
C# Collections: A Detailed Presentation © 2012 Rick Miller — All Rights Reserved 101

7 Stacks

Learning Objectives
• Describe the operation of a stack

• Describe the characteristics of Last In/First Out (LIFO) processing

• List at least four examples of applications that require stacks

• State the type of data structure used to implement the Stack and Stack<T> classes

• Describe what it means to push items onto a stack

• Describe what it means to pop items off of a stack

• Describe the behavior of a pop operation

• List and describe the members of the Stack and Stack<T> classes

• Use the non-generic Stack class in a program

• Use the generic Stack<T> class in a program

• Describe the functionality provided by each interface implemented by the Stack class

• Describe the functionality provided by each interface implemented by the Stack<T> class

Chapter 7

Stacks
Acrobat Man

C
on

ta
x

T

Introduction Chapter 7: Stacks

102 © 2012 Rick Miller — All Rights Reserved C# Collections: A Detailed Presentation

Introduction

Stacks play a critical role in the world of computers. Microprocessors and virtual machines utilize stacks (stack
frames) to implement procedure call chaining; compilers utilizes stacks to parse programming languages; application
software might use a stack to implement an operation undo capability.

In this chapter I will explain how stacks work and show you an example of a custom coded stack so you can see
how they work internally. I’ll then discuss the Stack and Stack<T> classes in detail and present a comprehensive,
non-trivial example showing each of these classes in action.

When you finish this chapter you’ll have a solid understanding of how stacks work and why they are an import-
ant data structure.

Stack Operations

A stack is a special kind of list whose elements or items are stored and accessed in last-in/first-out (LIFO)
sequence. All insertions and deletions to a stack occur at only one end of the list. The business end of a stack goes by
a special name: “Top”.

Characteristic Stack Operations

A stack data structure supports two primary operations: push and pop. A third operation called peek also comes
in handy. These operations are discussed in detail below.

Push

The push operation adds an item to the top of a stack. Subsequent calls to push add newer items to the top of the
stack. The number of items contained in the stack increments by one with each push.

Pop

The pop operation removes the top element from the stack. The last item pushed onto the stack will be the first
item popped off of the stack. (LIFO). The number of items contained in the stack is reduced by one with each pop.

Peek

The peek operation is used to examine the item at the top of the stack in place without removing the item.

An Illustration Will Help

Figure 7-1 shows a representation of a stack and the effects of several push and pop operations.

Figure 7-1: Stack Showing Effects of Push and Pop Operations

Chapter 7: Stacks Stack Operations

C# Collections: A Detailed Presentation © 2012 Rick Miller — All Rights Reserved 103

Referring to figure 7-1 — in this picture I have represented the stack as growing downward with each successive
push operation. That is, the top of the stack grows downward with each successive push operation. After the first push
operation item 1 sits on the top of the stack. After the second push operation item 2 sits on the top of the stack, and
finally, after the third push operation, item 3 sits on top of the stack. Item 3 is the first element removed as a result of
the first pop operation. Item 2 is removed as a result of the second call to pop, which leaves item 1 at the top of the
stack.

What’s Actually Being Pushed and Popped?
That’s a good question, and since this is a book about C# and the .NET Framework, the answer is one of two

things: 1) you’re either going to push a value type object, or 2) a reference type object. It’s important to know the dif-
ference between the two.

Pushing a Value Type Object onto a Stack

A value type object implements value type copy semantics. By this I mean that when one value type is assigned
to another, the value of one is copied to the other. In the .NET Framework, value type objects are structures and are
defined using the struct keyword. If the structure is complex and contains many fields, each field’s value will be
copied from one instance of the value type object to another. This value type copy behavior is implemented automat-
ically by the .NET runtime environment.

Now, when you use the non-generic version of Stack, found in the System.Collections namespace, you will
encounter a performance penalty when pushing value types onto the stack. This performance penalty occurs because
value types must be boxed into objects before being pushed onto the non-generic stack. The end result is that a refer-
ence to the boxed value type is actually pushed onto the stack and the boxed value type object is created on the heap.

If, on the other hand, you use the generic Stack<T> class and specify a value type for ‘T’, the resulting data struc-
ture is optimized for that value type and no boxing or unboxing occurs. However, the performance penalty you incur
with pushing and popping will be commensurate with the complexity of the value type in question.

Pushing a Reference Type Object onto a Stack

The result of pushing a reference type onto a stack is that the stack contains only references to objects in the
heap. What you must be aware of in this situation is the number of active references that point to the same object. For
example, suppose you have a reference R to object O. If you push R onto the stack, the top of the stack now points to
O as well. Two references to O are now active. The danger of having too many active references to one object is that
as long as there is one active reference to an object the .NET runtime garbage collector cannot free up and reclaim the
memory for future use. This advice applies not only to the use of stacks, but to .NET programming in general.

Value Type Boxing in Action

Example 7.1 gives the code for a short program that pushes 25 million integers onto two different types of stacks:
the non-generic System.Collections.Stack, and the generic System.Collections.Generic.Stack<T>,

7.1 PushValueTypeDemo.cs
1 using System;
2 using System.Collections;
3 using System.Collections.Generic;
4
5 public class PushValueTypeDemo {
6 public static void Main(){
7 Stack stack1 = new Stack();
8 Stack<int> stack2 = new Stack<int>();
9 const int COUNT = 25000000;
10
11 DateTime start = DateTime.Now;
12 for(int i = 0; i < COUNT; i++){
13 stack1.Push(i);
14 }
15 TimeSpan elapsed_time = (DateTime.Now - start);
16 Console.WriteLine("Time to push {0:N} integers to non-generic stack: {1}", COUNT, elapsed_time);
17
18 start = DateTime.Now; // reset start time

Stack Operations Chapter 7: Stacks

104 © 2012 Rick Miller — All Rights Reserved C# Collections: A Detailed Presentation

19 for(int i = 0; i < COUNT; i++){
20 stack2.Push(i);
21 }
22 elapsed_time = (DateTime.Now - start);
23 Console.WriteLine("Time to push {0:N} integers to generic stack of integers: {1}",
24 COUNT, elapsed_time);
25 }
26 }

Referring to example 7.1 — on lines 7 and 8 an instance each of Stack and Stack<int> is created followed by the
definition of a constant named COUNT which is initialized to 25,000,000. On line 11, the DateTime.Now property is
used to initialize the variable named start. In the first for loop which beings on the next line, 25 million integers
are pushed onto the non-generic stack. When the for loop exits, the elapsed time is calculated and the results printed
to the console. The same process is then repeated with the generic Stack<int>. Figure 7-2 shows the results of running
this program.

Referring to figure 7-2 — I executed the program four times. In each run the boxing of integer value types as
they are pushed onto the non-generic stack extracted a performance penalty.

Disassembling Example 7.1

If you use the MSIL disassembler to disassemble the executable file created by compiling example 7.1 you’ll get
an output that looks similar to example 7.2. (Note: This is the disassembled Main() method.)

7.2 Disassembled Main() Method from Example 7.1
1 .method public hidebysig static void Main() cil managed
2 {
3 .entrypoint
4 // Code size 177 (0xb1)
5 .maxstack 3
6 .locals init (class [mscorlib]System.Collections.Stack V_0,
7 class [System]System.Collections.Generic.Stack`1<int32> V_1,
8 valuetype [mscorlib]System.DateTime V_2,
9 int32 V_3,
10 valuetype [mscorlib]System.TimeSpan V_4,
11 bool V_5)
12 IL_0000: nop
13 IL_0001: newobj instance void [mscorlib]System.Collections.Stack::.ctor()
14 IL_0006: stloc.0
15 IL_0007: newobj instance void class [System]System.Collections.Generic.Stack`1<int32>::.ctor()
16 IL_000c: stloc.1
17 IL_000d: call valuetype [mscorlib]System.DateTime [mscorlib]System.DateTime::get_Now()
18 IL_0012: stloc.2
19 IL_0013: ldc.i4.0
20 IL_0014: stloc.3
21 IL_0015: br.s IL_002a
22 IL_0017: nop
23 IL_0018: ldloc.0
24 IL_0019: ldloc.3
25 IL_001a: box [mscorlib]System.Int32
26 IL_001f: callvirt instance void [mscorlib]System.Collections.Stack::Push(object)
27 IL_0024: nop
28 IL_0025: nop
29 IL_0026: ldloc.3

Figure 7-2: Results of Running Example 7.1

Chapter 7: Stacks Stack Operations

C# Collections: A Detailed Presentation © 2012 Rick Miller — All Rights Reserved 105

30 IL_0027: ldc.i4.1
31 IL_0028: add
32 IL_0029: stloc.3
33 IL_002a: ldloc.3
34 IL_002b: ldc.i4 0x17d7840
35 IL_0030: clt
36 IL_0032: stloc.s V_5
37 IL_0034: ldloc.s V_5
38 IL_0036: brtrue.s IL_0017
39 IL_0038: call valuetype [mscorlib]System.DateTime [mscorlib]System.DateTime::get_Now()
40 IL_003d: ldloc.2
41 IL_003e: call valuetype [mscorlib]System.TimeSpan [mscorlib]System.DateTime::op_Subtraction(valuetype
[mscorlib]System.DateTime,valuetype [mscorlib]System.DateTime)
42 IL_0043: stloc.s V_4
43 IL_0045: ldstr "Time to push {0:N} integers to non-generic stack: "
44 + "{1}"
45 IL_004a: ldc.i4 0x17d7840
46 IL_004f: box [mscorlib]System.Int32
47 IL_0054: ldloc.s V_4
48 IL_0056: box [mscorlib]System.TimeSpan
49 IL_005b: call void [mscorlib]System.Console::WriteLine(string,
50 object,
51 object)
52 IL_0060: nop
53 IL_0061: call valuetype [mscorlib]System.DateTime [mscorlib]System.DateTime::get_Now()
54 IL_0066: stloc.2
55 IL_0067: ldc.i4.0
56 IL_0068: stloc.3
57 IL_0069: br.s IL_0079
58 IL_006b: nop
59 IL_006c: ldloc.1
60 IL_006d: ldloc.3
61 IL_006e: callvirt instance void class [System]System.Collections.Generic.Stack`1<int32>::Push(!0)
62 IL_0073: nop
63 IL_0074: nop
64 IL_0075: ldloc.3
65 IL_0076: ldc.i4.1
66 IL_0077: add
67 IL_0078: stloc.3
68 IL_0079: ldloc.3
69 IL_007a: ldc.i4 0x17d7840
70 IL_007f: clt
71 IL_0081: stloc.s V_5
72 IL_0083: ldloc.s V_5
73 IL_0085: brtrue.s IL_006b
74 IL_0087: call valuetype [mscorlib]System.DateTime [mscorlib]System.DateTime::get_Now()
75 IL_008c: ldloc.2
76 IL_008d: call valuetype [mscorlib]System.TimeSpan [mscorlib]System.DateTime::op_Subtraction(valuetype
[mscorlib]System.DateTime,valuetype [mscorlib]System.DateTime)
77 IL_0092: stloc.s V_4
78 IL_0094: ldstr "Time to push {0:N} integers to generic stack of in"
79 + "tegers: {1}"
80 IL_0099: ldc.i4 0x17d7840
81 IL_009e: box [mscorlib]System.Int32
82 IL_00a3: ldloc.s V_4
83 IL_00a5: box [mscorlib]System.TimeSpan
84 IL_00aa: call void [mscorlib]System.Console::WriteLine(string,
85 object,
86 object)
87 IL_00af: nop
88 IL_00b0: ret
89 } // end of method PushValueTypeDemo::Main

Referring to example 7.2 — OK, before your eyes roll up into your skull take a deep breath. This will be easier to
understand than you first think. It can be intimidating to decipher MSIL instructions your first time through. In this
example, however, you’ll only need to understand a handful of instructions. So here goes.

First, a word about the layout of the file. There are three columns. The leftmost column contains the IL address
and other directives. The second column contains symbolic instructions, and the third column, if it contains anything,
will have variable names, constant values, method names, object names, etc. These will be easy to figure out as you
begin to get familiar with the code. I’m just going to discuss the first half of the code, the part that contains the first
for loop of example 7.1.

Starting at the top of the listing on line 1, the text there signifies that this is a Main method. Line 2 contains an
opening brace, and line 3 contains a directive that says this is the entry point. (.entrypoint). Line 4 contains a com-
ment indicating the size of the code. The .maxstack directive on line 5 indicates the maximum amount of evaluation
stack space the program will utilize. You’ll see the evaluation stack in action shortly. Lines 6 through 11 contain local

Stack Operations Chapter 7: Stacks

106 © 2012 Rick Miller — All Rights Reserved C# Collections: A Detailed Presentation

variable declarations named V_0 through V_5. V_0 is the reference to the non-generic Stack object. V_1 is the refer-
ence to the generic Stack<int> object. (Here denoted as Stack<int32>.) V_2 is a DateTime variable and corresponds
to the start variable declared in example 7.1. V_3 corresponds to the counting variable i declared in each of the
for loops. V_4 corresponds to the TimeSpan variable elapsed_time. Finally, V_5 is the boolean value that is
required to evaluate each of the for loops.

Line 12 contains a nop (no operation) instruction. Line 13 creates an instance of the non-generic Stack and
leaves its reference on the evaluation stack. The stloc.0 instruction on line 14 pops the value from the evaluation
stack and loads it into local variable 0 (V_0). On line 15 an instance of the generic Stack<int> object is created and its
reference is left on the evaluation stack. The stloc.1 instruction on the next line pops the reference off the evalua-
tion stack and assigns it to local variable 1 (V_1). On line 17, the call instruction makes a method call to the Date-
Time.get_Now() method. (Under the covers, properties translate into method calls.) The resulting value obtained
from that call is pushed onto the evaluation stack, and the next instruction, stloc.2, pops the value off the evaluation
stack and assigns it to local variable 2 (V_2). On line 19, the ldc.i4.0 instruction loads the value 0 onto the evaluation
stack. The next instruction pops this value off the evaluation stack and assigns it to local variable 3 (V_3).

Now we’re ready to get going on the loop. Line 21 contains a br.s instruction. This says to branch uncondition-
ally to address IL_002a, which you’ll find on line 33. The ldloc.3 instruction pushes the value of local variable 3 onto
the evaluation stack. Next, the ldc.i4 instruction pushes the value of 0x17d7840 (hexadecimal for 25 million) onto the
stack. This is followed by the ctl instruction (compare less than). So, the first time around 0 is less than 25 million, so
the result will be true or 1 and this value is pushed onto the evaluation stack. On line 36, the stloc.s instruction pops
this value from the stack and assigns it to local variable V_5 (the boolean variable). This value is then pushed back
onto the stack in preparation for the next instruction on line 38 which is brture.s which tells the VM to branch to
address IL_0017 if the value on the top of the evaluation stack is 1. Going to line 22 we see a nop instruction. On line
23 the ldloc.o loads the value of local variable 0 (V_0 -- the reference to the non-generic stack) onto the evaluation
stack. Next, the ldloc.3 instruction loads the value of local variable 3 (the counting variable i, which is zero now.)
onto the evaluation stack. On line 25, the box instruction boxes the value on top of the evaluation stack and then
pushes it onto the stack on the next line with a callvirt instruction to the non-generic Stack.Push() method. Following
two nop instructions the value of local variable 3 is pushed onto the evaluation stack followed by the instruction on
line 30, ldc.i4.1, which pushes the value 1 onto the evaluation stack. These two values are added with the add instruc-
tion on line 31 and the result is popped from the stack and assigned to local variable 3 (V_3). In this way the counting
variable i is incremented by one. Thus, the loop repeats in this fashion for 25 million iterations.

When, after 25 million iterations, the result of the comparison of the counting variable i and the constant
COUNT results in false, the brtrue.s instruction will fail and execution will fall through to the instruction on line 39.
This is where the program calculates how long it took to execute the first for loop. On line 39, a call to Date-
Time.get_Now() pushes the resulting value onto the evaluation stack. Next, on line 40, the value of local variable
V_2 is pushed onto the stack. (V_2 contains the start value.) The instruction on line 42 performs a TimeSpan sub-
traction using the two DateTime values on the stack leaving the result on top of the stack. The stloc.s instruction on
line 43 pops this value off the stack and stores it in local variable V_4, which corresponds to the elapsed_time
variable in example 7.1. On line 44, the ldstr (load string) instruction loads a reference to the string literal indicated in
quotes on the evaluation stack. This is followed by the ldc.i4 instruction which load the value 0x17d7840 (25 million
decimal) onto the evaluation stack followed by a call to the box instruction to box the value. Next, local variable V_4
is loaded onto the evaluation stack, and since a DateTime value is a value type, it’s boxed as well. The state of the
stack now is a reference to a string, a reference to a boxed integer, and a reference to a boxed DateTime value. Finally,
on line 50, a call to the Console.WriteLine() method prints the string and the two values to the console.

Any questions? Note that this was a great exercise because you got to see not only how C# source code is trans-
lated into MSIL instructions, but how the .NET runtime uses a stack to hold values during execution. I’ll leave the
tracing of the second for loop to you as an exercise.

Quick Review

A stack is a specialized list whose elements are stored in last-in/first-out (LIFO) order. Stacks support two pri-
mary operations: push and pop. The push operation stores an item on top of the stack. As more items are pushed onto
the stack, the older items move deeper into the stack while younger items are at the top of the stack. The most recent

Chapter 7: Stacks A Home Grown Stack

C# Collections: A Detailed Presentation © 2012 Rick Miller — All Rights Reserved 107

item pushed onto the stack will always be at the top of the stack. The pop operation removes the most recently pushed
item from the top of the stack.

A Home Grown Stack

In this section I want to show you how to use an array to implement a stack. Example 7.3 gives the code for a
class I call HomeGrownStack.

7.3 HomeGrownStack.cs
1 using System;
2
3 public class HomeGrownStack {
4
5 private object[] stack_contents;
6 private int top = -1;
7 private const int INITIAL_SIZE = 25;
8
9 public HomeGrownStack(int initial_size){
10 stack_contents = new object[initial_size];
11 }
12
13 public HomeGrownStack():this(INITIAL_SIZE){ }
14
15 public bool IsEmpty {
16 get { return (top == -1); }
17 }
18
19 public void Push(object item){
20 if(item == null){
21 throw new ArgumentException("Cannot push null item onto stack!");
22 }
23
24 if((++top) >= stack_contents.Length){
25 GrowStack();
26 }else{
27 stack_contents[top] = item;
28 }
29 } // end Push method
30
31 public object Pop(){
32 if(IsEmpty){
33 throw new InvalidOperationException("The stack is empty!");
34 }
35 object return_object = stack_contents[top];
36 stack_contents[top--] = null;
37 return return_object;
38 } // end Pop method
39
40 public object Peek(){
41 if(IsEmpty){
42 throw new InvalidOperationException("The stack is empty!");
43 }
44 return stack_contents[top];
45
46 } // end Peek method
47
48 private void GrowStack(){
49 object[] temp_array = new object[stack_contents.Length];
50 for(int i = 0; i < stack_contents.Length; i++){
51 temp_array[i] = stack_contents[i];
52 }
53
54 stack_contents = new object[stack_contents.Length * 2];
55
56 for(int i = 0; i < temp_array.Length; i++){
57 stack_contents[i] = temp_array[i];
58 }
59 } // end GrowArray method
60
61
62 } // end class definition

Referring to example 7.3 — the HomeGrownStack class contains three fields: an array of objects named stack_-
contents, an integer variable named top that points to the top of the stack, and a constant named INITIAL_SIZE
which I have initialized to 25. On line 9 the constructor method takes one integer argument that sets the size of the

A Home Grown Stack Chapter 7: Stacks

108 © 2012 Rick Miller — All Rights Reserved C# Collections: A Detailed Presentation

stack. It uses this parameter to create the object array. The default constructor on line 13 simply calls the first con-
structor while supplying the INITIAL_SIZE constant as an argument. On line 15 the IsEmpty property is defined. If
the top field equals -1 it returns true, otherwise it returns false.

The Push() method definition starts on line 19. The first order of business is to ensure the incoming object refer-
ence is valid. If not, the method throws an ArgumentException. If the incoming reference is valid, the top variable is
incremented and its value compared with the length of the array. If necessary, the array is dynamically grown to
accommodate new items, otherwise there’s enough room in the array to push the incoming reference which is
assigned to the element pointed to by top.

The Pop() method begins on line 31. First, the method checks to see if the stack is empty. If so, an InvalidOpera-
tionException is thrown and the method exits. Otherwise, the element pointed to by top is returned, top is set to null
and decremented by 1. The item removed from the array is returned and the method exits.

The Peek() method on line 40 throws an InvalidOperationException if the stack is empty, otherwise it returns a
reference to the element on top of the stack but does not remove the element.

The GrowStack() method beginning on line 48 simply grows the array when the value of top approaches the
value of the length of the array.

Example 7.4 gives a short program showing the HomeGrownStack in action. This short program reverses the
order of a set of integers.

7.4 MainApp.cs (Demonstrating HomeGrownStack)
1 using System;
2
3 public class MainApp {
4 public static void Main(){
5 HomeGrownStack stack = new HomeGrownStack();
6 for(int i = 0; i < 37; i++){
7 stack.Push(i);
8 }
9
10 for(int i = 0; i < 37; i++){
11 Console.Write(stack.Pop() + " ");
12 }
13 Console.WriteLine();
14
15 // try one more Pop operation
16 try{
17 stack.Pop();
18 }catch(Exception e){
19 Console.WriteLine(e);
20 }
21
22 }
23 }

Referring to example 7.4 — an instance of HomeGrownStack is created on line 5. The for loop on line 6 pushes
38 integer values onto the stack. The for loop on line 10 pops each integer off the stack and writes its value to the
console. This has the effect of reversing the sequence of integers generated by the for loop. Finally, one more call to
the Pop() method is made inside of a try/catch block. The results of running this program appear in figure 7-3.

Quick Review

The HomeGrownStack class demonstrates the use of an array to contain stack items. It implements the Push(),
Pop(), and Peek() methods as well as the IsEmpty property. The top field is incremented each time an item is pushed
onto the stack and decremented each time an item is popped off the stack.

Figure 7-3: Results of Running Example 7.4

Chapter 7: Stacks The Stack Class

C# Collections: A Detailed Presentation © 2012 Rick Miller — All Rights Reserved 109

The Stack Class

In this section I discuss the non-generic Stack class which is found in the System.Collections namespace. I’ll
present its inheritance hierarchy and talk about some of the operations it supports in addition to the basic stack opera-
tions push and pop.

As a non-generic collection, the Stack class pushes and pops any type of object. Value type objects, as I demon-
strated earlier, are boxed before being pushed onto the stack. When you pop an object off the stack you must cast it to
its proper type. If it’s a value type object it will undergo an unboxing operation as well.

Stack Class Inheritance Hierarchy

Figure 7-4 gives the UML class diagram for the System.Collections.Stack class inheritance hierarchy.

Referring to figure 7-4 — the Stack class implicitly extends System.Object and implements the ICollection,
IEnumerable, and ICloneable interfaces. It’s also serializable.

Functionality Provided by the IEnumerable Interface

The IEnumerable interface, along with the supporting IEnumerator interface, enables you to iterate over the ele-
ments in the stack using the foreach statement. The direction of iteration begins with the stack’s top element and
ends with the oldest element on the stack.

Functionality Provided by the ICollection Interface

The ICollection interface inherits from IEnumerable and provides a CopyTo() method that can be used to copy
the elements contained in the stack to an array. The ICollection interface also provides the Count, IsSynchronized,
and SyncRoot properties. The Count property returns the number of elements contained in the collection. The IsSyn-
chronized and SyncRoot properties are used in conjunction with multithreading programming techniques which is
discussed in detail in Chapter 13 — Thread Programming.

Functionality Provided by the ICloneable Interface

The ICloneable interface exposes the Clone() method which is used to make a shallow copy of the stack.

Balanced Symbol Checker

The following example shows the Stack class in action. The BalancedSymbolChecker class implements logic to
parse a sequence of characters and look for balanced sets of parenthesis ‘(’ ‘)’, braces ‘{’ ‘}’, and brackets
‘[’ ‘]’.

Figure 7-4: System.Collections.Stack Class Inheritance Hierarchy

The Stack Class Chapter 7: Stacks

110 © 2012 Rick Miller — All Rights Reserved C# Collections: A Detailed Presentation

7.5 BalancedSymbolChecker.cs
1 using System;
2 using System.Collections;
3
4 public class BalancedSymbolChecker {
5
6 private const char OPEN_PAREN = '(';
7 private const char CLOSE_PAREN = ')';
8 private const char OPEN_BRACKET = '[';
9 private const char CLOSE_BRACKET = ']';
10 private const char OPEN_BRACE = '{';
11 private const char CLOSE_BRACE = '}';
12
13
14 public char GetNextSymbol(){
15 char c;
16 do {
17 if((c = (char)Console.Read()) == '\r'){
18 return '\0';
19 }
20 }while((c != OPEN_PAREN) && (c != CLOSE_PAREN) && (c != OPEN_BRACKET) && (c != CLOSE_BRACKET)
21 && (c != OPEN_BRACE) && (c != CLOSE_BRACE));
22
23 return c;
24 } // end GetNextSymbol method
25
26 public bool CheckMatch(char openSymbol, char closeSymbol){
27 if((openSymbol == OPEN_PAREN) && (closeSymbol != CLOSE_PAREN) ||
28 (openSymbol == OPEN_BRACKET) && (closeSymbol != CLOSE_BRACKET) ||
29 (openSymbol == OPEN_BRACE) && (closeSymbol != CLOSE_BRACE)) {
30 Console.WriteLine("Open Symbol " + openSymbol + " does not match " + closeSymbol);
31 return false;
32 }
33 return true;
34 }
35
36 public bool CheckBalance(){
37 char c, match;
38 int errors = 0;
39
40 Stack pendingTokens = new Stack();
41 while((c = GetNextSymbol()) != '\0'){
42 switch(c){
43 case OPEN_PAREN:
44 case OPEN_BRACKET:
45 case OPEN_BRACE: pendingTokens.Push(c);
46 break;
47 case CLOSE_PAREN:
48 case CLOSE_BRACKET:
49 case CLOSE_BRACE: {
50 if(pendingTokens.Count == 0){
51 Console.WriteLine("Invalid symbol sequence: " + c);
52 return false;
53 }else{
54 match = (char)pendingTokens.Pop();
55 if(! CheckMatch(match, c)){
56 return false;
57 }else{
58 Console.WriteLine("Matching symbols {0} and {1} found", match, c);
59 }
60 }
61 break;
62 }
63
64 }
65 }
66
67 while(pendingTokens.Count > 0){
68 match = (char) pendingTokens.Pop();
69 Console.WriteLine("Unmatched symbol: " + match);
70 errors++;
71 }
72 return (errors > 0) ? false:true;
73 }
74 } // end BalancedSymbolChecker class definition

Referring to example 7.5 — the BalancedSymbolChecker class defines a set of constants that represent each of
the six symbols of interest. It defines three methods: GetNextSymbol(), CheckMatch(), and CheckBalance(). The
GetNextSymbol() method uses the Console.Read() method to read a line of text from the console. Each subsequent
call to the Console.Read() method will return the next character from the line of text until it encounters the end-of-

Chapter 7: Stacks The Stack Class

C# Collections: A Detailed Presentation © 2012 Rick Miller — All Rights Reserved 111

line sequence. In this example I have used the carriage return ‘\r’ character to signal the end of the character
sequence. The GetNextSymbol() method ignores all characters other than one of the six symbols. When it encounters
one of the six symbols it returns that symbol, otherwise it returns ‘\0’ to signal it has reached the end of the charac-
ter sequence.

The CheckMatch() method compares two symbols with each other. If they match it returns true; if not it returns
false.

These two methods are used in the CheckBalance() method which begins on line 36. On line 40, a Stack named
pendingTokens is used to hold symbols for future evaluation. Most of the action happens within the body of the
while loop starting on line 41. While there is a symbol to evaluate it is presented to the switch statement on line
42. If it’s an opening symbol it’s pushed onto the stack. If it’s a closing symbol and the pendingTokens.Count == 0
then it has encountered an invalid symbol sequence. If the pendingTokens stack contains symbols, the last symbol is
popped off the stack and compared with the closing symbol. If they match, a message is written to the console dis-
playing the matching symbols, if not, the method returns false.

Example 7.6 offers a short program demonstrating the use of the BalancedSymbolChecker class.
7.6 MainApp.cs (Demonstrating BalancedSymbolChecker)

1 using System;

2

3 public class MainApp {

4 public static void Main(){

5 BalancedSymbolChecker checker = new BalancedSymbolChecker();

6 char c = '\0';

7 while(((c = checker.GetNextSymbol()) != '\0')){

8 Console.Write(c + " ");

9 }

10 Console.WriteLine();

11 Console.WriteLine("---------------------");

12 checker.CheckBalance();

13 }

14 }

Referring to example 7.6 — an instance of BalancedSymbolChecker is created on line 5. The while loop uses the
GetNextSymbol() method to read a line of characters from the console and print the extracted symbols to the console.
On line 12 the CheckBalance() method is called, which will parse another line of characters and check the input sym-
bols for balance. Figure 7-5 shows the results of running this program.

Quick Review

The System.Collections.Stack is a non-generic collection which stores any type of object. Value type objects will
undergo a boxing operation when they are pushed onto the stack. This results in their references being pushed onto
the stack and the object it points to is created in the heap. When the value type object is popped off the stack, it will
undergo an unboxing operation.

Figure 7-5: Results of Running Example 7.6

The Stack<T> Class Chapter 7: Stacks

112 © 2012 Rick Miller — All Rights Reserved C# Collections: A Detailed Presentation

The Stack<T> Class

The generic Stack<T> class is the direct replacement for the non-generic Stack class. It provides a lot more func-
tionality in the form of extension methods defined by the System.Linq.Enumerable class. It also provides optimal
performance when used with value type objects as they do not require boxing/unboxing operations when being
pushed on and popped off the stack.

Stack<T> Class Inheritance Hierarchy

Figure 7-6 gives the UML class diagram showing the inheritance hierarchy of the Stack<T> class.

Referring to figure 7-6 — the Stack<T> class implicitly extends System.Object and implements the ICollection,
IEnumerable, and IEnumerable<T> interfaces.

Functionality Provided by the IEnumerable Interface

The IEnumerable interface, along with the supporting IEnumerator interface, enables you to iterate over the ele-
ments in the stack using the foreach statement. The direction of iteration begins with the stack’s top element and
ends with the oldest element on the stack.

Functionality Provided by the ICollection Interface

The ICollection interface inherits from IEnumerable and provides a CopyTo() method that can be used to copy
the elements contained in the stack to an array. The ICollection interface also provides the Count, IsSynchronized,
and SyncRoot properties. The Count property returns the number of elements contained in the collection. The IsSyn-
chronized and SyncRoot properties are used in conjunction with multithreading programming techniques which is
discussed in detail in Chapter 13 — Thread Programming.

Functionality Provided by the IEnumerable<T> Interface

The IEnumerable<T> interface extends IEnumerable and allows the elements of the generic Stack<T> class to be
enumerated by the foreach statement.

What Happened to ICollection<T>?

The Stack<T> class is one of two generic collection classes that do not explicitly implement the ICollection<T>
interface, rather, it directly implements a few of its methods in the interest of providing specialized control over
access to collection elements. For example, you can only add elements to a Stack<T> class via its Push() method, and
only remove elements via the Pop() and Clear() methods.

Figure 7-6: Stack<T> Class Inheritance Hierarchy

Chapter 7: Stacks The Stack<T> Class

C# Collections: A Detailed Presentation © 2012 Rick Miller — All Rights Reserved 113

Command Line PostFix Calculator
Example 7.7 shows a generic Stack<T> class in action in a program that implements a postfix command-line cal-

culator. The LineCalc class provides addition, subtraction, multiplication, division, and exponent operations.
7.7 LineCalc.cs

1 using System;
2 using System.Collections.Generic;
3
4 public class LineCalc {
5
6 private Stack<double> stack = new Stack<double>();
7 private const char ADD = '+';
8 private const char SUB = '-';
9 private const char MULT = '*';
10 private const char DIV = '/';
11 private const char EXP = '^';
12 private const char EQUALS = '=';
13
14
15 public void ProcessLine(string input){
16
17 try {
18 double operand = Double.Parse(input);
19 stack.Push(operand);
20
21 }catch(Exception){
22 this.ProcessOperator(input);
23 }
24 }
25
26 public void ProcessOperator(string input){
27 switch(input[0]){
28 case ADD: Add();
29 break;
30
31 case SUB: Sub();
32 break;
33
34 case MULT: Mult();
35 break;
36
37 case DIV: Div();
38 break;
39
40 case EXP: Exp();
41 break;
42
43 case EQUALS: Equals();
44 break;
45
46 default: Console.WriteLine("Invalid Operator!");
47 break;
48 }
49 }
50
51 public void Add(){
52 if(stack.Count >= 2){
53 double operand_1 = stack.Pop();
54 double operand_2 = stack.Pop();
55 double result = operand_1 + operand_2;
56 stack.Push(result);
57 Console.WriteLine("Add result: {0}", result);
58 }else{
59 Console.WriteLine("Note enough operands on stack!");
60 }
61 }
62
63 public void Sub(){
64 if(stack.Count >= 2){
65 double operand_1 = stack.Pop();
66 double operand_2 = stack.Pop();
67 double result = operand_2 - operand_1;
68 stack.Push(result);
69 Console.WriteLine("Sub result: {0}", result);
70 }else{
71 Console.WriteLine("Note enough operands on stack!");
72 }
73 }
74

The Stack<T> Class Chapter 7: Stacks

114 © 2012 Rick Miller — All Rights Reserved C# Collections: A Detailed Presentation

75 public void Mult(){
76 if(stack.Count >= 2){
77 double operand_1 = stack.Pop();
78 double operand_2 = stack.Pop();
79 double result = operand_1 * operand_2;
80 stack.Push(result);
81 Console.WriteLine("Mult result: {0}", result);
82 }else{
83 Console.WriteLine("Note enough operands on stack!");
84 }
85 }
86
87 public void Div(){
88 if(stack.Count >= 2){
89 double operand_1 = stack.Pop();
90 double operand_2 = stack.Pop();
91 double result = operand_2 / operand_1;
92 stack.Push(result);
93 Console.WriteLine("Div result: {0}", result);
94 }else{
95 Console.WriteLine("Note enough operands on stack!");
96 }
97 }
98
99 public void Exp(){
100 if(stack.Count >= 2){
101 double operand_1 = stack.Pop();
102 double operand_2 = stack.Pop();
103 double result = 1;
104 for(int i = 0; i< operand_1; i++){
105 result *= operand_2;
106 }
107 stack.Push(result);
108 Console.WriteLine("Exp result: {0}", result);
109 }else{
110 Console.WriteLine("Note enough operands on stack!");
111 }
112 }
113
114 public void Equals(){
115 if(stack.Count >= 1){
116 Console.WriteLine("Total: {0}", stack.Pop());
117 }else{
118 Console.WriteLine("Stack empty!");
119 }
120 }
121
122
123 public static void Main(){
124 LineCalc lc = new LineCalc();
125 string input = String.Empty;
126 Console.Write("Enter operand, operator, or \"quit\" to exit --> ");
127 while((input = Console.ReadLine()) != "quit"){
128 if(input.Length > 0){
129 lc.ProcessLine(input);
130 }
131 Console.Write("Enter operand, operator, or \"quit\" to exit --> ");
132
133 }
134 }
135 } // end LineCalc class definition

Referring to example 7.7 — the LineCalc program uses a generic stack of doubles (Stack<double>) to push and
pop operands and the results of operations. The ProcessLine() method first assumes the input string is a valid double
and tries to parse it as such. If the string fails to parse as a double an exception is thrown and it tries again to parse the
string as an operator by calling the ProcessOperator() method in the body of the catch block. The ProcessOperator()
method presents the first character of the input string (input[0]) to the switch statement. If the operator is one of the
valid operators, the corresponding operation is performed. If not, an invalid operator message is written to the console
and the program returns to waiting for valid input.

Note how the stack is used to store incoming operands and how, after each operation, the result is pushed back
onto the top of the stack.

Entering the equals operator ‘=’ results in the value located at the top of the stack being popped from the stack
and written to the console. In this way you can clear the calculator of the last result before proceeding with a new cal-
culation.

Figure 7-7 shows the LineCalc program in action.

Chapter 7: Stacks Summary

C# Collections: A Detailed Presentation © 2012 Rick Miller — All Rights Reserved 115

Quick Review

The System.Collections.Generic.Stack<T> class is the direct replacement for the non-generic Stack class. The
benefit to using the Stack<T> class is that you gain a wider array of operations via extension methods defined by the
System.Linq.Enumerable class. Also, value types do not require boxing and unboxing operations when being pushed
onto and popped off the stack.

Summary

A stack is a specialized list whose elements are stored in last-in/first-out (LIFO) order. Stacks support two pri-
mary operations: push and pop. The push operation stores an item on top of the stack. As more items are pushed onto
the stack, the older items move deeper into the stack while younger items are at the top of the stack. The most recent
item pushed onto the stack will always be at the top of the stack. The pop operation removes the most recently pushed
item from the top of the stack.

The HomeGrownStack class demonstrates the use of an array to contain stack items. It implements the Push(),
Pop(), and Peek() methods as well as the IsEmpty property. The top field is incremented each time an item is pushed
onto the stack and decremented each time an item is popped off the stack.

The System.Collections.Stack is a non-generic collection which stores any type of object. Value type objects will
undergo a boxing operation when they are pushed onto the stack. This results in their references being pushed onto
the stack and the object it points to is created in the heap. When the value type object is popped off the stack, it will
undergo an unboxing operation.

The System.Collections.Generic.Stack<T> class is the direct replacement for the non-generic Stack class. The
benefit to using the Stack<T> class is that you gain a wider array of operations via extension methods defined by the
System.Linq.Enumerable class. Also, value types do not require boxing and unboxing operations when being pushed
onto and popped off the stack.

Figure 7-7: Results of Performing Several Operations with LineCalc

References Chapter 7: Stacks

116 © 2012 Rick Miller — All Rights Reserved C# Collections: A Detailed Presentation

References

Sten Henriksson. A Brief History of the Stack. [http://www.sigcis.org/files/A%20brief%20history.pdf]

Donald E. Knuth. The Art of Computer Programming, Vol. 1, Fundamental Algorithms. Third Edition. Addison-
Wesley, Reading, Massachusetts. 1997. ISBN: 0-201-89683-4.

Microsoft Developer Network (MSDN) [http://www.msdn.com]

Notes

	7 Stacks
	Introduction
	Stack Operations
	Characteristic Stack Operations
	Push
	Pop
	Peek

	An Illustration Will Help
	What’s Actually Being Pushed and Popped?
	Pushing a Value Type Object onto a Stack
	Pushing a Reference Type Object onto a Stack
	Value Type Boxing in Action
	Disassembling Example 7.1

	Quick Review

	A Home Grown Stack
	Quick Review

	The Stack Class
	Stack Class Inheritance Hierarchy
	Functionality Provided by the IEnumerable Interface
	Functionality Provided by the ICollection Interface
	Functionality Provided by the ICloneable Interface

	Balanced Symbol Checker
	Quick Review

	The Stack<T> Class
	Stack<T> Class Inheritance Hierarchy
	Functionality Provided by the IEnumerable Interface
	Functionality Provided by the ICollection Interface
	Functionality Provided by the IEnumerable<T> Interface
	What Happened to ICollection<T>?

	Command Line PostFix Calculator
	Quick Review

	Summary
	References
	Notes

