
C# Collections: A Detailed Presentation © 2012 Rick Miller — All Rights Reserved 147

10 Coding For Collections

Learning Objectives
• Enable user-defined data types to perform correctly in collections
• Define the term “natural ordering”
• State the difference between natural ordering and custom ordering
• Create classes and structures that can be used in equality comparisons
• Override System.Object.Equals() and System.Object.GetHashCode() methods
• Implement the IComparable and IComparable<T> interfaces to specify natural ordering
• Implement the IComparer and IComparer<T> interfaces to create a custom comparer
• Implement the IEquatable interface to allow objects to be used as keys
• Define the term “immutable” object

Chapter 10

Coding For Collections
Amsterdam Bridge

Ya
sh

ic
a

M
at

 1
24

G

Introduction Chapter 10: Coding For Collections

148 © 2012 Rick Miller — All Rights Reserved C# Collections: A Detailed Presentation

Introduction

When creating user-defined data types you must stop for a moment to consider how they will be used in your
program. If you intend to use them in collections then you must enable them to be used in equality and comparison
operations. For example, if you intend to sort user-defined objects using the Array.Sort() method, then you must pro-
vide the ability for one object to be compared with another for the sort operation to work correctly. If you intend to
use user-defined data types as keys in hashtables, dictionaries, or other keyed collections, then you’ll need to know
how to get your objects to behave correctly as keys. These topics are the focus of this chapter.

I’ll start by showing you how to override the Object.Equals() and Object.GetHashCode() methods. I’ll then
explain why and how to overload the == and != operators.

Next I’ll talk about comparison operations and show you how to specify natural ordering by implementing the
IComparable and IComparable<T> interfaces. Following this I’ll show you how to create individual comparer
objects that are used to specify custom ordering by implementing the IComparer and IComparer<T> interfaces.

I wrap up the chapter by showing you how to create objects that can be used as keys in hashtables, dictionaries,
and other keyed collections. This includes a discussion of object immutability.

Upon completing this chapter you’ll have a thorough understanding of how to create user-defined types that
behave well when used in collections. Now, let’s get going!

Coding for Equality Operations

Objects of a particular type, when used in non-keyed collections like arrays and lists, must be able to be used in
equality comparison operations. This section discusses the differences between reference equality, value equality, and
bitwise equality, and shows you how to override the Object.Equals() and Object.GetHashCode() methods. Following
this I’ll show you how to overload the == and != operators.

Reference Equality vs. Value Equality

Normally, when you compare two reference objects for equality like this...
o1 == o2

...you are comparing their addresses. In other words, if o1 and o2 refer to the same location in memory then they
must be equal because they refer to the same object. However, it’s not always desirable to use an object’s address as a
basis for equality. Take strings for example. Two strings of equal value may be different objects as the following code
snippet suggests:

String s1 = “Hello”;

String s2 = “Hello”;

The expression (s1 == s2) will yield true just as s1.Equals(s2) will yield true. This is because the
Equals() method has been overridden and the == operator has been overloaded to perform a value or string content
comparison, which is what you’d expect when comparing two strings.

For structures, the default behavior of the Object.Equals() method and the == operator is bitwise equality. For the
most part, bitwise equality means the same thing as value equality, especially in the case of simple value types. (i.e.,
structures like Int32) If, however, the binary representation of the value type is complex, like the Decimal structure,
then the Object.Equals() method is overridden and the == operator is overloaded to yield the expected value compar-
ison behavior. For example, given two integer variables:

int i = 1;

int j = 2;

The expression (i == j) compares the value of i, which is 1, against the value of j, which is 2. In either case
you can substitute the == operator with the Equals() method like so:

i.Equals(j);

Chapter 10: Coding For Collections Coding for Equality Operations

C# Collections: A Detailed Presentation © 2012 Rick Miller — All Rights Reserved 149

Overriding Object.Equals() and Object.GetHashCode()

If the default behavior of the Object.Equals() method is insufficient for your user-defined data types, you’ll need
to override it and provide a custom implementation. Both the Object.Equals() and Object.GetHashCode() methods
must be overridden together to ensure correct behavior. The following sections present the rules that should be fol-
lowed when overriding these methods.

Rules For Overriding The Object.Equals() Method

When overriding the Object.Equals() method, you must ensure that it subscribes to the expected behavior as
specified in the .NET Framework documentation. Table 10.1 lists the required behavior of an overridden
Object.Equals() method. (Note: The overloaded == operator must work the same way!)

Rules For Overriding The Object.GetHashCode() Method

When you override the Object.Equals() method you should also override the Object.GetHashCode() method to
ensure proper object behavior. This section presents two approaches to implementing a suitable GetHashCode()
method. Now, don’t be alarmed when I reference two very good Java books. The techniques used to create a suitable
hashcode algorithm apply equally to C# as well as Java.

The GetHashCode() method returns an integer which is referred to as the object’s hash value. The default imple-
mentation of GetHashCode() found in the Object class will, in most cases, return a unique hash value for each distinct
object even if they are logically equivalent. In most cases this default behavior is acceptable, however, if you intend
to use a class of objects as keys to hashtables or other hash-based data structures, then you must override the GetH-
ashCode() method and obey the general contract as specified in the .NET Framework API documentation. The gen-
eral contract for the GetHashCode() is given in Table 10-2.

Should be... Rule Comment

Reflexive x.Equals(x) returns true Exception: floating-point types

Symmetric x.Equals(y) returns the same as y.Equals(x)

Transitive (x.Equals(y) && y.Equals(z)) returns true if and only if
x.Equals(z) returns true

Consistent Successive calls to x.Equals(y) return the same value as
long as the objects referenced by x and y remain un-
changed.

x.Equals(null) returns false Or a null reference

x.Equals(y) returns true if both x and y are NaN NaN means Not a Number

Calls to Object.Equals() must not throw exceptions. No exceptions!

Override the Object.GetHashCode() method. If you override the Object.Equals()
method.

Table 10-1: Rules for Overriding Object.Equals() method

Check Criterion

The GetHashCode() method must consistently return the same integer when invoked on the same object
more than once during an execution of a C# or .NET application, provided no information used in Equals()
comparisons on the object is modified. This integer need not remain constant from one execution of an ap-
plication to another execution of the same application.

Table 10-2: The GetHashCode() General Contract

Coding for Equality Operations Chapter 10: Coding For Collections

150 © 2012 Rick Miller — All Rights Reserved C# Collections: A Detailed Presentation

As you can see from Table 10-2 there is a close relationship between the Object.Equals() and Object.GetHash-
Code() methods. It is recommended that any fields used in the Equals() method comparison be used to calculate an
object’s hash code. Remember, the primary goal when implementing a GetHashCode() method is to have it return the
same value consistently for logically equal objects. It would also be nice if the GetHashCode() method returned dis-
tinct hash code values for logically unequal objects, but according to the general contract this is not a strict require-
ment.

Before actually implementing a GetHashCode() method, I want to provide you with two hash code generation
algorithms. These algorithms come from two excellent Java references. (Yes, I meant to say Java.) I have changed the
text to reflect the .NET method names Object.Equals() and Object.GetHashCode() respectively, and have converted
Java operations into compatible C# .NET operations.

Bloch’s Hash Code Generation Algorithm

Joshua Bloch, in his book Effective Java™ Programming Language Guide, provides the following algorithm for
calculating a hash code:

1. Start by storing a constant, nonzero value in an int variable called result. (Josh used the value 17)
2. For each significant field f in your object (each field involved in the Equals() comparison) do the following:

a. Compute an int hash code c for the field:
i. If the field is boolean (bool) compute: (f?0:1)
ii. If the field is a byte, char, short, or int, compute: (int)f
iii. If the field is a long compute: (unsigned)(f^(f >> 32))
iv. If the field is a float compute: Convert.ToInt32(f)
v. If the field is a double compute: Convert.ToInt64(f), and then hash the

resulting long according to step 2.a.iii.
vi. If the field is an object reference and this class’s Equals() method compares the field by recursively

invoking Equals(), recursively invoke GetHashCode() on the field. If a more complex comparison
is required, compute a “canonical representation” for this field and invoke GetHashCode() on the
canonical representation. If the value of the field is null, return 0.

vii. If the field is an array, treat it as if each element were a separate field. That is, compute a hash
code for each significant element by applying these rules recursively, and combine these values
in step 2.b

b. Combine the hash code c computed in step a into result as follows:
result = 37*result + c;

3. Return result.
4. If equal object instances do not have equal hash codes fix the problem!

Ashmore’s Hash Code Generation Algorithm

Derek Ashmore, in his book The J2EE Architect’s Handbook: How To Be A Successful Technical Architect For
J2EE Applications, recommends the following simplified hash code algorithm:

1. Concatenate the required fields (those involved in the Equals() comparison) into a string.
2. Call the GetHashCode() method on that string.
3. Return the resulting hash code value.

The GetHashCode() method must produce the same results when called on two objects if they are equal
according to the Equals() method.

The GetHashCode() method is not required to return distinct integer results for logically unequal objects,
however, failure to do so may result in degraded hash table performance.

Check Criterion

Table 10-2: The GetHashCode() General Contract

Chapter 10: Coding For Collections Coding for Equality Operations

C# Collections: A Detailed Presentation © 2012 Rick Miller — All Rights Reserved 151

An Example: The Person Class
I’ll use a class named Person to demonstrate how to override the Object.Equals() and Object.GetHashCode()

methods. Example 10.1 lists the code for the Person class.
10.1 Person.cs (Overridden Equals() and GetHashCode() Methods)

1 using System;
2
3 public class Person {
4
5 //enumeration
6 public enum Sex {MALE, FEMALE};
7
8 // private instance fields
9 private String _firstName;
10 private String _middleName;
11 private String _lastName;
12 private Sex _gender;
13 private DateTime _birthday;
14 private Guid _dna;
15
16 public Person(){}
17
18 public Person(String firstName, String middleName, String lastName,
19 Sex gender, DateTime birthday, Guid dna){
20 FirstName = firstName;
21 MiddleName = middleName;
22 LastName = lastName;
23 Gender = gender;
24 Birthday = birthday;
25 DNA = dna;
26 }
27
28 public Person(String firstName, String middleName, String lastName,
29 Sex gender, DateTime birthday){
30 FirstName = firstName;
31 MiddleName = middleName;
32 LastName = lastName;
33 Gender = gender;
34 Birthday = birthday;
35 DNA = Guid.NewGuid();
36 }
37
38 public Person(Person p){
39 FirstName = p.FirstName;
40 MiddleName = p.MiddleName;
41 LastName = p.LastName;
42 Gender = p.Gender;
43 Birthday = p.Birthday;
44 DNA = p.DNA;
45 }
46
47 // public properties
48 public String FirstName {
49 get { return _firstName; }
50 set { _firstName = value; }
51 }
52
53 public String MiddleName {
54 get { return _middleName; }
55 set { _middleName = value; }
56 }
57
58 public String LastName {
59 get { return _lastName; }
60 set { _lastName = value; }
61 }
62
63 public Sex Gender {
64 get { return _gender; }
65 set { _gender = value; }
66 }
67
68 public DateTime Birthday {
69 get { return _birthday; }
70 set { _birthday = value; }
71 }
72
73 public Guid DNA {
74 get { return _dna; }

Coding for Equality Operations Chapter 10: Coding For Collections

152 © 2012 Rick Miller — All Rights Reserved C# Collections: A Detailed Presentation

75 set { _dna = value; }
76 }
77
78 public int Age {
79 get {
80 int years = DateTime.Now.Year - _birthday.Year;
81 int adjustment = 0;
82 if(DateTime.Now.Month < _birthday.Month){
83 adjustment = 1;
84 } else if((DateTime.Now.Month == _birthday.Month) && (DateTime.Now.Day < _birthday.Day)){
85 adjustment = 1;
86 }
87 return years - adjustment;
88 }
89 }
90
91 public String FullName {
92 get { return FirstName + " " + MiddleName + " " + LastName; }
93 }
94
95 public String FullNameAndAge {
96 get { return FullName + " " + Age; }
97 }
98
99 public override String ToString(){
100 return (FullName + " " + Gender + " " + Age + " " + DNA);
101 }
102
103 public override bool Equals(object o){
104 if(o == null) return false;
105 if(typeof(Person) != o.GetType()) return false;
106 return this.ToString().Equals(o.ToString());
107 }
108
109 public override int GetHashCode(){
110 return this.ToString().GetHashCode();
111 }
112
113 } // end Person class

Referring to example 10.1 — the Person class defines the usual fields you’d expect for a data type of this nature.
I’ve also added a field called _dna of type Guid (Globally Unique Identifier). (I know, I’m being cheeky here calling
the field _dna. In real life, the name of this field might be _id which would map to the primary key column of a rela-
tional database table where state values of person objects are persisted.) I’ve added the _dna field with its correspond-
ing Guid type to make it easier to make Person objects unique.

The overridden Object.ToString() method is defined on line 99. It returns a concatenation of the FullName, Gen-
der, Age, and DNA properties. (The Age property is an example of a calculated read-only property.) The overridden
Object.Equals() method starts on line 103. It relies on the ToString() method to compare different person objects for
value equality. The GetHashCode() method simply calls the GetHashCode() method on the string generated by the
Person object’s ToString() method.

Example 10.2 gives the code for a short application that creates a few Person objects and tests the
Object.Equals() method, validating its conformance to the rules laid out in table 10-1.

10.2 MainApp.cs (Demonstrating Overridden Equals() & GetHashCode() Methods)
1 using System;
2
3 public class MainApp {
4 public static void Main(){
5 Person p1 = new Person("Rick", "Warren", "Miller", Person.Sex.MALE,
6 new DateTime(1961, 2, 3), Guid.NewGuid());
7 Console.WriteLine("p1.Equals(p1) : {0}", p1.Equals(p1));
8 Console.WriteLine("p1.Equals(string) : {0}", p1.Equals("Hello!"));
9 Person p2 = new Person("Steve", "Jacob", "Hester", Person.Sex.MALE,
10 new DateTime(1972, 1, 1), Guid.NewGuid());
11 Console.WriteLine("p1.Equals(p2) : {0}", p1.Equals(p2));
12 Console.WriteLine("p2.Equals(p1) : {0}", p2.Equals(p1));
13 Console.WriteLine("p1.GetHashCode() = {0}", p1.GetHashCode());
14 Console.WriteLine("p2.GetHashCode() = {0}", p2.GetHashCode());
15 }
16 }

Referring to example 10.2 — On line 5 a Person reference named p1 is created and initialized. The
Object.Equals() method is then called using the reference p1 as an argument. This of course should return true. Next,
p1 is compared with a string object, which should return false. On line 9 a second Person reference named p2 is
declared and initialized and it’s compared with p1. Both tests should return false. Following this, the GetHashCode()

Chapter 10: Coding For Collections Coding for Equality Operations

C# Collections: A Detailed Presentation © 2012 Rick Miller — All Rights Reserved 153

method is called on each reference. The values returned by these last two method calls will yield different values
when you run this program on your computer. Figure 10-1 shows the results of running this program.

Overloading the == and != Operators
Although not strictly required to be overloaded for the purposes of collections, the == and != operators can be

overloaded with little effort because they can simply use the overridden Object.Equals() method in their implementa-
tion. (Low hanging fruit!) Example 10.3 gives the modified Person class with the overloaded == and != operators.

10.3 Person.cs (Overloaded == and != Operators)
1 using System;
2
3 public class Person {
4
5 //enumeration
6 public enum Sex {MALE, FEMALE};
7
8 // private instance fields
9 private String _firstName;
10 private String _middleName;
11 private String _lastName;
12 private Sex _gender;
13 private DateTime _birthday;
14 private Guid _dna;
15
16
17
18 public Person(){}
19
20 public Person(String firstName, String middleName, String lastName,
21 Sex gender, DateTime birthday, Guid dna){
22 FirstName = firstName;
23 MiddleName = middleName;
24 LastName = lastName;
25 Gender = gender;
26 Birthday = birthday;
27 DNA = dna;
28 }
29
30 public Person(String firstName, String middleName, String lastName,
31 Sex gender, DateTime birthday){
32 FirstName = firstName;
33 MiddleName = middleName;
34 LastName = lastName;
35 Gender = gender;
36 Birthday = birthday;
37 DNA = Guid.NewGuid();
38 }
39
40 public Person(Person p){
41 FirstName = p.FirstName;
42 MiddleName = p.MiddleName;
43 LastName = p.LastName;
44 Gender = p.Gender;
45 Birthday = p.Birthday;
46 DNA = p.DNA;
47 }
48
49 // public properties
50 public String FirstName {

Figure 10-1: Results of Running Example 10.2

Coding for Equality Operations Chapter 10: Coding For Collections

154 © 2012 Rick Miller — All Rights Reserved C# Collections: A Detailed Presentation

51 get { return _firstName; }
52 set { _firstName = value; }
53 }
54
55 public String MiddleName {
56 get { return _middleName; }
57 set { _middleName = value; }
58 }
59
60 public String LastName {
61 get { return _lastName; }
62 set { _lastName = value; }
63 }
64
65 public Sex Gender {
66 get { return _gender; }
67 set { _gender = value; }
68 }
69
70 public DateTime Birthday {
71 get { return _birthday; }
72 set { _birthday = value; }
73 }
74
75 public Guid DNA {
76 get { return _dna; }
77 set { _dna = value; }
78 }
79
80 public int Age {
81 get {
82 int years = DateTime.Now.Year - _birthday.Year;
83 int adjustment = 0;
84 if(DateTime.Now.Month < _birthday.Month){
85 adjustment = 1;
86 } else if((DateTime.Now.Month == _birthday.Month) && (DateTime.Now.Day < _birthday.Day)){
87 adjustment = 1;
88 }
89 return years - adjustment;
90 }
91 }
92
93 public String FullName {
94 get { return FirstName + " " + MiddleName + " " + LastName; }
95 }
96
97 public String FullNameAndAge {
98 get { return FullName + " " + Age; }
99 }
100
101 public override String ToString(){
102 return (FullName + " " + Gender + " " + Age + " " + DNA);
103 }
104
105 public override bool Equals(object o){
106 if(o == null) return false;
107 if(typeof(Person) != o.GetType()) return false;
108 return this.ToString().Equals(o.ToString());
109 }
110
111 public override int GetHashCode(){
112 return this.ToString().GetHashCode();
113 }
114
115 public static bool operator ==(Person lhs, Person rhs){
116 return lhs.Equals(rhs);
117 }
118
119 public static bool operator !=(Person lhs, Person rhs){
120 return !(lhs.Equals(rhs));
121 }
122
123 } // end Person class

Referring to example 10.3 — the == operator is overloaded on line 115. Note that it’s a static method and that it
defines two method parameters of type Person named lhs (left hand side) and rhs (right hand side). It simply calls the
overridden Object.Equals() method to make the equality check. It can do this because the rules for overloading the ==
operator are the same as the rules for overriding the Object.Equals() method, so each must exhibit the same behavior.

Chapter 10: Coding For Collections Coding for Equality Operations

C# Collections: A Detailed Presentation © 2012 Rick Miller — All Rights Reserved 155

The != operator is defined on line 119. It too relies on the overridden Object.Equals() method in its implementa-
tion. Note that it simply negates the result of comparing the lhs with the rhs with the Equals() method.

Example 10.4 demonstrates the use of the overloaded == and != operators.
10.4 MainApp.cs (Demonstrating Overloaded == and != Operators)

1 using System;
2
3 public class MainApp {
4 public static void Main(){
5 Person p1 = new Person("Rick", "Warren", "Miller", Person.Sex.MALE,
6 new DateTime(1961, 2, 3), Guid.NewGuid());
7 Console.WriteLine("p1.Equals(p1) : {0}", p1.Equals(p1));
8 Console.WriteLine("p1.Equals(string) : {0}", p1.Equals("Hello!"));
9 Person p2 = new Person("Steve", "Jacob", "Hester", Person.Sex.MALE,
10 new DateTime(1972, 1, 1), Guid.NewGuid());
11 Console.WriteLine("p1.Equals(p2) : {0}", p1.Equals(p2));
12 Console.WriteLine("p2.Equals(p1) : {0}", p2.Equals(p1));
13 Console.WriteLine("p1.GetHashCode() = {0}", p1.GetHashCode());
14 Console.WriteLine("p2.GetHashCode() = {0}", p2.GetHashCode());
15 Console.WriteLine("p1 == p1 : {0}", p1 == p1);
16 Console.WriteLine("p1 == p2 : {0}", p1 == p2);
17 Console.WriteLine("p1 != p1 : {0}", p1 != p1);
18 Console.WriteLine("p1 != p2 : {0}", p1 != p2);
19 }
20 }

Referring to example 10.4 — the tests of the == and != operators have been added to the previous MainApp
example. On line 15 the reference p1 is compared with itself using the == operator and again on line 17 using the !=
operator. These comparisons result in the compiler warnings shown in figure 10-2. You can safely ignore them here
for the sake of testing. Figure 10-3 shows the results of running this program.

Quick Review

The first step in getting your user-defined types to behave well in collections is to override the Object.Equals()
and Object.GetHashCode() methods. Make sure you adhere to the Object.Equals() method behavior rules. You can
optionally overload the == and != methods as their behavior can be easily implemented in terms of the
Object.Equals() method.

The overridden Object.GetHashCode() method can be easily implemented by calling the GetHashCode() method
on the string returned by the object’s overridden ToString() method.

Figure 10-2: Compiler Warning Generated when Compiling Examples 10.3 and 10.4

Figure 10-3: Results of Running Example 10.4

Coding for Comparison Operations Chapter 10: Coding For Collections

156 © 2012 Rick Miller — All Rights Reserved C# Collections: A Detailed Presentation

Coding for Comparison Operations

If you intend to insert user-defined objects into a collection and sort them you’ll need to define how, exactly, one
object is to be compared with another in terms of being less than, equal to, or greater than another object. You do this
by implementing either the IComparable or the IComparable<T> interfaces, or both if you plan to use user-defined
objects in both non-generic and generic collections. In this section I explain the concept of natural ordering and show
you how to implement each of these interfaces.

Natural Ordering
When you implement the IComparable and IComparable<T> interfaces in a class or structure you are specifying

what is referred to as a natural ordering for that particular type. It’s called natural ordering because you have
instructed the type how to behave when compared with other objects of the same (or different) type.

Take integers for example. If you examine the .NET documentation for the Int32 structure you’ll see that it
implements both the IComparable and IComparable<T> (as IComparable<int>) interfaces. This allows integers to be
compared with other integers when sorted with the Sort() method defined by the Array class and other collections that
allow elements to be sorted.

IComparable and IComparable<T> Interfaces

The IComparable and IComparable<T> interfaces each declare one method named CompareTo(object other) that
returns an integer, the value of which must reflect the results of the comparison as listed in the rules shown in table
10-3.

Referring to table 10-3 — as the rules state, if the object (represented by the this reference) is less than the
other parameter, the CompareTo() method returns some value less than 0. (The value -1 is fine.) If both objects
being compared are equal it returns 0, and if the other object is greater or null it returns a positive number. (1 is
fine.) Example 10.5 shows how the IComparable and IComparable<T> interfaces can be implemented in the Person
class.

10.5 Person.cs (Implementing IComparable and IComparable<T> Interfaces)
1 using System;
2
3 public class Person : IComparable, IComparable<Person> {
4
5 //enumeration
6 public enum Sex {MALE, FEMALE};
7
8 // private instance fields
9 private String _firstName;
10 private String _middleName;
11 private String _lastName;
12 private Sex _gender;
13 private DateTime _birthday;
14 private Guid _dna;
15
16
17
18 public Person(){}
19

Return Value Returned When...

Less than Zero (-1) This object is less than the other parameter

Zero (0) This object is equal to the other parameter

Greater than Zero (1) This object is greater than the other parameter, or, the
other parameter is null

Table 10-3: Rules For Implementing IComparable.CompareTo() Method

Chapter 10: Coding For Collections Coding for Comparison Operations

C# Collections: A Detailed Presentation © 2012 Rick Miller — All Rights Reserved 157

20 public Person(String firstName, String middleName, String lastName,
21 Sex gender, DateTime birthday, Guid dna){
22 FirstName = firstName;
23 MiddleName = middleName;
24 LastName = lastName;
25 Gender = gender;
26 Birthday = birthday;
27 DNA = dna;
28 }
29
30 public Person(String firstName, String middleName, String lastName,
31 Sex gender, DateTime birthday){
32 FirstName = firstName;
33 MiddleName = middleName;
34 LastName = lastName;
35 Gender = gender;
36 Birthday = birthday;
37 DNA = Guid.NewGuid();
38 }
39
40 public Person(Person p){
41 FirstName = p.FirstName;
42 MiddleName = p.MiddleName;
43 LastName = p.LastName;
44 Gender = p.Gender;
45 Birthday = p.Birthday;
46 DNA = p.DNA;
47 }
48
49 // public properties
50 public String FirstName {
51 get { return _firstName; }
52 set { _firstName = value; }
53 }
54
55 public String MiddleName {
56 get { return _middleName; }
57 set { _middleName = value; }
58 }
59
60 public String LastName {
61 get { return _lastName; }
62 set { _lastName = value; }
63 }
64
65 public Sex Gender {
66 get { return _gender; }
67 set { _gender = value; }
68 }
69
70 public DateTime Birthday {
71 get { return _birthday; }
72 set { _birthday = value; }
73 }
74
75 public Guid DNA {
76 get { return _dna; }
77 set { _dna = value; }
78 }
79
80 public int Age {
81 get {
82 int years = DateTime.Now.Year - _birthday.Year;
83 int adjustment = 0;
84 if(DateTime.Now.Month < _birthday.Month){
85 adjustment = 1;
86 }else if((DateTime.Now.Month == _birthday.Month) && (DateTime.Now.Day < _birthday.Day)){
87 adjustment = 1;
88 }
89 return years - adjustment;
90 }
91 }
92
93 public String FullName {
94 get { return FirstName + " " + MiddleName + " " + LastName; }
95 }
96
97 public String FullNameAndAge {
98 get { return FullName + " " + Age; }
99 }
100

Coding for Comparison Operations Chapter 10: Coding For Collections

158 © 2012 Rick Miller — All Rights Reserved C# Collections: A Detailed Presentation

101 protected String SortableName {
102 get { return LastName + FirstName + MiddleName; }
103 }
104
105 public override String ToString(){
106 return (FullName + " " + Gender + " " + Age + " " + DNA);
107 }
108
109 public override bool Equals(object o){
110 if(o == null) return false;
111 if(typeof(Person) != o.GetType()) return false;
112 return this.ToString().Equals(o.ToString());
113 }
114
115 public override int GetHashCode(){
116 return this.ToString().GetHashCode();
117 }
118
119 public static bool operator ==(Person lhs, Person rhs){
120 return lhs.Equals(rhs);
121 }
122
123 public static bool operator !=(Person lhs, Person rhs){
124 return !(lhs.Equals(rhs));
125 }
126
127 public int CompareTo(object obj){
128 if((obj == null) || (typeof(Person) != obj.GetType())) {
129 throw new ArgumentException("Object is not a Person!");
130 }
131 return this.SortableName.CompareTo(((Person)obj).SortableName);
132 }
133
134 public int CompareTo(Person p){
135 if(p == null){
136 throw new ArgumentException("Cannot compare null objects!");
137 }
138 return this.SortableName.CompareTo(p.SortableName);
139 }
140
141 } // end Person class

Referring to example 10.5 — on line 3 the IComparable and IComparable<T> interfaces are listed as being
implemented by the Person class. Note how the IComparable<T> interface actually reads IComparable<Person>.
The non-generic CompareTo() method begins on line 127. This version of the method corresponds with the ICompa-
rable interface. It takes an object argument and must test it to see if it’s the proper type. If it’s not, or it’s null, it throws
an ArgumentException.

The CompareTo() method on line 134 corresponds to the IComparable<Person> interface. Note that since the
type of parameter has been specified, it’s no longer necessary to explicitly test the incoming object for type confor-
mance, as this is handled by the compiler.

Also important to note here is how I’ve defined natural ordering for Person objects. I’ve chosen to order Person
object’s by last names, first names, and middle names. To help in this effort I have added another property to the Per-
son class named SortableName which concatenates the name fields together for proper sorting.

Example 10.6 demonstrates how an array of Person objects can now be sorted by name.
10.6 MainApp.cs (Sorting and Array of Person Objects with Natural Ordering)

1 using System;
2
3 public class MainApp {
4 public static void Main(){
5 Person p1 = new Person("Rick", "Warren", "Miller", Person.Sex.MALE,
6 new DateTime(1961, 2, 3), Guid.NewGuid());
7 Person p2 = new Person("Steve", "Jacob", "Hester", Person.Sex.MALE,
8 new DateTime(1972, 1, 1), Guid.NewGuid());
9 Person p3 = new Person("Coralie", "Sylvia", "Miller", Person.Sex.FEMALE,
10 new DateTime(1959, 8, 8), Guid.NewGuid());
11 Person p4 = new Person("Katherine", "Sport", "Reid", Person.Sex.FEMALE,
12 new DateTime(1970, 5, 6), Guid.NewGuid());
13 Person p5 = new Person("Kathleen", "KayakKat", "McMamee", Person.Sex.FEMALE,
14 new DateTime(1983, 2, 3), Guid.NewGuid());
15 Person p6 = new Person("Kyle", "Victor", "Miller", Person.Sex.MALE,
16 new DateTime(1986, 10, 15), Guid.NewGuid());
17
18 Person[] people_array = new Person[6];
19 people_array[0] = p1;
20 people_array[1] = p2;

Chapter 10: Coding For Collections Coding for Comparison Operations

C# Collections: A Detailed Presentation © 2012 Rick Miller — All Rights Reserved 159

21 people_array[2] = p3;

22 people_array[3] = p4;

23 people_array[4] = p5;

24 people_array[5] = p6;

25

26 Console.WriteLine("-------- Before Sorting ------------");

27

28 foreach(Person p in people_array){

29 Console.WriteLine(p.LastName + "," + p.FirstName);

30 }

31

32 Array.Sort(people_array);

33

34 Console.WriteLine("-------- After Sorting ------------");

35

36 foreach(Person p in people_array){

37 Console.WriteLine(p.LastName + "," + p.FirstName);

38 }

39 }

40 }

Referring to example 10.6 — the six Person objects created on lines 5 through 16 are used to initialize the six ele-
ments of the people_array on lines 19 through 24. The foreach statement on line 28 prints out the contents of the
array to the console before sorting. The foreach statement on line 36 does the same after the array has been sorted.
The Array.Sort() method called on line 32 expects the elements in the array passed to it as an argument to implement
IComparable. If one or more elements in the array fail to implement IComparable, the Sort() method will throw an
InvalidOperationException. Figure 10-4 shows the results of running this program.

Custom Ordering: Creating Separate Comparer Objects

As you learned in the preceding section, to specify a natural ordering for your user-defined types you must
implement the IComparable and IComparable<T> interfaces. If you want to order objects in a different way, you can
create custom comparers by implementing the IComparer and IComparer<T> interfaces.

IComparer and IComparer<T> Interfaces

The IComparer and IComparer<T> interfaces both declare one method named Compare(). In the case of ICom-
parer the method signature is int Compare(object x, object y) and for IComparer<T> it’s int Compare(T x, T y). The
rules for implementing the Compare() methods are the same ones used to implement the CompareTo() methods dis-
cussed in the previous section.

These methods are easy to implement. In most cases, custom ordering boils down to one particular field within
the user-defined type. For example, if you want to provide a custom ordering of Person objects by age, you would
simply be comparing two integers: one person object’s age against another’s. And since all the built-in .NET types
already implement the IComparable and IComparable<T> interfaces, you can implement the Compare() method in
terms of each object’s CompareTo() method.

Figure 10-4: Results of Running Example 10.6

Coding for Comparison Operations Chapter 10: Coding For Collections

160 © 2012 Rick Miller — All Rights Reserved C# Collections: A Detailed Presentation

An Example: PersonAgeComparer

Example 10.7 gives the code for a class named PersonAgeComparer. The PersonAgeComparer class implements
both the IComparer and IComparer<T> interfaces.

10.7 PersonAgeComparer.cs
1 using System;
2 using System.Collections;
3 using System.Collections.Generic;
4
5 public class PersonAgeComparer : IComparer, IComparer<Person> {
6
7 public int Compare(object x, object y){
8 if((x == null) || (y == null) || (typeof(Person) != x.GetType())
9 || (typeof(Person) != y.GetType())){
10 throw new ArgumentException("Both objects must be of type Person!");
11 }
12
13 return ((Person)x).Age.CompareTo(((Person)y).Age);
14 }
15
16 public int Compare(Person x, Person y){
17 if((x == null) || (y == null)){
18 throw new ArgumentException("Both objects must be of type Person!");
19 }
20
21 return x.Age.CompareTo(y.Age);
22 }
23
24 }

Referring to example 10.7 — the non-generic Compare() method starts on line 7. The if statement on line 8
checks to ensure incoming arguments are valid Person objects. If the arguments fail this test the method throws an
ArgumentException. Line 13 contains the meat of the method: It casts each parameter to type Person and calls the
CompareTo() method via the x parameter passing the y parameter as an argument. Done!

The generic version of the Compare() method on line 16 safely skips the type testing part of the if statement
since the method parameters already specify the type. If the arguments are null it throws an ArgumentException, oth-
erwise, the comparison of the x parameter with the y parameter proceeds without the casting as was necessary in the
non-generic version of the Compare() method.

Example 10.8 demonstrates the use of the PersonAgeComparer class.
10.8 MainApp.cs (Demonstrating Custom Ordering with PersonAgeComparer)

1 using System;
2
3
4 public class MainApp {
5 public static void Main(){
6 Person p1 = new Person("Rick", "Warren", "Miller", Person.Sex.MALE,
7 new DateTime(1961, 2, 3), Guid.NewGuid());
8 Person p2 = new Person("Steve", "Jacob", "Hester", Person.Sex.MALE,
9 new DateTime(1972, 1, 1), Guid.NewGuid());
10 Person p3 = new Person("Coralie", "Sylvia", "Miller", Person.Sex.FEMALE,
11 new DateTime(1974, 8, 8), Guid.NewGuid());
12 Person p4 = new Person("Katherine", "Sport", "Reid", Person.Sex.FEMALE,
13 new DateTime(1970, 5, 6), Guid.NewGuid());
14 Person p5 = new Person("Kathleen", "KayakKat", "McMamee", Person.Sex.FEMALE,
15 new DateTime(1983, 2, 3), Guid.NewGuid());
16 Person p6 = new Person("Kyle", "Victor", "Miller", Person.Sex.MALE,
17 new DateTime(1986, 10, 15), Guid.NewGuid());
18
19 Person[] people_array = new Person[6];
20 people_array[0] = p1;
21 people_array[1] = p2;
22 people_array[2] = p3;
23 people_array[3] = p4;
24 people_array[4] = p5;
25 people_array[5] = p6;
26
27 Console.WriteLine("-------- Before Sorting ------------");
28
29 foreach(Person p in people_array){
30 Console.WriteLine(p.FullNameAndAge);
31 }
32
33 Array.Sort(people_array, new PersonAgeComparer());
34
35 Console.WriteLine("-------- After Sorting ------------");

Chapter 10: Coding For Collections Using Objects as Keys

C# Collections: A Detailed Presentation © 2012 Rick Miller — All Rights Reserved 161

36
37 foreach(Person p in people_array){
38 Console.WriteLine(p.FullNameAndAge);
39 }
40 }
41 }

Referring to example 10.8 — note on line 33 that a PersonAgeComparer object is passed as the second argument
to the Array.Sort() method. If a custom comparer object is supplied to the Array.Sort() method, as is done here, it
orders the elements in the array according to the custom comparer. The result in this case is that the elements are
sorted by age vs. last, first, and middle names. Figure 10-5 shows the results of running this program.

Quick Review

Implement both the IComparable and IComparable<T> interfaces to specify a natural ordering for user-defined
types. Implement the IComparer and IComparer<T> interfaces to create a custom comparer. Custom comparers are
used to specify a custom ordering. You can create as many custom comparers as required.

It’s a good idea to always implement both the generic and non-generic versions of these interfaces. Doing so
ensures your user-defined types will be sortable in generic and non-generic collections.

Using Objects as Keys

In keyed collections, objects are inserted into the collection in key/value pairs. Object’s used as keys must obey
certain rules. This section explains those rules and demonstrates how to create a type suitable for the creation of key
objects.

Rules For Objects Used As Keys

Objects inserted into keyed collections are located within those collections via an operation performed upon their
associated key. In chapter 9 you learned about the Hashtable and Dictionary<T Key, T Value> collections. In these
collections, the value’s location with the hash table is determined by applying a hash function to the key. Before an
object can be used as a key it must adhere to a few rules as listed in table 10-4.

Rule Comment

Key must be immutable Objects used as keys must not change value while they are being used as keys.
Object’s whose state value cannot be changed after they are created are called
immutable objects. Strings are immutable objects, which is why they can be
safely used as keys.

Table 10-4: Rules For Creating Key Classes

Figure 10-5: Results of Running Example 10.8

Using Objects as Keys Chapter 10: Coding For Collections

162 © 2012 Rick Miller — All Rights Reserved C# Collections: A Detailed Presentation

Object Immutability

An immutable object is one whose state cannot be changed after it has been created. Strings are an example of
immutable objects. One simple way to create an immutable type is to make the fields readonly and supply readonly
properties. Object state values are set only through constructor methods. Care must also be taken not to return refer-
ences to contained objects. Example 10.9 demonstrates this strategy.

10.9 MyImmutableType.cs
1 using System;
2
3 public class MyImmutableType {
4 private readonly string _stringVal;
5 private readonly int _intVal;
6
7 public MyImmutableType(string s, int i){
8 _stringVal = s;
9 _intVal = i;
10 }
11
12 public string StringValue {
13 get { return string.Copy(_stringVal); }
14 }
15
16 public int IntVal {
17 get { return _intVal; }
18 }
19
20 public override string ToString(){
21 return _stringVal + " " + _intVal;
22 }
23 }

Referring to example 10.9 — the MyImmutableType class contains two readonly fields: one of type string named
_stringVal and one of type int named _intVal. The constructor supplies the only way to set these field values. The
StringValue and IntValue properties are readonly properties. (i.e., they only supply get operations) Note how the
StringValue property returns a copy of the _stringVal field. Example 10.10 shows the MyImmutableType class in
action, although there’s not much going on!

10.10 MainApp.cs (Demonstrating MyImmutableType)
1 using System;
2
3 public class MainApp {
4 public static void Main(){
5 MyImmutableType mit = new MyImmutableType("An immutable type's state cannot be changed.", 49);
6 Console.WriteLine(mit);
7 }
8 } // end Main

Figure 10-6 shows the results of running this program.

Implement the IEquatable<T> interface The IEquatable<T> interface is used by generic collections to test keys for
equality. It defines one method named Equals().

Override the Object.Equals() method Key objects need to be compared with each other for equality. If you implement
IEquatable<T> you should also override the Object.Equals() method for consis-
tency.

Override the Object.GetHashCode() meth-
od

Key objects, especially when used as keys in Hashtable and Dictionary<T Key,
T Value> collections, must override the GetHashCode() method. You must also
override this method if you override Object.Equals() to ensure consistent equal-
ity behavior.

Implement IComparable and ICompara-
ble<T> interfaces

If you’re going to use the keys in sorted collections, the key objects must be sort-
able. If you don’t implement these interfaces you can specify custom ordering
by providing a custom comparer object.

Rule Comment

Table 10-4: Rules For Creating Key Classes

Chapter 10: Coding For Collections Using Objects as Keys

C# Collections: A Detailed Presentation © 2012 Rick Miller — All Rights Reserved 163

Example: PersonKey Class
Example 10.11 gives an extended key class example in the form of the PersonKey class. The PersonKey class

implements most of the rules listed in table 10-4. Note that if I wanted to use this key class in sorting operations I
would need to implement the IComparable and IComparable<T> interfaces.

10.11 PersonKey.cs
1 using System;
2
3 public class PersonKey : IEquatable<String> {
4
5 private readonly string _keyString = String.Empty;
6
7 public PersonKey(string s){
8 _keyString = s;
9 }
10
11 public bool Equals(string other){
12 return _keyString.Equals(other);
13 }
14
15 public override string ToString(){
16 return String.Copy(_keyString);
17 }
18
19 public override bool Equals(object o){
20 if(o == null) return false;
21 if(typeof(string) != o.GetType()) return false;
22 return this.ToString().Equals(o.ToString());
23 }
24
25 public override int GetHashCode(){
26 return this.ToString().GetHashCode();
27 }
28
29 }

Referring to example 10.11 — the PersonKey class implements the IEquatable<T> interface (as IEquata-
ble<string>). It also overrides the Object.ToString(), Object.Equals() and Object.GetHashCode() methods. It’s also
immutable, as the only way to set the _keyString field value is via the constructor.

Example 10.12 gives a modified version of the Person class that contains a new Key property of type PersonKey.
10.12 Person.cs (With Key Property)

1 using System;
2
3 public class Person : IComparable, IComparable<Person> {
4
5 //enumeration
6 public enum Sex {MALE, FEMALE};
7
8
9 // private instance fields
10 private String _firstName;
11 private String _middleName;
12 private String _lastName;
13 private Sex _gender;
14 private DateTime _birthday;
15 private Guid _dna;
16
17
18
19 public Person(){}
20
21 public Person(String firstName, String middleName, String lastName,

Figure 10-6: Results of Running Example 10.10

Using Objects as Keys Chapter 10: Coding For Collections

164 © 2012 Rick Miller — All Rights Reserved C# Collections: A Detailed Presentation

22 Sex gender, DateTime birthday, Guid dna){
23 FirstName = firstName;
24 MiddleName = middleName;
25 LastName = lastName;
26 Gender = gender;
27 Birthday = birthday;
28 DNA = dna;
29 }
30
31 public Person(String firstName, String middleName, String lastName,
32 Sex gender, DateTime birthday){
33 FirstName = firstName;
34 MiddleName = middleName;
35 LastName = lastName;
36 Gender = gender;
37 Birthday = birthday;
38 DNA = Guid.NewGuid();
39 }
40
41 public Person(Person p){
42 FirstName = p.FirstName;
43 MiddleName = p.MiddleName;
44 LastName = p.LastName;
45 Gender = p.Gender;
46 Birthday = p.Birthday;
47 DNA = p.DNA;
48 }
49
50 // public properties
51 public String FirstName {
52 get { return _firstName; }
53 set { _firstName = value; }
54 }
55
56 public String MiddleName {
57 get { return _middleName; }
58 set { _middleName = value; }
59 }
60
61 public String LastName {
62 get { return _lastName; }
63 set { _lastName = value; }
64 }
65
66 public Sex Gender {
67 get { return _gender; }
68 set { _gender = value; }
69 }
70
71 public DateTime Birthday {
72 get { return _birthday; }
73 set { _birthday = value; }
74 }
75
76 public Guid DNA {
77 get { return _dna; }
78 set { _dna = value; }
79 }
80
81 public int Age {
82 get {
83 int years = DateTime.Now.Year - _birthday.Year;
84 int adjustment = 0;
85 if(DateTime.Now.Month < _birthday.Month){
86 adjustment = 1;
87 }else if((DateTime.Now.Month == _birthday.Month) && (DateTime.Now.Day < _birthday.Day)){
88 adjustment = 1;
89 }
90 return years - adjustment;
91 }
92 }
93
94 public String FullName {
95 get { return FirstName + " " + MiddleName + " " + LastName; }
96 }
97
98 public String FullNameAndAge {
99 get { return FullName + " " + Age; }
100 }
101
102 protected String SortableName {

Chapter 10: Coding For Collections Using Objects as Keys

C# Collections: A Detailed Presentation © 2012 Rick Miller — All Rights Reserved 165

103 get { return LastName + FirstName + MiddleName; }
104 }
105
106 public PersonKey Key {
107 get { return new PersonKey(this.ToString()); }
108 }
109
110 public override String ToString(){
111 return (FullName + " " + Gender + " " + Age + " " + DNA);
112 }
113
114 public override bool Equals(object o){
115 if(o == null) return false;
116 if(typeof(Person) != o.GetType()) return false;
117 return this.ToString().Equals(o.ToString());
118 }
119
120 public override int GetHashCode(){
121 return this.ToString().GetHashCode();
122 }
123
124 public static bool operator ==(Person lhs, Person rhs){
125 return lhs.Equals(rhs);
126 }
127
128 public static bool operator !=(Person lhs, Person rhs){
129 return !(lhs.Equals(rhs));
130 }
131
132 public int CompareTo(object obj){
133 if((obj == null) || (typeof(Person) != obj.GetType())) {
134 throw new ArgumentException("Object is not a Person!");
135 }
136 return this.SortableName.CompareTo(((Person)obj).SortableName);
137 }
138
139 public int CompareTo(Person p){
140 if(p == null){
141 throw new ArgumentException("Cannot compare null objects!");
142 }
143 return this.SortableName.CompareTo(p.SortableName);
144 }
145 } // end Person class

Referring to example 10.12 — the Key property is defined on line 106. Note that a new instance of PersonKey is
returned each time the Key property is accessed. Example 10.13 demonstrates how Person objects can be inserted
into a Dictionary<T Key, T Value> collection with the help of the PersonKey key class.

10.13 MainApp.cs (Demonstrating the use of Person.Key Property with a Dictionary)
1 using System;
2 using System.Collections.Generic;
3
4
5 public class MainApp {
6 public static void Main(){
7 Person p1 = new Person("Rick", "Warren", "Miller", Person.Sex.MALE,
8 new DateTime(1961, 2, 3), Guid.NewGuid());
9 Person p2 = new Person("Steve", "Jacob", "Hester", Person.Sex.MALE,
10 new DateTime(1972, 1, 1), Guid.NewGuid());
11 Person p3 = new Person("Coralie", "Sylvia", "Miller", Person.Sex.FEMALE,
12 new DateTime(1974, 8, 8), Guid.NewGuid());
13 Person p4 = new Person("Katherine", "Sport", "Reid", Person.Sex.FEMALE,
14 new DateTime(1970, 5, 6), Guid.NewGuid());
15 Person p5 = new Person("Kathleen", "KayakKat", "McMamee", Person.Sex.FEMALE,
16 new DateTime(1983, 2, 3), Guid.NewGuid());
17 Person p6 = new Person("Kyle", "Victor", "Miller", Person.Sex.MALE,
18 new DateTime(1986, 10, 15), Guid.NewGuid());
19
20 Dictionary<PersonKey, Person> directory = new Dictionary<PersonKey, Person>();
21 directory.Add(p1.Key, p1);
22 directory.Add(p2.Key, p2);
23 directory.Add(p3.Key, p3);
24 directory.Add(p4.Key, p4);
25 directory.Add(p5.Key, p5);
26 directory.Add(p6.Key, p6);
27
28 foreach(KeyValuePair<PersonKey, Person> kvp in directory){
29 Console.WriteLine("Key: {0} Value: {1}", kvp.Key, kvp.Value.FullName);
30 }
31 }
32 }

Summary Chapter 10: Coding For Collections

166 © 2012 Rick Miller — All Rights Reserved C# Collections: A Detailed Presentation

Referring to example 10.13 — each of the six person objects created on lines 7 through 18 are inserted into the
dictionary using their Key properties. The foreach statement on line 28 iterates over the dictionary collection and
writes the value of each key and its associated value to the console.

Quick Review

If an object is to be used as a key in a collection it must be immutable while it is being used as a key. Immutable
object state value cannot be changed after the object is created. Key objects must also implement the IEquatable<T>
interface and override the Object.Equals() and Object.GetHashCode() methods. Strings make ideal keys because they
implement all the necessary interfaces and are immutable.

Summary

The first step in getting your user-defined types to behave well in collections is to override the Object.Equals()
and Object.GetHashCode() methods. Make sure you adhere to the Object.Equals() method behavior rules. You can
optionally overload the == and != methods as their behavior can be easily implemented in terms of the
Object.Equals() method.

The overridden Object.GetHashCode() method be easily implemented by calling the GetHashCode() method on
the string returned by the object’s overridden ToString() method.

To specify a natural ordering for user-defined types, implement both the IComparable and IComparable<T>
interfaces. To specify a custom ordering, create a custom comparer class by implementing the IComparer and ICom-
parer<T> interfaces. It’s a good idea to always implement both the generic and non-generic versions of these inter-
faces. Doing so ensures your user-defined types will be sortable in generic and non-generic collections.

If an object is to be used as a key in a collection it must be immutable while it is being used as a key. Immutable
object state value cannot be changed after the object is created. Key objects must also implement the IEquatable<T>
interface and override the Object.Equals() and Object.GetHashCode() methods. Strings make ideal keys because they
implement all the necessary interfaces and are immutable.

References

Joshua Bloch. Effective Java™ Programming Language Guide. Addison-Wesley, Boston, MA. ISBN: 0-201-
31005-8.

Microsoft Developer Network (MSDN) .NET Framework 3.0 and3.5 Reference Documentation
[www.msdn.com]

Derek Ashmore. The J2EE Architect’s Handbook: How To Be A Successful Technical Architect For J2EE Appli-
cations. DVT Press, Lombard, IL. ISBN: 0972954899

Figure 10-7: Results of Running Example 10.12

Chapter 10: Coding For Collections Notes

C# Collections: A Detailed Presentation © 2012 Rick Miller — All Rights Reserved 167

Notes

Notes Chapter 10: Coding For Collections

168 © 2012 Rick Miller — All Rights Reserved C# Collections: A Detailed Presentation

	10 Coding For Collections
	Introduction
	Coding for Equality Operations
	Reference Equality vs. Value Equality
	Overriding Object.Equals() and Object.GetHashCode()
	Rules For Overriding The Object.Equals() Method
	Rules For Overriding The Object.GetHashCode() Method
	Bloch’s Hash Code Generation Algorithm
	Ashmore’s Hash Code Generation Algorithm

	An Example: The Person Class
	Overloading the == and != Operators
	Quick Review

	Coding for Comparison Operations
	Natural Ordering
	IComparable and IComparable<T> Interfaces

	Custom Ordering: Creating Separate Comparer Objects
	IComparer and IComparer<T> Interfaces
	An Example: PersonAgeComparer

	Quick Review

	Using Objects as Keys
	Rules For Objects Used As Keys
	Object Immutability
	Example: PersonKey Class
	Quick Review

	Summary
	References
	Notes

