.Top;
342 this.MainMenuStrip = _ms;
343 this.Controls.Add(_ms);
344
345 }
346
347 public void SetWindowTitleBasedOnMode(){
348 switch(Mode){
349 case ViewMode.RESTING: this.Text = WINDOW_TITLE + "- Resting";
350 break;
351 case ViewMode.SALARIED: this.Text = WINDOW_TITLE + "- New Salaried Employee";
352 break;
718 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 25: Helpful Design Patterns A Comprehensive Pattern-Based Example
353 case ViewMode.HOURLY: this.Text = WINDOW_TITLE + " - New Hourly Employee";
354 break;
355 case ViewMode.EDIT: this.Text = WINDOW_TITLE + "- Edit Employee";
356 break;
357 }
358 }
359
360 public void ClearInputFields(){
361 _firstNameTextBox.Text = String.Empty;
362 _middleNameTextBox.Text = String.Empty;
363 _lastNameTextBox.Text = String.Empty;
364 _maleRadioButton.Checked = true;
365 _birthdayPicker.Value = DateTime.Now;
366 _hoursWorkedTextBox.Text = String.Empty;
367 _hourlyRateTextBox.Text = String.Empty;
368 _salaryTextBox.Text = String.Empty;
369 _employeeNumberTextBox.Text = String.Empty;
370 }
371
372 private Sex RadioButtonToSexEnum(){
373 Sex gender = Sex.MALE;
374 if(_maleRadioButton.Checked){
375 gender = Sex.MALE;
376 }else{
377 gender = Sex.FEMALE;
378 }
379 return gender;
380 }
381
382 private void SetRadioButton(Sex gender){
383 if(gender == Sex.MALE){
384 _maleRadioButton.Checked = true;
385 }else{
386 _femaleRadioButton.Checked = true;
387 }
388 }
389
390 public void EnableSalaryFields(bool state){
391 _salaryLabel.Enabled = state;
392 _salaryTextBox.Enabled = state;
393 }
394
395 public void EnableHourlyFields(bool state){
396 _hoursWorkedLabel.Enabled = state;
397 _hoursWorkedTextBox.Enabled = state;
398 _hourlyRateLabel.Enabled = state;
399 _hourlyRateTextBox.Enabled = state;
400 }
401
402 public void EnableSubmitButton(bool state){
403 _submitButton.Enabled = state;
404 }
405
406 public void DisplayEmployeeInfo(String[] employees_info) {
407 StringBuilder sb = new StringBuilder();
408 foreach(String s in employees_info){
409 sb.Append(s + "\r\n");
410 }
411 _mainTextBox.Text = sb.ToString();
412 }
413
414 public IEmployee GetNewSalariedEmployee(){
415 SalariedEmployee employee = new SalariedEmployee();
416 PayInfo p = new PayInfo();
417 p.Salary = Double.Parse(Salary);
418 employee.PayInfo = p;
419 this.FillInStandardEmployee(employee);
420 return employee;
421 }
422
423 public IEmployee GetNewHourlyEmployee(){
424 HourlyEmployee employee = new HourlyEmployee();
425 PayInfo p = new PayInfo();
426 p.HoursWorked = Double.Parse(HoursWorked);
427 p.HourlyRate = Double.Parse(HourlyRate);
428 employee.PayInfo = p;
429 this.FillInStandardEmployee(employee);
430 return employee;
431 }
432
433 public IEmployee GetEditedEmployee(){
C# For Artists © 2008 Rick Miller — All Rights Reserved 719

A Comprehensive Pattern-Based Example Chapter 25: Helpful Design Patterns
434 if(EditingEmployee.GetType() == typeof(HourlyEmployee)){
435 return this.FillInEditedEmployee((HourlyEmployee)EditingEmployee);
436 }else{
437 return this.FillInEditedEmployee((SalariedEmployee)EditingEmployee);
438 }
439 }
440
441 public String GetSaveFile(){
442 _saveFileDialog.ShowDialog();
443 return _saveFileDialog.FileName;
444 }
445
446 public String GetLoadFile(){
447 _openFileDialog.ShowDialog();
448 return _openFileDialog.FileName;
449 }
450
451 public int SelectedLineNumber(){
452 int index = _mainTextBox.SelectionStart;
453 int line_number = _mainTextBox.GetLineFromCharIndex(index);
454 return line_number;
455 }
456
457 private IEmployee FillInEditedEmployee(SalariedEmployee employee){
458 employee.PayInfo.Salary = Double.Parse(Salary);
459 return this.FillInStandardEmployee(employee);
460 }
461
462 private IEmployee FillInEditedEmployee(HourlyEmployee employee){
463 employee.PayInfo.HoursWorked = Double.Parse(HoursWorked);
464 employee.PayInfo.HourlyRate = Double.Parse(HourlyRate);
465 return this.FillInStandardEmployee(employee);
466 }
467
468 private IEmployee FillInStandardEmployee(IEmployee employee){
469 employee.FirstName = FirstName;
470 employee.MiddleName = MiddleName;
471 employee.LastName = LastName;
472 employee.Gender = Gender;
473 employee.Birthday = Birthday;
474 employee.EmployeeNumber = EmployeeNumber;
475 return employee;
476 }
477
478 public void PopulateEditFields(SalariedEmployee employee){
479 EnableSalaryFields(true);
480 EnableHourlyFields(false);
481 Salary = employee.PayInfo.Salary.ToString();
482 this.PopulateStandardEditFields(employee);
483
484 }
485
486 public void PopulateEditFields(HourlyEmployee employee){
487 EnableHourlyFields(true);
488 EnableSalaryFields(false);
489 HoursWorked = employee.PayInfo.HoursWorked.ToString();
490 HourlyRate = employee.PayInfo.HourlyRate.ToString();
491 this.PopulateStandardEditFields(employee);
492 }
493
494 private void PopulateStandardEditFields(IEmployee employee){
495 FirstName = employee.FirstName;
496 MiddleName = employee.MiddleName;
497 LastName = employee.LastName;
498 Birthday = employee.Birthday;
499 Gender = employee.Gender;
500 EmployeeNumber = employee.EmployeeNumber;
501 }
502
503 } // end View class definition
504 } // end namespace

Com.PulpFreePress.Controller

25.48 Controller.cs

1 using System;
2 using System.Windows.Forms;
3 using Com.PulpFreePress.Common;
4 using Com.PulpFreePress.Exceptions;
720 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 25: Helpful Design Patterns Summary
5 using Com.PulpFreePress.Commands;
6 using Com.PulpFreePress.Model;
7 using Com.PulpFreePress.View;
8 using Com.PulpFreePress.Utils;
9
10 public class Controller : IController {
11
12 private CommandFactory command_factory = null;
13 private IModel its_model;
14 private IView its_view;
15
16 public Controller(){
17 command_factory = CommandFactory.GetInstance();
18 its_model = new Model();
19 its_view = new Com.PulpFreePress.View.View(this);
20 Application.Run((Form)its_view);
21 }
22
23
24 public void UniversalHandler(Object sender, EventArgs e){
25 try{
26 BaseCommand command = null;
27 if(sender.GetType() == typeof(Button)){
28 command = command_factory.GetCommand(((Button)sender).Name);
29 }else{
30 command = command_factory.GetCommand(((ToolStripMenuItem)sender).Name);
31 }
32 command.Model = its_model;
33 command.View = its_view;
34 command.Execute();
35 }catch(CommandNotFoundException cnfe){
36 Console.WriteLine("Command not found!");
37 }
38 }
39
40 public static void Main(){
41 new Controller();
42 } // end Main() method
43 } // end Controller class definition

Running The Application

You can run the application with the msbuild utility by running the run target of the EmployeeManagement-

App.proj file. The run target is the default target and can be run like so:

msbuild /t:run
...or optionally just by typing...

msbuild
...at the command line. Figure 25-6 shows the user interface of the employee management application.

Summary

Software design patterns are a form of knowledge reuse. Design patterns are general software architectural solu-

tions to general software architectural problems. A design pattern serves as the basis for a specific solution implemen-

tation. A complete design pattern specification includes more than just a graphical representation. Some design

patterns can be applied alone while others are meant to be combined with other design patterns.

The singleton pattern is used when only one instance of a particular class type is required to exist in your pro-

gram. The general approach to creating a singleton is to make the constructor protected or private and provide a pub-

lic static method named GetInstance() that returns the same instance of the class in question.

The factory pattern is used to create classes whose purpose is to create objects of a specified type. The dynamic

factory can be used to create object’s via the .NET runtime’s dynamic class loading mechanism. One of the primary

advantages of the dynamic factory pattern is that certain enhancements to an application that uses a dynamic factory

can be made and implemented without the need to shut down the application.

The model-view-controller (MVC) pattern is used to separate the visual representation of an application object

from the application object itself. The MVC pattern consists of three primary components: 1) the model, which can

consists of one or more classes working together to realize the functionality of a particular application, 2) the view,
C# For Artists © 2008 Rick Miller — All Rights Reserved 721

Skill-Building Exercises Chapter 25: Helpful Design Patterns
which can consist of one or more classes working together to implement the visual representation of the model, and

3) the controller, which can consist of one or more classes working together to coordinate messaging between the

model and the view.

The command pattern is used to 1) decouple the knowledge of a particular action from an object that needs the

action carried out, and 2) to encapsulate the action in the form of an object. The command pattern can be combined

with the dynamic factory pattern to map command names to class handlers and dynamically load and execute the

command handler.

Skill-Building Exercises

1. Research: Procure a copy of the Gang-of-Four’s Design Patterns book and expand your understanding of object-

oriented software design patterns.

2. UML Sequence Diagram: Create a UML sequence diagram showing the sequence of events when the button is

clicked in the View component of the MVC example given in Examples 25.12 through 25.14.

3. UML Sequence Diagram: Create a UML sequence diagram showing the sequence of events for command execu-

tion when the File->Load menuitem is selected in the employee management application.

4. Writing Exercise: Write an essay on the topic of software design patterns. Discuss their history, origin, and utility.

5. Talk With A Mentor: Arrange an interview with a senior C# .NET software engineer and ask them how often they

use design patterns in their work.

6. Compile And Run Chapter Examples: Compile and run the example programs given in this chapter.

7. UML Diagram: Draw a UML class diagram for the employee management application presented in the last sec-

tion of this chapter.

Figure 25-6: Interacting with the Employee Management Application
722
 © 2008 Rick Miller — All Rights Reserved C# For Artists

Chapter 25: Helpful Design Patterns Suggested Projects
Suggested Projects

1. Legacy Datafile Adapter Revisited: Write an application with the help of the patterns presented in this chapter

that accesses data via the legacy datafile adapter class and supporting classes presented in Chapter 17, examples

17.9 through 17.16. Give the application the capability to list books in the database, add new books, increment and

decrement quantity on hand, and search for books by title and author.

2. Chapter 20 Projects Revisited: Revisit any of the suggested projects listed at the end of Chapter 20 and utilize the

patterns discussed in this chapter in their implementation.

Self-Test Questions

1. Why is a software design pattern considered to be a form of knowledge reuse?

2. What is the purpose of the singleton pattern?

3. What is the purpose of the factory pattern?

4. What is one potential benefit to using the dynamic factory pattern?

5. How can application behavior can be dynamically modified using the dynamic factory pattern?

6. What is the purpose of the model-view-controller (MVC) pattern?

7. What’s the purpose of the model component of the MVC pattern?

8. What’s the purpose of the view component of the MVC pattern?

9. What’s the purpose of the controller component of the MVC pattern?

10. Why is it desirable to deny knowledge of the view from the model and vice versa?

11. What’s the purpose of the command pattern?

References

Christopher Alexander. A Timeless Way of Building. Oxford University Press, New York. ISBN: 0-19-502402-8

Christopher Alexander, et. al. A Pattern Language: Towns, Buildings, Construction. Oxford University Press,

New York. ISBN: 0-19-501919-9

Erich Gamma, et. al. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Profes-

sional Computing Series. Addison-Wesley, Reading, MA. ISBN: 0-201-63361-2
C# For Artists © 2008 Rick Miller — All Rights Reserved 723

Notes Chapter 25: Helpful Design Patterns
Notes
724 © 2008 Rick Miller — All Rights Reserved C# For Artists

Appendices
Java For Artists © 2006 Rick Miller — All Rights Reserved 725

726 © 2006 Rick Miller — All Rights Reserved Java For Artists

Appendix A
Helpful Checklists And Tables
Appendix A: Helpful Checklists And Tables

Project-Approach Strategy Check-off List

.

Check-Off Strategy Area Explanation

Application

Requirements

Determine and clarify exactly what purpose and features the finished

project must have. Clarify your understanding of the requirements

with your instructor if the project specification is not clear.

This results in a clear problem definition and a list of required

project features.

Problem Domain Study the problem until you have a clear understanding of how to

solve it. Optionally, express your understanding of the solution by

writing a pseudocode algorithm that describes, step-by-step, how you

will solve the problem. You may need to do this several times on

large, complex projects.

This results in a high-level solution statement that can be translated

into an application design.

Language Features Make a list of all the language features you must understand and use

to draft a competent design and later implement your design. As you

study each language feature check it off your list. Doing so will give

you a sense of progress.

This results in a notional understanding of the language features re-

quired to effect a good design and solve the problem.

High-Level Design &

Implementation

Strategy

Sketch out a rough application design. A design is simply a state-

ment, expressed through words, pictures, or both, of how you plan to

implement the problem solution derived in the Problem Domain

strategy area.

This results in a plan of attack!

Table 26-1: Project Approach Strategy
C# For Artists ©2008 Rick Miller — All Rights Reserved 727

Appendix A
Development Cycle

Final Project Review Checklist

Step Explanation

Plan Design to the point where you can get started on the implementation. Do not attempt to design every-

thing up front. The idea here is to keep your design flexible and open to change.

Code Implement what you have designed.

Test Thoroughly test each section or module of source code. The idea here is to try to break it before it has

a chance to break your application. Even in small projects you will find yourself writing short test case

programs on the side to test something you have just finished coding.

Integrate/Test Add the tested piece of the application to the rest of the project and then test the whole project to ensure

it didn’t break existing functionality.

Refactor This step applies more to object-oriented programming than to procedural programming. It means to

take a comprehensive look at your overall application architecture and migrate general functionality

up into base, or even abstract, classes so the functionality can be utilized by more concrete derived

classes.

Table 26-2: Development Cycle

Check-Off Review What To Check For

Source code formatting Ensure it is neat, consistently aligned, and indented to aid read-

ability.

Comments Make sure they’re used to explain critical parts of your code and

that they are consistently formatted.

File comment header Add a file comment header at the top of all project source files.

Make sure it has your name, class, instructor, and the name of

the project. The file comment header format may be dictated by

your instructor or by coding guidelines established at work.

Printed copies of source code files Make sure that it fits on a page in a way that preserves format-

ting and readability. Adjust the font size or paper orientation if

required to ensure your project looks professional.

Class files on floppy disk, CD-ROM, or

USB memory stick (i.e., removable me-

dia)

Ensure all the required source and executable files are present.

Try running your project from the removable medium to make

sure you have included all the required files.

Table 26-3: Final Project Review Checklist
728 ©2008 Rick Miller — All Rights Reserved C# For Artists

Appendix B
ASCII Table
Appendix B: ASCII Table

ASCII Table

Decimal Octal Hex Binary Value Comment

000 000 000 00000000 NUL Null char

001 001 001 00000001 SOH Start of Header

002 002 002 00000010 STX Start of Text

003 003 003 00000011 ETX End of Text

004 004 004 00000100 EOT End of Transmission

005 005 005 00000101 ENQ Enquiry

006 006 006 00000110 ACK Acknowledgment

007 007 007 00000111 BEL Bell

008 010 008 00001000 BS Backspace

009 011 009 00001001 HT Horizontal Tab

010 012 00A 00001010 LF Line Feed

011 013 00B 00001011 VT Vertical Tab

012 014 00C 00001100 FF Form Feed

013 015 00D 00001101 CR Carriage Return

014 016 00E 00001110 SO Shift Out

015 017 00F 00001111 SI Shift In

016 020 010 00010000 DLE Data Link Escape

017 021 011 00010001 DC1 XON Device Control 1

018 022 012 00010010 DC2 Device Control 2

019 023 013 00010011 DC3 XOFF Device Control 3

020 024 014 00010100 DC4 Device Control 4

021 025 015 00010101 NAK Negative Acknowledgement

022 026 016 00010110 SYN Synchronous Idle

023 027 017 00010111 ETB End of Trans. Block

024 030 018 00011000 CAN Cancel

025 031 019 00011001 EM End of Medium

026 032 01A 00011010 SUB Substitute

027 033 01B 00011011 ESC Escape

028 034 01C 00011100 FS File Separator

029 035 01D 00011101 GS Group Separator

030 036 01E 00011110 RS Request to Send Record Separator

031 037 01F 00011111 US Unit Separator

032 040 020 00100000 SP Space

033 041 021 00100001 !

034 042 022 00100010 "

035 043 023 00100011 #

036 044 024 00100100 $

037 045 025 00100101 %

038 046 026 00100110 &

Table Appendix B-1: ASCII Table
C# For Artists ©2008 Rick Miller — All Rights Reserved 729

Appeidix B
039 047 027 00100111 '

040 050 028 00101000 (

041 051 029 00101001)

042 052 02A 00101010 *

043 053 02B 00101011 +

044 054 02C 00101100 ,

045 055 02D 00101101 -

046 056 02E 00101110 .

047 057 02F 00101111 /

048 060 030 00110000 0

049 061 031 00110001 1

050 062 032 00110010 2

051 063 033 00110011 3

052 064 034 00110100 4

053 065 035 00110101 5

054 066 036 00110110 6

055 067 037 00110111 7

056 070 038 00111000 8

057 071 039 00111001 9

058 072 03A 00111010 :

059 073 03B 00111011 ;

060 074 03C 00111100 <

061 075 03D 00111101 =

062 076 03E 00111110 >

063 077 03F 00111111 ?

064 100 040 01000000 @

065 101 041 01000001 A

066 102 042 01000010 B

067 103 043 01000011 C

068 104 044 01000100 D

069 105 045 01000101 E

070 106 046 01000110 F

071 107 047 01000111 G

072 110 048 01001000 H

073 111 049 01001001 I

074 112 04A 01001010 J

075 113 04B 01001011 K

076 114 04C 01001100 L

077 115 04D 01001101 M

078 116 04E 01001110 N

079 117 04F 01001111 O

080 120 050 01010000 P

081 121 051 01010001 Q

082 122 052 01010010 R

083 123 053 01010011 S

084 124 054 01010100 T

085 125 055 01010101 U

086 126 056 01010110 V

087 127 057 01010111 W

088 130 058 01011000 X

089 131 059 01011001 Y

090 132 05A 01011010 Z

091 133 05B 01011011 [

092 134 05C 01011100 \

093 135 05D 01011101]

094 136 05E 01011110 ^

Decimal Octal Hex Binary Value Comment

Table Appendix B-1: ASCII Table
730 ©2008 Rick Miller — All Rights Reserved C# For Artists

Appendix B
095 137 05F 01011111 _

096 140 060 01100000 `

097 141 061 01100001 a

098 142 062 01100010 b

099 143 063 01100011 c

100 144 064 01100100 d

101 145 065 01100101 e

102 146 066 01100110 f

103 147 067 01100111 g

104 150 068 01101000 h

105 151 069 01101001 i

106 152 06A 01101010 j

107 153 06B 01101011 k

108 154 06C 01101100 l

109 155 06D 01101101 m

110 156 06E 01101110 n

111 157 06F 01101111 o

112 160 070 01110000 p

113 161 071 01110001 q

114 162 072 01110010 r

115 163 073 01110011 s

116 164 074 01110100 t

117 165 075 01110101 u

118 166 076 01110110 v

119 167 077 01110111 w

120 170 078 01111000 x

121 171 079 01111001 y

122 172 07A 01111010 z

123 173 07B 01111011 {

124 174 07C 01111100 |

125 175 07D 01111101 }

126 176 07E 01111110 ~

127 177 07F 01111111 DEL

Decimal Octal Hex Binary Value Comment

Table Appendix B-1: ASCII Table
C# For Artists ©2008 Rick Miller — All Rights Reserved 731

Appeidix B
732 ©2008 Rick Miller — All Rights Reserved C# For Artists

Appendix C
Identifier Naming: Writing Self-Commenting Code
Appendix C: Identifier Naming: Writing Self-Commenting Code

Identifier Naming: Writing Self-Commenting Code

Self-commenting code is an identifier-naming technique you can use to effectively manage both physical and

conceptual complexity. An identifier is a sequence of characters or digits used to form the names of entities used in

your program. Examples of program entities include classes, constants, variables, and methods. All you have to do to

write self-commenting code is to 1) give meaningful names to your program entities, and 2) adopt a consistent identi-

fier naming convention. C# allows unlimited-length identifier names, so you can afford to be descriptive.

Benefits of Self-Commenting Code

The benefits of using self-commenting code are many. First, self-commenting code is easier to read. Code that’s

easy to read is easy to understand. If your code is easy to read and understand, you will spend much less time tracking

down logic errors or just plain mistakes.

Coding Convention

Self-commenting code is not just for students. Professional programmers (real professionals, not the cowboys!)

write self-commenting code because their code is subject to peer review. To ensure all members of a programming

team can read and understand each other’s code, the team adopts a coding convention. The coding convention speci-

fies how to form entity names, along with how the code must be formatted.

When you write programs to satisfy the exercises in C# For Artists I recommend you adopt the following identi-

fier naming conventions:

Class Names

Class names should start with an initial capital letter. If the class name contains multiple words, then capitalize

the first letter of each subsequent word used to form the class name. This is referred to as camel case. Table Appendix

C-1 offers several examples of valid class names:

Class Name Comment

Student One-syllable class name. First letter capitalized.

Engine Another one-syllable class name.

EngineController Two-syllable class name. First letter of each word capitalized.

HighOutputEngine Three-syllable class name. First letter of each word capitalized.

Table 26-1: Class Naming Examples
C# For Artists ©2008 Rick Miller — All Rights Reserved 733

Appeidix C
Constant Names

Constants represent values in your code that cannot be changed once initialized. Constant names should describe

the values they contain, and should consist of all capital letters to set them apart from variables. Connect each word of

a multiple-word constant by an underscore character. Table Appendix C-2 gives several examples of constant names:

Variable Names

Variables represent values in your code that can change while your program is running. Variable names should be

formed from lower-case characters to set them apart from constants. Variable names should describe the values they

contain. Table Appendix C-3 shows a few examples of variable names:

You may want to start field variable names with an underscore character to make them easy to spot in your code.

Method Names

A method represents a named series of statements that perform some action when called in a program. Since

methods invoke actions, their names should be formed from action words (verbs) that describe what they do. Begin

method names with an upper-case character, and capitalize each subsequent word of a multiple-word method. The

only exception to this naming rule is for constructor methods, which must be exactly the same name as the class in

which they appear. Table Appendix C-4 gives some examples.

Constant Name Comment

PI Single-word constant in all caps. Could be the constant value of π.

MAX Another single-word constant, but max what?

MAX_STUDENTS Multiple-word constant separated by an underscore character.

MINIMUM_ENROLLMENT Another multiple-word constant.

Table 26-2: Constant Naming Examples

Variable Name Comment

size Single-word variable in lower-case characters. But size of what?

array_size Multiple-word variable, each word joined by underscore character.

current_row Another multiple-word variable.

mother_in_law_count Multiple-word variable, each word joined by an underscore character.

Table 26-3: Variable Naming Examples

Method Name Comment

PrintFloor Multiple-word method name. The first word is an action word.

SetMaxValue Multiple-word method name. This is an example of a mutator method.

GetMaxValue Another multiple-word method name. This is an example of an accessor method.

Start A single-word method name.

Table 26-4: Method Naming Examples
734 ©2008 Rick Miller — All Rights Reserved C# For Artists

Appendix C
Property Names

The property name should accurately reflect the nature of the property. Table Appendix C-5 offers several exam-

ples.

Property Name Comment

StudentCount Multiple-word property name.

MaxValue Multiple-word property name.

FirstName Another multiple-word property name.

Length A single-word Property name.

Table 26-5: Property Naming Examples
C# For Artists ©2008 Rick Miller — All Rights Reserved 735

Appeidix C
736 ©2008 Rick Miller — All Rights Reserved C# For Artists

Index

Symbols
! 122

- 122

-- 122

!= 125

#define DEBUG directive 645

#endregion directive 541

#region directive 541

% 123

* 123

+ 122

++ 122

+= operator 304

.NET Framework

downloading 21

installing 20–21

.NET Remoting

Singleton mode 468

.NET remoting 466–477

configuration files 472

network communication handled

by 469

passing collection of Person ob-

jects between remote

object and client 474

persisting remote object state 469

purpose of 466

registering channels 468

registering service name 468

registering well known service

types 468

remote object access via inter-

face 470

serializing complex objects 474

simple example 467

SingleCall mode 468

SingleCall vs. Singleton remote

object modes 469

swapping remote objects
enabling with interfaces 470

three primary channels 467

three required components 466

.NET Remoting Architecture 466

.NET remoting infrastructure 495

/ 123

/d

DEBUG compiler switch 646

; 119
C# For Artists
< 125

<< 124

<= 125

= 119

== 125

> 125

>= 125

~ 122

A
abstract

classes 267

methods 267

abstract class 257

expressing in UML 268

purpose of 268

term defined 257

abstract class vs. interface 270, 271

abstract data types 191

abstract keyword

using to declare classes and

methods 269

abstract methods

implementing in derived classes

269

abstract thinking 9

abstraction

problem 9

the art of programming 190

abstractions

selecting the right kinds of 662

access

horizontal 274

vertical 274

Access Control Graph (ACG) 675

access modifiers 201

default/package 201

most often used 274

private 201

protected 201

public 201

address bus 81

addressing local machine 455

ADO.NET 494

aggregation 234, 235, 237, 250

aggregate constructors 236

composite 236, 250

composite example code 239
© 2008 Rick Miller — All Rights Reserved
definition 235

determining type by who con-

trols object lifetime 236

effects of garbage collector 236

example
engine simulation 242

engine simulation class dia-

gram 244

simple 236, 237, 250

simple example code 238

two types of 676

algorithm

running time 85

understanding the concept of 76

working definition of 83

algorithm growth rate 85

algorithms 76, 83

good vs. bad 83

alter statement

used to create foreign key con-

straint 512

analysis 48, 668

Ansel Adams 668

API Framework

blessing and curse 94

API reference documentation

class general overview page 96

class member page 97

obsolete APIs 102

Syntax section 101

API reference information

definitive source 94

application

definition 111

graceful recovery 46

layers 454

physical deployment 454

physical tier distribution 456

simple
structure 111

tier responsibilities 456

tiers 454

Application class

Run() method 293

use of to run GUI programs 293

application distribution 454

across multiple computers 455

application domain 384

application layer 458
737

Index
application layers 495

application message loop 293

application tiers

logical 456

separation of concerns 456

ApplicationException 367

applications

multitiered 456

architectural diagram

multitiered database application

494

architecture

flexibility 669

modularity 669

reliability 669

stability 669

array 339, 342

creating with literal values 168

declaration syntax 163

definition of 162

difference between value type

and reference type ar-

rays 169

dynamic resizing
example code 339

elements 162

functionality provided by array

types 164

homogeneous elements 162

Main() method String parameter

181

multidimensional 176, 179

of value types 166

properties of 165

references
calling Array class methods on

167

single dimensional 166

single dimensional in action 171

specifying length 163

specifying types 163

two dimensional
example program 179

type inheritance hierarchy 164

value type
memory arrangement 166

Array class 182

array initializer expression 178

array literal 168, 169

array of arrays 178

array processing 46

array-based collection

growing on insertion 339

arrays 162
738
rectangular 176

sorting with Array class 182

two-dimensional
processing 62

using to solve problems 162

Ashmore’s hash code algorithm 631

assembly

definition 111

Assertion Failed dialog 646

association 235, 250

definition 235

associativity

operator 121

forcing 121

asynchronous method calls 400

asynchronous methods

EndInvoke() method 402

IAsyncResult interface 403

obtaining results from 402

providing callback method to

BeginInvoke() method

402

attribute candidates 47

attributes 45

automated water tank custom event

example 326–331

auxiliary storage device 410

B
BackgroundWorker 382

BackgroundWorker class 396

BackgroundWorker events 396

bad software architecture

characteristics of 661

base class

methods
overriding 266

source code example 259

Base Class Libraries (BCL) 100

BaseCommand class 698

BaseDAO

class definition
using DatabaseFactory class

522

behavior

generalized 256

behavior contract 615

Bertrand Meyer 656, 671

Bertrand Meyer’s Design by Contract

(DbC) 643

binary data 420–422

BinaryFormatter class 414, 486

BinaryReader class 420, 422, 423
© 2008 Rick Miller — All Rights Reserved
BinaryWriter class 420, 422

bit 80, 81

BitMap class 299

using to create Image object 300

Bloch’s hash code algorithm 631

block 479

blocking I/O operation 479

Bounds

data that comprises 298

property
printing to screen 298

Bounds property 298

setting example 302

boxing 225

break 142

bridge 451

Business Layer 495

business object

definition 495

business objects 494, 495

business rules 495

creep 495

Button 291

byte 80, 81

C
C# compile and execute process 86

cache memory 80

calling base class constructor with

base() 260

camel case 199, 733

cascade delete 502

SQL
cascade delete

testing 515

casting 264, 351

advice on use of 265

chained hash table 345

character constants

declaring
example 55

using in switch statement 56

Christopher Alexander 688

class 111, 257

abstract 267

expressing in UML 268

purpose of 268

abstract class 257

four categories of members 194

non-static fields 195

sealed 274

static fields 195

term definition 257
C# For Artists

Index
class declarations

viewed as behavior specifica-

tions 644

class definition

adding fields 207

adding instance methods 208

constructor method 208

starting 207

class invariant 644, 646

defined 644

class invariants 644

class member access

default when omitting access

modifier 274

classes

classes vs. structs 225

number in an application 234

Class-Wide Fields 195

Click event 303

client 450, 453

application 450, 453

hardware 450, 453

client application 466

client coordinates 299

client-server applications

See also TCP/IP client-server

TCP/IP 478

with .NET remoting 466

cloning objects 627

CloseReader() method 523

Coad’s Inheritance Criteria 672

code blocks

executing in if statements 139

code library

creating 86

code module

creating 86

code reuse 668

coding convention

adopting 733

cohesion 15, 203

collateral roles

modeling 674

collections

ArrayList
usage example 340

casting 351

extending ArrayList 352

extracting elements into arrays

361

general characteristics 338

generic
example code 354–356

KeyedCollection<TKey,
C# For Artists
TItem> example 355

List<T> 354

IComparer<T, T> 359, 636

implementing IComparable<T>

357, 634

interfaces 338

linked list node elements 343

making an object sortable 357,

634

non-generic to generic mapping

table 349

old-school style 350–353

old-school style programming

348

performance characteristics
arrays 342

hashtable 345

linked list 343

Person list example 351

red-black tree node elements 346

sorting 357

rules for implementing ICom-

parable<T>.Comp-

areTo() method 358,

635

specialized 349

underlying data structures 349

using foreach to iterate over
example 351

Color structure 299

columns 501

command console layout properties

modifying 28

command pattern 688, 697

CommandFactory class 699

command-line arguments

processing 181

command-line compiler 20

command-line tools 20

why you should learn 20

Common Language Infrastructure

four parts 87

Common Language Infrastructure

(CLI) 86, 87

Common Language Runtime (CLR)

90

Common Language Specification

(CLS) 88

Common Log File System 438

Common Type System (CTS) 88

compiler errors

dealing with 30

finding their meaning on MSDN

30

fixing 14
© 2008 Rick Miller — All Rights Reserved
compiling

simple application 111

compiling multiple source files 234

compiling source file

how to 29

compiling with csc

using target switch example 215

complex application behavior 234

complex project folder organization

516

complexity

conceptual 14, 234, 235, 250

managing physical 15

physical 15, 234, 235, 250

relationship between physical

and conceptual 15

Component 293

components

adding to Controls collection 302

adding to windows 301

initializing in separate method

302

composite aggregation

defined 236

composition 668, 676

as force multiplier 676

compositional design 234, 676

compositionists 668

computer

architecture
feature set 79

feature set accessibility 79

feature set implementation 79

three aspects of 79

definition of 76

memory
organization 79

processing cycle 82

system 76

components of 77

hard drive 77

keyboard 77

main logic board 77

memory 77, 80

monitor 77

mouse 77

processor 77

speakers 77

system unit 77

vs. computer system 76

computer network

definition 450

purpose 450

computer program

modeling real world problem 190
739

Index
computers 76

conceptual complexity 14, 234

managing 14

taming 14

concrete class 260

concurrently executing applications

384

condition

exception 366

configuration file

example 528

configuration files

.NET remoting 472

configuration-management tool 15

connection pooling 495

connection string

database
configuration file setting 499

console applications 110–131

console text color

changing
example code 483

console text menu

processing user commands
example 56

console text menus

example 53

const 197

constant 47, 195

constants 197

constraint

database 504

constructor methods 206

constructors 616

ContainerControl 293

containing aggregate 237

containment

by reference 236

by value 236

polymorphic 676

contains 237

continue 152

Control 293

control bus 81

controller 695

controls

dynamic layout of 308

registering event handler meth-

ods 303

Controls collection

use of 302

coordinates

client 297

origin 298
740
screen 297

(x,y) pairs 297

origin 298

pixel as basic unit of measure

297

window 297

window placement upon screen

297

copy constructor 625

coupling 15

create tables SQL script 504

creativity

and problem abstraction 190

cross platform

promise of 89

CRUD operations

database
CRUD operations 523

csc

compiling entire source directo-

ry 235

compiling multiple source files

234

csc compiler

locating 21

current position 48

custom event

recursive example 327–329

custom events 322

suggested naming convention

331

custom exceptions 374

custom serialization 618, 620

D
DAO layer

building 519

Data Access Layer 495

data access object

definition 495

data access objects 494, 495

data base

key factor in business rules 495

data bus 81

Data Control Language 502

Data Definition Language 502

data link layer 458

Data Manipulation Language 502, 506

data type 47

reference 164

value 164

data types

array 164
© 2008 Rick Miller — All Rights Reserved
SQL Server 505

database

automatically inserting primary

key 512

cascade delete 502

columns 501

constraint
definition of 504

converting binary data into bit-

map image 526

creating related table with script

511

DataBase.AddInParameter()

method 526

foreign key 501, 511

foreign key constraint
naming 512

inserting image data
example code 525

inserting test data into related ta-

ble 512

inserting value objects into 526

join operation 511

primary key 501

record 514

referential integrity 501

rows 501

table 501

database application

compiling 500

database connection

established via DatabaseFactory

495

database connection string 499

database connection test application

499–500

database management system 501

Database object 499, 523

database script

running
example 504

DatabaseFactory 495, 523

configuration file 499

example code 499

DataBindingComplete event 580

dataConfiguration

configuration file section 499

datagrams 459

DataGridView 562, 564

clicking on row to yield row in-

dex 562

data binding 580

DataSource property 562

row index value 562
C# For Artists

Index
DateTime structure

example of use 310

DateTime.Now 310

DbC 643

DbCommand 526

DBMS 501

DbType enumeration

.NET type mapping table 527

Debug.Assert() method 645

deep copy 614

defined 624

default class member access 274

default constructor 200

delay

example code 330

delegate 291, 322

event subscriber list 322

EventHandler 323

method signature specification

323

delegate object

purpose of 322

delegate type

purpose of 303

specification of method signa-

ture 304

delegates

EventHandler 303

MouseEventHandler 303

PaintEventHandler 303

running asynchronous methods

with 400

delete command

SQL
commands

delete 510

delimiter

text file 418

Department of Defense 452

dependencies

managed 669

dependency 194, 235

definition 235

effects of dependency relation-

ships between classes

235

dependency inversion principle 661

dependency relationship 250

dependency vs. association 235

deprecated members 201

derived class

source code example 260

deserialization

object 414
C# For Artists
deserialize

object
from XML file 416

design 668

design by composition 234

Design by Contract 643

design pragmatists 668

development cycle 43

application 51

applying 43

code 43, 728

creating feature implementation

lists 51

deploying 43

integrate 43

iterative application 51

plan 43, 728

refactor 43

test 43, 728

using 43

development environment

configuring 22

device driver 410

difference between abstract class and

interface 270

difference between readonly and

const fields 197

direct base class 194

direction 47

directory

definition 411

Directory class 411

example code 412

DirectoryInfo class 411

disk

driver software 410

distributed applications 450

DockStyle enumeration 309

values 309

documentation generation 72

dominant roles

modeling 674

Doxygen 72

Dr. Barbara Liskov 643

Dr. Bertrand Meyer 643

drive letters 411

driver

creating test code 209

dynamic class loading

example code 699

dynamic factory pattern

advantages of 695

dynamic link library 86

dynamic polymorphic behavior 656
© 2008 Rick Miller — All Rights Reserved
DynamicArray

case study 338

E
ECMA - 335 87

effects of change

predicting 669

Eiffel 643

EmployeeDAO 495

empty statement 119

Encapsulation 9

encapsulation 201

EndInvoke() method 402

engineering trade-off 668

Enterprise Library Configuration tool

499

Enterprise Library Data Access Ap-

plication Block 495

entry point 111

enumerated type 59

environment variable 20

environment variables 22–24

Erich Gamma 689

error checking 46

error conditions

program
handling 137

that cause exceptions
examples of 366

errors

compiler 14

Ethernet 459

event 322

event arguments

example code 324

event consumer 322

event driven programs 293

event handler

explicit call to
example 580

event handler methods

registering 303

event handlers

located in different objects 305

event producer 322

event subscriber list 322

events 200, 303

and their delegate types
table of 303

BackColorChanged 303

BackgroundImageChanged 303

Click 303

DoubleClick 303
741

Index
GotFocus 303

GUI
handling in separate object

example 307

handled in separate objects 305

MouseClick 303

MouseDoubleClick 303

MouseDown 303

MouseEnter 303

MouseLeave 303

MouseMove 303

MouseUp 303

Paint 303

registering event handler method
example of 304

Exception

class hierarchy 367

public properties 370

exception

definition 366

exception information table 367

exceptions 366–376

catch block 366

catching multiple exceptions
rule of thumb 372

catching with try/catch block 138

CLR handling mechanism 366

custom 374

extending Exception class 374

using throw keyword 375

determining what a method may

throw 369

documenting 376

fault handler code 366

low-level to high-level transla-

tion 425

purpose of 366

runtime vs. application 368

translating low-level to high-lev-

el 375, 425

try block 366

try/catch/finally blocks 371–374

using multiple catch blocks 372

executing application

how to 30

executing SQL command

example code 499

extension inheritance

complications from using 675

vs. functional variation 675

F
façade 688
742
factory 688

factory class

interfaces involved to employ

674

fault handler code 366

Fields 195

fields

readonly
initializing static readonly

fields in static con-

structor 195

readonly vs. const 197

file

definition 410

File class 411

file I/O 410–443

file position pointer 421, 422

File Transfer Protocol 458

FileDialogs

using 440–442

FileInfo class 411

example code 412

files

manipulating 411–413

FileStream class 414, 422

final project considerations

checklist 66

finalizers 200

First-In-First-Out (FIFO) 347

fixed-length records 422

reading
example code 429

floor 48

flow 11

achieving 12

concept of 11

stages 12

flow charts 59

FlowDirection enumeration

values 309

FlowLayoutPanel 291, 308

properties
AutoSize 309

AutoSizeMode 309

Dock 309

FlowDirection 309

WrapContents 309

purpose of 308

folder 411

folder options

setting 25

foreign key 501, 511

foreign key constraint 512

Form 291, 292, 294
© 2008 Rick Miller — All Rights Reserved
class inheritance hierarchy 292

properties
Backcolor 299

BackgroundImage 299

manipulating 299

simple form program 293

Text property 293

window types created with 292

formatting

numeric strings
table 183

source code 66, 728

from clause

use to join tables
SQL

from clause

use to join ta-
bles 514

functional decomposition 8

fundamental language features 46

G
gate 688

gateway 451

generalization

expressing in UML 258

generalized behavior

specifying 256

GetRegisteredWellKnowClient-

Types() method 473

good design

goals of 669

good software architecture

characteristics of 662

goto 153

graphical user interface program-

ming 292–318

guarded region

of try block 138

GUI

coding rhythm 317

data input dialog design 570

loading image in PictureBox
example code 528

opening image file with Open-

FileDialog
example code 528

separating code from event han-

dlers 305–307

using dialogs to enter data 570

GUI layout

using mock-up sketch to design

559
C# For Artists

Index
guillemet characters 194

H
hard disk 410

hardest thing about learning to pro-

gram 4

has a 237

hash code

algorithm 631

hash function 345

hash table 342

chained 345

open address 345

slot probe function 345

Height property 302

homogeneous data types 162

horizontal access 201, 274, 616

host 453

HttpChannel 467

Hypertext Transfer Protocol 458

I
ICloneable 627

IDataReader 527

IDE 20

identifier 114

class name examples 733

constant name examples 734

method name examples 734

naming 114, 733

variable name examples 734

identifiers 115

forming 114

if/else statement 140

Image

converting to byte array
 526

image

using to set Form Background-

Image property 300

Image class 299

Image data

storing and transferring as byte

array 565

IMessageFilter

implementation example 296

implementation approach 51

implicit cast 352

indexer

example code 339

indexers 200

IndexOutOfRangeException
C# For Artists
handling 57

infinite loop 146

inheritance 668, 670–673

first purpose of 256

good reasons for using 670

Meyer’s Taxonomy 671

object-oriented programming

with 256

second purpose of 257

simple example 259

third purpose of 257

three purposes of 256

valid usage checkpoints 672

inheritance form

constant 672

extension 671

facility 672

functional variation 672

implementation 672

machine 672

model 671

reification 672

restriction 671

software 672

structure 672

subtype 671

type variation 672

uneffecting inheritance 672

variation 672

view 672

inheritance hierarchy

assessing with Coad’s criteria

673

navigating 101

inheritists 668

inner join 514

instance constructors 199

integral type size

be aware of 123

integrated development environment

20

interface 257

authorized members 257, 270

purpose of 270

reducing dependencies with 674

role of 674

term definition 257

interface members

mapping to abstract members

275

interfaces 668

expressing in UML 271

Intermediate Language (IL) 86

internal 201, 258, 261, 274
© 2008 Rick Miller — All Rights Reserved
Internet Protocol (IP) 459

Internet protocol layers 457

Internet Protocols 452

inter-process communication 467

IP 459

IP address

parsing with IPAddress.Parse()

method 484

IP addresses 459

IPAddress.Parse() method 484

IpcChannel 467

purpose of 467

is a relationship

implementing 257

iteration

development 43

iterative development 43

J
John Vlissides 689

join operation 511

Just-In-Time (JIT) compiler 86

K
keyword

using as identifier
example 114

keywords

reserved
listing 113

L
Label 291

language features 42, 51, 727

language-features strategy area 48

Last-In-First-Out (LIFO) 347

layout managers 307–312

legacy datafile adapter 422

library

creating with compiler
example 467

referencing with compiler switch
example 468

linked list 342

Liskov Substitution Principle

relationship to Meyer Design by

Contract Programming

643

three rules of 654

Liskov Substitution Principle (LSP)

643

List<T>
743

Index
example code 341

Local Area Network 450

localhost 455

Location property 302

lock keyword 425

compared to Monitor.Wait()/

Monitor.Exit() 425

log files 438–440

loops 145

LSP 643

LSP & DbC

C# support for 643

common goals 643

designing with 644

M
machine code 79, 86

Magic Draw UML Design Tool 241

Main method 110

main method

purpose 112

signatures 112

managed code 89

managed threads 385

MarshalByRefObject 293

use to create remotable object

466

marshaling

remoting method calls 467

MemberwiseClone() 627

memory

address bus 81

alignment 81

bit 80, 81

byte 80, 81

cache 80

control bus 81

data bus 81

hierarchy 80

non-volatile 80

organization 79

RAM 80

ROM 80

volatile 80

word 80, 81

menu 47, 559

menus 312–315

adding submenu items to menus

313

item naming conventions 313

menu item separator
adding 313

menuitems
744
registering event handlers with

313

MenuStrip
docking to window 313

importance of adding last 313

MenuStrip class 312

ToolStripMenuItem 312

MenuStrip 312

declaring and creating 313

message categories 295

message filters

adding 296

message loop

window 294

message pump 294

message queue 294

message routing

windows 294

messages

system
how they are generated 294

Metadata 88

method

cohesion 203

definition structure 203

parameter list 111

sealed 274

signature
definition 112

method stubbing 13

methods 46, 199, 202

abstract 267

body 205

constructors 206

example definitions 205

local variable scoping 224

modifiers 203

name 205

naming 203

overloading 206

parameter behavior 219

parameter list 205

passing arguments to 219

return types 204

signatures 206

using return values as arguments

224

methods rule 655

Microsoft Build 235

Microsoft Developer Network (MS-

DN) 20, 94

Microsoft Enterprise Library

installation 498

support for application layers 495
© 2008 Rick Miller — All Rights Reserved
Microsoft Enterprise Library Appli-

cation Blocks 494

Microsoft Intermediate Language

(MSIL) 87

Microsoft SQLServer Express Edi-

tion 494

Microsoft Visual C# Express 20

MinuteTick custom event example

323–325

model 45, 695

modeling 45

collateral roles 675

dominant roles 674

dynamic roles 675

model-view-controller 688

model-view-controller (MVC) 695

module

creating with compiler 111

definition 111

monalphabetic substitution 173

Monitor class

synchronizing thread access with

424

usage 424

MSBuild 235, 516

<Csc> task 519

<ItemGroup> tag 518

<project> tag 518

<PropertyGroup> tag 518

<Target> tag 518

compiling value object target 522

default target 519

items
referencing 518

project file
example 517

properties
referencing 518

targets
defining 518

using to manage and build

project 517

MSDN 20, 94

MSIL Disassembler 87

multithreaded programming 382

multithreaded server 480

multithreaded server application 454

multithreaded TCP/IP server 480–482

multithreaded vacation 382

multi-tier projects

recommended approach 519

multitiered applications 450, 456

multitiered database application

design 494
C# For Artists

Index
multitiered database applications

494–583

MVC 695, 697

Controller
using factory pattern 698

simple example of 696

N
namespaces 7

naming conventions

for custom events 331

nested type 200

nested type declarations 200

network

definition 450

homogeneous vs. heterogeneous

451

purpose 450

network application

layers 454

physical deployment 454

tiers 454

network applications 450

network clients

running multiple on same ma-

chine 454

network layer 458

network stream

flushing after writing serialized

object 486

network streams

StreamWriter.Flush() method

480

StreamWriter.WriteLine() meth-

od 480

networking 450

networking protocols

role of 451

NetworkStream 486

NonSerialized 618

NotePad++ 22

noun 47

noun lists

suggesting possible application

objects 46

nouns 46, 47

mapping to data structures 47

numeric formatting 183

O
Object 293

object
C# For Artists
cloning 627

their associated type 257

object attributes 46

object behavior

comparison/ordering 615, 634

copy/assignment 614, 623

defined 614

equality 615, 629

fundamental 614, 616

object creation

with System.Activator.GetOb-

ject() method 469

object equality 614

object usage scenario evaluation

checklist 615

Object.Equals() method

rules for overriding 630

Object.GetHashCode() method

general contract 630

object-oriented analysis 668

object-oriented architecture

extending 642

preferred characteristics 642

reasoning about 642

understanding 642

object-oriented design approach 9

object-oriented programming 190

object-oriented programming en-

ablers 668

object-oriented programming pat-

terns 307

objects

operations upon 257

value vs. reference assignment

624

well-behaved 614

obsolete Thread methods 389

OCP 656

defined 656

example 656

octets 458

OnDeserialized 618

OnDeserializing 618

OnSerialized 618

OnSerializing 618

open address hash table 345

open-closed principle 656

achieving 656

operands 121

operating system

file management services 410

operator associativity 121

operator overloading 200, 590–611

assignment operators 610
© 2008 Rick Miller — All Rights Reserved
binary * / operators 599

binary + - operators 597

binary operators 597

bitwise & | operators 601

comparison operators 603

implicit and explicit cast 607

in the context of your design 590

purpose for 590

table of overloadable operators

590

true false operators 593

unary - operator 591

unary ! operator 592

unary + operator 591

unary ++ -- operators 595

unary operators 591

operator precedence 121

operator semantics 590

operators 120–131, 200

additive 124

assignment 130

conditional AND 129

conditional OR 129

equality 125

logical AND 126

logical OR 126

logical XOR 126

modulus 123

multiplicative 123

overloading 590

primary 121, 122

relational 125

shift 124

ternary 129

type testing 125

unary 122

OptionalField attribute 618

origin 298

overloaded operators

leading to cleaner code 590

overloading 199

override

keyword used to override base

class methods 267

overriding

base class methods
enabling with virtual keyword

266

overriding Object.GetHashCode()

checklist 630

P
packet 452
745

Index
packet-switched network 457

parameter 111

parameter arrays

example 223

ParameterizedThreadStart delegate

390

used in multithreaded server 482

parameters

behavior of reference types 220

behavior of value-types 220

how arguments are passed to

methods 220

out parameter modifier 223

parameter arrays 223

passing ref arguments 219

ref keyword 219

params keyword 223

part objects 236

pass by reference 219

pass by value 219

PATH 20

path

absolute 411

definition 411

relative 411

Path class 411

patterns

command 688

façade 688

factory 674, 688

MVC 688

singleton 674, 688

pen 47

Peter Coad 672

physical complexity 15, 234

physical layer 458

Point structure 301

using to place components 301

polymorphic behavior

example of 267

polymorphic containment 676

polymorphic substitution 674

polymorphism 668

applied 675

defined 275, 675

goal of programming with 675

planning for proper use of 675

port 468

postcondition 646

defined 645

postconditions 644

changing in derived class meth-

ods 652

precondition 218, 646
746
defined 644

preconditions 644

changing preconditions of de-

rived class methods 648

weakening 648

predefined types 115

preempted 384

PreFilterMessage() method 296

prepared statements 526

primary key 501

automatically incrementing inte-

ger 511

private 258, 274

problem abstraction 9, 190

and the development cycle 191

end result of 191

mantra 190

performing problem analysis 191

process of 190

problem domain 8, 42, 46, 51, 727

procedural-based design approach 8

process 382

definition 383, 384

multithreaded
definition 384

single-threaded
definition 384

processing cycle 82

decode 82, 83

execute 82, 83

fetch 82, 83

store 82, 83

processor

block diagram 78

CISC 78

machine code 79

RISC 78

production coders vs. design theorists

669

program

computer perspective 82

definition of 82

human perspective 82

two views of 82

what is a C# 110

program control flow statements 136

programming 4

challenges & frustrations 4

skills required 4

programming as art 4

programming cycle 12

code 12

integrate 12

plan 12
© 2008 Rick Miller — All Rights Reserved
refactor 13

repeating 13

summarized 13

test 12

programs 76

why they crash 83

project approach strategy 7

application requirements 8

design 8

in a nutshell 10

language features 8

problem domain 8

strategy areas 8

project complexity

managing 14

project folder

creating 25

project objectives 45

project requirements 8, 51

project specification 47

properties 198

creating a calculated property

210

example 208

get accessors 198

instance 198

read-only 198

read-write 198

set accessors 198

static 198

properties rule 655

protected 258, 261, 274

protected block 366

protected code 371

protected internal 201, 258, 261, 274

protocol stack 457

proxy

used by remoting client 467

pseudocode 59, 60

public 111

public interface 201

publisher 322

responsibilities 322

Q
quality without a name 688

queue 347

FIFO characteristic 347

QWAN 688

R
ragged array 178
C# For Artists

Index
Ralph Johnson 689

random access file I/O 422–437

calculating fixed-length record

count 422

RDBMS 501

Readonly Fields 195

readonly instance fields 195

readonly static fields 195

readonly vs. const fields 197

realization 271

expanded form 271

expressing in UML 271

lollipop diagram 271

simple form 271

record 514

record locking 424

Rectangle structure 301

rectangular arrays 176

recursion

example 329

red-black binary tree 342

refactor 257

refactoring a design 257

reference equality vs. value equality

629

reference parameters 219

reference semantics 225

reference to object combinations 261

reference types 115

referential integrity 501

regression testing

example 58

relational database 494, 501

relational database management sys-

tem 501

relationships

between database tables 501

reliable object-oriented software

creating 643

remotable object 466

how to create 466

remote object

creating for multitiered applica-

tion 551

Remoting exception

problem sending bitmap across

application domains

563

remoting infrastructure 466, 469

requirements 8, 42, 727

gaining insight through pictures

47

requirements gathering 8

resource sharing 450
C# For Artists
ResumeLayout() method

purpose of 309

Richard Helm 689

Robert’s Rules of Order 451

robot rat project specification 44

analyzing 45

root directory

definition 411

routing tables 459

rows 501

S
screen coordinates 297, 299

ScrollableControl 293

sealed class 274

sealed method 274

segments 458

select command 507

selection statements 136

self-commenting code

writing 733

semantics

pre and postfix increment and

decrement operators

596

value vs. reference 225

sensor

multimode
example 327

serializable attribute 413

serialization

custom 618, 620

object 413

serializing

List<People> to NetworkStream

486

objects
as XML 416

serializing objects 413–418

steps to 414

server 450, 453

application 450, 453

hardware 450, 453

multithreaded 454

treated as capital equipment 453

server application 466

service 383

shallow copy 614

defined 624

shallow vs. deep copy 624

shortcut

creating 26

modifying properties 27
© 2008 Rick Miller — All Rights Reserved
modifying start-up folder 27

signature

method 199

signature rule 655

simple aggregation

defined 236

simple vs. composite aggregation 236

simplification

of real-world problems 190

SingleCall 468, 469

single-threaded vacation 382

Singleton 468, 469

singleton 688

socket 478

software design 192

software design patterns 688

abstract factory 693

background 688

command 697

definition 688

dynamic factory 693

factory 693

factory method 693

Singleton 690

specification template 689

Software Development Kit (SDK) 87

software development roles 6

analyst 6

architect 7

programmer 7

sorting

arrays with Array class 182

collections 357, 634

source code

file header 66, 728

formatting 66, 728

specialization

expressing in UML 258

SplitContainer

example code 441

SQL 500–516

AND operator 515

commands
alter 502

create 502

delete 506

drop 502

insert 506

select 506, 507

update 506

use 502

constraint
definition of 504

creating tables 504
747

Index
Data Control Language 502

Data Definition Language 502

Data Manipulation Language

502, 506

database script
dropping and creating tables

with 503

database scripts
using 503

executing commands with go 503

from clause 507

inner join 514

join operation 514

order by clause
example 515

prepared statements 526

three sub languages 502

where clause 507

SQL command parameters 526

SQL command parameters and pre-

pared statements

generalized steps 526

SQL command utility

use of 502

-W switch 514

SQL query string constants 526

SQL Server

changing to master database 503

data types 505

four default databases 502

identity operator 512

newid() function 513

use of 508

SQL Server Management Studio 512

installation 496–497

SQLServer Express

installation 495–496

stack 347

LIFO characteristic 347

state transition diagrams 60

statement

for
personality of 148

nineteen kinds of 119

statements 119–131

break 151

chained if/else 141

continue 151, 152

control flow 136

do/while 146

personality of 147

empty 119

executing consecutive if 139

for 148
748
relationship to while 148

goto 153

if 136

if/else 136, 140

iteration 145

nesting 149

mixing selection and iteration

150

nineteen kinds of 120

selection statements 136

switch 136, 142

condition expression types 142

nested 144

using break in 142

table of 154

try/catch 138

while 145

personality of 145

state-transition diagrams 59

static 114

static constructor 195

static constructors 200

strategy

project approach 7

StreamReader class 418

StreamReaders

use in network programming 450

StreamWriter class 416, 418

strengthening preconditions 650

String

array of 172

string 114

string characters

accessed using array notation 175

string formatting 183

structs

advice on when to use 227

authorized members 226

behavior during assignment 226

behavior of this 226

boxing and unboxing 226

default field values 226

Structured Query Language 500–516

structures

structures vs. classes 225

stubbing 13

subfolder 411

subject matter experts 8

subscriber 322

responsibilities 322

subscriber notification process 323

supertypes & subtypes

reasoning about 643

SuspendLayout() method
© 2008 Rick Miller — All Rights Reserved
purpose of 309

switch

implicit case fall-through 143

switch statement 142

system message queue 294

System namespace

exploring 96

System.Activator.GetObject()

example code 469

System.Collections 348

System.Collections.Generic 348

System.Collections.ObjectModel 349

System.Collections.Specialized 349

System.Diagnostics namespace 645

System.Guid

use of as primary key 522

System.ValueType class

direct base class for all value

types 118

SystemException 367

T
table 501

TableLayoutPanel 291, 310

adding multidimensional array

of controls to 311

properties
ColumnCount 311

RowCount 311

TCP 458

octet sequencing 458

TCP/IP 450, 451, 452, 457–460

application layer 458

data link layer 459

network layer 459

physical layer 459

transport layer 458

TCP/IP client server programming

478–489

TCP/IP client-server

binding TcpListener object to

machine IP address and

port 479

calling TcpListener.AcceptTcp-

Client() method 479

calling TcpListener.Start() meth-

od 479

connection process illustrated

478

listening on multiple IP address-

es 482

multithreaded server
building 480
C# For Artists

Index
serializing complex objects be-

tween 484

simple example code 479

TcpChannel 467, 468, 469

TcpClient 478

TcpListener 478

TELNET 458

test data

inserting into database with

script 507

test driver program 209

testing 209

user-defined type 209

text files

delimiter 418

issues to consider before creating

418

procedure to read 419

Text property

effects on different controls 302

TextBox 291

multiline
selecting line of text by double-

clicking 315

property
MultiLine 316

WrapContents 316

textfiles

reading and writing 418–420

TextWriter 417

the art of programming 4, 10

inspiration 10

money but no time 11

mood setting 11

time but no money 11

where not to start 10

your computer 11

thinking outside the box 190

this()

called from constructor 216

thread

execution context 384

thread context 384

thread queue 384

ThreadPool 382

ThreadPool class 399

number of default worker

threads 399

starting threads with 400

threads 382–405

asynchronous method calls 400

BackgroundWorker class 396

BackgroundWorker events 396

blocking with Thread.Join() 392
C# For Artists
blocking with Thread.Sleep()

391

creating managed threads 385

executing on single-processor

system 384

foreground vs. background 394

ParameterizedThreadStart dele-

gate 390

passing ThreadStart delegate to

Thread constructor 389

preempted 384

running asynchronous methods

with delegates 400

setting Thread.IsBackground

property 394

starting managed threads 389

thread state 389

ThreadPool class 399

ThreadStart delegate 389

time-slicing 384

ThreadStart delegate 388

timeless way 688

time-slicing 384

TimeSpan

passing to Thread.Sleep() meth-

od 391

TimeSpan structure

example use of 310

title bar

window 293

ToolStripMenuItem

constructor usage 313

ToolStripMenuItems

declaring and creating 313

transitivity

exhibited by inheritance hierar-

chies 257

Transmission Control Protocol

(TCP) 458

transport layer 458

tree command 36

try/catch statement 138

type 257

diagram 115

value type
behavior 116

type coercion 265

types 115–119

array 164

predefined 115

mapping to system namespace

structures 118

reference 115

behavior 116
© 2008 Rick Miller — All Rights Reserved
value 115

value range table 118

U
UDP 450, 458

UML 15, 190, 234, 250

class diagram 193

composite aggregation 237, 239

expressing abstract class 268

expressing inheritance 258

expressing interfaces 271

expressing realization 271

expression aggregation 236

realization
diagram

expanded form 272

simple form 272

sequence diagram
engine object creation 244

sequence diagrams 240, 241

simple aggregation 237

stereotype 194

using to tame conceptual com-

plexity 234

UML class diagram

purpose of 193

UML design tool

Magic Draw 241

Unified Modeling Language (UML)

15

uniqueidentifier

use as primary key
example 504

unmanaged code 89

update command

SQL
commands

update 509

URI 450

URL 450

User Datagram Protocol (UDP) 458

user-defined types 191

using 114

using directive 111

utility methods

definition of 201

V
value objects 494, 495

spanning application layers 495

value parameters 219

value semantics 225

value types 115
749

Index
ValueType class 118

variable 47

definition 116

verb phrases 46

verbatim string literals 412

verbs 46

vertical access 274, 617

view 695

virtual

keyword to allow method over-

riding 266

Virtual Execution System 87

Virtual Execution System (VES) 86,

89

virtual machine 86

and the common language infra-

structure 86

virtual machines 86, 87

visible region

of a window 293

Visual C# Express Edition

building project 36

creating project with 33

creating projects with 32

installing 32

locating project executable file

after build 36

void 114
750
W
well-behaved objects 614

WellKnownObjectMode.SingleCall

mode 469

WellKnownObjectMode.Singleton

mode 469, 470

whole object 235

whole objects 236

whole/part class relationship 235

Width property 302

window

basic functionality provided by

293

message categories 295

message prefixes 295

parts of 293

title bar 293

visible region 293

window application

execution thread 294

window coordinates 297, 299

window coordinates diagram 298

window message routing 294

window messages

trapping with IMessageFilter in-

terface 296

window types

dialog boxes 292

floating 292

multiple-document interface
© 2008 Rick Miller — All Rights Reserved
(MDI) 292

standard 292

tool 292

windows

messages
WM_CHAR 296

WM_KEYDOWN 296

WM_KEYUP 296

WM_MOUSEMOVE 296

WM_MOUSEWHEEL 296

windows events

processing 293

windows executable

compiler switch 293

creating 293

Windows Task Manager

using to show applications and

processes 383

word 80, 81

world

imperfect understanding of 668

X
XML documentation

generating from command line

71

XML serialization 413

XMLSerializer 417

XMLSerializer class 416
C# For Artists

	Front Cover
	Half Title Page
	CIP Data Page
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	Preface
	Part I: C# Student Survival Guide
	Chapter 1: An Approach To The Art Of Programming
	Chapter 2: Small Victories: Creating C# Projects
	Chapter 3: Project Walkthrough
	Chapter 4: Computers, Programs, And Algorithms
	Chapter 5: Navigating .NET Framework Documentation
	Part II: Language Fundamentals
	Chapter 6: Simple C# Programs
	Chapter 7: Controlling The Flow Of Program Execution
	Chapter 8: Arrays
	Chapter 9: Toward Problem Abstraction: Creating New Data Types
	Chapter 10: Compositional Design
	Chapter 11: Inheritance And Interfaces
	Part III: Graphical User Interface Programming & Custom Events
	Chapter 12: Windows Forms Programming
	Chapter 13: Custom Events
	Part IV: Intermediate Concepts
	Chapter 14: Collections
	Chapter 15: Exceptions: Writing Fault-Tolerant Software
	Chapter 16: Multithreaded Programming
	Chapter 17: File I/O
	Part V: Network & Database Programming
	Chapter 18: Network Programming Fundamentals
	Chapter 19: Networked Client-Server Applications
	Chapter 20: Database Access & Multitiered Applications
	Part V: Advanced Concepts
	Chapter 21: Operator Overloading
	Chapter 22: Well-Behaved Objects
	Chapter 23: Three Design Principles
	Chapter 24: Inheritance, Composition, Interfaces, Polymorphism
	Chapter 25: Helpful Design Patterns
	Appendix A: Helpful Checklists And Tables
	Appendix B: ASCII Table
	Appendix C: Identifier Naming: Writing Self-Commenting Code
	Index
	Back Cover

