
C++ For Artists ©2003 Rick Miller — All Rights Reserved 165

7 Pointers and References

Learning Objectives
•State the purpose and use of pointers and references in C++

•State the definition of an object

•Explain how to determine an object’s address using the & operator

•Explain how to declare pointers using the pointer declarator *

•Explain how to dereference a pointer using the * operator

•Describe the concept of dynamic memory allocation

•Explain how to dynamically create objects using the new operator

•Explain how to destroy objects using the delete operator

•Explain how to declare references using the reference declarator &

•Explain why references must be defined at the point of declaration

•Describe the benefits of using references vs. pointers

•Utilize pointers and references to create powerful C++ programs

Chapter 7

Pointers and References

Balboa Hall

Introduction Chapter 7: Pointers and References

166 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Introduction

Mastering the concept and use of pointers is crucial to understanding just about all other aspects of the C++ lan-
guage. An understanding of pointers is required to really understand what’s going on in arrays, dynamic object cre-
ation, function argument passing by reference, iterators, and a whole host of other language topics.

Pointers are easy to learn but can be confusing at first. I think the reason for this is that C++ uses the same opera-
tor, like the asterisk * for instance, for several purposes. The purpose you’re most familiar with at this point is multi-
plication. But the asterisk is also used to declare and dereference pointer variables. The concept of using an operator
for more than one purpose in C++ is referred to as operator overloading and is done to keep the language small and
manageable. The compiler knows how to deal with overloaded operators based upon what context the operator
appears. This is convenient for the compiler and the compiler writer but confuses the novice to no end. You’ll learn
more about overloaded operators in chapter 14.

The question students ask when they first encounter pointers is, “OK...but what are they good for?” That’s a fair
question. Pointers let you write leaner, meaner code. Pointers, combined with dynamic object instantiation, (creating
objects at runtime using the new operator) let you conserve memory space, creating objects only when needed in a
program. Pointers let you do things faster. An example of this can be found in sorting operations where the objects
being compared are large. The objects themselves can remain in their original memory locations and only their
addresses need be manipulated during the sort operation. Pointers let you pass the address of a large object to a func-
tion for processing without moving the object itself. Additionally, an understanding of pointers is key to understand-
ing more complex data structures like linked lists and trees.

The purpose of this chapter, then, is to give you a solid understanding of pointers, what they are, how to declare
them, how to dereference them, how to dynamically create objects in memory using the new and delete operators, and
how to determine the address of objects in memory. I do not cover all the different ways to use pointers in this chapter
because doing so would require discussing aspects of the language to which you have not yet been exposed. An exam-
ple of this would be the use of pointers with functions which is left to chapter 9.

But First, A Short Story

Perplexed One sat listening to the professor drone on about C++ pointers.
He tried hard to stay awake but couldn’t and his head dropped to the desk with
a dull thud. He was soon fast asleep.

Droning Professor

Perplexed One
Fast Asleep!

Chapter 7: Pointers and References But First, A Short Story

C++ For Artists ©2003 Rick Miller — All Rights Reserved 167

Poor Perplexed One. It looked as if pointers were about to get the best of him, but alas, he was roused from his
peaceful state by the sound of cats screeching and dogs howling! Could it be? Yes, it’s C++ Man!

Perplexed One looked up to see C++ Man hovering where the droning professor once stood.
“Tell me Perplexed One, why are pointers putting you to sleep?” C++ Man asked.
“I just don’t get’em...” Perplexed One answered, nervously looking around the room wondering where all the

other students had disappeared to.
“Don’t let pointers get you down, they’re really quite simple. Tell you what, write down all your questions about

pointers and I’ll answer each one.
Perplexed One agreed and before long he handed C++ Man the following list:

What is an object?
What is a memory address?

How do you determine an object’s memory address?
What is a pointer?

How do you declare a pointer?
How do you access the object a pointer points to?

How do you create objects dynamically with the new operator?
How do you delete dynamically created objects with the delete operator?

What’s the difference between a pointer and a reference?
How do you declare and use references?

“These are great questions Perplexed One” C++ Man said as he poured over the list. “Let’s get started right away
beginning with the first question!”

Perplexed One agreed excitedly and took out a piece of paper to take notes.

What is an object?

According to the ANSI C++ standard an object is a region of storage. An object can be a fundamental data type
like an integer, char, etc. In the case of fundamental data types the regions of memory occupied by each data type are
set by the environment. For instance, on a 32-bit computer with a 32-bit wide memory organization, an integer will
occupy four contiguous bytes. Thus, an integer object occupies a region of memory four bytes wide.

Objects can be user-defined or abstract data types as well. Abstract data types are types you create by combining
fundamental data types or other abstract data types in order to model the problem you are trying to solve on the com-
puter. Most abstract data types will be either structures or classes. The region of memory occupied by an abstract data
type is dictated by its composition. Abstract data types are discussed in detail in chapter 10.

An object can be created in three ways:
1. by definition,
2. by using the new or new[] operator,
3. or by the compiler when required.

C++ Man

But First, A Short Story Chapter 7: Pointers and References

168 ©2003 Rick Miller — All Rights Reserved C++ For Artists

C++ Man waved his hand at the board causing the following code to appear:

In this example, Perplexed One, there are two integer objects being created via definition. The variable names a
and b are NOT the objects, but the identifiers that become bound to a region of memory at compile time. The process
of associating an identifier with a memory location is called binding. In this case the size of the memory region asso-
ciated with each of the variables a and b is four bytes which is the size of an integer object.

What is a memory address?

C++ Man waved his hand at the board causing the following diagram to appear:
“Here’s a simple diagram showing the arrangement of

computer memory Perplexed One. Memory is essentially an
array of byte addressable elements in which binary values
can be stored. Memory addresses start at zero and go up to
however much memory you have in your computer. For
instance, a computer with 256 megabytes of main memory
has more storage, and therefore more byte addressable stor-
age elements, than a computer with only 128 megabytes of
memory.”

“If you recall from chapter 4, the hardware architecture
of the computer system dictates how physical memory is
arranged and accessed, but here we will assume that the
word size is 32 bits. Looking at figure 7-1, memory starting
at address 0 contains the four bytes with addresses 0, 1, 2,
and 3 for a total of 32 bits. The 32-bit memory words are
aligned on addresses divisible by 4, which is why the
addresses 0, 4, 8, 12, etc., are going up the left side of mem-
ory in the diagram.”

int a = 1, b = 2;

cout<<"a = "<<a<<endl;
cout<<"b = "<<b<<endl;

1
2
3
4

7.1 integer objects

“So you see Perplexed One, an object occupies a region of
memory. Objects can be simple data types and occupy only a
small amount of memory or they can be complex data types and
occupy large amounts of storage. While your computer is run-
ning, memory is filled with many different kinds of objects of all
different sizes.”

“Remember, identifier names appearing in your source code
are bound to their object locations during the compilation pro-
cess. ”

“Thanks C++ Man! I think I finally understand the concept
of objects. I always used to confuse the identifier names with
the objects they represented.”

Perplexed One scribbled a few more notes then looked up
at C++ Man. “OK C++ Man, I’m ready to discuss the next
question on the list!”

“Great, Perplexed One! Let’s do it.”

Figure 7-1: Memory

4 bytes per word

Addresses go from
low to high

Chapter 7: Pointers and References But First, A Short Story

C++ For Artists ©2003 Rick Miller — All Rights Reserved 169

“Figure 7-2 shows another way of representing memory that reinforces the idea that it is a contiguous array of
elements.

Figure 7-2 also shows the memory initialized with two integer values. The integer object beginning at address 0
has a value of 1. The second integer object begins at address 4 and contains the value 2. This way of thinking of mem-
ory will come in handy when you learn about arrays in chapter 8.”

Perplexed One studied the two diagrams for a while. “Why did you use hexadecimal A in figure 7-2 to represent
the address 10?”

“Good question Perplexed One!” C++ Man answered. “You’ll find it helpful in your studies of C++, and comput-
ers in general, to become accustomed to using hexadecimal. It’s easier to work with than large decimal numbers. Fig-
ure 7-3 is another diagram of memory using hexadecimal addresses.”

C++ Man lifted his pinky finger and figure 7-3 appeared on the board.

How do you determine an object’s memory address?

“An object’s memory location can be determined by using the & operator” C++ Man said. Perplexed One looked
even more perplexed.

“What do you call & operator?” he asked, pencil ready to record C++ Man’s answer.
“I call it the ‘address-of’ operator” C++ Man replied, waving his hand in the direction of the board. “Let’s see

how it works.”

Addresses go from low to high

Figure 7-2: Another Way To Represent Memory

Hexadecimal A

Figure 7-3: Hexadecimal Addressing

“So you see, Perplexed One, all
objects in memory are accessible
via an address. The addresses go
from low to high and are organized
according to the hardware architec-
ture of the computer. A large object
may span several addresses but have
only one starting address.”

Perplexed One looked up
from his notes.“This is cool. I was
totally lost but now I understand
the whole addressing thing.”

C++ Man beamed with pride.
“Are you ready to talk about the
next question Perplexed One?” he
asked.

“Ready! Perplexed One
replied.”

But First, A Short Story Chapter 7: Pointers and References

170 ©2003 Rick Miller — All Rights Reserved C++ For Artists

“In this example, an integer variable named a is declared and defined. Remember, definition is one way objects
are created in memory. On line 3 the value of a is being printed while on line 4 the & operator is applied to the vari-
able a in order to determine the address of the object to which the identifier a is bound to. Let’s disassemble this code
and study it before running the program. The listing has been edited to make it easier to read!”

“Running example 7.2 can produce different results, depending on what other programs are running on the com-
puter at the same time. Figure 7-4 shows the results of running the program from the CodeWarrior programming envi-
ronment.”

“Notice here, Perplexed One, that the address of a is
shown to be 0x18da0078. Shutting down all other pro-
grams and then running example 7.2 again produced the
results shown in figure 7-5.”

“Notice in figure 7-5 that the address of a has
changed to 0x19f72078. If you try this experiment on
your computer at home, Perplexed One, you will get dif-
ferent results from those shown here.”

int a = 3;

cout<<" a = "<<a<<endl;
cout<<"Address of a = "<<&a<<endl;

1
2
3
4

7.2 Using & operator

Hunk:Kind=HUNK_GLOBAL_CODE Align=4 Class=PR Name=".main"(22) Size=136
00000000: 7C0802A6 mflr r0
00000004: 90010008 stw r0,8(SP)
00000008: 9421FFC0 stwu SP,-64(SP)
0000000C: 38000003 li r0,3
00000010: 90010038 stw r0,56(SP)
00000014: 80620000 lwz r3,cout__3std(RTOC)
00000018: 80820000 lwz r4,@661(RTOC)
0000001C: 48000001 bl .__ls<Q23std14char_traits<c>>__3stdFRQ23std39basic_ostream

<c,Q23std14char_traits<c>>PCc
00000020: 60000000 nop
00000024: 80810038 lwz r4,56(SP)
00000028: 48000001 bl .__ls__Q23std39basic_ostream<c,Q23std14char_traits<c>>Fi
0000002C: 60000000 nop
00000030: 80820000 lwz r4,endl<c,Q23std14char_traits<c>>__3stdFRQ23std39basic_ostream

<c,Q23std14char_traits<c>>(RTOC)
00000034: 48000001 bl .__ls__Q23std39basic_ostream<c,Q23std14char_traits<c>>FPFRQ23std39basic_ostream

<c,Q23std14char_traits<c>>_RQ23std39basic_ostream<c,Q23std14char_traits<c>>
00000038: 80620000 lwz r3,cout__3std(RTOC)
0000003C: 80820000 lwz r4,@662(RTOC)
00000040: 48000001 bl .__ls<Q23std14char_traits<c>>__3stdFRQ23std39basic_ostream

<c,Q23std14char_traits<c>>PCc
00000044: 60000000 nop
00000048: 38810038 addi r4,SP,56
0000004C: 48000001 bl .__ls__Q23std39basic_ostream<c,Q23std14char_traits<c>>FPCv
00000050: 60000000 nop
00000054: 80820000 lwz r4,endl<c,Q23std14char_traits<c>>__3stdFRQ23std39basic_ostream

<c,Q23std14char_traits<c>>(RTOC)
00000058: 48000001 bl .__ls__Q23std39basic_ostream<c,Q23std14char_traits<c>>FPFRQ23std39basic_ostream

<c,Q23std14char_traits<c>>_RQ23std39basic_ostream<c,Q23std14char_traits<c>>
0000005C: 38600000 li r3,0
00000060: 80010048 lwz r0,72(SP)
00000064: 38210040 addi SP,SP,64
00000068: 7C0803A6 mtlr r0
0000006C: 4E800020 blr
00000070: 00000000 dc.l $00000000 ; traceback table
00000074: 00092041 dc.l $00092041
00000078: 80000000 dc.l $80000000
0000007C: 00000070 dc.l $00000070
00000080: 00052E6D dc.l $00052E6D
00000084: 61696E00 dc.l $61696E00

Set stack register (SP) to our stack
Load 3 into r0 register

Store 3 at offset 56 from stack pointer

Load character a
and print

Load 3 into register r4...
...then print

endl, load "Address of a "
...then print

Address of a = value in SP + 56
print

endl, print, housekeep, reset SP, and return

Listing 7.1: Example 7.2 Disassembled

Figure 7-4: Running Example 7.2 with CodeWarrior

Chapter 7: Pointers and References But First, A Short Story

C++ For Artists ©2003 Rick Miller — All Rights Reserved 171

What is a pointer?

C++ Man sneezed, causing the following diagram to appear on the board:
“I’ll begin with a definition of a pointer and then explain

in greater detail” C++ Man said floating from one end of the
board to the other.

“A pointer is a variable that holds a memory address. The
important part of this definition is the word variable. You can
assign an object’s address to a pointer variable and later,
change the contents of the pointer to point to some other
object.”

“When a pointer contains the address of an object located
somewhere in memory, the pointer is said to point to that
object, hence the term pointer.”

“Pointer variables are all the same size, which is the size
of the address bus. If the machine you are using has a 32-bit
address bus, then a pointer will be 4 bytes long. However, a
pointer can only contain addresses to objects of its declared
type. For instance, a pointer to float objects can’t have the
address of integer objects assigned to it. The reason for this is
that the compiler needs to know what size objects a pointer is
pointing to.”

Figure 7-5: Running Example 7.2 Alone

“The disassembled code shown in listing 7-1 shows
that the integer object of example 7.2 will always be
located at an offset 56 bytes from the value of the stack.
This could be anywhere in main memory depending on
where the program loads.“

Luckily, you don’t have to worry about the actual
addresses. That’s the job of the operating system. The
important thing to remember is that the & operator will
return the address of an object’s memory location, what-
ever that address may be.”

Perplexed One quickly summarized what he had
learned so far. “OK, an object is a region of memory, and all
objects have an address that can be determined by using the
& operator.”

“That’s great Perplexed One!” C++ Man said smiling.
“Now that you understand the foundation material it’s time
to talk about pointers for real. Are you ready?”

“Ready!” Perplexed One said, taking out another piece
of paper.

Figure 7-6: Pointer

But First, A Short Story Chapter 7: Pointers and References

172 ©2003 Rick Miller — All Rights Reserved C++ For Artists

“Pointers can point to other pointers, that is, a pointer can contain the address of a pointer.”

How do you declare a pointer?

“A pointer is declared with the help of the asterisk *. Let’s look at an example.” C++ Man waved his hand at the
board and the following code appeared:

“Notice how the asterisk is used on line 2. The variable int_prt has the
type pointer to integer or pointer to int. The address of the variable a is
assigned to int_prt with the help of the & operator. When this code is compiled
and run it produces the results shown in figure 7-7. Remember, Perplexed One,
if you run this program at home you will most likely see a different address
than the one shown here. The actual value of the address depends on where in
memory the program is loaded, which depends in turn on how much memory
your computer has installed and what programs are running at the same time.”

C++ Man let Perplexed One think about what had been discussed so far
for a moment and then continued.

“The placement of the asterisk is a personal matter. Some programmers will do it differently than others. Line 2
of example 7.3 could be written in any of the following ways with the same results:”

int* int_ptr = &a;
int * int_ptr = &a;
int *int_ptr = &a;

“I like the first method” Perplexed One said, busily scratching notes with his pencil. “It makes it clear to me
what’s being done” he added.

C++ Man continued. “It’s also a good idea to choose a name for a pointer variable that gives a hint of its purpose.
For instance, the variable int_ptr does a good job of indicating that the identifier is a pointer and what type of objects
it can point to.”

Perplexed One was writing as fast as he could. He was sure this stuff would be on a test!

“Remember, Perplexed One, that a
pointer is simply a variable that can hold
an object’s address. Because it’s a vari-
able, the address a pointer contains can
be changed, just like any other variable.”

“I see.” said Perplexed One, star-
ing at the diagram on the board. “But
how do you tell a pointer what size
objects it can point to?”

“That’s an excellent question!”
C++ Man said, “And it’s the next one
on your list!”

int a = 3;
int* int_ptr = &a;

cout<<" a = "<<a<<endl;
cout<<"Address of a = "<<&a<<endl;
cout<<" int_ptr = "<<int_ptr<<endl;

1
2
3
4
5
6

7.3 Using * operator

Figure 7-7: Contents of int_ptr

Chapter 7: Pointers and References But First, A Short Story

C++ For Artists ©2003 Rick Miller — All Rights Reserved 173

How do you access the object a pointer points to?

“This is where things get a little tricky” C++ Man started. Perplexed One looked nervous. “Don’t worry, Per-
plexed One, it will all make perfect sense when we’re done. Remember, a pointer will contain an object’s memory
address. You can get to the object itself with the help of the * operator.” Perplexed One’s eyes glazed over.

“This is confusing” Perplexed One said defiantly. “The asterisk is already used to declare pointers.
“You’re right,” C++ Man said, “but I’ll show you how you can easily remember the difference between using the

asterisk for declaring pointers and dereferencing them.”
“OK, show me” Perplexed One said, sitting ready to copy notes.
“Examine the following code” C++ Man said as he waived his hand at the board.

“One line 2, the asterisk appears to the right of the data type when you declare a pointer variable. When you use
the * operator to dereference a pointer the asterisk appears to the left of the pointer as shown on line 7.”

Perplexed One’s eyes brightened immediately. “That’s all there is to it?”
“Yep, that’s about it.” Here’s another example:

“Remember, use the asterisk to declare
pointer variables. You can declare a pointer to
any type of object, even user-defined objects.
You’ll learn how to do that in chapter 10.

You can use the & operator to get the
address of an object so it can be assigned to a
pointer. Later, I’ll show you how to use the new
operator to create objects out of thin air!”

C++ Man continued. “I can see from your hair that
you’re beginning to understand pointers much better than
before!”

Perplexed One wondered what C++ Man was talk-
ing about but was too busy writing notes to check his
hair.

“I’m ready to discuss the next question C++ Man”
Perplexed One said, pulling out another piece of paper.

int a = 3;
int* int_ptr = &a;

cout<<" a = "<<a<<endl;
cout<<"Address of a = "<<&a<<endl;
cout<<" int_ptr = "<<int_ptr<<endl;
cout<<" a = "<<*int_ptr<<endl;

1
2
3
4
5
6
7

7.4 dereferencing pointers

int a = 3;
int* int_ptr = &a;
cout<<" a = "<<a<<endl;
*int_ptr = 4;
cout<<" a = "<<a<<endl;
(*int_ptr)++;
cout<<" a = "<<a<<endl;

1
2
3
4
5
6
7

7.5 dereferencing pointers

But First, A Short Story Chapter 7: Pointers and References

174 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Perplexed One studied the code on the board.
“As you can see,” C++ Man began, “the variable a is initialized to 3 on line 1. On line 2 the variable int_ptr is

declared and initialized to the address of a using the & operator. From that point on, all modifications to variable a can
be effected via the pointer with the help of the * operator. Notice how the * operator appears on the left side of the
pointer variable. On line 4 the pointer is used to change the value of a from 3 to 4. Line 6 shows how parentheses can
be used along with the * operator to help force operator precedence. Running example 7.5 produces the results shown
in figure 7-8.”

How do you dynamically create and delete objects?

“Now you’re really going to learn some cool stuff!” C++ Man began. Perplexed One was ready and felt confident
he’d understood everything up to this point, and they were over half way though the list of questions. “So far so good”
he thought to himself, pencil poised to scribble with wild abandon. C++ Man began again.

“Up to this point you’ve seen how the address of a statically allocated object can be determined with the & oper-
ator. You’ve seen how pointer variables can be declared and used to modify the object they point to. The real power of
pointers comes from being able to dynamically create objects when a program is running, also referred to as run time
or dynamic object allocation. Before I talk about the use of the new operator I want to discuss the two different kinds
of memory a program has access to, namely, the stack and the heap.”

“You’ve seen stack memory in action in listing 7-1. The program in example 7.2 used stack memory to store the
value of the variable a. Stack memory works well in this case because all the program’s storage needs were deter-
mined at compile time.”

“When a program does not know up front how much storage it needs it must dynamically allocate memory dur-
ing run time from an area of memory known as the heap. The heap is managed by the operating system. A program
makes requests to the operating system for memory space and, if there is enough space available on the heap, the
memory is reserved and an address is returned to the program.”

Figure 7-8: Running Example 7.5

When the asterisk appears to the right of a
data type it is being used to declare a pointer vari-
able. When the asterisk is applied to the left side of
a pointer it is called dereferencing and is the way
you access the object the pointer is pointing to.

“That seems too easy, there must be a
catch.” Perplexed One stated confidently.

“Nope,” replied C++ Man. “there’s no
catch. It’s just spine-tingling isn’t it?”

“Isn’t what?” Perplexed One asked, look-
ing more perplexed.

“Why, all the fun we’re having with
pointers! Prepare for the next topic.”

Chapter 7: Pointers and References But First, A Short Story

C++ For Artists ©2003 Rick Miller — All Rights Reserved 175

“Figure 7-9 shows where stack and heap memory are located with respect to one another in a computer’s mem-
ory space.”

When the operating system loads a program it sets up an application partition. The partition will be organized
into two sections, namely, the stack and the heap. During program execution the stack will grow downwards as func-
tions are called and upwards as functions return to the calling routines. The heap will grow upwards and downwards
as dynamically allocated objects are created and destroyed. When an application requests dynamically allocated
memory it is carved out of its application partition’s heap section.”

The new Operator

“The new operator is used to dynamically allocate objects during program runtime. The new operator makes a
request for heap memory space to the operating system and, if memory is available, will return the newly created
object’s memory address. In the case of complex objects like structures and classes, the address returned will be the
start of the object’s memory region.”

Figure 7-9: Application Stack and Heap Relationship

But First, A Short Story Chapter 7: Pointers and References

176 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Difference Between new and new[]

“There are two types of new operator: new, and new[]. The new operator is used to create singular object
instances. The new[] operator is used to create arrays of objects.” (The new[] operator is discussed in detail in chap-
ter 8.)

Format of the new Operator

“The new operator takes the following format:”

Using the new Operator

C++ Man waived his hand at the board and the following source code appeared:

Perplexed One studied the code intensely and quickly copied it into his notebook. C++ Man began his explana-
tion. “On line 1 I declared a pointer variable named int_ptr to hold the address returned by the new operator. On line
2 the new operator is used to create an object of type int. The address returned is assigned to int_ptr, which is then
used on line 3 to access the integer object itself.”

new type; Type can be native
or user-defined

Returns memory address
of newly created object

int* int_ptr;
int_ptr = new int;
*int_ptr = 0;

cout<<"The reserved address is: "<<int_ptr<<endl;
cout<<"The value of the int object is: "<<*int_ptr<<endl;

delete int_ptr;

1
2
3
4
5
6
7
8

7.6 dynamic memory
allocation

C++ Man summarized, “Dynamic object allocation is a
way to create objects in memory at program runtime. The
new operator will request memory from the operating sys-
tem and return a memory address you can use in your pro-
gram. Dynamic objects are created in an application’s heap
memory.”

“What does line 8 in example 7.6 do?” Perplexed
One asked, looking up from his notes.

“Good question Perplexed One” he began. “When
you’re finished with a dynamically allocated object you
must remember to release the memory back to the
operating system. Failure to do so will result in a mem-
ory leak.”

Perplexed One liked the sound of the term memory
leak. He thought it was cool.

Chapter 7: Pointers and References But First, A Short Story

C++ For Artists ©2003 Rick Miller — All Rights Reserved 177

The Difference Between delete and delete[]

C++ Man pointed once again to the code on line 8 in example 7.6. “There are two types of delete operators” he
began. “The delete operator, shown here, is used with the new operator, and is used to release the memory assigned to
singular objects back to the operating system.”

“The delete[] operator is used to delete memory dynamically assigned to an array via the new[] operator. A
detailed discussion on the delete[] appears in chapter 8.”

A Neat Trick: Calling Object Constructors

“I want to show you something you’ll find helpful when using the new operator” C++ Man told Perplexed One.
Perplexed One looked at the board just as C++ Man was waving his hand, causing the following code to appear:

“Study the difference between example 7.6 and 7.7. In example 7.6 the object was initialized via the pointer after
it was created in memory. In example 7.7 the object is initialized when it is created via a constructor function call. A
constructor is a special function whose purpose is to properly initialize objects when they are created in memory. The
integer constructor is invoked by enclosing an integer value in parentheses after the type name int when used with the
new operator as shown on line 2 above. Other fundamental data types can be initialized in similar fashion.” (Con-
structors are formally covered in chapters 10 and 11.)

“Here’s another example Perplexed One” C++ Man said, looking toward the board.

What’s the difference between a pointer and a reference?

Perplexed One was eager to continue the lesson and started a new sheet of notes. C++ Man waived his hand at the
board and removed all the code so there would be nothing to confuse Perplexed One.

“The basic thing to remember about a pointer is that it is a variable. Because a pointer is a variable, it can be
changed to point to different objects of the same type.”

“A reference is different from a pointer in that once a reference is initialized it cannot be changed. Another good
way of thinking about a reference is that it is a nickname for the object it references. A nickname is just another name
for the same object. Pointers must be dereferenced to gain access to the object they point to. Not so with references.”

C++ Man waived his hand at the board and table 7-1 appeared. Perplexed One took notes furiously.

int* int_ptr;
int_ptr = new int(0); //Constructor call

cout<<"The reserved address is: "<<int_ptr<<endl;
cout<<"The value of the int object is: "<<*int_ptr<<endl;

delete int_ptr;

1
2
3
4
5
6
7

7.7 calling object
constructor

int* int_ptr = new int(7);
char* char_ptr = new char('e');

cout<<" The int value is: "<<*int_ptr<<endl;
cout<<"The char value is: "<<*char_ptr<<endl;

delete int_ptr;
delete char_ptr;

1
2
3
4
5
6
7
8

7.8 calling object
constructor

Summary Chapter 7: Pointers and References

178 ©2003 Rick Miller — All Rights Reserved C++ For Artists

How do you declare and use references?

Perplexed One looked worried. C++ Man asked him what was the matter. “This is where things get tricky” Per-
plexed One said, fidgeting at his desk.

“Fear not, Perplexed One,” C++ man said assuringly, “all you have to remember is when to use the & operator.
Can you tell me, from what you’ve learned so far, when you would use the & operator?”

Perplexed One studied his notes and answered timidly. “When you want to find an object’s memory address?”
“That’s exactly right!” C++ Man said, flying a victory circle in front of the room. “Now there’s another use for

the &. Tell me Perplexed One, how do you declare a pointer variable?”
“You have to use the asterisk between the data type and the identifier.” Perplexed One answered, this time with

more confidence.
“Right again!” C++ Man said, waiving his hand at the board. “Take a look at this code:”

“Notice how the & is used on line 2 to declare a reference type. The identifier ref_a can now be used in place of
the identifier a without any dereferencing, as is shown on line 5.”

“References come in handy when you’re passing function parameters by reference or returning objects by refer-
ence from functions. Functions will be discussed in detail in chapter 9.”

Perplexed One felt relieved. “That doesn’t seem so hard!” he said, finishing his notes.
C++ Man hovered in front of the class. “Your basic understanding of pointers and references will serve you well

as you progress through your studies of C++ Perplexed One. Why don’t you summarize all your pointer knowledge
before I have to fly and help another perplexed student.”

Summary

Perplexed One gathered his notes and walked to the front of the class. C++ Man took a seat in the front row and
listened attentively as Perplexed One reviewed what he had learned.

“An object is a region of memory. An object can be a fundamental data type like a character or integer, or a com-
plex user-defined type. An object can be created in three ways: 1) by definition, 2) by using the new or new[] operator,
or 3) as required by the compiler.”

“All objects in memory can be accessed via a memory address. To determine the memory address of an object
use the & operator.”

“A pointer is a variable that holds a memory address. Because a pointer is a variable, the address it contains can

Characteristic Pointers References

Variable Yes No

Must be initialized at the point of declaration No Yes

Must be dereferenced with the * operator Yes No

Can be thought of as another name for the referenced object No Yes

Can be used in place of pointers to reduce errors and simplify code No Yes

Table 7-1: Pointers VS. References

int a = 3;
int& ref_a = a;

cout<<" a = "<<a<<endl;
cout<<"ref_a = "<<ref_a<<endl;

1
2
3
4
5

7.9 using a reference

Chapter 7: Pointers and References Skill Building Exercises

C++ For Artists ©2003 Rick Miller — All Rights Reserved 179

be changed, causing it to point to something else. Use the asterisk to declare a pointer and the asterisk to access the
object a pointer points to. This is also referred to as dereferencing the pointer.”

“Dynamic object allocation allows programs to create objects at program runtime. Dynamically allocated objects
are created on the application heap. Use the new operator to create dynamic objects, and don’t forget to deallocate
objects when you no longer need them with the delete operator. Constructors can be used during dynamic object allo-
cation to initialize objects in memory.”

“References differ from pointers in several ways. References must be initialized when they are declared because
they are not variables. A reference is considered another name for a particular object. Use the & to declare references.
The cool thing about references is that they don’t need to be dereferenced.”

Skill Building Exercises

1. Research Memory Organization: Research the architecture of your computer. Write a brief description of how
the hardware and operating system work together to manage memory resources.

2. Determine Object Address Using & Operator: Write a program that creates three variables with different data
types and assign each a value. Use the & operator to determine the address of each variable. Print the value of each
variable and its memory address to the screen.

3. Dissemble Code: Disassemble the program you wrote in exercise 2 above and study the output. Examine the list-
ing to determine how and where the variables are being stored in memory.

4. Declare and Initialize Pointers: Write a program that declares a char, int, float, and double variable. Initialize
each variable to a value of your choice. Next, declare four pointers, one for each data type char, int, float, and dou-
ble. Assign the address of each object to the proper corresponding pointer variable using the & operator. Print the
value of each object to the screen using the variable name, and the dereferenced pointer. (Remember to use the *
operator to dereference each pointer.)

5. Modify Objects Via Pointer: Using the code you wrote in exercise 4, change the value of each object via the
pointer. Print the new values to the screen.

6. Dynamically Create and Destroy Objects: Write a program that declares four pointer variables, one for each data
type char, int, float, and double. Use the new operator to dynamically create an object of each type and assign its
address to the corresponding pointer variable. Use the pointer to initialize each object and print their values to the
screen. Use the delete operator to release the dynamically allocated memory back to the operating system.

7. References: Write a program and declare and initialize three variables of any type and value your choose. Declare
three references of the required type and initialize them using the three variables previously declared. Access and
modify each of the three objects via the references. Print the object values to the screen using the references.

8. Thinking: Describe in your own words the differences between pointers and references.

Suggested Projects

1. Dynamic Object Creation: Write a program that dynamically creates integer objects. Declare five integer point-
ers. Prompt the user to enter integer values via the keyboard. Read the integer values and use them to initialize the
integer objects. Print the object values to the screen via the pointers.

Self Test Questions Chapter 7: Pointers and References

180 ©2003 Rick Miller — All Rights Reserved C++ For Artists

Self Test Questions

1. What is an object? What is the difference between an object and the identifier name used to reference the object?

2. Describe in general terms how computer memory is typically organized.

3. What operator do you use to determine an object’s memory address? Give an example of its use.

4. What is a pointer?

5. What character do you use to declare a pointer? Give several examples of its use.

6. What operator do you use to access an object via a pointer? Give an example of its use.

7. What character is used to declare a reference?

8. What are the primary differences between a pointer and a reference?

9. How do you access the object referred to by a reference? How is this different from accessing an object via a
pointer?

10. (T/F) A pointer is a variable.

References

International Standard, ISO/IEC 14882, Programming Languages — C++, First Edition 1998-09-01

Robert J. Traister. Conquering C++ Pointers. Academic Press Professional, Inc., Harcourt Brace & Company,
Publishers, Boston, Massachusetts, 1994. ISBN: 0-12-697420-9

Paul J. Lucas. The C++ Programmer’s Handbook. Prentice Hall PTR, Englewood Clifs, New Jersey, 1992.
ISBN: 0-13-118233-1

Chapter 7: Pointers and References Notes

C++ For Artists ©2003 Rick Miller — All Rights Reserved 181

Notes

Notes Chapter 7: Pointers and References

182 ©2003 Rick Miller — All Rights Reserved C++ For Artists

