
C++ For Artists ©2003 Rick Miller — All Rights Reserved 43

3 Project Walkthrough: An Extended Example

Learning Objectives
•Apply the project approach strategy to help you systematically implement a program that satisfies the requirements of a given

project specification

•Iteratively apply the development cycle to help you implement your programming projects

•List and describe the phases of the Project Approach Strategy

•List and describe the steps of the software development cycle

•List and describe the different development roles performed during the development cycle

•Translate a project specification into a software design that can be implemented in C++

•Implement a software design in C++ using a functional decomposition approach

•List and describe the steps involved with functional decomposition

•Describe how the development cycle can be employed in a tight spiral fashion

•State the importance of compiling and testing early during the development process

Chapter 3

Project Walkthrough:
An Extended Example

Seaside Rendezvous

Introduction Chapter 3: Project Walkthrough

44 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Introduction

This chapter will walk through the creation of a programming project using the project approach strategy and
development cycle discussed in chapter 1. The ideas presented here should not be considered dogmatic. I fully expect
that as you gain confidence and experience as a developer you will formulate your own style of problem solving. I
also expect that readers new to C++ may not understand all the language features utilized in this chapter. Don’t worry.
What I want you to gain from reading this material is an understanding of how to tackle a project, analyze it, design a
solution, and implement the design. You can, and should, revisit different sections of this chapter as you progress
through the text and build upon your C++ programming skills.

The approach I take in this chapter is procedural, meaning I am going to show you how to functionally decom-
pose a problem and craft its solution from the viewpoint of functions rather than objects. I take this approach because
even though you are learning C++ with the desire to become a competent object-oriented programmer, to do so
requires you to understand fully procedural programming concepts. A sound understanding of procedural concepts
will significantly help you when it comes time to design class functions.

The Project Approach Strategy

The project approach strategy areas discussed in chapter 1 are summarized in table 3-1 below. Keep these strat-
egy areas in mind as you formulate your solution to a programming project. The purpose of having a project approach
strategy is to kick start the creative process and perpetuate your creative momentum. I remind you once again that you
can tailor this approach strategy to suit your individual taste. Modify it in any way you see fit.

Strategy Area Explanation

Requirements Determine and clarify exactly what purpose and features the finished project must have. Clarify
your understanding of the requirements with your instructor if the project specification is not
clear.
The result of pursuing this strategy area should be a clear definition of what problem must be
solved.

Problem Domain Study the problem until you have a firm understanding of how to solve it. Optionally, express
your understanding of the solution by writing a pseudocode algorithm that describes, step-by-
step, how the problem can be solved.
The result of this strategy area should be a high-level solution statement that can be translated
into a detailed application design.

Language Features Make a list of all the language features you must understand and use to draft a competent design
and later implement your design. As you study each language feature check it off your list. Do-
ing so will give you a sense of progress.
The result of this strategy area should be a complete understanding of all C++ language fea-
tures required to effect a good design and solve the problem.

Design (Plan) Sketch out a rough application design. The design should address issues such as data structures,
Input/Output, and how you plan to execute the problem solution you derived in the Problem Do-
main strategy area.
The result of this strategy area will be a clear understanding of what source code should be
written.

Table 3-1: Project Approach Strategy

Chapter 3: Project Walkthrough The Development Cycle

C++ For Artists ©2003 Rick Miller — All Rights Reserved 45

The Development Cycle

When you move into the design phase of your project you will start to employ the development cycle. It is good
to have a broad, macro-level design idea to get you started, but don’t make the mistake of trying to design everything
up front. Design until you can begin coding and test some of your design ideas. The development cycle is summarized
in the following table.

The development cycle will be employed in a tight spiral fashion as depicted in figure 3-1. By tight spiral I mean
you will begin with the plan step, followed by the code step, followed by the test step, followed by the integrate step,
optionally followed by the factor step. Once you have finished a little piece of the project in this fashion, you go back
to the Plan step and repeat the process. Each complete plan, code, test, integrate, and factor sequence is referred to as
an iteration. As you iterate through the cycle you will begin to notice the time it takes to complete the cycle from the
beginning of the plan step to the completion of the integrate step decreases. The development cycle spirals tighter and
tighter as development progresses until you converge on the final solution.

Development
Cycle Step

Explanation

Plan Do enough design to get you started with the implementation. Do not attempt to design everything
up front. The idea here is to keep your design flexible and open to change.

Code Implement what you have designed.

Test Thoroughly test each section or module of source code. The idea here is to try and break it before
it has a chance to break your application. Even in small projects you will find yourself writing little
test case programs on the side to test something you have just finished programming.

Integrate Add the tested piece of the application to the rest of the project.

Refactor This step applies more to object-oriented programming than to procedural programming. It means
to take a comprehensive look at your overall application architecture and migrate general function-
ality up into base, or even abstract, classes so the functionality can be utilized by more concrete
derived classes.

Table 3-2: Development Cycle

Figure 3-1: Tight Spiral Development Cycle Deployment

The Project Specification Chapter 3: Project Walkthrough

46 ©2003 Rick Miller — All Rights Reserved C++ For Artists

The Project Specification

Keeping both the project approach strategy and development cycle in mind, let us look now at a typical project
specification.

IST 156
Project 1

Robot Rat

Objectives:
Demonstrate your ability to utilize the following language features:
Arrays
Program flow control structures
Variables
Constants
Functions
Simple iostream input and output
Enumerated types
Preprocessing directives
Demonstrate your ability to create multi-file projects.

Task:
You are in command of a robot rat! You will control the rat’s movements

around a 20 x 20 grid floor. The robot rat is equipped with a pen. The pen has
two possible positions, up or down. When in the up position, the robot rat can
move about the floor without leaving a mark. If the pen is down then as the robot
rat moves through each grid it leaves a mark. Moving the robot rat about the
floor with the pen up or down at various locations will result in a pattern.
Write a C++ console program to control your robot rat.

Hints:
The robot rat can move in four directions: north, east, south, and west.

Implement the floor as a two dimensional array of one of the following types:
bool, int, or char. (Note: Depending on the type you choose for the array is a
design decision which will affect how you implement various other features of
your program.)

At minimum, provide a text-based command menu with the following or similar
command choices:

Table 3-3: Project Specification

1. Pen Up

2. Pen Down
3. Turn Right
4. Turn Left
5. Move Forward
6. Print Floor
7. Exit

Chapter 3: Project Walkthrough The Project Specification

C++ For Artists ©2003 Rick Miller — All Rights Reserved 47

Analyzing The Project Specification

Let us now step through the project approach strategy and analyze the robot rat project using each strategy area
as a guide starting with the project’s requirements.

Requirements

The robot rat project seems to be written clearly enough. It begins with a set of formally stated project objectives
and then states the task you are to execute, namely, produce a program that lets you control the robot rat. But just
what is a robot rat? That’s a fair question and is one that gets asked often when I assign this project. To understand the
answer requires you to think abstractly, and abstract thinking gives novice programmers the most trouble.

If I answered the question by saying, “Well, obviously, the robot rat does not really exist!”, I would be insulting
you. Why? Because if you are in fact wondering just what is the robot rat, then you are having difficulty abstracting
the concept of the robot rat. I would be doing you a better service by saying, “The robot rat exists, but only as a col-
lection of attributes that provide a limited description of the robot rat.” I would also add that by writing a program to
control the movement of the robot rat around the floor you are actually modeling the concept of a robot rat. And since
a model of something usually leaves out some level of detail, or contains some simplifying assumptions, I will also
tell you that the robot rat does not have legs, fur, or a cute little nose. I will talk more about the characteristics of a
robot rat when I discuss the design strategy area below.

When the menu choice 6 is selected to print the floor, it might look something
like this, assuming you chose ‘*’ to represent a marked area of the floor and ‘0’
to represent and unmarked area. You may use another pattern if desired.

.

In this example the robot rat has moved from the upper left hand corner of the
floor five spaces to the east with the pen down.

IST 156
Project 1

Robot Rat

Table 3-3: Project Specification

*****000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000

The Project Specification Chapter 3: Project Walkthrough

48 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Another valid requirements question might focus on exactly what is meant by a multifile project. Since I person-
ally feel it is extremely important for students to learn from the beginning how to create multifile projects I answer
this question by clarifying the need for this project to be split between three files. You can name them anything you
desire but I usually suggest the following file names: robot.h, robot.cpp, and main.cpp. The header file, robot.h, will
contain all the function prototypes and any constant and enumerated type declarations you require to implement your
project. The robot.cpp file will contain function definitions for functions declared in the robot.h file and any file scope
variables deemed necessary. Finally, the main.cpp file will contain only the main() function which I recommend be
kept as brief as possible.

What about error checking? Good question. In the real world, making sure an application behaves well under
extreme user conditions and recovers gracefully in the event of some catastrophe consumes the majority of the pro-
gramming effort. One area in particular that requires measures to ensure everything goes well is array processing. As
the robot rat is moved around the floor care must be taken to prevent the program from letting it go beyond the bounds
of the floor array.

Something else to consider is how to process a user’s command. Since the project only calls for simple iostream
input and output I recommend treating everything as a char on the input. Otherwise, I want you to concentrate on
learning how to use fundamental language features as listed in the objectives section, so I promise not to try to break
your program. For the purposes of this project it is safe to assume the user is perfect yet noting for the record that this
is absolutely not the case in the real world!

Summarizing the requirements thus far:
•You are to write a program that models the movement of a robot rat around a floor,
•The robot rat is an abstraction represented by a collection of attributes, (I will discuss these
attributes in the problem domain and design strategy areas)
•The floor is represented in the program as a two dimensional array of either bool, int, or char,
•Use just enough error checking, focusing on staying within the array boundaries,
•Assume the user is perfect,
•Read user command input as char,
•Split the project into three files.

Problem Domain

In this strategy area your objective is to learn as much as possible about what a robot rat is and how it works in
order to gain insight into how to proceed with the project. A good technique to use to help jump-start your creativity
is to go through the project specification and look for relevant nouns and verbs or verb phrases. A first pass at this
activity will yield two lists. The list of nouns will suggest possible attributes or data structures and the list of verbs
will suggest possible actions or functions required to implement the project.

Nouns & Verbs

A first pass at reviewing the project specification yields the following table of nouns and verbs.

Nouns Verbs

robot rat
floor
pen
pen position (up, down)
mark
program
pattern
direction (north, south,
east, west)
menu

move
set pen up
set pen down
mark
turn right
turn left
print floor
exit

Table 3-4: Robot Rat Nouns and Verbs

Chapter 3: Project Walkthrough The Project Specification

C++ For Artists ©2003 Rick Miller — All Rights Reserved 49

This is a good starting list, and now that you have it, what should you do with it? Good question. As mentioned
above, each noun is a possible candidate for either a variable, a constant, or some other data structure. Some nouns
will not be used. Others will have a direct relationship to some data structure you might use to implement the pro-
gram. Still, other nouns will look like they could be very useful but do not easily convert or map to a data structure.
This seems to be the problem in this case.

The list of verbs come mostly from the suggested menu. Verbs will normally map directly to functions you will
need to create as you write your program. The functions, which are derived from the verbs, will use the data structures
which are derived from the noun list. Note here that this use, or manipulation, of data structures by functions exempli-
fies the procedural programming paradigm.

With the list of nouns gleaned from this project specification it appears as though you will have to do a little more
analysis of the robot rat problem to see if you can come up with any more attribute candidates. I recommend taking a
closer look at the noun robot rat. Just what is a robot rat from the attribute perspective? Since pictures are always
helpful I suggest drawing a few. Here’s one for your consideration.

It looks like this picture suggests that a robot rat, as defined with the current list of nouns, consists of a pen which
has two possible positions and the rat’s direction. As described in the project specification and illustrated in figure 3-
2, the pen can be either up or down. Regarding the robot rat’s direction, it can face one of four ways: north, south,
east, or west. Can more attributes be derived? Perhaps another picture will yield more information. I recommend
drawing a picture of the floor and run through a few robot rat movement scenarios.

Figure 3-2: Robot Rat Viewed As Attributes

Figure 3-3: Robot Rat Floor Sketch

The Project Specification Chapter 3: Project Walkthrough

50 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Figure 3-3 offers a lot of information about the workings of a robot rat. The floor is represented by a collection of
cells arranged by rows and columns. As the robot rat is moved about the floor its current position on the floor can be
determined by keeping track of its current row and column. These two nouns are good candidates to add to the list of
relevant nouns and to the set of attributes that can be used to describe a robot rat. Before the robot rat can be moved its
current position on the floor must be determined and upon completion of each move its current position must be
updated.

We now have a better understanding of what attributes are required to represent a robot rat as illustrated in figure
3-4.

This seems to be a sufficient analysis of the problem at this point. You can return to this strategy area at any time
should further analysis be required. It is now time to take a look at what language features must be understood to
implement the procedure oriented solution.

Language Features

Let us pause a moment to review your progress. You have received a project specification. You clarified the
requirements and studied the problem to be solved. You have now arrived at the most critical, and difficult, stage in
the project approach strategy. You are at a point where you are to proceed with the design of the program but if you
are new to C++, you haven’t yet mastered, or perhaps even learned about, some of the language features required to
start the design process.

Without the aid of the project approach strategy most students come to a complete halt right about here. They get
overwhelmed because they do not yet know how to speak C++ effectively. It is a lot like being in a foreign country
and knowing what you want to say but not having the language skills necessary to say what you are thinking.

The language features strategy area serves an important function in the overall project approach strategy: to sus-
tain your sense of progress momentum. Take this time to list the language features you need to learn and check them
off as you learn them.

In this case, the project specification gives you a good start. Refer to the project objectives first and then to any
language features identified in the requirements and problem domain strategy areas. Generate a study checkoff list
and check each language feature off the list as you complete your study of each feature. The following checkoff list
could be used to study the language features for the robot rat project.

Figure 3-4: Complete Robot Rat Attributes

I move on a Cartesian plane!

Chapter 3: Project Walkthrough The Project Specification

C++ For Artists ©2003 Rick Miller — All Rights Reserved 51

When you have completed your study of the required language features you are ready to enter the design strategy
area.

Design (First Iteration)

The Design strategy area marks your entry into the development cycle. The objective here, in the first iteration, is
to map out a macro-level design architecture with which to begin building your application. Design to the point where
you can start coding. Since you will be applying the development cycle iteratively, as depicted in figure 3-1, you will
revisit this strategy area upon entry into each iteration of the development cycle.

A good place to start is to state or describe the flow of the program and the actions you want it to perform using
natural language statements referred to as pseudocode. Example 3.1 shows what the pseudocode might look like that
describes how the robot rat program should run.

Example 3-1 leaves out a lot of detail but that’s O.K., the details will be added as the design progresses. If you
compare example 3-1 with the robot rat project specification you will see most of its content derives from the menu
description. Three statements have been added to indicate the need to display the menu, get the user’s menu choice,

Checkoff Language Feature

Arrays, Multi-dimensional arrays: declaring, defining, initializing, processing

Program flow control structures: while, do/while, for, if/else, switch/case

Variables: declaring, defining, scoping, (limiting scope to file)

Constants: declaring, defining

Functions: declaring, defining, return types, argument passing,

Simple I/O streams: cout, cin

Enumerated types: declaring, defining, using

preprocessor directives: #ifndef, #define, #endif

Native language types: char, int, bool

Table 3-5: Language Feature Study Checkoff List For Robot Rat Project

display menu
get user’s menu choice
process user’s menu choice
if user selects pen up

change the rats pen position to up
if user selects pen down

change the rats pen position to down
if user selects turn right

change rats direction right
if user selects turn left

change rats direction left
if user selects move forward

move rat
if user selects print floor

print floor pattern
if user selects exit

exit the program

3.1 Robot Rat Pseudocode

The Project Specification Chapter 3: Project Walkthrough

52 ©2003 Rick Miller — All Rights Reserved C++ For Artists

and process the menu choice. Stating the solution to a programming problem in terms of the highest-level functional
module with the intention of refining the program by identifying and defining sub modules later in the design is a
classic example of top-down functional decomposition. Figure 3-5 illustrates functional decomposition.

Notice how the arrows in figure 3-5 point downward from high-level program modules to lower-level modules.
This tells you that the functionality of Main Menu depends on the functionality of modules Pen Down, Pen Up, Turn
Right, Turn Left, Move, and Exit. These submodules, in turn, may depend on further submodules for their functional-
ity. This is the dependency relation associated with the procedural programming paradigm.

At this point you are probably comfortable with “what” the robot rat program must do. It is now time to consider
“how” you will get the program to do what it is designed to do. For example, how will you physically organize your
program files? In what files will you locate various parts of your program? You don’t need to come up with all the
answers up front, rather, you only need to lay out a foundation to get you going.

Table 3-6 lists some design considerations and the resulting decisions. This first attempt at design should take
you to the point of being able to compile your project and test a particular feature. In any project it is a good idea to
start by implementing the user interface (UI), which, in this case, is a text-based menu as described in the project
specification and described in the pseudocode listing.

This is a good place to stop the first iteration of the design and move to the implementation phase of the develop-
ment cycle.

Design Consideration Design Decision

Multifile project Create a project in the Integrated Development Environment with the follow-
ing files: robot.h, robot.cpp, & main.cpp.

display menu Write a function called displayMenu() to display the menu on the screen

Table 3-6: First Iteration Feature Set

Figure 3-5: Functional Decomposition of Robot Rat Program

Chapter 3: Project Walkthrough The Project Specification

C++ For Artists ©2003 Rick Miller — All Rights Reserved 53

Implementation (First Iteration)

In the first iteration of the implementation phase you will execute the two design considerations listed in Table 3-
6. Figure 3-6 gives an overview of the process using Metrowerks CodeWarrior™.

Create project...

Select project type...

Create files...

Add main.cpp & robotrat.cpp
files to project...

Robot Rat project with main.cpp and robotrat.cpp added to
the sources group.

Figure 3-6: Overview of Project Creation Process

The Project Specification Chapter 3: Project Walkthrough

54 ©2003 Rick Miller — All Rights Reserved C++ For Artists

First, create the RobotRat project and select the desired project type. Since the project requires only simple ios-
tream input and output the project will be a standard C++ console application.

Once the project is created the three files, robotrat.h, robotrat.cpp, and main.cpp must be created and added to the
project. Creating the project and giving it a three-file structure lays a solid foundation for continued, smooth develop-
ment. Splitting the program into three files may seem at first to make things unnecessarily complicated, however, it is
much easier to deal with this small, increased level of organizational complexity at the start of a project than to try
and split a project into multiple files later in the development cycle.

What goes in each file at this early stage? Since you are concerned with implementing the menu you need only
concentrate on declaring the displayMenu() function, defining the displayMenu() function, and then using or calling
the displayMenu() function somewhere in the program. Put the function declaration in the robotrat.h file. The code
will look like figure 3-7.

Notice the preprocessor directives. Don’t forget to use them in your header files to prevent multiple inclusion.
With the robotrat.h file complete you can now create the robotrat.cpp file. The purpose of this file is to define or

implement the displayMenu() function declared in the robotrat.h file. The code for robotrat.cpp will look like figure
3-8.

As shown in figure 3-8, the displayMenu() function simply writes some menu choices to the console. That’s all it
does. Hence its name...displayMenu(). This is an example of a highly cohesive function. Cohesion and coupling is
covered in detail later in the book, but for now, keep in mind that it is good design practice to keep the functionality of
program modules focused to what it is they are supposed to do. In this case, displayMenu(), as its name implies, will
display the menu on the screen. When the time comes to get the user’s menu choice and process the user’s menu
choice you will need to create functions for those purposes.

Now that the displayMenu() function has been both declared and defined it is time to use it someplace. That place
is the main() function. The main() function is located in the main.cpp file as shown in figure 3-9.

Figure 3-7: robotrat.h

Preprocessor Directives

Function Declaration

Use preprocessor directive #include
to include robotrat.h and iostream.h

Add meaning to the
displayMenu() function

Figure 3-8: robotrat.cpp

Chapter 3: Project Walkthrough The Project Specification

C++ For Artists ©2003 Rick Miller — All Rights Reserved 55

Every C++ program needs a main() function. The main() function represents the start of the first instruction of
the robot rat program in memory. It is now time to test robot rat.

Testing (First Iteration)

If, and there’s always an if in programming, everything goes well the work completed on robot rat so far should
compile and display the menu. Even though this sounds like small beans, getting the program to this point has taken
considerable thought and effort.

The objective of testing the displayMenu() function is to see if the menu choices do get written to the screen as
expected. Perhaps the most important reason for programming and testing little pieces of the program at a time is that
it allows you to catch errors early in the development cycle. These same errors, if left to be discovered later, will be a
whole lot harder to correct.

Compiling and running the robot rat project gives the result shown in figure 3-10.

Integration (First Iteration)

Everything looks as if it runs fine. The menu displays on the screen and the program exits. That’s all it does and
that is all it is supposed to do. There is not much to integrate at this point since you started the project off on a good
footing by splitting it into separate files. The displayMenu() function is located in the main(). It is O. K. to leave it
there for now, and it may stay there for one or two more iterations of the development cycle, or at least until it makes
sense to move it into another function as the program grows.

At this point you have come to the end of the first iteration of the development cycle. It is now time to return to
the design phase and start the second iteration.

Since you use the displayMenu() function in
this file you must also include robotrat.h

Call displayMenu() in the body of the
main() function.

Figure 3-9: main.cpp

Figure 3-10: Robot Rat Menu

The Project Specification Chapter 3: Project Walkthrough

56 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Design (Second Iteration)

You have completed the first iteration. You have made great progress on robot rat. The project is nicely organized
into three files, the project compiles flawlessly, and the displayMenu() function writes the menu to the screen as
expected. To proceed, you must now select one, or more, program features to implement that sustain your develop-
ment effort momentum

Since you have just completed the implementation and testing of the menu feature of robot rat it makes since to
proceed with adding the capability to accept and process user menu choices. Table 3-7 lists the features to design and
implement.

This iteration of the development cycle is a critical one. Here you are attempting to implement an extremely crit-
ical piece of the robot rat program without knowing much, or anything at all, about how the subfunctions will ulti-
mately be implemented. Specifically, you are going to implement the menu processing capability of the program that
will let a user enter a menu choice for further processing, but you haven’t yet written the code to set the pen up or
down, or to turn the robot rat left or right. Luckily, there’s an old programmer’s trick you can use to help in just this
situation. It is called function stubbing.

Function Stubbing

Function stubbing is the technique of writing functions with little or no substance and is an invaluable program
testing tool. If a stubbed function contains any code at all it is usually just a simple message written to the screen indi-
cating to the programmer that the function was called. This lets the programmer know that everything in the program
worked fine up to the point of the function call.

Other Considerations

When you tested robot rat at the end of the first iteration the program exited immediately after calling the dis-
playMenu() function. This was normal behavior for the program at that time. But now that you are going to imple-
ment the menu processing feature you will need to keep the program running until the user selects exit from the robot
rat menu. It is a good time to use pseudocode again to generally describe the behavior of the program to help guide
you in your design. Example 3.2 gives the pseudocode for how processing should occur.

Design Consideration Design Decision

Accept user input for menu selection Read user input from console using iostreams. Store user’s
input in a variable for later processing. Read the input as a
char.

Process user input; determine which menu choice selected Compare input value against a set of constant values repre-
senting menu choices. Use switch/case statement to imple-
ment the comparison. Use function stubbing for testing
purposes to defer detailed functional development.

processMenuChoice() will be the name of the function used
to process the user’s menu choice.

Stub the following functions:
setPenUp(), setPenDown(), turnRight(), turnLeft(), move(),
printFloor()

Implement the following functions:
doDefault(), programExit()

Table 3-7: Second Iteration Feature Set

Chapter 3: Project Walkthrough The Project Specification

C++ For Artists ©2003 Rick Miller — All Rights Reserved 57

Armed with a small set of features to implement and an idea of how to implement them you are now ready to
move into the second iteration of the implementation phase.

Implementation (Second Iteration)

The best place to start is in the robotrat.h header file. Edit the file and add the declarations for all the new func-
tions you will need for this iteration. Figure 3-11 shows the robotrat.h file containing the new function declarations.

Next, edit the robotrat.cpp file and implement all the new functions you have just declared in the robotrat.h file.
Start by implementing the stubbed functions first. Example 3.3 gives you the source code for robotrat.cpp with the
functions implemented.

#include "robotrat.h"
#include <iostream.h>
#include <stdlib.h> //need stdlib.h for exit() function

void displayMenu(){

cout<<" 1. Pen Up"<<endl;
cout<<" 2. Pen Down"<<endl;
cout<<" 3. Turn Right"<<endl;
cout<<" 4. Turn Left"<<endl;
cout<<" 5. Move"<<endl;
cout<<" 6. Print Floor"<<endl;
cout<<" 7. Exit"<<endl;

}

void setPenUp(){
cout<<"The pen is up!"<<endl;

}

repeat
display menu
process user menu choice
execute user menu choice

until user selects exit

3.2 Pseudocode For Processing
User Menu Choices

Add function declarations for all
functions needed in second itera-
tion.

Figure 3-11: robotrat.h

3.3 robotrat.cpp

The Project Specification Chapter 3: Project Walkthrough

58 ©2003 Rick Miller — All Rights Reserved C++ For Artists

void setPenDown(){
cout<<"The pen is down!"<<endl;

}

void turnRight(){
cout<<"Robot Rat turned right!"<<endl;

}

void turnLeft(){
cout<<"Robot Rat turned left!"<<endl;

}

void move(){
cout<<"Robot Rat moved!"<<endl;

}

void printFloor(){
cout<<"Floor printed!"<<endl;

}

void programExit(){
exit(0);

}

void doDefault(){
cout<<"Please Enter A Valid Menu Choice: "<<endl;

}

void processMenuChoice(){

 char input = '0';
 cout<<"Please Enter Menu Choice: ";
 cin>>input;

 switch(input){
 case '1': setPenUp();
 break;
 case '2': setPenDown();
 break;
 case '3': turnRight();
 break;
 case '4': turnLeft();
 break;
 case '5': move();
 break;
 case '6': printFloor();
 break;
 case '7': programExit();
 default : doDefault();
 } //end switch case
}//end processMenuChocie()

Figure 3-12 shows the contents of the main.cpp file. The main() function needs to be changed slightly to imple-
ment the program operation described in the pseudocode of example 3.2.

3.3 robotrat.cpp continued

Chapter 3: Project Walkthrough The Project Specification

C++ For Artists ©2003 Rick Miller — All Rights Reserved 59

Once all the additions are complete it is time to move on to testing.

Testing (Second Iteration)

Figure 3-13 shows the results of running robot rat and selecting menu
choices 1 through 7. Each menu choice results in the execution of the cor-
responding function stub as evidenced by the message printed to the
screen. The only thing left to be tested is the default case. In other words,
what happens when a user enters a choice that’s not on the menu? The
default case in the switch statement along with the doDefault() function
will handle bad user menu choices. Figure 3-14 shows the results of that
test.

Figure 3-13: Test Results

One way to loop forever...

Figure 3-12: main.cpp

Figure 3-14: Default Case Test

8 not on menu!

A not on menu!

7 works fine...

The Project Specification Chapter 3: Project Walkthrough

60 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Integration (Second Iteration)

Again, there’s nothing to explicitly integrate. Actually, the act of integration has been taking place simulta-
neously with implementation. The program is well structured, making the addition of functionality easier than if the
structure, or framework, of the program had been poorly designed.

Since robot rat tests are satisfactory it is time to return to the design phase and start the third iteration of the
development cycle.

Design (Third Iteration)

With the menu processing functionality in place it is time to start adding meat to the program by implementing
some of the data structures the robot rat will need to operate. The floor seems like a good place to focus development
effort. Table 3-8 lists the features to be implemented during this iteration.

The floor is a critical data structure in the robot rat program. Design decisions regarding the floor will impact
future development. How do you know if the design decision you make regarding the floor is good or bad? Good
question. Just like real life, you will not know if you have made a good or bad design decision until you progress a lit-
tle further with development. If you have to violate your program design architecture to fit something in then the
design is less than optimal. Good design feels good, works good, and is easy to change without breaking things unex-
pectedly.

Implementation (Third Iteration)

Proceed with the first three design decisions as described in table 3-8. The fourth design consideration can be
evaluated after these are completed.

The first thing to do is to declare the floor array. Since it is going to have file scope you can declare it at the top of
the file right above the displayMenu() function. Figure 3-15 shows the robotrat.cpp file with the necessary code
added.

Design Consideration Design Decision

The floor.
What data type to use?
How should each element be initialized?
What scope should the floor array have?

The floor will be a two dimensional array of bool-
ean. The floor array will have all elements initial-
ized to false at the start of the program.
The floor array will have static file scope in ro-
botrat.cpp so that it is visible to all functions need-
ing access to it.

Ensure variable names declared for use in robot rat
don’t conflict with variables names declared in the
std namespace.

Put all variable declarations in a namespace called
robotrat.

Print the floor pattern Implement the printFloor() function to print the
floor pattern when the user selects the Print Floor
menu choice.

When the robot rat moves through a floor position
with the pen down, how will the mark be recorded
and preserved for future moves and floor printings?

If the robot rat’s movement takes it through an ar-
ray element and the pen is down, the boolean value
of the array element will be changed to true.

Table 3-8: Third Iteration Feature Set

Chapter 3: Project Walkthrough The Project Specification

C++ For Artists ©2003 Rick Miller — All Rights Reserved 61

Figure 3-15 shows how C-style comments can be used to provide
section headers in source code. The floor array is declared inside of
the robotrat namespace. Two constants are used in the array declara-
tion: ROWS and COLS. The names ROWS and COLS are good
choices for these two constants since they lend another degree of
abstraction to the robotrat solution. Both these constants will be used
again in the printFloor(), and move() functions. Figure 3-16 shows the
ROWS and COLS constants being declared in the robotrat.h file.

With the floor array work completed you can turn your attention
to the business of printing the floor array to the screen. The print-
Floor() function is currently a stubbed function, which is a good thing
since all you need do is add the code that will give printFloor() its
intended functionality.

There are two things to consider when implementing printFloor().
First, how to access the floor array when its declaration appears in the
robotrat namespace, and second, how to represent a marked or
unmarked floor square when the floor array is printed to the screen.

The first consideration is resolved with the use of the scope reso-
lution operator. The second consideration serves as an example of
how an earlier design decision can affect later design decisions. Fig-
ure 3-17 shows the source code for the printFloor() function.

Comments used to introduce variable
declaration section makes code easier
to read and understand.

Namespace robotrat used to prevent
identifier name conflicts

floor array declared and initialized in
same statement.

Constants ROWS and COLS
declared in robotrat.h file. Used to
avoid “magic numbers” in pro-
grams.

Figure 3-15: robotrat.cpp with Floor Array Declaration

Figure 3-16: robotrat.h with ROWS & COLS
Constants Declared

The Project Specification Chapter 3: Project Walkthrough

62 ©2003 Rick Miller — All Rights Reserved C++ For Artists

The printFloor() function is implemented using two for loops. The outer loop processes the ROWS of the floor
array and the inner loop processes the COLS of the floor array. The meat of the function is the if statement that tests
each element of the array. If the test is true, that is, if the boolean value located in that particular array element has
been set to true by the robot rat, then it will be rendered on the screen as marked. In this case, a marked element is
rendered as the string of characters “[-]”. If an array element is not marked it will evaluate to false. An unmarked ele-
ment is rendered on the screen as the string of characters “[]”.

With the work completed on the printFloor() function it is time to move to the testing phase.

Testing (Third Iteration)

Figure 3-18 shows the results of the robot rat program being run and the Print Floor menu choice being selected.

Constants ROWS and COLS
used in the for statements

Scope resolution operator
used to access floor inside
the robotrat namespace.

Figure 3-17: The printFloor() Function

Figure 3-18: Robot Rat printFloor() Function Test

Chapter 3: Project Walkthrough The Project Specification

C++ For Artists ©2003 Rick Miller — All Rights Reserved 63

It appears everything works fine, at least when the array elements are false. It would be a good idea to write some
code that sets a few of the array elements to true just to make sure everything is working properly. Figure 3-19 shows
a temporary function called setTestPattern() being declared and defined within robotrat.cpp.

The setTestPattern() function can then be used in the printFloor() function to set the test pattern before printing.
Figure 3-20 shows the setTestPattern() function being called by printFloor().

Figure 3-21 shows the results of the next program test. The pattern prints as expected. With testing complete the
temporary code can be completely removed from the robot rat project or commented out. If you are certain you will
not be needing the test code in the future, removal is best as it leaves your source code less cluttered.

setTestPattern() declaration

Various floor array elements set to
true in the setTestPattern() function

Figure 3-19: setTestPattern() Function

setTestPattern() called before printing the
floor pattern.

Figure 3-20: setTestPattern() Function Being Used for Test-
ing in the printFloor() Function.

The Project Specification Chapter 3: Project Walkthrough

64 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Integration (Third Iteration)

Integration, once again, took place in concert with implementation, the result being nothing to explicitly integrate
into the robot rat program. This marks the completion of the third iteration of the development cycle.

Design (Fourth Iteration)

How next to grow the design? You have a floor, and you can print the floor and any patterns it may contain. It now
appears the next step is to design the move function. But, before you can move the robot rat you must know what
direction it is facing. Also, before the floor can be marked the robot rat’s pen position must be determined. Setting the
robot rat’s direction and pen position are two features that must be implemented before the move function can be
implemented. Table 3-9 lists the design considerations and design decisions for the fourth iteration.

Design Considerations Design Decisions

Setting and keeping track of the robot rat’s direction Use an enumerated type called Direction with four possible
values, NORTH, SOUTH, EAST, and WEST.
Declare a variable of type Direction called rats_direction to
store the robot rat’s current direction.
The rats_direction variable will be set to a new value using
either the turnRight() or turnLeft() functions. Its new value
will depend on its current value.
rats_direction will have an initial value of EAST.

Table 3-9: Fourth Iteration Design Consideration and Design Decisions

Figure 3-21: Robot Rat printFloor() Test with Test Pattern

Chapter 3: Project Walkthrough The Project Specification

C++ For Artists ©2003 Rick Miller — All Rights Reserved 65

Each of these design considerations deal with issues relating to two important robot rat attributes, namely, direc-
tion and pen position. As described in table 3-9, the variable rats_direction will only be allowed to have four possible
values, NORTH, SOUTH, EAST, or WEST, and will be initialized to EAST. Said another way, the rats_direction vari-
able can have four possible states and its initial state will be EAST. A state transition diagram can be used to visualize
each state and show how the rats_direction variable will transition from state to state. Figure 3-22 shows the state
transition diagram for rats_direction.

When the robot rat program starts, rats_direction will be initialized to EAST. Each of four possible states are
indicated by the large circles. To change rats_position state something must happen. Either the turnRight() or turn-
Left() function must be called. To change the rats_direction to SOUTH, from the EAST state, the turnRight() function
is called. Note the direction of the arrows pointing from one state to the next. To go back to the EAST state from the
SOUTH state the turnLeft() function must be called.

The state transition diagram for pen_position is shown in figure 3-23. It is similar to rats_direction state transition
diagram with the exception being a transition can occur that results in no change of state. When the robot rat program
starts the pen_position variable is initialized to the UP state. It can be changed to the DOWN state by a call to the set-
PenDown() function. If, however, it is in the UP state and the setPenUp() function is called, its value is reset to UP, in
which case no change of state occurs.

This is enough designing for now. It is time to implement these two state transition diagrams.

Setting and keeping track of the robot rat’s pen position. Use an enumerated type called PenPosition with two possi-
ble values, UP, and DOWN.
Declare a variable of type PenPosition called pen_position
to store the robot rat’s current pen position.
The pen_position variable will be set to a new value using
the setPenUp() or setPenDown() functions. Its new value
will be set regardless of its current value.
pen_position will have an initial value of UP.

Design Considerations Design Decisions

Table 3-9: Fourth Iteration Design Consideration and Design Decisions

Figure 3-22: State Transition Diagram for rats_direction Variable.

The Project Specification Chapter 3: Project Walkthrough

66 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Implementation (Fourth Iteration)

Begin by declaring the enumerated types Direction and Pen-
Position in the robotrat.h file. Figure 3-24 shows the robotrat.h
file after the addition.

Next, edit the robotrat.cpp file and declare and initialize the
variables pen_position and rats_position in the robotrat
namespace. Figure 3-25 shows the source code for robotrat.cpp
after the modification.

Once the variables are declared and initialized the functions setPenUp(), setPenDown(), turnRight(), and turn-
Left() can be edited to implement their intended functionality. The first two functions, setPenUp() and setPenDown(),
are the easiest. Simply replace the stub message statement with an assignment. Figure 3-26 shows both of these func-
tions after modification.

Each of the functions turnRight() and turnLeft() can be implemented with a switch statement. Test the value of
pen_position and compare it to the valid states as defined in the enumerated type Direction and set the new value
according to the rats_direction state transition diagram. Figure 3-27 shows the turnRight() function and figure 3-28
shows the turnLeft() function.

Once all function modifications are complete you can move to the testing phase.

Figure 3-23: State Transition Diagram for pen_position

Figure 3-24: Direction and PenPosition Enum Types
Added to robotrat.h

Figure 3-25: Declaration of pen_position & rats_position

Chapter 3: Project Walkthrough The Project Specification

C++ For Artists ©2003 Rick Miller — All Rights Reserved 67

Figure 3-26: setPenUp() & setPenDown() Functions

Figure 3-27: turnRight() Function

Figure 3-28: turnLeft() Function

The Project Specification Chapter 3: Project Walkthrough

68 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Testing (Fourth Iteration)

Well...you could test the changes you just made but unless you add a few lines of code for testing purposes you
will not see any results of changing the robot rat’s pen position or its direction. Using the turnLeft() function as an
example, you can add statements to each case to print a message when robot rat’s direction has changed. Figure 3-29
shows the additions to the turnLeft() function.

Figure 3-30 shows the results of testing the turnLeft() function. You
may want to add similar test statements to turnRight(), setPenUp(), and set-
PenDown() and test everything for proper operation. Again, when you have
completed all testing for this iteration you can remove the test statements
from your source code.

Integration (Fourth Iteration)

No integration is necessary for this iteration. Time to move on to the
fifth iteration of the development cycle.

Design (Fifth Iteration)

The robot rat project is nearly complete save for the move() function.
Looking back at the initial analysis of robot rat attributes you will discover
two that have yet to me implemented. They are current row and current col-
umn. These should complete the attribute set required to define the state of
the robot rat at any time during the execution of the program. Using all
attributes together you can determine the robot rat’s position by row and col-
umn, what direction it is facing, and its pen position. Yet there’s still some
work to do to determine how to implement the move() function.

How should a move be executed? How should the robot rat respond
when instructed to move past the boundaries of the floor? These are great
questions that deal with the robot rat’s behavior. The move() function is
where robot rat’s behavior will be defined.

Table 3-10 list the design considerations and decisions for this iteration
of the development cycle.

Send brief text messages to the
standard output

Figure 3-29: turnLeft() Function with cout Statements

Figure 3-30: turnLeft() Test

Chapter 3: Project Walkthrough The Project Specification

C++ For Artists ©2003 Rick Miller — All Rights Reserved 69

The move function is fairly complex. In it you must check the state of the robot rat to determine what direction it
is facing and its pen position. You must determine how many spaces the user wants to move and ensure the move
doesn’t go outside the array boundaries. A good idea at this point would be to develop a pseudocode listing of the
move function. Example 3.4 provides the pseudocode for the framework of the move() function.

According to the pseudocode, the move() function will first get the number of spaces to move from the user. It
will then perform a move according to the position of the robot rat’s pen. If the pen is up marking the floor is not
required. The move then becomes a matter of setting the value of current_row or current_col to the new position.
Error checking must be employed to make sure the move stays within the floor array boundaries.

If the robot rat’s pen position is down the floor must be marked, meaning each floor array cell affected by the
move must be set to true.

Design Considerations Design Decisions

How should the move() function be structured
to determine the robot rat’s direction and pen
position.

Use nested switch statements to determine the state of the pen_position and
rats_direction.

How will a command to move past floor
boundaries be handled?

Move up to the floor boundary and then stop to wait for another move com-
mand.

How will floor array cells be marked during a
move?

If the pen is down, set the floor array element at the indicated position to
true. If the pen is up don’t worry about marking the floor.

What does it mean to move north, south, east,
or west in terms of rows and columns?

North: row position decreases, col stays the same. (row--, col)
South: row position increases, col stays the same. (row++, col)
East: row position stays the same, col increases. (row, col++)
West: row position stays the same, col decreases. (row, col--)

Table 3-10: Design Considerations and Decisions: Fifth Iteration

Get spaces to move from user
determine position of pen
if pen_position is up
determine direction robot rat is facing
if rats_direction is NORTH
 execute movement north (adjust current_row, no mark)
else if rats_direction is SOUTH
 execute movement south (adjust current_row, no mark)
 else if rats_direction is EAST
 execute movement east (adjust current_col, no mark)
 else if rats_direction is WEST
 execute movement west (adjust current_col, no mark)
if pen_position is down
determine direction robot rat is facing
if rats_direction is NORTH
execute movement north (adjust current_row, mark cells)
else if rats_direction is SOUTH
 execute movement south (adjust current_row, mark cells)
 else if rats_direction is EAST
 execute movement east (adjust current_col, mark cells)
 else if rats_direction is WEST
 execute movement west (adjust current_col, mark cells)

3.4 move() function pseudocode

The Project Specification Chapter 3: Project Walkthrough

70 ©2003 Rick Miller — All Rights Reserved C++ For Artists

The most complex part of the move() function will no doubt be the error checking code required to make sure the
moves stay within the floor boundaries. Again, pseudocode will be help you in your design. Example 3.5 gives the
pseudocode for the movement in the NORTH direction with the pen in the UP position.

Movement in the NORTH direction is with the pen DOWN will be more involved because each floor array ele-
ment along the path of movement must be set to true. Example 3-6 gives the pseudocode for movement in the
NORTH direction with the pen in the DOWN position.

After completing your analysis of the move() function you are ready to move on to the implementation phase.

Implementation (Fifth Iteration)

Since the move() function is already stubbed all you need do is remove the stubbing message and replace it with
the source code that will give the move() function its required functionality.

First order of business is to get the number of spaces from the user. When the user selects menu item 5, the
move() function will be called. That would be a good place to ask for the number of spaces the user wants the robot
rat to move. The user’s entry will need to be stored for further processing but will not be needed outside of the move()
function. A local variable named spaces will do the trick. Once the user enters the spaces the move() function can do
its job. Figure 3-31 shows the code for the top half of the move() function. This part of the source code includes the
declaration of the spaces variable, the request for the user to enter the number of spaces to move and the assignment
of that value to the spaces variable using the cin object, and the switch statements that determine the position of the
pen and the robot rat’s direction.

The complete source code for the rest of the move() function is listed at the end of the chapter.

Testing (Fifth Iteration)

When you have completed implementing the move() function you need to test it thoroughly. Move with the pen
up and down in all directions. You must be absolutely sure that movement in any direction stays within the floor array
boundaries. Figure 3-32 shows the robot rat program after a few movements have been executed.

if current_row minus spaces to move is greater than zero
 set current_row to current_row minus spaces
else
 set current_row to zero

3.5 NORTH move pseudocode
pen in the UP position

calculate number of spaces left to move north from current row
if spaces left to move is less than or equal to zero

set spaces to current_row
while there are spaces left to move

set floor[current_row][current_col] to true
decrement current_row by one
decrement spaces by one

3.6 NORTH move pseudocode
pen in DOWN position

Chapter 3: Project Walkthrough The Project Specification

C++ For Artists ©2003 Rick Miller — All Rights Reserved 71

Integration (Fifth Iteration)

Integration has again taken place along with implementation.

Figure 3-31: move() Function, Top Half

Declare local variable spaces

Prompt user

Read value from keyboard

Determine pen position

Determine direction

Figure 3-32: move() Function Test

Wrapping Up The Project Chapter 3: Project Walkthrough

72 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Wrapping Up The Project

The implementation and testing of the move() function marks the beginning of the end of the robot rat project.
You must now give the complete program a thorough test of all functionality. Test until you are absolutely sure every-
thing runs according to specification and that it offers no rude surprises to a user. Table 3-11 lists a few things you will
want to double-check before handing in your project.

Complete Robot Rat Source Code Listing

/***
File: robotrat.h
Student Name:
Project:
Class:

...and any additional header info

**/
#ifndef ROBOT_RAT_H
#define ROBOT_RAT_H

const int ROWS = 20;
const int COLS = 20;

enum Direction {NORTH, SOUTH, EAST, WEST};
enum PenPosition {UP, DOWN};

void displayMenu();
void processMenuChoice();
void setPenUp();
void setPenDown();
void turnRight();
void turnLeft();
void move();
void printFloor();
void programExit();
void doDefault();

#endif

Double-Check... To ensure...

Source code formatting ...it is neat, logically aligned, and indented.

Comments ...they are not overdone. Remember, if you used good names for functions, vari-
ables, and constants, your code will be largely self-commenting.

File Comment Header ...it is at the top of every source file and lists your name and the name of the
project. Check with your instructor for additional information required to be
placed in the file comment header.

When printing source code on paper ...that it fits on the page. If long lines wrap to the next line adjust the font, print in
the landscape mode, or split the line into smaller pieces in the source file.

Table 3-11: Things To Double-Check Before Handing In Project

3.7 Complete Robot Rat
Source Code Listing

Chapter 3: Project Walkthrough Complete Robot Rat Source Code Listing

C++ For Artists ©2003 Rick Miller — All Rights Reserved 73

/***
File: robotrat.cpp
Student Name:
Project:
Class:

...and any additional header info

**/

#include "robotrat.h"
#include <iostream.h>
#include <stdlib.h>

/**
 File Scope Variable Declarations
**/
namespace robotrat{
static bool floor[ROWS][COLS] = {};
static PenPosition pen_position = UP;
static Direction rats_direction = EAST;
static int current_row = 0;
static int current_col = 0;
}

/**
 Function Definitions
***/

void displayMenu(){
cout<<"1. Pen Up"<<endl;
cout<<"2. Pen Down"<<endl;
cout<<"3. Turn Right"<<endl;
cout<<"4. Turn Left"<<endl;
cout<<"5. Move"<<endl;
cout<<"6. Print Floor"<<endl;
cout<<"7. Exit"<<endl;

}

void setPenUp(){

robotrat::pen_position = UP;
}

void setPenDown(){
robotrat::pen_position = DOWN;

}

void turnRight(){
switch(robotrat::rats_direction){
 case NORTH: robotrat::rats_direction = EAST;
 break;
 case EAST: robotrat::rats_direction = SOUTH;
 break;
 case SOUTH: robotrat::rats_direction = WEST;
 break;
 case WEST: robotrat::rats_direction = NORTH;
 break;
 default: robotrat::rats_direction = EAST;
}

}

void turnLeft(){
switch(robotrat::rats_direction){
 case NORTH: robotrat::rats_direction = WEST;
 break;
 case EAST: robotrat::rats_direction = NORTH;
 break;
 case SOUTH: robotrat::rats_direction = EAST;
 break;
 case WEST: robotrat::rats_direction = SOUTH;
 break;
 default: robotrat::rats_direction = EAST;
}

}

Complete Robot Rat Source Code Listing Chapter 3: Project Walkthrough

74 ©2003 Rick Miller — All Rights Reserved C++ For Artists

void move(){
int spaces = 0;
cout<<"How many spaces?: ";
cin>>spaces;

 switch(robotrat::pen_position){
 case UP: switch(robotrat::rats_direction){
 case NORTH: if(robotrat::current_row - spaces)
 robotrat::current_row -= spaces;
 else robotrat::current_row = 0;
 break;

 case SOUTH: if((robotrat::current_row + spaces) < ROWS)
 robotrat::current_row += spaces;
 else robotrat::current_row = (ROWS-1);
 break;

 case EAST: if((robotrat::current_col + spaces) < COLS)
 robotrat::current_col += spaces;
 else robotrat::current_col = (COLS-1);
 break;

 case WEST: if(robotrat::current_col - spaces)
 robotrat::current_col -= spaces;
 else robotrat::current_col = 0;
 break;

 default: ;
 }
 break;

 case DOWN: switch(robotrat::rats_direction){

 case NORTH: if((robotrat::current_row - spaces)<=0)
 spaces = robotrat::current_row;

 while(spaces){
 robotrat::floor[robotrat::current_row--][robotrat::current_col] = true;
 --spaces;
 }

 break;

 case SOUTH: if((robotrat::current_row + spaces) > ROWS)
 spaces = ((ROWS-1) - robotrat::current_row);

 while(spaces){
 robotrat::floor[robotrat::current_row++][robotrat::current_col] = true;
 --spaces;
 }

 break;

 case EAST: if((robotrat::current_col + spaces) >= COLS)
 spaces = ((COLS-1) - robotrat::current_col);

 while(spaces){
 robotrat::floor[robotrat::current_row][robotrat::current_col++] = true;
 --spaces;
 }

 break;

 case WEST: if(robotrat::current_col - spaces<=0)
 spaces = robotrat::current_col;

 while(spaces){
 robotrat::floor[robotrat::current_row][robotrat::current_col--] = true;
 --spaces;

 }

 break;

 default: ;
 }
 break;
 default: ;
 }
}

Chapter 3: Project Walkthrough Complete Robot Rat Source Code Listing

C++ For Artists ©2003 Rick Miller — All Rights Reserved 75

void printFloor(){
 for(int i=0; i<ROWS; i++){

for(int j=0; j<COLS; j++){
 if(robotrat::floor[i][j])

 cout<<"[-]";
 else cout<<"[]";

}
 cout<<endl;
 }

}

void programExit(){
exit(0);

}

void doDefault(){
cout<<"Please Enter A Valid Menu Choice: "<<endl;

}

void processMenuChoice(){

 char input = '0';

 cout<<"Please Enter Menu Choice: ";

 cin>>input;

 switch(input){

 case '1': setPenUp();
 break;

 case '2': setPenDown();
 break;

 case '3': turnRight();
 break;

 case '4': turnLeft();
 break;

 case '5': move();
 break;

 case '6': printFloor();
 break;

 case '7': programExit();

 default : doDefault();
 }
}

/***
File: main.cpp
Student Name:
Project:
Class:

...and any additional header info
**/

#include <iostream>
#include "robotrat.h"

using namespace std;

int main()
{

for(;;){
displayMenu();
processMenuChoice();
}
return 0;

}

Summary Chapter 3: Project Walkthrough

76 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Summary

Use the project approach strategy to help you sustain development momentum. Apply the development cycle iter-
atively. Don’t try to program everything at once. Break the problem into small pieces, solve the individual pieces, and
combine them into the total solution. Test, test, test!

Skill Building Exercises

1. Create Robot Rat Project: Using the source code from the robot rat project in this chapter, create a robot rat
project in your IDE, enter the source code, then compile and run the project.

2. Obtain Project Specifications: Obtain the project specifications or handouts for all the projects required for this
class. Apply the first phase of the project approach strategy to each one to ensure you understand the project
requirements.

Suggested Projects

1. Research: Research other software development methodologies. Compare them with the approach suggested in
this chapter. What are their similarities? What are their major differences?

Self Test Questions

1. What is the purpose of the project approach strategy?

2. What is the purpose of the development cycle?

3. Describe how to apply the project approach strategy and development cycle in an iterative fashion.

4. Why is it a good idea to do just enough design to get started coding? Does this approach have practical application
in the real programming world? What future problems regarding application design does using this approach help
to avoid?

5. How is function stubbing used in the robot rat project?

6. Why is component testing important?

7. Why is frequent component integration important?

8. What is the purpose of pseudocode?

9. What is the purpose of a state transition diagram?

10. What C++ flow control structure can be used to implement the functionality described by a state transition dia-
gram?

Chapter 3: Project Walkthrough References

C++ For Artists ©2003 Rick Miller — All Rights Reserved 77

References

Metrowerks CodeWarrior Reference Documentation for Microsoft Windows 95/98/NT and Apple Macintosh.

Notes

Notes Chapter 3: Project Walkthrough

78 ©2003 Rick Miller — All Rights Reserved C++ For Artists

