
C# Collections: A Detailed Presentation © 2012 Rick Miller — All Rights Reserved 237

14 Collections And Threads

Learning Objectives
• Understand the requirements for thread synchronization when manipulating collections
• Understand the difference between the ICollection and ICollection<T> interfaces
• Explain the purpose of the SyncRoot and IsSynchronized properties
• Explain how to create a synchronized collection and why it’s not thread safe
• Understand how to synchronize access via the Monitor.Enter() and Monitor.Exit() methods
• State the relationship between the Monitor class and the C# lock keyword
• Employ the C# lock keyword to lock an object for thread synchronization
• State the names of the three synchronized collections in the System.Collections.Generic namespace

Chapter 14

Collections And Threads
Waiting for the Orange Line

C
on

ta
x

T

Introduction Chapter 14: Collections and Threads

238 © 2012 Rick Miller — All Rights Reserved C# Collections: A Detailed Presentation

Introduction

If you intend to use collection classes in a multithreaded environment you’ll need to know how to ensure that
only one thread has access to a collection at any time. This holds especially true if the items within a collection might
be modified and enumerated by multiple threads. Fortunately, coordinating or synchronizing multiple thread access to
a collection is easy to do; unfortunately, with the evolution of the .NET framework, several different thread synchro-
nization strategies exist and are still supported in the framework, which makes it confusing for developers, both nov-
ice and experienced, as to which thread synchronization strategies work and which ones don’t.

In this chapter I will show you how to synchronize multiple thread access to a collection. I will show you how to
use the ICollection’s SyncRoot and IsSynchronized properties as well as the Synchronized() method provided by
some collections that is used to create Synchronized collection instances. I’ll also explain why some collections
implement the ICollection interface, which publishes the SyncRoot and IsSynchronized properties, while other col-
lection’s don’t and how to program around this idiosyncrasy of the .NET collections framework. I will also explain
why the Synchronized() method doesn’t guarantee thread safety when enumerating through the elements of a collec-
tion.

Next I’ll demonstrate the use of the Monitor.Enter() and Monitor.Exit() methods. I’ll show you how to use the
Monitor class in conjunction with a try/catch/finally block to ensure you exit the monitor. Following this I’ll show
you how to use the C# lock keyword to lock access to a collection using a separate lock object.

Some of the material I discuss in this chapter is deprecated in favor of more robust means of thread synchroniza-
tion. I’m referring specifically to the reliance upon the SyncRoot and IsSynchronized properties of the ICollection
interface and the use of synchronized collections created with the Synchronized() method found in some old-school,
non-generic collection types. I present this material so that you better understand what you see when you dive into the
.NET framework documentation and to increase your awareness of what has come before.

Also, I make no attempt to cover all aspects of thread synchronization. Specifically, I will omit coverage of
WaitHandles, Mutexes, and the lightweight synchronization types introduced in .NET 4.0.

When you’ve finished this chapter you will have a clear understanding of how to apply a simple, effective thread
synchronization strategy you can use to ensure thread-safe access to your collection objects. You’ll also have a short
list of simple rules to follow when implementing thread synchronization.

The Need For Thread Synchronization

If all you ever wanted to do was to read from a collection in a single-threaded environment then you could very
well skip this chapter, and so could I, but that’s not why you bought this book, so I’ll keep typing.

Generally speaking, if your code is going to execute in a multi-threaded environment and multiple threads may
execute shared code segments or access shared resources or objects, you’ll want to control and coordinate access to
these critical code sections by employing thread synchronization mechanisms provided by both the .NET framework
and the C# language. However, not all thread synchronization mechanisms work as expected and in fact some are
downright misleading. And, to make matters worse, the .NET framework has evolved and what was once provided
for synchronization for the classes in the Collections namespace has been inconsistently carried forward and applied
to the System.Collections.Generic classes. I’ll talk more about this particular issue in another section titled: SyncRoot,
IsSynchroinzed, and Synchronized(). Right now, I want to show you why thread synchronization is important, espe-
cially when multiple threads are trying to access and perhaps modify a collection’s elements.

When might multiple threads need access to the same collection? The obvious scenario is when one thread is
inserting objects into a collection and another thread is enumerating the collection at the same time. Example 14.1
offers a short program that demonstrates this scenario.

14.1 UnSynchronizedDemo.cs
1 using System;
2 using System.Threading;
3 using System.Collections.Generic;
4
5 public class UnSynchronizedDemo {
6
7 private List<int> _list = new List<int>();

Chapter 14: Collections and Threads The Need For Thread Synchronization

C# Collections: A Detailed Presentation © 2012 Rick Miller — All Rights Reserved 239

8 private Random _random = new Random();
9 private const int ITEM_COUNT = 50;
10
11 public void InserterMethod(){
12 Console.WriteLine(Thread.CurrentThread.Name + " Starting execution...");
13 try {
14 for(int i=0; i<ITEM_COUNT; i++){
15 _list.Add(_random.Next(500));
16 }
17
18 Thread.Sleep(10);
19
20 for(int i=0; i<ITEM_COUNT; i++){
21 _list.Add(_random.Next(500));
22 }
23 }catch(Exception e){
24 Console.WriteLine(e);
25 }
26 Console.WriteLine(Thread.CurrentThread.Name + " Finished execution");
27 }
28
29
30 public void ReaderMethod(){
31 Console.WriteLine(Thread.CurrentThread.Name + " Starting execution");
32
33 try{
34 foreach(int i in _list){
35 Console.Write(i + " ");
36 Thread.Sleep(10);
37 }
38 }catch(Exception e){
39 Console.WriteLine(e);
40 }
41
42 Console.WriteLine(Thread.CurrentThread.Name + " Finished execution");
43 }
44
45 public static void Main(){
46 UnSynchronizedDemo usd = new UnSynchronizedDemo();
47 Thread t1 = new Thread(usd.InserterMethod);
48 Thread t2 = new Thread(usd.ReaderMethod);
49 t1.Name = "Inserter Thread";
50 t2.Name = "Reader Thread";
51 t1.Start();
52 t2.Start();
53 t1.Join();
54 t2.Join();
55 }
56 }

Referring to example 14.1 — the UnSynchronzedDemo class declares and initializes a generic List<int> field
named _list, a Random field named _random, and an integer constant named ITEM_COUNT. It defines two meth-
hods: the first on line 11 named InserterMethod() and the second on line 30 named ReaderMethod(). The Inserter-
Method() steps through the _list with a for statement inserting random values between 0 and 500. It then calls the
Thread.Sleep() method on line 18 to pause for a moment before again inserting values into the _list with a second
for loop.

The ReaderMethod() uses the foreach statement to iterate over the _list elements. As you know by now the
foreach statement accesses a collection’s enumerator.

The Main() method on line 45 creates an instance of the UnSynchronizedDemo class named usd and then creates
two separate threads named t1 and t2. Thread t1 runs the InserterMethod and thread t2 runs the ReaderMethod. On
lines 49 and 50 I name each thread appropriately and then start each thread. The calls to t1.Join() and t2.Join() signal
the Main thread to pause until threads t1 and t2 have finished executing before exiting.

What will happen in this program depends on timing and the amount of items being inserted into the collection
by the Inserter thread t1. It may execute normally or it may throw an exception. If run enough times you’ll get either
result, but mostly you’ll get an exception because the Inserter thread is trying to modify the _list during the enumera-
tion performed by the Reader thread. Figure 14-1 shows the usual result of running this program.

Referring to figure 14-1 — as the console output shows, the Inserter thread starts execution first followed by the
Reader thread, which managed to print two numbers to the console before the Inserter thread again started to insert
numbers into the _list, which caused the exception. To prevent the exception you’ll need to coordinate access to the
collection by using thread synchronization so that only one thread has access to the collection at any time. The fol-
lowing section shows how to use the C# lock keyword to synchronize thread access to a collection.

Using The C# lock Keyword Chapter 14: Collections and Threads

240 © 2012 Rick Miller — All Rights Reserved C# Collections: A Detailed Presentation

Quick Review
The need for thread synchronization arises when multiple threads of execution may access shared resources or

shared code segments, which, if unsynchronized, would destabilize the code or leave the code in an invalid state. The
.NET framework and the C# language provide various thread synchronization primitives and strategies that enable
you to synchronize thread access to critical code segments.

Using The C# lock Keyword

The easiest way to implement thread synchronization is to use the C# lock keyword to obtain what is referred to
as a “lock” on a particular object before entering a critical code section. Example 14.2 demonstrates the use of the
lock keyword.

14.2 SynchronizedWithLockDemo.cs
1 using System;
2 using System.Threading;
3 using System.Collections.Generic;
4
5 public class SynchronizedWithLockDemo {
6 private List<int> _list = new List<int>();
7 private Random _random = new Random();
8 private const int ITEM_COUNT = 50;
9
10 public void InserterMethod(){
11 Console.WriteLine(Thread.CurrentThread.Name + " Starting execution...");
12 Console.WriteLine(Thread.CurrentThread.Name + " Attempting to acquire lock...");
13 lock(_list){
14 Console.WriteLine(Thread.CurrentThread.Name + " Lock acquired");
15 for(int i=0; i<ITEM_COUNT; i++){
16 _list.Add(_random.Next(500));
17 }
18
19 Thread.Sleep(10);
20
21 for(int i=0; i<ITEM_COUNT; i++){
22 _list.Add(_random.Next(500));
23 }
24 }
25 Console.WriteLine(Thread.CurrentThread.Name + " Finished execution");
26 }
27
28 public void ReaderMethod(){
29 Console.WriteLine(Thread.CurrentThread.Name + " Starting execution...");
30 Console.WriteLine(Thread.CurrentThread.Name + " Attempting to acquire lock...");
31 lock(_list){
32 Console.WriteLine(Thread.CurrentThread.Name + " Lock acquired");
33 foreach(int i in _list){
34 Console.Write(i + " ");
35 Thread.Sleep(10);
36 }
37 }
38 Console.WriteLine(Thread.CurrentThread.Name + " Finished execution");
39 }
40
41 public static void Main(){

Figure 14-1: Results of Running Example 14.1

Chapter 14: Collections and Threads Using The C# lock Keyword

C# Collections: A Detailed Presentation © 2012 Rick Miller — All Rights Reserved 241

42 SynchronizedWithLockDemo swld = new SynchronizedWithLockDemo();

43 Thread t1 = new Thread(swld.InserterMethod);

44 Thread t2 = new Thread(swld.ReaderMethod);

45 t1.Name = "Inserter Thread";

46 t2.Name = "Reader Thread";

47 t1.Start();

48 t2.Start();

49 t1.Join();

50 t2.Join();

51 }

52 }

Referring to example 14.2 — this program is the same as example 14.1 except that in the InserterMethod() and
the ReaderMethod() access to the _list collection is synchronized with the use of the lock keyword. I’ve also added
several more diagnostic console output statements to help trace the program’s execution.

Note how the lock keyword is used. The lock keyword takes a reference to an object as an argument. The crit-
ical section is denoted by the opening and closing braces. In this example I’m using the _list itself as the lock object,
which is perfectly fine.

The important thing to note is that all threads you wish to synchronize must lock the same object. I put this
last phrase in bold because it’s important. It does no good to try to synchronize access using different lock objects, as
you’ll see later when I show you how thread synchronization works under the covers.

Figure 14-2 shows the results of running this program.

Referring to figure 14-2 — when the Inserter thread starts execution it immediately attempts to obtain the lock on
the _list object. When the lock is acquired, the Inserter method enters the critical section. The Reader thread then
starts execution and attempts to acquire the lock, but since the lock is held by the Inserter thread, it must wait until the
Inserter thread completes and releases the lock on the _list object.

Note that in this example each thread runs to completion once it acquires the lock. So long a the Inserter thread
runs first there will be items in the collection to enumerate. On the other hand, if the Reader thread manages to run
first the _list would be empty. Again, this all depends on thread timing. Generally speaking, since I call t1.Start() first,
the t1 thread is first to begin execution. Later I’ll show you how to implement fine-grained thread control to handle
the case where the Reader thread runs first and finds the _list empty. Before I do that I want to show you how thread
synchronization works under the covers in the .NET runtime.

Quick Review

The C# lock keyword is the easiest way to protect critical code segments. Use the C# lock keyword to obtain
a “lock” on an object. Place the code you want to protect within the body of the lock statement. Recommendation:
Lock on private field objects only. Do not lock on the current instance (i.e. this). Warning: Do not lock on value
objects. Value object are boxed into objects when used in a lock statement. Thus, multiple threads “locking” on the
same value object will actually be acquiring locks on different objects.

Figure 14-2: Results of Running Example 14.2

Anatomy Of .NET Thread Synchronization Chapter 14: Collections and Threads

242 © 2012 Rick Miller — All Rights Reserved C# Collections: A Detailed Presentation

Anatomy Of .NET Thread Synchronization

Figure 14-3 shows a diagram of how thread synchronization is implemented in the .NET runtime. I drew this dia-
gram after studying the Microsoft Shared Source Common Language Infrastructure 2.0 (SSCLI 2.0) code which you
can download from Microsoft.com. (See the References section.) The SSCLI virtual machine (VM) is implemented
in C++. The four files of particular interest include: Object.h, Object.cpp, SyncBlock.h, and SyncBlock.cpp.

Referring to figure 14-3 — the key players in thread synchronization include Object, ObjHeader, SyncTable,
SyncTableEntry, SyncBlock, AwareLock, and ThreadQueue. Moving from left to right: an object reference points to
an object instance within the virtual machine. This object instance is represented by the Object class as defined in the
C++ virtual machine code. An object consists of a method table pointer and field data. At a negative offset from the
beginning of the object is an object header (ObjHeader) which contains a data structure that, among other things, con-
tains an index value to an entry into a SyncTable, which is an array of SyncTableEntry objects. For most objects in
your program, the value of the SyncBlock index will be 0, meaning the object is not being used as a lock for a partic-
ular thread. When your code obtains a lock on a particular object, an unused SyncBlock is fetched from a SyncBlock-
Cache (not shown in the diagram) and a SyncTableEntry is created in the SyncTable. The SyncTableEntry object has
an object pointer that points back to the lock object, and a SyncBlock pointer that points to the SycnBlock. The Syn-
cBlock object has a pointer to an AwareLock object and to a ThreadQueue which maintains a list of threads waiting to
acquire the lock on the lock object. The bulk of the work is performed by the AwareLock class. Later, when you see
how to use the Monitor.Enter() and Monitor.Exit() methods, it’s the AwareLock object behind the scenes in the virtual
machine that implements these methods as defined by the .NET System.Threading.Monitor class.

Old School — SyncRoot, IsSynchronized, and Synchronized()

The initial release of the .NET framework offered a confusing selection of properties and methods that gave
developers a false sense of security with regards to thread synchronization. The ICollection interface provided the
SyncRoot property which returns an object that can be used for thread synchronization. Most collections within the
System.Collections namespace provide a Synchronized() method which is used to create a Synchronized collection
instance. The IsSynchronized property simply returns true or false indicating whether or not a collection is synchro-
nized.

The problem with creating and using a synchronized collection is that while access to certain parts of a collec-
tion’s methods were synchronized, enumerating the collection’s elements was not a thread safe operation. Studying
the evolution of the .NET framework, which includes observing how developers learned to use .NET framework over
the years since its release, leads me to conclude that it was developer confusion with regards to how to properly
implement effective thread synchronization using the tools at hand, vs. any problems with the .NET thread synchroni-
zation tools per se.

Figure 14-3: Thread Synchronization in the .NET Virtual Machine

Chapter 14: Collections and Threads Old School — SyncRoot, IsSynchronized, and Synchronized()

C# Collections: A Detailed Presentation © 2012 Rick Miller — All Rights Reserved 243

Example 14.3 shows an example of a synchronized ArrayList created with the Array.Synchronized() method.
14.3 OldSchoolDemo.cs

1 using System;
2 using System.Threading;
3 using System.Collections;
4
5 public class OldSchoolDemo {
6 private ArrayList _list = new ArrayList();
7 private ArrayList _synchronizedList = null;
8 private const int ITEM_COUNT = 100;
9 private Random _random = new Random();
10
11 public OldSchoolDemo(){
12 _synchronizedList = ArrayList.Synchronized(_list);
13
14 }
15
16 public void PrintListStats(){
17 Console.WriteLine("The _list field IsSynchronized value: "
18 + _list.IsSynchronized);
19 Console.WriteLine("The _synchronizedList field IsSynchronized value: "
20 + _synchronizedList.IsSynchronized);
21 }
22
23 public void InserterMethod(){
24 Console.WriteLine(Thread.CurrentThread.Name + " Starting execution...");
25 for(int i=0; i<ITEM_COUNT; i++){
26 _synchronizedList.Add(_random.Next(500));
27 }
28
29 Thread.Sleep(10);
30
31 for(int i=0; i<ITEM_COUNT; i++){
32 _synchronizedList.Add(_random.Next(500));
33 }
34 Console.WriteLine(Thread.CurrentThread.Name + " Finished execution...");
35 }
36
37
38 private void ReaderMethod(){
39 Console.WriteLine(Thread.CurrentThread.Name + " Starting execution...");
40 try{
41 foreach(int i in _synchronizedList){
42 Console.Write(i + " ");
43 }
44 }catch(Exception e){
45 Console.WriteLine(e);
46 }
47 Console.WriteLine(Thread.CurrentThread.Name + " Finsihed execution...");
48 }
49
50 public static void Main(){
51 OldSchoolDemo osd = new OldSchoolDemo();
52 osd.PrintListStats();
53 Thread t1 = new Thread(osd.InserterMethod);
54 Thread t2 = new Thread(osd.ReaderMethod);
55 t1.Name = "Inserter thread";
56 t2.Name = "Reader thread";
57 t1.Start();
58 t2.Start();
59 t1.Join();
60 t2.Join();
61 }
62 }

Referring to example 14.3 — the OldSchoolDemo class declares and initializes an ArrayList named _list, an
integer constant named ITEM_COUNT, and a Random object named _random. The initialization of _synchro-
nizedList is performed in the body of the constructor. Note how the static method Array.Synchronized() is used to
create the synchronized version of the array list. On line 16 the PrintListStats() method prints to the console the
results obtained via calls to the IsSynchronized property on the _list and _synchronizedList.

The InserterMethod inserts random integers between the values 0 and 500 into the _list. It then sleeps for 10 mil-
liseconds and then inserts more integers into the _list. The ReaderMethod uses the foreach method to print the list
items to the console.

The Main() method creates two threads named t1 and t2. Thread t1 runs the InserterMethod and thread t2 runs
the ReaderMethod(). Thread t1 is named Inserter and thread t2 is named Reader.

Figure 14-4 shows the results of running this program.

Old School — SyncRoot, IsSynchronized, and Synchronized() Chapter 14: Collections and Threads

244 © 2012 Rick Miller — All Rights Reserved C# Collections: A Detailed Presentation

Referring to figure 14-4 — notice that the Inserter thread did not finish execution before the Reader thread
started to run. It was by pure luck of timing that an exception was not thrown. Figure 14-5 shows the usual result of
running this program repeatedly.

Even though the list is synchronized, you must still take steps to coordinate multithread access to it when enu-
merating its elements. Example 14.4 shows how the lock keyword could be used in conjunction with the _synchro-
nizedList.SyncRoot property.

14.4 OldSchoolSyncRootDemo.cs
1 using System;
2 using System.Threading;
3 using System.Collections;
4
5 public class OldSchoolSyncRootDemo {
6 private ArrayList _list = new ArrayList();
7 private ArrayList _synchronizedList = null;
8 private const int ITEM_COUNT = 50;
9 private Random _random = new Random();
10
11 public OldSchoolSyncRootDemo(){
12 _synchronizedList = ArrayList.Synchronized(_list);
13
14 }
15
16 public void PrintListStats(){
17 Console.WriteLine("The _list field IsSynchronized value: "
18 + _list.IsSynchronized);
19 Console.WriteLine("The _synchronizedList field IsSynchronized value: "
20 + _synchronizedList.IsSynchronized);
21 }
22
23 public void InserterMethod(){
24 Console.WriteLine(Thread.CurrentThread.Name + " Starting execution...");
25 Console.WriteLine(Thread.CurrentThread.Name + " Attempting to acquire the lock...");
26 lock(_synchronizedList.SyncRoot){
27 Console.WriteLine(Thread.CurrentThread.Name + " Lock acquired...");
28 for(int i=0; i<ITEM_COUNT; i++){
29 _synchronizedList.Add(_random.Next(500));
30 }
31
32 Console.WriteLine(Thread.CurrentThread.Name + " Sleeping...");
33 Thread.Sleep(10);
34
35 for(int i=0; i<ITEM_COUNT; i++){
36 _synchronizedList.Add(_random.Next(500));
37 }
38 }
39 Console.WriteLine(Thread.CurrentThread.Name + " Finished execution...");
40 }
41
42
43 private void ReaderMethod(){

Figure 14-4: One Possible Result of Running Example 14.3

Figure 14-5: The Usual Result of Running Example 14.3

Chapter 14: Collections and Threads Old School — SyncRoot, IsSynchronized, and Synchronized()

C# Collections: A Detailed Presentation © 2012 Rick Miller — All Rights Reserved 245

44 Console.WriteLine(Thread.CurrentThread.Name + " Starting execution...");
45 lock(_synchronizedList.SyncRoot){
46 try{
47 foreach(int i in _synchronizedList){
48 Console.Write(i + " ");
49 Console.Write(Thread.CurrentThread.Name + " Sleeping...");
50 Thread.Sleep(10);
51 }
52 }catch(Exception e){
53 Console.WriteLine(e);
54 }
55 }
56 Console.WriteLine(Thread.CurrentThread.Name + " Finished execution...");
57 }
58
59 public static void Main(){
60 OldSchoolSyncRootDemo ossrd = new OldSchoolSyncRootDemo();
61 ossrd.PrintListStats();
62 Thread t1 = new Thread(ossrd.InserterMethod);
63 Thread t2 = new Thread(ossrd.ReaderMethod);
64 t1.Name = "Inserter thread";
65 t2.Name = "Reader thread";
66 t1.Start();
67 t2.Start();
68 t1.Join();
69 t2.Join();
70 }
71 }

Referring to example 14.4 — this code is similar to example 14.3 except now the lock keyword is being used to
protect the critical section of the InserterMethod() and the ReaderMethod(). (Lines 26 and 45 respectively.) Note that
in this case I’m locking on the _synchronizedList.SyncRoot property which is more than likely just a reference to the
_synchronizedList object itself behind the scenes. Figure 14-6 shows one possible result of running this program.

Again, depending on when thread t1 actually starts running, thread t2 may start to run before t1 acquires the lock
and gets a chance to insert any items into the _synchronizedList. Figure 14-7 shows another possible result of running
example 14.4.

Quick Review
Collection classes in the System.Collections namespace come equipped with the SyncRoot and IsSynchronized

properties. These old-school collections also provided a static Synchronized() method which is used to transform an
ordinary collection into a synchronized collection. And while individual collection methods may be synchronized, it
was still not thread safe to enumerate over a collection. While you can still write good-quality thread-safe code using
the SyncRoot property along with the lock keyword or the Monitor class, the use of these old-school properties,

Figure 14-6: One Possible Result of Running Example 14.4

Monitor.Enter() and Monitor.Exit() Chapter 14: Collections and Threads

246 © 2012 Rick Miller — All Rights Reserved C# Collections: A Detailed Presentation

along with the Synchronized() method is best avoided. Besides, unless you find yourself maintaining legacy C# code,
you should be favoring the use of the generic collection classes.

Monitor.Enter() and Monitor.Exit()

The Monitor class can be used to synchronize thread access to critical code sections just like the C# lock key-
word. In fact, the C# lock keyword is translated into Monitor.Enter() and Monitor.Exit() method calls by the com-
piler. Example 14.5 lists the decompiled intermediate language for the InserterMethod() of example 14.2.

14.5 Decompiled InserterMethod from Example 14.2
1 .method public hidebysig instance void InserterMethod() cil managed
2 {
3 // Code size 247 (0xf7)
4 .maxstack 3
5 .locals init (int32 V_0,
6 bool V_1,
7 class [mscorlib]System.Collections.Generic.List`1<int32> V_2,
8 bool V_3)
9 IL_0000: nop
10 IL_0001: call class [mscorlib]System.Threading.Thread
[mscorlib]System.Threading.Thread::get_CurrentThread()
11 IL_0006: callvirt instance string [mscorlib]System.Threading.Thread::get_Name()
12 IL_000b: ldstr " Starting execution..."
13 IL_0010: call string [mscorlib]System.String::Concat(string,
14 string)
15 IL_0015: call void [mscorlib]System.Console::WriteLine(string)
16 IL_001a: nop
17 IL_001b: call class [mscorlib]System.Threading.Thread
[mscorlib]System.Threading.Thread::get_CurrentThread()
18 IL_0020: callvirt instance string [mscorlib]System.Threading.Thread::get_Name()
19 IL_0025: ldstr " Attempting to acquire lock..."
20 IL_002a: call string [mscorlib]System.String::Concat(string,
21 string)
22 IL_002f: call void [mscorlib]System.Console::WriteLine(string)
23 IL_0034: nop
24 IL_0035: ldc.i4.0
25 IL_0036: stloc.1
26 .try
27 {
28 IL_0037: nop
29 IL_0038: ldarg.0
30 IL_0039: ldfld class [mscorlib]System.Collections.Generic.List`1<int32>
SynchronizedWithLockDemo::_list
31 IL_003e: dup
32 IL_003f: stloc.2
33 IL_0040: ldloca.s V_1
34 IL_0042: call void [mscorlib]System.Threading.Monitor::Enter(object,
35 bool&)
36 IL_0047: nop
37 IL_0048: call class [mscorlib]System.Threading.Thread
[mscorlib]System.Threading.Thread::get_CurrentThread()
38 IL_004d: callvirt instance string [mscorlib]System.Threading.Thread::get_Name()
39 IL_0052: ldstr " Lock acquired"
40 IL_0057: call string [mscorlib]System.String::Concat(string,
41 string)
42 IL_005c: call void [mscorlib]System.Console::WriteLine(string)
43 IL_0061: nop
44 IL_0062: ldc.i4.0

Figure 14-7: Another Possible Result from Running Example 14.4

Chapter 14: Collections and Threads Monitor.Enter() and Monitor.Exit()

C# Collections: A Detailed Presentation © 2012 Rick Miller — All Rights Reserved 247

45 IL_0063: stloc.0
46 IL_0064: br.s IL_0088
47 IL_0066: nop
48 IL_0067: ldarg.0
49 IL_0068: ldfld class [mscorlib]System.Collections.Generic.List`1<int32>
SynchronizedWithLockDemo::_list
50 IL_006d: ldarg.0
51 IL_006e: ldfld class [mscorlib]System.Random SynchronizedWithLockDemo::_random
52 IL_0073: ldc.i4 0x1f4
53 IL_0078: callvirt instance int32 [mscorlib]System.Random::Next(int32)
54 IL_007d: callvirt instance void class [mscorlib]System.Collections.Generic.List`1<int32>::Add(!0)
55 IL_0082: nop
56 IL_0083: nop
57 IL_0084: ldloc.0
58 IL_0085: ldc.i4.1
59 IL_0086: add
60 IL_0087: stloc.0
61 IL_0088: ldloc.0
62 IL_0089: ldc.i4.s 50
63 IL_008b: clt
64 IL_008d: stloc.3
65 IL_008e: ldloc.3
66 IL_008f: brtrue.s IL_0066
67 IL_0091: ldc.i4.s 10
68 IL_0093: call void [mscorlib]System.Threading.Thread::Sleep(int32)
69 IL_0098: nop
70 IL_0099: ldc.i4.0
71 IL_009a: stloc.0
72 IL_009b: br.s IL_00bf
73 IL_009d: nop
74 IL_009e: ldarg.0
75 IL_009f: ldfld class [mscorlib]System.Collections.Generic.List`1<int32>
SynchronizedWithLockDemo::_list
76 IL_00a4: ldarg.0
77 IL_00a5: ldfld class [mscorlib]System.Random SynchronizedWithLockDemo::_random
78 IL_00aa: ldc.i4 0x1f4
79 IL_00af: callvirt instance int32 [mscorlib]System.Random::Next(int32)
80 IL_00b4: callvirt instance void class [mscorlib]System.Collections.Generic.List`1<int32>::Add(!0)
81 IL_00b9: nop
82 IL_00ba: nop
83 IL_00bb: ldloc.0
84 IL_00bc: ldc.i4.1
85 IL_00bd: add
86 IL_00be: stloc.0
87 IL_00bf: ldloc.0
88 IL_00c0: ldc.i4.s 50
89 IL_00c2: clt
90 IL_00c4: stloc.3
91 IL_00c5: ldloc.3
92 IL_00c6: brtrue.s IL_009d
93 IL_00c8: nop
94 IL_00c9: leave.s IL_00db
95 } // end .try
96 finally
97 {
98 IL_00cb: ldloc.1
99 IL_00cc: ldc.i4.0
100 IL_00cd: ceq
101 IL_00cf: stloc.3
102 IL_00d0: ldloc.3
103 IL_00d1: brtrue.s IL_00da
104 IL_00d3: ldloc.2
105 IL_00d4: call void [mscorlib]System.Threading.Monitor::Exit(object)
106 IL_00d9: nop
107 IL_00da: endfinally
108 } // end handler
109 IL_00db: nop
110 IL_00dc: call class [mscorlib]System.Threading.Thread
[mscorlib]System.Threading.Thread::get_CurrentThread()
111 IL_00e1: callvirt instance string [mscorlib]System.Threading.Thread::get_Name()
112 IL_00e6: ldstr " Finished execution"
113 IL_00eb: call string [mscorlib]System.String::Concat(string,
114 string)
115 IL_00f0: call void [mscorlib]System.Console::WriteLine(string)
116 IL_00f5: nop
117 IL_00f6: ret
118 } // end of method SynchronizedWithLockDemo::InserterMethod

Monitor.Enter() and Monitor.Exit() Chapter 14: Collections and Threads

248 © 2012 Rick Miller — All Rights Reserved C# Collections: A Detailed Presentation

Referring to example 14.5 — the InserterMethod() in example 14.2 used the C# lock keyword to synchronize
thread access to its critical section. Line 34 shows how the actual call is made to the Monitor.Enter() and later, on line
105 to Monitor.Exit().

Using Monitor.Enter() and Monitor.Exit()
While the C# lock keyword makes thread synchronization easy, the use of the Monitor class demands you pay

more attention to what you’re doing. You must be sure to call Monitor.Exit() for each call to Monitor.Enter(). The
way to ensure this happens is to use the Monitor.Enter() and Monitor.Exit() methods in conjunction with a try/
catch/finally block. Example 14.6 demonstrates the use of Monitor.Enter() and Monitor.Exit().

14.6 MonitorDemo.cs
1 using System;
2 using System.Threading;
3 using System.Collections.Generic;
4
5 public class MonitorDemo {
6
7 private List<int> _list = new List<int>();
8 private Random _random = new Random();
9 private const int ITEM_COUNT = 50;
10
11 public void InserterMethod(){
12 Console.WriteLine(Thread.CurrentThread.Name + " Starting execution");
13 Console.WriteLine(Thread.CurrentThread.Name + " Attempting to acquire lock...");
14 Monitor.Enter(_list);
15 Console.WriteLine(Thread.CurrentThread.Name + " Lock acquired");
16 try{
17 for(int i=0; i<ITEM_COUNT; i++){
18 _list.Add(_random.Next(500));
19 }
20
21 Console.WriteLine(Thread.CurrentThread.Name + " Sleeping...");
22 Thread.Sleep(10);
23
24 for(int i=0; i<ITEM_COUNT; i++){
25 _list.Add(_random.Next(500));
26 }
27 }catch(Exception e){
28 Console.WriteLine(e);
29 }finally{
30 Monitor.Exit(_list);
31 Console.WriteLine(Thread.CurrentThread.Name + " Lock relinquished");
32 }
33 Console.WriteLine(Thread.CurrentThread.Name + " Finished execution");
34 }
35
36 public void ReaderMethod(){
37 Console.WriteLine(Thread.CurrentThread.Name + " Starting execution");
38 Console.WriteLine(Thread.CurrentThread.Name + " Attempting to acquire lock...");
39 Monitor.Enter(_list);
40 Console.WriteLine(Thread.CurrentThread.Name + " Lock acquired");
41 try{
42 foreach(int i in _list){
43 Console.Write(i + " ");
44 Console.Write(Thread.CurrentThread.Name + " Sleeping...");
45 Thread.Sleep(10);
46 }
47 }catch(Exception e){
48 Console.WriteLine(e);
49 }finally{
50 Monitor.Exit(_list);
51 Console.WriteLine(Thread.CurrentThread.Name + " Lock relinquished");
52 }
53 Console.WriteLine(Thread.CurrentThread.Name + " Finished execution");
54 }
55
56
57 public static void Main(){
58 MonitorDemo md = new MonitorDemo();
59 Thread t1 = new Thread(md.InserterMethod);
60 Thread t2 = new Thread(md.ReaderMethod);
61 t1.Name = "Inserter Thread";
62 t2.Name = "Reader Thread";
63 t1.Start();
64 t2.Start();

Chapter 14: Collections and Threads Monitor.Enter() and Monitor.Exit()

C# Collections: A Detailed Presentation © 2012 Rick Miller — All Rights Reserved 249

65 t1.Join();
66 t2.Join();
67 }
68 }

Referring to example 14.6 — this program is similar to example 14.2 only the critical section in the Inserter-
Method() and ReaderMethod() is protected with the help of Monitor.Enter() and Monitor.Exit(). Note that a reference
to the lock object is passed to both the Monitor.Enter() and Monitor.Exit() methods. (e.g., Monitor.Enter(_list) and
Monitor.Exit(_list))

Let’s take a closer look at the use of Monitor.Enter() and Monitor.Exit() in the body of the InserterMethod(). The
call to Monitor.Enter(_list) is made on line 14. The Monitor.Enter() method blocks until a lock is obtained. This
effectively stops execution of the current thread until the thread that owns the lock on _list, which in this example
would be the ReaderMethod(), releases its lock on _list. Note too that the call to Monitor.Enter() marks the beginning
of the critical section. Figure 14-8 shows the results of running this program.

Using Overloaded Monitor.Enter() Method
The single-argument version of the Monitor.Enter() method is obsolete as of .NET 4.0 and it’s recommended that

going forward you use the overloaded version of the method which takes two arguments: a reference to a lock object
and a boolean ref variable that is set to true if the lock is acquired. The use of the new overloaded Monitor.Enter()
method comes with a new recommended usage structure as well. Example 14.7 demonstrates the use of the over-
loaded Monitor.Enter() method. This example also demonstrates the use of the Monitor.Wait() and Monitor.Pulse()
methods.

14.7 MonitorLockTakenDemo.cs
1 using System;
2 using System.Threading;
3 using System.Collections.Generic;
4
5 public class MonitorLockTakenDemo {
6
7 private List<int> _list = new List<int>();
8 private Random _random = new Random();
9 private const int ITEM_COUNT = 50;
10
11
12 public void InserterMethod(){
13 Console.WriteLine(Thread.CurrentThread.Name + " Starting execution...");
14 bool lockTaken = false;
15 try{
16 Console.WriteLine(Thread.CurrentThread.Name + " Attempting to acquire lock...");

Figure 14-8: Results of Running Example 14.6

Monitor.Enter() and Monitor.Exit() Chapter 14: Collections and Threads

250 © 2012 Rick Miller — All Rights Reserved C# Collections: A Detailed Presentation

17 Monitor.Enter(_list, ref lockTaken);
18 if(lockTaken){
19 Console.WriteLine(Thread.CurrentThread.Name + " Lock Acquired");
20 for(int i=0; i<ITEM_COUNT; i++){
21 _list.Add(_random.Next(500));
22 }
23
24 Console.WriteLine(Thread.CurrentThread.Name + " Sleeping");
25 Thread.Sleep(10);
26 Console.WriteLine(Thread.CurrentThread.Name + " Pulse waiting threads...");
27 Monitor.Pulse(_list);
28
29 for(int i=0; i<ITEM_COUNT; i++){
30 _list.Add(_random.Next(500));
31 }
32 }
33 }catch(Exception e){
34 Console.WriteLine(e);
35 }finally{
36 if(lockTaken){
37 Monitor.Exit(_list);
38 Console.WriteLine(Thread.CurrentThread.Name + " Lock relinquished");
39 }
40 }
41 Console.WriteLine(Thread.CurrentThread.Name + " Finished execution");
42 }
43
44 public void ReaderMethod(){
45 Console.WriteLine(Thread.CurrentThread.Name + " Starting execution...");
46 bool lockTaken = false;
47 try{
48 while(!lockTaken){
49 Console.WriteLine(Thread.CurrentThread.Name + " Attempting to acquire lock...");
50 Monitor.Enter(_list, ref lockTaken);
51 if(lockTaken){
52 Console.WriteLine(Thread.CurrentThread.Name + " Lock Acquired");
53 if(_list.Count == 0){
54 Console.WriteLine(Thread.CurrentThread.Name + " List is currently empty. Releasing the lock.");
55 Monitor.Wait(_list);
56 }
57 foreach(int i in _list){
58 Console.Write(i + " ");
59 Console.Write(Thread.CurrentThread.Name + " Sleeping ");
60 Thread.Sleep(10);
61 }
62 }
63 }
64 }catch(Exception e){
65 Console.WriteLine(e);
66 }finally{
67 if(lockTaken){
68 Monitor.Exit(_list);
69 Console.WriteLine(Thread.CurrentThread.Name + " Lock relinquished");
70 }
71 }
72 Console.WriteLine(Thread.CurrentThread.Name + " Finished execution");
73 }
74
75
76 public static void Main(){
77 MonitorLockTakenDemo mltd = new MonitorLockTakenDemo();
78 Thread t1 = new Thread(mltd.InserterMethod);
79 Thread t2 = new Thread(mltd.ReaderMethod);
80 t1.Name = "Inserter Thread";
81 t2.Name = "Reader Thread";
82 t2.Start();
83 Thread.Sleep(10);
84 t1.Start();
85 t1.Join();
86 t2.Join();
87 }
88 }

Referring to example 14.7 — this example, while similar to the previous examples, is structured differently. It
still consists of two primary threads, t1 and t2. Thread t1 is the Inserter thread and t2 is the Reader thread. However,
the Main() method starts t2 first to demonstrate what happens when the ReaderMethod() finds the _list empty.

Referring to the ReaderMethod() which begins on line 44 — a local variable named lockTaken is declared and
initialized to false on line 46. The try block begins on the next line which includes a while loop that checks the
value of lockTaken. If lockTaken is false, a call to the overloaded Monitor.Enter() method is made passing in a refer-

Chapter 14: Collections and Threads Monitor.Enter() and Monitor.Exit()

C# Collections: A Detailed Presentation © 2012 Rick Miller — All Rights Reserved 251

ence to the _list as the first argument and the lockTaken variable passed in using the ref keyword as the second argu-
ment. If a lock already exists on _list, the call to Monitor.Enter() will block until the lock is released and
acquired. When the lock is acquired, the lockTaken variable is set to true and the if statement on line 51 is entered.
The if statement on line 53 checks the value of _list.Count and if it finds the list empty it releases the lock with a call
to Monitor.Wait(_list). The call to Monitor.Wait() blocks until the lock is again acquired. When the lock is reac-
quired, the foreach statement on line 57 executes and enumerates through the collection printing the items to the
console, making a call to Thread.Sleep(10) during each iteration.

Referring to the InserterMethod() on line 12 — a local variable named lockTaken is declared and initialized to
false on line 14. On line 17 the overloaded version of Monitor.Enter() is called. When the lock becomes available, the
InserterMethod() will start to insert integers into the _list. After the first for statement the thread is put to sleep with
a call to Thread.Sleep(10) followed by a call to Monitor.Pulse(_list) which signals threads waiting to obtain a lock on
the _list object to wake up and try to obtain the lock.

In the Main() method which begins on line 76, thread t2 is started first followed by a call to Thread.Sleep(10),
which puts the Main thread to sleep, giving a chance for the t2 thread to get going before calling t1.Start(). Figure 14-
9 shows the results of running this program.

Non-Blocking Monitor.TryEnter()
The Monitor.TryEnter() method is a non-blocking method, which means that regardless of whether or not the

lock is acquired, the method will immediately return. This method is also overloaded and the use of the two-argument
version is recommend going forward. Example 14.8 demonstrates the use of the Monitor.TryEnter() method.

14.8 MonitorTryEnterDemo.cs
1 using System;
2 using System.Threading;
3 using System.Collections.Generic;
4
5 public class MonitorTryEnterDemo {
6
7 private List<int> _list = new List<int>();
8 private Random _random = new Random();
9 private const int ITEM_COUNT = 50;
10
11
12 public void InserterMethod(){
13 Console.WriteLine(Thread.CurrentThread.Name + " Starting execution...");
14 bool lockTaken = false;
15 try{
16 Console.WriteLine(Thread.CurrentThread.Name + " Attempting to acquire lock...");

Figure 14-9: Results of Running Example 14.7

Monitor.Enter() and Monitor.Exit() Chapter 14: Collections and Threads

252 © 2012 Rick Miller — All Rights Reserved C# Collections: A Detailed Presentation

17 Monitor.TryEnter(_list, ref lockTaken);
18 if(lockTaken){
19 Console.WriteLine(Thread.CurrentThread.Name + " Lock Acquired");
20 for(int i=0; i<ITEM_COUNT; i++){
21 _list.Add(_random.Next(500));
22 }
23
24 Console.WriteLine(Thread.CurrentThread.Name + " Sleeping");
25 Thread.Sleep(10);
26 Console.WriteLine(Thread.CurrentThread.Name + " Pulse waiting threads...");
27 Monitor.Pulse(_list);
28
29 for(int i=0; i<ITEM_COUNT; i++){
30 _list.Add(_random.Next(500));
31 }
32 }
33 }catch(Exception e){
34 Console.WriteLine(e);
35 }finally{
36 if(lockTaken){
37 Monitor.Exit(_list);
38 Console.WriteLine(Thread.CurrentThread.Name + " Relinquish the lock");
39 }
40 }
41 Console.WriteLine(Thread.CurrentThread.Name + " Finished execution");
42 }
43
44 public void ReaderMethod(){
45 Console.WriteLine(Thread.CurrentThread.Name + " Starting execution...");
46 bool lockTaken = false;
47 try{
48 while(!lockTaken){
49 Console.WriteLine(Thread.CurrentThread.Name + " Attempting to acquire lock...");
50 Monitor.TryEnter(_list, ref lockTaken);
51 if(lockTaken){
52 Console.WriteLine(Thread.CurrentThread.Name + " Lock Acquired");
53 if(_list.Count == 0){
54 Console.WriteLine(Thread.CurrentThread.Name + " List is currently empty. Releasing the lock.");
55 Monitor.Wait(_list);
56 }
57 foreach(int i in _list){
58 Console.Write(i + " ");
59 Console.Write(Thread.CurrentThread.Name + " Sleeping ");
60 Thread.Sleep(10);
61 }
62 }
63 }
64 }catch(Exception e){
65 Console.WriteLine(e);
66 }finally{
67 if(lockTaken){
68 Monitor.Exit(_list);
69 Console.WriteLine(Thread.CurrentThread.Name + " Relinquish the lock");
70 }
71 }
72 Console.WriteLine(Thread.CurrentThread.Name + " Finished execution");
73 }
74
75
76 public static void Main(){
77 MonitorTryEnterDemo mted = new MonitorTryEnterDemo();
78 Thread t1 = new Thread(mted.InserterMethod);
79 Thread t2 = new Thread(mted.ReaderMethod);
80 t1.Name = "Inserter Thread";
81 t2.Name = "Reader Thread";
82 t2.Start();
83 Thread.Sleep(10);
84 t1.Start();
85 t1.Join();
86 t2.Join();
87 }
88 }

Referring to example 14.8 — this program is similar to the previous example, only the Monitor.TryEnter()
method is used in place of the Monitor.Enter() method. Note that even though I’m starting thread t2 first, there is no
guarantee it will start first. (And this applies to the previous example as well.) Figures 14-10 and 14-11 show two pos-
sible outcomes from running this program repeatedly.

Chapter 14: Collections and Threads Monitor.Enter() and Monitor.Exit()

C# Collections: A Detailed Presentation © 2012 Rick Miller — All Rights Reserved 253

Quick Review
The static Monitor class allows you to implement fine grained thread synchronization. You must be sure that for

each call to Monitor.Enter(_lockObject) is followed by a call to Monitor.Exit(_lockObject). Failure to do so may

Figure 14-10: Results of Running Example 14.8

Figure 14-11: Another Possible Result of Running Example 14.8

Synchronizing Entire Methods Chapter 14: Collections and Threads

254 © 2012 Rick Miller — All Rights Reserved C# Collections: A Detailed Presentation

result in deadlock as waiting threads will never acquire an unreleased lock. The critical code section begins with a
call to Monitor.Enter(). Place the call to Monitor.Exit() in the body of the finally clause of a try/catch/
finally block. The Monitor.Enter() method blocks until it acquires the lock. The Monitor.Enter() method is
overloaded. Favor the use of the two-argument version of Monitor.Enter() going forward.

The Monitor.TryEnter() method is a non-blocking method that returns immediately after it’s called regardless of
whether or not the lock is acquired. You must take this immediate return behavior into account in your code. Use the
overloaded two-argument version of the Monitor.TryEnter() method to test whether or not the lock was acquired.

If a thread needs to give up the lock because it has nothing to do, call the Monitor.Wait() method. To signal wait-
ing threads of a change in lock status, call the Monitor.Pulse() method to move the next waiting thread into the ready
queue.

Synchronizing Entire Methods

If you’re using the C# lock keyword to synchronize significant portions of a method’s body, you can alterna-
tively tag the entire method as being synchronized using the [MethodImpl(MethodImplOptions.Synchronized)] attri-
bute. It’s easy to use. Simply apply the attribute to each method you want to synchronize.

14.9 SynchronizedMethodDemo.cs
1 using System;
2 using System.Threading;
3 using System.Collections.Generic;
4 using System.Runtime.CompilerServices;
5
6 public class SynchronizedMethodDemo {
7
8 private List<int> _list = new List<int>();
9 private Random _random = new Random();
10 private const int ITEM_COUNT = 50;
11
12 [MethodImpl(MethodImplOptions.Synchronized)]
13 public void InserterMethod(){
14 Console.WriteLine(Thread.CurrentThread.Name + " Starting execution...");
15 try {
16 for(int i=0; i<ITEM_COUNT; i++){
17 _list.Add(_random.Next(500));
18 }
19
20 Thread.Sleep(10);
21
22 for(int i=0; i<ITEM_COUNT; i++){
23 _list.Add(_random.Next(500));
24 }
25 }catch(Exception e){
26 Console.WriteLine(e);
27 }
28 Console.WriteLine(Thread.CurrentThread.Name + " Finished execution");
29 }
30
31 [MethodImpl(MethodImplOptions.Synchronized)]
32 public void ReaderMethod(){
33 Console.WriteLine(Thread.CurrentThread.Name + " Starting execution");
34
35 try{
36 foreach(int i in _list){
37 Console.Write(i + " ");
38 Thread.Sleep(10);
39 }
40 }catch(Exception e){
41 Console.WriteLine(e);
42 }
43
44 Console.WriteLine(Thread.CurrentThread.Name + " Finished execution");
45 }
46
47
48 public static void Main(){
49 SynchronizedMethodDemo smd = new SynchronizedMethodDemo();
50 Thread t1 = new Thread(smd.InserterMethod);
51 Thread t2 = new Thread(smd.ReaderMethod);
52 t1.Name = "Inserter Thread";
53 t2.Name = "Reader Thread";

Chapter 14: Collections and Threads Synchronized Collections In The System.Collections.Generic

C# Collections: A Detailed Presentation © 2012 Rick Miller — All Rights Reserved 255

54 t1.Start();

55 t2.Start();

56 t1.Join();

57 t2.Join();

58 }

59 }

Referring to example 14.9 — the [MethodImpl(MethodImplOptions.Synchronized)] attribute is applied to both
thread methods. The use of the [MethodImpl(MethodImplOptions.Synchronized)] attribute is essentially applying the
Monitor.Enter()/Monitor.Exit() thread synchronization mechanism to the entire body of the method, locking on the
instance (i.e., Monitor.Enter(this)/Monitor.Exit(this)). Figure 14-11 shows the results of running this program.

Quick Review

Use the [MethodImpl(MethodImplOptions.Synchronized)] attribute to synchronize entire methods. However, I
recommend using this attribute sparingly. Generally speaking, the finer grained you can make your thread synchroni-
zation scheme, the better off you’ll be.

Synchronized Collections In The System.Collections.Generic Namespace

The System.Collections.Generic namespace contains three “synchronized” collections named: SynchronizedCol-
lection<T>, SynchronizedKeyedCollection<T>, and SynchronizedReadOnlyCollection<T>.

I put quotes around the word “synchronized” because even though these collections start with the word Synchro-
nized, and the .NET documentation describes each class as a “...thread-safe collection...”, the documentation also
says a little further down the page “Any instance members are not guaranteed to be thead safe.”

So, what’s so special about these collections? Well, nothing really, except that each provides a SyncRoot prop-
erty that can be set via the constructor. If the default constructor is used, the SyncRoot property returns a reference to
a default Object instance.

I will leave it to you to explore the use of these synchronized collections as you see fit.

Thread Synchronization — Recommendations For Usage

Thread synchronization in any form is a cooperative affair. When locking on an object, lock on the same object,
otherwise the threads are synchronized on different objects, which means multiple threads might gain access to
shared resources you assumed were protected. Also, lock on private field objects. In the chapter examples I locked on
the list itself (e.g., _list). In a programming team environment you’ll want it understood between all members upon
what object within individual classes to synchronize. You may decide to define a private member object field within a
class for the sole purpose of locking.

Use the C# lock keyword for convenience and if you don’t need finer-grained thread synchronization control.
You can, however, use the lock keyword in conjunction with the Monitor.Wait() and Monitor.Pulse() methods.

The single-argument Monitor.Enter() method is obsolete as of .NET 4.0. Going forward favor the use of the over-
loaded two-argument version which uses a boolean value to indicate whether or not the lock has been taken.

Figure 14-12: Results of Running Example 14.9

Thread Synchronization Usage Table Chapter 14: Collections and Threads

256 © 2012 Rick Miller — All Rights Reserved C# Collections: A Detailed Presentation

Other than that, this chapter has only presented and demonstrated a small sampling of the thread synchronization
mechanisms available to you in the .NET platform. However, you can accomplish a lot with thread synchronization
using the various methods of the Monitor class.

With regards to collections, the important thing to remember is that an exception will be thrown when attempting
to enumerate a collection that is being simultaneously modified by another thread.

Thread Synchronization Usage Table

Table 14-1 lists and summarizes the thread synchronization mechanisms presented in this chapter.

Synchronization
Primitive Category Usage Comments

C# lock keyword locking lock(_lockObject){
//critical section

}

Translates into Moni-
tor.Enter() and Moni-
tor.Exit() calls under
the covers.

Monitor class
Monitor.Enter()
Monitor.Exit()
(basic usage)

locking Monitor.Enter(_lockObject);
try{
//critical code section

}catch(Exception e){
//exception handler code

}finally{
Monitor.Exit(_lockObject);

}

Obsolete as of .NET
4.0. (Source: Compil-
er warning csc version
4.0.21006.1)
If a lock already exists
on _lockObject the
thread blocks until the
lock on _lockObject is
released.

Monitor class
Monitor.Enter()
Monitor.Exit()
(overloaded method
usage with lockTak-
en boolean argu-
ment)

locking bool lockTaken = false;
try{
Monitor.Enter(_lockObject,

ref lockTaken);
if(lockTaken){
// do this if lock taken

}else{
// alternative processing

}
}catch(Exception e){

}finally{
if(lockTaken){
Monitor.Exit(_lockObject);

}
}

Preferred use as of
.NET 4.0. (Source:
Compiler warning csc
version 4.0.21006.1)
If a lock already exists
on _lockObject the
thread blocks until the
lock on _lockObject is
released.
The value of the lock-
Taken argument is set
even if an exception is
thrown when attempt-
ing to acquire the lock
on _lockObject.

Table 14-1: Synchronization Primitives Reference Table

Chapter 14: Collections and Threads Thread Synchronization Usage Table

C# Collections: A Detailed Presentation © 2012 Rick Miller — All Rights Reserved 257

Monitor class
Monitor.Enter()
Monitor.Exit()
(Fine grain control
with Monitor.Wait()
and Monitor.Pulse())

locking public void MethodA(){
bool lockTaken = false;
try{
Monitor.Enter(_lockObject,

ref lockTaken);
if(lockTaken){
// do this if lock taken
// if resource not available
// block until it is...
Monitor.Wait(_lockObject);
// when lock reacquired
// continue processing

}else{
// alternative processing

}
}catch(Exception e){

}finally{
if(lockTaken){
Monitor.Exit(_lockObject);

}
}

} // end MethodA()

public void MethodB(){
bool lockTaken = false;
try{
Monitor.Enter(_lockObject,

ref lockTaken);
if(lockTaken){
// do this if lock taken
// if you want to relinquish
// the lock for a while...
Monitor.Pulse(lockObject);
Thread.Sleep(10);
// to give other threads
// a chance to execute

}else{
// alternative processing

}
}catch(Exception e){

}finally{
if(lockTaken){
Monitor.Exit(_lockObject);

}
}

} // end MethodB()

The thread that cur-
rently owns the lock
on an object calls
Monitor.Wait(object)
to relinquish the lock
and block until it can
reacquire the lock.
Another thread must
make a call to Moni-
tor.Pulse(object) to
signal blocked threads
that are waiting on the
lock object to move to
the ready queue.
Note: This is a coop-
erative scheme. If one
thread calls Wait()
without another
thread’s correspond-
ing call to Pulse() then
deadlock can occur
because one thread is
blocked indefinitely
waiting for the other
thread to signal it to
move to the ready
queue.

Synchronization
Primitive Category Usage Comments

Table 14-1: Synchronization Primitives Reference Table

Thread Synchronization Usage Table Chapter 14: Collections and Threads

258 © 2012 Rick Miller — All Rights Reserved C# Collections: A Detailed Presentation

Monitor class
Monitor.TryEnter()
Monitor.Exit()

locking public void MethodA(){
bool lockTaken = false;
try{
Monitor.TryEnter(_lockObject,

ref lockTaken);
if(lockTaken){
// do this if lock taken
// if resource not available
// block until it is...
Monitor.Wait(_lockObject);
// when lock reacquired
// continue processing

}else{
// alternative processing

}
}catch(Exception e){

}finally{
if(lockTaken){
Monitor.Exit(_lockObject);

}
}

} // end MethodA()

public void MethodB(){
bool lockTaken = false;
try{
Monitor.TryEnter(_lockObject,

ref lockTaken);
if(lockTaken){
// do this if lock taken
// if you want to relinquish
// the lock for a while...
Monitor.Pulse(lockObject);
Thread.Sleep(10);
// to give other threads
// a chance to execute

}else{
// alternative processing

}
}catch(Exception e){

}finally{
if(lockTaken){
Monitor.Exit(_lockObject);

}
}

} // end MethodB()

The Moni-
tor.TryEnter() meth-
od does not block. It
returns immediately

Synchronization
Primitive Category Usage Comments

Table 14-1: Synchronization Primitives Reference Table

Chapter 14: Collections and Threads Summary

C# Collections: A Detailed Presentation © 2012 Rick Miller — All Rights Reserved 259

Summary

The need for thread synchronization arises when multiple threads of execution may access shared resources or
shared code segments, which, if unsynchronized, would destabilize the code or leave the code in an invalid state. The
.NET framework and the C# language provide various thread synchronization primitives and strategies that enable
you to synchronize thread access to critical code segments.

The C# lock keyword is the easiest way to protect critical code segments. Use the C# lock keyword to obtain a
“lock” on an object. Place the code you want to protect within the body of the lock statement. Recommendation:
Lock on private field objects only. Do not lock on the current instance (i.e. this). Warning: Do not lock on value
objects. Value object are boxed into objects when used in a lock statement. Thus, multiple threads “locking” on the
same value object will actually be acquiring locks on different objects.

Collection classes in the System.Collections namespace come equipped with the SyncRoot and IsSynchronized
properties. These old-school collections also provided a static Synchronized() method which is used to transform an
ordinary collection into a synchronized collection. And while individual collection methods may be synchronized, it
was still not thread safe to enumerate over a collection. While you can still write good-quality thread-safe code using
the SyncRoot property along with the lock keyword or the Monitor class, the use of these old-school properties,
along with the Synchronized() method is best avoided. Besides, unless you find yourself maintaining legacy C# code,
you should be favoring the use of the generic collection classes.

The static Monitor class allows you to implement fine grained thread synchronization. You must be sure that for
each call to Monitor.Enter(_lockObject) is followed by a call to Monitor.Exit(_lockObject). Failure to do so may
result in deadlock as waiting threads will never acquire an unreleased lock. The critical code section begins with a
call to Monitor.Enter(). Place the call to Monitor.Exit() in the body of the finally clause of a try/catch/
finally block. The Monitor.Enter() method blocks until it acquires the lock. The Monitor.Enter() method is
overloaded. Favor the use of the two-argument version of Monitor.Enter() going forward.

The Monitor.TryEnter() method is a non-blocking method that returns immediately after its called regardless of
whether or not the lock is acquired. You must take this immediate return behavior into account in your code. Use the
overloaded two-argument version of the Monitor.TryEnter() method to test whether or not the lock was acquired.

If a thread needs to give up the lock because it has nothing to do, call the Monitor.Wait() method. To signal wait-
ing threads of a change in lock status, call the Monitor.Pulse() method to move the next waiting thread into the ready
queue.

Use the [MethodImpl(MethodImplOptions.Synchronized)] attribute to synchronize entire methods. However, I
recommend using this attribute sparingly. Generally speaking, the finer grained you can make your thread synchroni-
zation scheme, the better off you’ll be.

MethodImplOptions.
Synchronized
Attribute

Contextual [MethodImpl(MethodImplOptions.Synchro-
nized)]
public void MethodName(){
// the entire method is synchronized

}

Synchronizes the en-
tire method.

Synchronization
Primitive Category Usage Comments

Table 14-1: Synchronization Primitives Reference Table

Reference Chapter 14: Collections and Threads

260 © 2012 Rick Miller — All Rights Reserved C# Collections: A Detailed Presentation

Reference

Microsoft Developer Network (MSDN) .NET Framework 3.0, 3.5, and 4.0 Reference Documentation
[www.msdn.com]

Microsoft Shared Source Common Language Infrastructure 2.0 Release (SSCLI 2.0)(Codename: Rotor)[http://
www.microsoft.com/downloads/details.aspx?FamilyId=8C09FD61-3F26-4555-AE17-3121B4F51D4D&dis-
playlang=en]

Notes

	14 Collections And Threads
	Introduction
	The Need For Thread Synchronization
	Quick Review

	Using The C# lock Keyword
	Quick Review

	Anatomy Of .NET Thread Synchronization
	Old School — SyncRoot, IsSynchronized, and Synchronized()
	Quick Review

	Monitor.Enter() and Monitor.Exit()
	Using Monitor.Enter() and Monitor.Exit()
	Using Overloaded Monitor.Enter() Method
	Non-Blocking Monitor.TryEnter()
	Quick Review

	Synchronizing Entire Methods
	Quick Review

	Synchronized Collections In The System.Collections.Generic Namespace
	Thread Synchronization — Recommendations For Usage
	Thread Synchronization Usage Table
	Summary
	Reference
	Notes

