
C# For Artists © 2008 Rick Miller — All Rights Reserved 161

8 Arrays

Learning Objectives
• Describe the purpose of an array

• List and describe the use of single and multidimensional arrays

• Describe how array objects are allocated in memory

• Describe the difference between arrays of value types vs. arrays of reference types

• Demonstrate your ability to create arrays using array literals

• Demonstrate your ability to create single-dimensional arrays

• Demonstrate your ability to create multidimensional arrays

• Describe how to access individual array elements via indexing

• Demonstrate your ability to manipulate arrays with iteration statements

• Demonstrate your ability to use the Main() method's string array parameter

Chapter 8

Arrays
Rick, Kyle, Coralie — Paris, 2005

C
o
n
ta

x
 T

 /
 K

o
d
ak

 T
ri

-X

Introduction Chapter 8: Arrays

162 © 2008 Rick Miller — All Rights Reserved C# For Artists

Introduction

The purpose of this chapter is to give you a solid foundational understanding of arrays and their usage. Since

arrays enjoy special status in the C# language, you will find them easy to understand and use. This chapter builds

upon the material presented in Chapters 6 and 7. Here you will learn how to utilize arrays in simple programs and

manipulate them with program control-flow statements to yield increasingly powerful programs.

As you will soon learn, arrays are powerful data structures that can be used to solve many programming prob-

lems. Detailed knowledge of arrays will give you the ability to judge whether an array is right for your particular

application.

In this chapter you will learn the meaning of the term array, how to create and manipulate single and multidi-

mensional arrays, and how to use arrays in your programs. Starting with single-dimensional arrays of simple pre-

defined value types, you will learn how to declare array references and how to use the new operator to dynamically

create array objects. To help you better understand the concepts of arrays and their use, I will show you how they are

represented in memory. A solid understanding of the memory concepts associated with array allocation helps you to

better utilize arrays in your programs. I will then show you how to manipulate single-dimensional arrays using the

program control-flow statements you learned in the previous chapter. Understanding the concepts and use of single-

dimensional arrays enables you to easily understand the concepts behind multidimensional arrays.

Along the way, you will learn the difference between arrays of value types and arrays of reference types. I will

show you how to dynamically allocate array element objects and how to call methods on objects via array element

references. I will also explain to you the difference between rectangular and ragged arrays.

Although you will learn a lot about arrays in this chapter, I have omitted some material I feel is best covered later

in the book. For instance, I have postponed discussion of how to pass arrays as method arguments until you learn

about classes and methods in the next chapter.

What Is An Array?

An array is a contiguous memory allocation of same-sized or homogeneous data type elements. Contiguous

means the array elements are located one after the other in memory. Same-sized means that each array element occu-

pies the same amount of memory space. The size of each array element is determined by the type of objects an array

is declared to contain. So, for example, if an array is declared to contain integer types, each element would be the size

of an integer and occupy 4 bytes. If, however, an array is declared to contain double types, the size of each element

would be 8 bytes. The term homogeneous is often used in place of the term same-sized to refer to objects having the

same data type and therefore the same size. Figure 8-1 illustrates these concepts.

Figure 8-1 shows an array of 5 elements of no specified type. The elements are numbered consecutively, begin-

ning with 1 denoting the first element and 5 denoting the last, or 5th, element in the array. Each array element is refer-

enced or accessed by its array index number. An index number is always one less than the element number it

Figure 8-1: Array Elements are Contiguous and Homogeneous

This array has 5

elements, so it has a

length of 5.

Index values range

from 0 to (length-1)

Chapter 8: Arrays What Is An Array?

C# For Artists © 2008 Rick Miller — All Rights Reserved 163

accesses. For example, when you want to access the 1st element of an array, use index number 0. To access the 2nd

element of an array, use index number 1, etc.

The number of elements an array contains is referred to as its length. The array shown in Figure 8-1 contains 5

elements, so it has a length of 5. The index numbers associated with this array will range from 0 to 4 (that is 0 to

[length - 1]).

Specifying Array Types

Array elements can be value types, reference types, or arrays of these types. When you declare an array, you

must specify the type its elements will contain. Figure 8-2 illustrates this concept through the use of the array declara-

tion and allocation syntax.

Figure 8-2 shows the array declaration and allocation syntax for a single-dimensional array having a particular

type and length. The declaration begins with the array element type. The elements of an array can be value types or

reference types. Reference types can include any reference type specified in the .NET API, reference types you create,

or third-party types created by someone else.

The element type is followed by a set of empty brackets. Single-dimensional arrays use one set of brackets. You

will add a set of brackets for each additional dimension or rank you want the array to have. The element type plus the

brackets yield an array type. This array type is followed by an identifier that declares the name of the array. To actu-

ally allocate memory for an array, use the new operator followed by the type of elements the array can contain fol-

lowed by the length of the array in brackets. The new operator returns a reference to the newly created array object

and the assignment operator assigns it to the array reference name.

Figure 8-2 combines the act of declaring an array and the act of creating an array object on one line of code. If

required, you could declare an array in one statement and create the array in another. For example, the following line

of code declares and allocates memory for a single-dimensional array of integers having a length of 5:

int[] int_array = new int[5];

The following line of code would simply declare an array of floats:

float[] float_array;

And this code would then allocate enough memory to hold 10 float values:

float_array = new float[10];

The following line of code would declare a two-dimensional rectangular array of boolean-type elements and

allocate some memory:

bool[,] boolean_array_2d = new bool[10,10];

The following line of code would create a single-dimensional array of strings:

String[] string_array = new String[8];

type[] array_reference_name = ne w type [length];

Specify the type of elements the

array will contain

Name the array reference

Use the

new

 operator to allocate memory for

a number of elements of a certain type

Figure 8-2: Declaring a Single-Dimensional

Array

 The element

type plus the

brackets yields

an array type

Functionality Provided By C# Array Types

Chapter 8: Arrays

164

© 2008 Rick Miller — All Rights Reserved

C# For Artists

Y

ou will soon learn the details about single and multidimensional arrays. If the preceding concepts seem confus-

ing now just hang in there. By the time you complete this chapter, you will be using arrays like a pro!

Quic

k Review

Arrays are contiguously allocated memory elements of homogeneous data types. Contiguous means the elements

are arranged in memory one after the other. Homogeneous means each element of the array is of the same data type.

An array containing

n

 elements is said to have a length equal to

n

. Access array elements via their index value, which

ranges from 0 to (

length - 1

). The index value of a particular array element is always one less than the element num-

ber you wish to access (

i.e.,

the 1

st

 element has index 0, the 2

nd

 element has index 1, ... , the n

th

 element has index n-

1)

F

unctionality Provided By C# Array Types

As you learned in Chapter 6, the C# language has two data-type categories: value types

and reference types.

Arrays are a special case of reference types. When you create an array in C#, it is an object just like a reference type

object. However, C# arrays possess special features over and above ordinary reference types because they inherit

from the System.Array class. This section explains what it means to be an array type.

Ar

ray-Type Inheritance Hierarchy

When you declare an array in C#, you specify an array type as was shown previously in Figure 8-2.

The array

you create automatically inherits the functionality provided by the System.Array class, which itself extends from the

System.Object class. Figure 8-3 shows the UML inheritance diagram for an array type.

Referring to Figure 8-3 — the inheritance from the Array and Object classes is taken care of automatically by the

C# language when you declare an array. The Array class is a special class in the .NET Framework in that you cannot

derive from it directly to create a new array type subclass. Any attempt to explicitly extend from System.Array in

your code will cause a compiler error.

System.Array

type[]

Figure 8-3: Array-Type Inheritance Hierarchy

Object class methods

System.Object

Array class properties
and methods

<<abstract>>
ICloneable, IList, ICollection, IEnumerable

<SerializableAttribute>

Inherits methods and
properties from Array

and Object classes

Chapter 8: Arrays

Functionality Provided By C# Array Types

C# For Artists

© 2008 Rick Miller — All Rights Reserved

165

The

Array class provides several public properties and methods that make it easy to manipulate arrays. Some of

these properties and methods can be accessed via an array reference, while others are meant only to be accessed via

the Array class itself. You will see examples of the Array class’s methods and properties in action as you progress

through this chapter. In the meantime, however, it would be a good idea to access the MSDN website and pay a visit

to the System.Array class documentation to learn more of what it has to offer.

Special Pr

operties Of C# Arrays

The

Table 8-1 summarizes the special properties of C# arrays.

Quick Review

C# array types have special functionality because of their special inheritance hierarchy. C# array types directly

and automatically inherit the functionality of the System.Array class and implement the ICloneable, IList, ICollec-

tion, and IEnumerable interfaces. Arrays are also serializable.

Property Description

Their length cannot be changed

once created.

Array objects have an associated length when they are created. The length of an array

cannot be changed after the array is created. However, arrays can be automatically re-

sized with the help of the Array.Resize() method.

Their number of dimensions or

rank can be determined by ac-

cessing the Rank property.

For example:

int[] int_array = new int[5];
This code declares a single-dimensional array of five integers. The following line of

code prints to the console the number of dimensions int_array contains:

Console.WriteLine(int_array.Rank);

The length of a particular array

dimension or rank can be deter-

mined via the GetLength()

method.

Array objects have a method named GetLength() that returns the value of the length of

a particular array dimension or rank. To call the GetLength() method, use the dot oper-

ator and the name of the array. For example:

int[] int_array = new int[5];
This code declares and initializes an array of integer elements with length 5. The next

line of code prints the length of the int_array to the console:

Console.WriteLine(int_array.GetLength(0));
The GetLength() method is called with an integer argument indicating the desired di-

mension. In the case of a single-dimensional array, there is only one dimension.

Array bounds are checked by the

virtual execution system at run-

time.

Any attempt to access elements of an array beyond its declared length will result in a

runtime exception. This prevents mysterious data corruption bugs that can manifest

themselves when misusing arrays in other languages like C or C++.

Array types directly subclass the

System.Array class.

Because arrays subclass System.Array they have the functionality of an Array.

Elements are initialized to de-

fault values.

Predefined simple value type array elements are initialized to the default value of the

particular value type each element is declared to contain. For example, integer array el-

ements are initialized to zero. Each element of an array of references is initialized to

null.

Table 8-1: C# Array Properties

Creating And Using Single-Dimensional Arrays Chapter 8: Arrays

166 © 2008 Rick Miller — All Rights Reserved C# For Artists

Creating And Using Single-Dimensional Arrays

This section shows you how to declare, create, and use single-dimensional arrays of both value types and refer-

ence types. Once you know how a single-dimensional array works, you can easily apply the concepts to multidimen-

sional arrays.

Arrays Of Value Types

The elements of a value type array can be any of the C# predefined value types or value types that you declare

(i.e., structures). The predefined value types include bool, byte, sbyte, char, short, ushort, int, uint, long, ulong, float,

double, and decimal. Example 8.1 shows an array of integers being declared, created, and utilized in a short program.

Figure 8-4 shows the results of running this program.
8.1 IntArrayTest.cs

1 using System;
2
3 public class IntArrayTest {
4 static void Main(){
5 int[] int_array = new int[10];
6 for(int i=0; i<int_array.GetLength(0); i++){
7 Console.Write(int_array[i] + " ");
8 }
9 Console.WriteLine();
10 }
11 }

Referring to Example 8.1 — this program demonstrates several important concepts. First, an array of integers of

length 10 is declared and created on line 5. The name of the array is int_array. To demonstrate that each element of

the array is automatically initialized to zero, the for statement on line 6 iterates over each element of the array

beginning with the first element [0] and proceeding to the last element [9], and prints each element value to the con-

sole. As you can see from looking at Figure 8-4, this results in all zeros being printed to the console.

Notice how each element of int_array is accessed via an index value that appears between square brackets

appended to the name of the array (i.e., int_array[i]). In this example, the value of i is controlled by the for loop.

How Value-Type Array Objects Are Arranged In Memory

Figure 8-5 shows how the integer array int_array declared and created in Example 8.1 is represented in memory.

The name of the array, int_array, is a reference to an object in memory of type System.Int32[]. The array object is

dynamically allocated on the application’s memory heap with the new operator. Its memory location is assigned to

the int_array reference. At the time of array object creation, each element is initialized to the default value for integers

which is 0. The array object’s Length property returns the value of the total number of elements in the array, which in

this case is 10. The array object’s Rank property returns the total number of dimensions in the array, which in this

case is 1.

Let’s make a few changes to the code given in Example 8.1 by assigning some values to the int_array elements.

Example 8.2 adds another for loop to the program that initializes each element of int_array to the value of the for

loop’s index variable i.

8.2 IntArrayTest.cs (Mod 1)

Figure 8-4: Results of Running Example 8.1

Chapter 8: Arrays Creating And Using Single-Dimensional Arrays

C# For Artists © 2008 Rick Miller — All Rights Reserved 167

1 using System;
2
3 public class IntArrayTest {
4 static void Main(){
5 int[] int_array = new int[10];
6 for(int i=0; i<int_array.GetLength(0); i++){
7 Console.Write(int_array[i] + " ");
8 }
9 Console.WriteLine();
10 for(int i=0; i<int_array.GetLength(0); i++){
11 int_array[i] = i;
12 Console.Write(int_array[i] + " ");
13 }
14 Console.WriteLine();
15 }
16 }

Referring to Example 8.2 — notice on line 11 how the value of the second for loop’s index variable i is

assigned directly to each array element. When the array elements print to the console, each element’s value has

changed except for the first, which is still zero. Figure 8-6 shows the results of running this program. Figure 8-7

shows the memory representation of int_array after its elements have been assigned their new values.

Finding An Array’s Type, Rank, And Total Number of Elements

Study the code shown in Example 8.3, paying particular attention to lines 6 through 10.
8.3 IntArrayTest.cs (Mod 2)

1 using System;
2
3 public class IntArrayTest {
4 static void Main(){
5 int[] int_array = new int[10];
6 Console.WriteLine("int_array has rank of " + int_array.Rank);
7 Console.WriteLine("int_array has " + int_array.Length + " total elements");
8 Console.WriteLine("The number of elements in the first (and only) rank is " +
9 int_array.GetLength(0));
10 Console.WriteLine(int_array.GetType());
11
12 for(int i=0; i<int_array.GetLength(0); i++){

Figure 8-5: Memory Representation of Value Type Array int_array Showing Default Initialization

Each element initial-

ized to the type’s

default value. In this

case each element is

initialized to 0.

int_array reference

located in Main()

method

Figure 8-6: Results of Running Example 8.2

Creating And Using Single-Dimensional Arrays Chapter 8: Arrays

168 © 2008 Rick Miller — All Rights Reserved C# For Artists

13 Console.Write(int_array[i] + " ");
14 }
15 Console.WriteLine();
16 for(int i=0; i<int_array.GetLength(0); i++){
17 int_array[i] = i;
18 Console.Write(int_array[i] + " ");
19 }
20 Console.WriteLine();
21 }
22 }

Referring to Example 8.3 — lines 6 through 10 show how to use Array class methods to get information about an

array. On line 6, the Rank property is accessed via the int_array reference to print out the number of int_array’s

dimensions. On line 7, the Length property returns the total number of array elements. On lines 8 and 9, the

GetLength() method is called with an argument of 0 to determine the number of elements in the first rank. In the case

of single-dimensional arrays, the Length property and GetLength(0) return the same value. On line 10, the GetType()

method determines the type of the int_array reference. It returns the value “System.Int32[],” where the single pair of

square brackets signifies an array type. Figure 8-8 gives the results of running this program.

Creating Single-Dimensional Arrays Using Array Literal Values

Up to this point you have seen how memory for an array can be allocated using the new operator. Another way to

allocate memory for an array and initialize its elements at the same time is to specify the contents of the array using

array literal values. The length of the array is determined by the number of literal values appearing in the declaration.

Example 8.4 shows two arrays being declared and created using literal values.
8.4 ArrayLiterals.cs

1 using System;
2
3 public class ArrayLiterals {
4 static void Main(){
5 int[] int_array = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
6 double[] double_array = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0};
7

Figure 8-7: Element Values of int_array After Initialization Performed by Second for Loop

Figure 8-8: Results of Running Example 8.3

Chapter 8: Arrays Creating And Using Single-Dimensional Arrays

C# For Artists © 2008 Rick Miller — All Rights Reserved 169

8 for(int i = 0; i < int_array.GetLength(0); i++){
9 Console.Write(int_array[i] + " ");
10 }
11 Console.WriteLine();
12 Console.WriteLine(int_array.GetType());
13 Console.WriteLine(int_array.GetType().IsArray);
14
15 Console.WriteLine();
16
17 for(int i = 0; i < double_array.GetLength(0); i++){
18 Console.Write(double_array[i] + " ");
19 }
20 Console.WriteLine();
21 Console.WriteLine(double_array.GetType());
22 Console.WriteLine(double_array.GetType().IsArray);
23 }
24 }

Referring to Example 8.4 — the program declares and initializes two arrays using array literal values. On line 5

an array of integers named int_array is declared. The elements of the array are initialized to the values that appear

between the braces. Each element’s literal value is separated by a comma. The length of the array is determined by the

number of literal values appearing between the braces. The length of int_array is 10.

On line 6, an array of doubles named double_array is declared and initialized with double literal values. The con-

tents of both arrays are printed to the console. Array class methods are then used to determine the characteristics of

each array and the results are printed to the console. Notice on lines 13 and 22 the use of the IsArray property. It will

return true if the reference via which it is called is an array type. Figure 8-9 shows the results of running this program.

Differences Between Arrays Of Value Types And Arrays Of Reference Types

The key difference between arrays of value types and arrays of reference types is that value-type values can be

directly assigned to value-type array elements. The same is not true for reference type elements. In an array of refer-

ence types, each element is a reference to an object in memory. When you create an array of references in memory

you are not automatically creating each element’s object. Instead, each reference element is automatically initialized

to null. You must explicitly create each object you want each reference element to point to. Alternatively, the object

must already exist somewhere in memory and be reachable. To illustrate these concepts, I will use an array of

Objects. Example 8.5 gives the code for a short program that creates and uses an array of Objects.
8.5 ObjectArray.cs

1 using System;
2
3 public class ObjectArray {
4 static void Main(){
5 Object[] object_array = new Object[10];
6 Console.WriteLine("object_array has type " + object_array.GetType());
7 Console.WriteLine("object_array has rank " + object_array.Rank);
8 Console.WriteLine();
9
10 object_array[0] = new Object();
11 Console.WriteLine(object_array[0].GetType());
12 Console.WriteLine();
13
14 object_array[1] = new Object();
15 Console.WriteLine(object_array[1].GetType());
16 Console.WriteLine();
17
18 for(int i = 2; i < object_array.GetLength(0); i++){
19 object_array[i] = new Object();

Figure 8-9: Results of Running Example 8.4

Creating And Using Single-Dimensional Arrays Chapter 8: Arrays

170 © 2008 Rick Miller — All Rights Reserved C# For Artists

20 Console.WriteLine(object_array[i].GetType());

21 Console.WriteLine();

22 }

23 }

24 }

Figure 8-10 shows the results of running this program.

Referring to Example 8.5 — on line 5, an array of Objects of length 10 is declared and created. After line 5 exe-

cutes, the object_array reference points to an array of Objects in memory with each element initialized to null, as is

shown in Figure 8-11.

On lines 6 and 7, the program writes to the console some information about the object_array, namely, its type and

rank. On line 10, a new object of type Object is created and its memory location is assigned to the Object reference

located in object_array[0]. The memory picture now looks like that shown in Figure 8-12. Line 11 calls the GetType()

method on the object pointed to by object_array[0].

The execution of line 14 results in the creation of another object of type Object in memory. The memory picture

now looks like that shown in Figure 8.13. The for statement on line 18 creates the remaining Object objects and

assigns their memory locations to the remaining object_array reference elements. Figure 8.14 shows the memory pic-

ture after the for statement completes execution.

Figure 8-10: Results of Running Example 8.5

Figure 8-11: State of Affairs After Line 5 of Example 8.5 Executes

Array elements are

initialized to null.

Each Object object

must now be created.

Chapter 8: Arrays Creating And Using Single-Dimensional Arrays

C# For Artists © 2008 Rick Miller — All Rights Reserved 171

Now that you know the difference between value and reference type arrays, let’s see some single-dimensional

arrays being put to good use.

Single-dimensional Arrays In Action

This section offers several example programs showing how single-dimensional arrays can be used in programs.

These programs represent an extremely small sampling of the usefulness arrays afford.

Message Array

One handy use for an array is to store a collection of string messages for later use in a program. Example 8.6

shows how such an array might be utilized.
8.6 MessageArray.cs

1 using System;
2
3 public class MessageArray {
4 static void Main(){
5 String name = null;
6 int int_val = 0;
7

Figure 8-12: State of Affairs After Line 10 of Example 8.5 Executes.

object_array[0] now

points to a dynamically

allocated Object object

Figure 8-13: State of Affairs After Line 14 of Example 8.5 Executes

object_array[1] now

points to an Object

object

Creating And Using Single-Dimensional Arrays Chapter 8: Arrays

172 © 2008 Rick Miller — All Rights Reserved C# For Artists

8 String[] messages = {"Welcome to the Message Array Program",
9 "Please enter your name: ",
10 ", please enter an integer: ",
11 "You did not enter an integer!",
12 "Thank you for running the Message Array program"};
13
14 const int WELCOME_MESSAGE = 0;
15 const int ENTER_NAME_MESSAGE = 1;
16 const int ENTER_INT_MESSAGE = 2;
17 const int INT_ERROR = 3;
18 const int THANK_YOU_MESSAGE = 4;
19
20 Console.WriteLine(messages[WELCOME_MESSAGE]);
21 Console.Write(messages[ENTER_NAME_MESSAGE]);
22 name = Console.ReadLine();
23
24 Console.Write(name + messages[ENTER_INT_MESSAGE]);
25
26 try{
27 int_val = Int32.Parse(Console.ReadLine());
28 }catch(FormatException) { Console.WriteLine(messages[INT_ERROR]); }
29
30 Console.WriteLine(messages[THANK_YOU_MESSAGE]);
31 }
32 }

Referring to Example 8.6 — this program creates a single-dimensional array of strings named messages. It ini-

tializes each string element using string literals. On lines 14 through 18, an assortment of constants are declared and

initialized. These constants are used to index the messages array as is shown on lines 20 and 21. The program simply

asks the user to enter a name followed by a request to enter an integer value. If the user fails to enter an integer, the

Int32.Parse() method will throw a FormatException. Figure 8-15 shows the results of running this program.

Figure 8-14: Final State of Affairs: All object_array Elements Point to an Object object

Chapter 8: Arrays Creating And Using Single-Dimensional Arrays

C# For Artists © 2008 Rick Miller — All Rights Reserved 173

Calculating Averages

The program given in Example 8.7 calculates class grade averages.
8.7 Average.cs

1 using System;
2
3 public class Average {
4 static void Main(){
5 double[] grades = null;
6 double total = 0;
7 double average = 0;
8 int grade_count = 0;
9
10 Console.WriteLine("Welcome to Grade Averager");
11 Console.Write("Please enter the number of grades to enter: ");
12 try{
13 grade_count = Int32.Parse(Console.ReadLine());
14 } catch(FormatException) { Console.WriteLine("You did not enter a number!"); }
15
16 if(grade_count > 0){
17 grades = new double[grade_count];
18 for(int i = 0; i < grade_count; i++){
19 Console.Write("Enter grade " + (i+1) + ": ");
20 try{
21 grades[i] = Double.Parse(Console.ReadLine());
22 } catch(FormatException) { Console.WriteLine("You did not enter a number!"); }
23 } //end for
24
25 for(int i = 0; i < grade_count; i++){
26 total += grades[i];
27 } //end for
28
29 average = total/grade_count;
30 Console.WriteLine("Number of grades entered: " + grade_count);
31 Console.WriteLine("Grade average: {0:F2} ", average);
32
33 }//end if
34 } //end main
35 }// end Average class definition

Referring to Example 8.7 — an array reference of doubles named grades is declared on line 5 and initialized to

null. On lines 6 through 8, several other program variables are declared and initialized.

The program then prompts the user to enter the number of grades. If this number is greater than 0 then it is used

on line 17 to create the grades array. The program then enters a for loop on line 18, reads each grade from the con-

sole, converts it to a double, and assigns it to the ith element of the grades array.

After all the grades are entered into the array, the grades are summed in the for loop on line 25. The average is

calculated on line 29. Notice how numeric formatting is used on line 38 to properly format the double value contained

in the average variable. Figure 8-16 shows the results of running this program

Histogram: Letter Frequency Counter

Letter frequency counting is an important part of deciphering messages encrypted using monalphabetic substitu-

tion. Example 8.8 gives the code for a program that counts the occurrences of each letter appearing in a text string and

prints the letter frequency display to the console. The program ignores all characters except the 26 letters of the alpha-

bet.
8.8 Histogram.cs

Figure 8-15: Results of Running Example 8.6

Creating And Using Single-Dimensional Arrays Chapter 8: Arrays

174 © 2008 Rick Miller — All Rights Reserved C# For Artists

1 using System;
2
3 public class Histogram {
4 static void Main(String[] args){
5 int[] letter_frequencies = new int[26];
6 const int A = 0, B = 1, C = 2, D = 3, E = 4, F = 5, G = 6,
7 H = 7, I = 8, J = 9, K = 10, L = 11, M = 12, N = 13,
8 O = 14, P = 15, Q = 16, R = 17, S = 18, T = 19, U = 20,
9 V = 21, W = 22, X = 23, Y = 24, Z = 25;
10 String input_string = null;
11
12 Console.Write("Enter a line of characters: ");
13 input_string = Console.ReadLine().ToUpper();
14
15
16 if(input_string != null){
17 for(int i = 0; i < input_string.Length; i++){
18 switch(input_string[i]){
19 case 'A': letter_frequencies[A]++;
20 break;
21 case 'B': letter_frequencies[B]++;
22 break;
23 case 'C': letter_frequencies[C]++;
24 break;
25 case 'D': letter_frequencies[D]++;
26 break;
27 case 'E': letter_frequencies[E]++;
28 break;
29 case 'F': letter_frequencies[F]++;
30 break;
31 case 'G': letter_frequencies[G]++;
32 break;
33 case 'H': letter_frequencies[H]++;
34 break;
35 case 'I': letter_frequencies[I]++;
36 break;
37 case 'J': letter_frequencies[J]++;
38 break;
39 case 'K': letter_frequencies[K]++;
40 break;
41 case 'L': letter_frequencies[L]++;
42 break;
43 case 'M': letter_frequencies[M]++;
44 break;
45 case 'N': letter_frequencies[N]++;
46 break;
47 case 'O': letter_frequencies[O]++;
48 break;
49 case 'P': letter_frequencies[P]++;
50 break;
51 case 'Q': letter_frequencies[Q]++;
52 break;
53 case 'R': letter_frequencies[R]++;
54 break;
55 case 'S': letter_frequencies[S]++;
56 break;
57 case 'T': letter_frequencies[T]++;
58 break;
59 case 'U': letter_frequencies[U]++;
60 break;
61 case 'V': letter_frequencies[V]++;
62 break;
63 case 'W': letter_frequencies[W]++;
64 break;
65 case 'X': letter_frequencies[X]++;
66 break;

Figure 8-16: Results of Running Example 8.7

Chapter 8: Arrays Creating And Using Single-Dimensional Arrays

C# For Artists © 2008 Rick Miller — All Rights Reserved 175

67 case 'Y': letter_frequencies[Y]++;
68 break;
69 case 'Z': letter_frequencies[Z]++;
70 break;
71 default : break;
72 } //end switch
73 } //end for
74
75 for(int i = 0; i < letter_frequencies.Length; i++){
76 Console.Write((char)(i + 65) + ": ");
77 for(int j = 0; j < letter_frequencies[i]; j++){
78 Console.Write('*');
79 } //end for
80 Console.WriteLine();
81 } //end for
82
83 } //end if
84 } // end main
85 } // end Histogram class definition

Referring to Example 8.8 — on line 5, an integer array named letter_frequencies is declared and initialized to

contain 26 elements, one for each letter of the English alphabet. On lines 6 through 9, several constants are declared

and initialized. The constants, named A through Z, are used to index the letter_frequencies array later in the program.

On line 10, a string reference named input_string is declared and initialized to null.

The program then prompts the user to enter a line of characters. The program reads this line of text and converts

it to upper case using the String.ToUpper() method. Most of the work is done within the body of the if statement that

starts on line 16. If the input_string is not null, then the for loop will repeatedly execute the switch statement, test-

ing each letter of input_string and incrementing the appropriate letter_frequencies element.

Take special note on line 19 of how the length of the input_string is determined using the String class’s Length

property. Also note that a string’s characters can be accessed using array notation. Figure 8-17 gives the results of

running this program with a sample line of text.

Quick Review

Single-dimensional arrays have one dimension — length. You can get an array’s length by calling the

GetLength() method with an integer argument indicating the particular dimension in which you are interested. Arrays

can have elements of either value or reference types. An array type is created by specifying the type name of array

elements followed by one set of brackets, []. Use System.Array class methods and properties to get information

about an array.

Each element of an array is accessed via an index value indicated by an integer within a set of brackets (e.g.,

array_name[0]). Value-type element values can be directly assigned to array elements. When an array of value types

Figure 8-17: Results of Running Example 8.8

Creating And Using Multidimensional Arrays Chapter 8: Arrays

176 © 2008 Rick Miller — All Rights Reserved C# For Artists

is created, each element is initialized to the type’s default value. Each element of an array of references is initialized

to null. Each object that a reference element points to must either already exist or be created during program execu-

tion.

Creating And Using Multidimensional Arrays

C# supports two kinds of multidimensional arrays: rectangular and ragged. In this section you will learn how to

create and use both kinds of multidimensional arrays. I will also show you how to create multidimensional arrays

using the new operator as well as how to initialize multidimensional arrays using literal values.

Rectangular Arrays

A rectangular array is a multidimensional array whose shape is fixed based on the length of each dimension or

rank. All of a rectangular array’s dimensions must be specified when the array object is created. Figure 8-18 gives the

rectangular array declaration syntax for a two-dimensional array.

Referring to Figure 8-18 — the type name combined with the brackets and comma yield the array type. For

example, the following line of code declares and creates a two-dimensional rectangular array of integers having 10

rows and 10 columns:

int[,] int_2d_array = new int[10,10];
A two-dimensional array can be visualized as a grid or matrix comprised of rows and columns, as is shown in

Figure 8-19. Each element of the array is accessed using two index values, one each for the row and column you wish

to access. For example, the following line of code would write to the console the element located in the first row, sec-

ond column of int_2d_array:

Console.WriteLine(int_2d_array[0,1]);
Figure 8-19 also includes a few more examples of two-dimensional array element access. Example 8.9 offers a

short program that creates a two-dimensional array of integers and prints their values to the console in the shape of a

grid.
8.9 TwoDimensionalArray.cs

1 using System;
2
3 public class TwoDimensionalArray {
4 static void Main(String[] args){
5
6 try{
7 int rows = Int32.Parse(args[0]);
8 int cols = Int32.Parse(args[1]);
9
10 int[,] int_2d_array = new int[rows, cols];
11 Console.WriteLine(" Array rank: " + int_2d_array.Rank);
12 Console.WriteLine(" Array type: " + int_2d_array.GetType());
13 Console.WriteLine("Total array elements: " + int_2d_array.Length);
14 Console.WriteLine();
15
16 for(int i = 0, element = 1; i<int_2d_array.GetLength(0); i++){
17 for(int j = 0; j<int_2d_array.GetLength(1); j++){
18 int_2d_array[i,j] = element++;

type[,] array_reference_name = new type[row_length, col_length];

Specify the type of elements the

array will contain
Name the array

reference

Use the new operator to

allocate memory

Specify the type and length of

each array dimension

Type name plus brackets and

comma yields array type

Figure 8-18: Rectangular Array Declaration Syntax

Chapter 8: Arrays Creating And Using Multidimensional Arrays

C# For Artists © 2008 Rick Miller — All Rights Reserved 177

19 Console.Write("{0:D3} ",int_2d_array[i,j]);

20 }

21 Console.WriteLine();

22 }

23

24 }catch(IndexOutOfRangeException){

25 Console.WriteLine("This program requires two command-line arguments.");

26 }catch(FormatException){

27 Console.WriteLine("Arguments must be integers!");

28 }

29 }

30 }

Referring to Example 8.9 — when the program executes, the user enters two integer values on the command line

for the desired row and column lengths. These values are read and converted on lines 7 and 8, respectively. The two-

dimensional array of integers is created on line 10, followed by several lines of code that writes some information

about the array including its rank, type, and total number of elements to the console. The nested for statement begin-

ning on line 16 iterates over each element of the array. Notice that the outer for statement on line 16 declares an

extra variable named element. It’s used in the body of the inner for loop to keep count of how many elements the

array contains so that its value can be assigned to each array element. The statement on line 19 prints each array ele-

ment’s value to the console with the help of numeric formatting. Figure 8-20 gives the results of running this pro-

gram.

rows

columns

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Figure 8-19: Accessing Two-Dimensional Array Elements

int_2d_array[0,1]

int_2d_array[1,4]

int_2d_array[3,9]

int_2d_array[6,6]

int_2d_array[7,9]

int_2d_array[8,8]

Figure 8-20: Results of Running Example 8.9

Creating And Using Multidimensional Arrays Chapter 8: Arrays

178 © 2008 Rick Miller — All Rights Reserved C# For Artists

Initializing Rectangular Arrays With Array Literals

Rectangular arrays can be initialized using literal values in an array initializer expression. Study the code offered

in Example 8.10.
8.10 RectangularLiterals.cs

1 using System;
2
3 public class RectangularLiterals {
4 static void Main(){
5 char[,] char_2d_array = {{'a', 'b', 'c'},
6 {'d', 'e', 'f'},
7 {'g', 'h', 'i'}};
8
9 Console.WriteLine("char_2d_array has rank: " + char_2d_array.Rank);
10 Console.WriteLine("char_2d_array has type: " + char_2d_array.GetType());
11 Console.WriteLine("Total number of elements: " + char_2d_array.Length);
12 Console.WriteLine();
13
14 for(int i = 0; i<char_2d_array.GetLength(0); i++){
15 for(int j = 0; j<char_2d_array.GetLength(1); j++){
16 Console.Write(char_2d_array[i,j] + " ");
17 }
18 Console.WriteLine();
19 }
20 }
21 }

Referring to Example 8.10 — a two-dimensional array of chars named char_2d_array is declared and initialized

on line 5 to have 3 rows and 3 columns. Notice how each row of characters appears in a comma-separated list

between a set of braces. Each row of initialization data is itself separated from the next row by a comma, except for

the last row of data on line 7. Lines 9 through 11 write some information about the character array to the console,

namely, its rank, type, and total number of elements. The nested for statement beginning on line 14 iterates over the

array and prints each character to the console in the form of a grid. Figure 8-21 shows the results of running this pro-

gram.

Ragged Arrays

A ragged array is an array of arrays. Ragged arrays can be any number of dimensions, but the last, or rightmost,

dimension is omitted from the array creation expression. Each rightmost array object must then be dynamically cre-

ated during program execution, resulting in the possibility that the array dimensions may differ in length, hence the

name ragged array. Figure 8.22 shows the ragged array declaration syntax for a two-dimensional ragged array. Exam-

ple 8.11 gives a short program showing the use of a ragged array.
8.11 Ragged2dArray.cs

1 using System;
2
3 public class Ragged2dArray {
4 static void Main(){
5 int[][] ragged_2d_array = new int[10][];
6
7 Console.WriteLine("ragged_2d_array has rank: " + ragged_2d_array.Rank);
8 Console.WriteLine("ragged_2d_array has type: " + ragged_2d_array.GetType());
9 Console.WriteLine("Total number of elements: " + ragged_2d_array.Length);
10 Console.WriteLine();
11
12 for(int i = 0; i<ragged_2d_array.GetLength(0); i++){
13 ragged_2d_array[i] = new int[i+1];
14 }

Figure 8-21: Results of Running Example 8.10

Chapter 8: Arrays Creating And Using Multidimensional Arrays

C# For Artists © 2008 Rick Miller — All Rights Reserved 179

15
16 for(int i = 0; i<ragged_2d_array.GetLength(0); i++){
17 for(int j = 0; j<ragged_2d_array[i].GetLength(0); j++){
18 Console.Write(ragged_2d_array[i][j] + " ");
19 }
20 Console.WriteLine();
21 }
22 }
23 }

Referring to Example 8.11 — on line 5 a two-dimensional ragged array of integers is declared and created. Lines

7 through 9 write some information about the array including its rank, type, and total number of elements to the con-

sole. The for statement beginning on line 12 creates 10 new arrays of varying lengths and assigns their references to

each element of ragged_2d_array. The next for statement on line 16 iterates over the ragged two-dimensional array

structure and writes the value of each element to the console. Figure 8-23 shows the results of running this program.

Multidimensional Arrays In Action

The example presented in this section shows how single and multidimensional arrays can be used together effec-

tively.

Weighted Grade Tool

Example 8.12 gives the code for a class named WeightedGradeTool. The program calculates a student’s final

grade based on weighted grades.
8.12 WeightedGradeTool.cs

1 using System;
2
3 public class WeightedGradeTool {
4 static void Main() {
5
6 double[,] grades = null;
7 double[] weights = null;

type[][] array_reference_name = ne w type [r ow_length][]

Figure 8-22:

Array Declaration Syntax for a

T

wo-Dimensional Ragged

Array

T

ype name plus

brackets yields array

type

Specify the type of elements the

array will contain

Name the array

reference

Use the

new

 operator to

allocate memory

Specify the type and length of

each array

The leftmost dimension is mandatory

(mandatory)

Leave rightmost

dimension empty

Figure 8-23: Results of Running Example 8.11

Creating And Using Multidimensional Arrays

Chapter 8: Arrays

180

© 2008 Rick Miller — All Rights Reserved

C# For Artists

8

 String[] students = null;

9

 int student_count = 0;

10

 int grade_count = 0;

11

 double final_grade = 0;

12

13

 Console.WriteLine("Welcome to Weighted Grade Tool");

14

15

 /**************** get student count *********************/

16

 Console.Write("Please enter the number of students: ");

17

 try {

18

 student_count = Int32.Parse(Console.ReadLine());

19

 }

20

 catch (FormatException) {

21

 Console.WriteLine("That was not an integer!");

22

 Console.WriteLine("Student count will be set to 3.");

23

 student_count = 3;

24

 }

25

26

 27 if (student_count > 0) {
28

 students = new String[student_count];

29

 /***************** get student names **********************/

30

 for (int i = 0; i < students.Length; i++) {

31

 Console.Write("Enter student name: ");

32

 students[i] = Console.ReadLine();

33

 }

34

35

 /**************** get number of grades per student **********/

36

 Console.Write("Please enter the number of grades to average: ");

37

 try {

38

 grade_count = Int32.Parse(Console.ReadLine());

39

 }

40

 catch (FormatException) {

41

 Console.WriteLine("That was not an integer!");

42

 Console.WriteLine("Grade count will be set to 3.");

43

 grade_count = 3;

44

 }

45

46

 /****************** get raw grades *****************************/

47

 grades = new double[student_count, grade_count];

48

 for (int i = 0; i < grades.GetLength(0); i++) {

49 Console.WriteLine("Enter raw grades for " + students[i]);
50 for (int j = 0; j < grades.GetLength(1); j++) {
51 Console.Write("Grade " + (j + 1) + ": ");
52 try {
53 grades[i, j] = Double.Parse(Console.ReadLine());
54 }
55 catch (FormatException) {
56 Console.WriteLine("That was not a double!");
57 Console.WriteLine("Grade will be set to 100");
58 grades[i, j] = 100;
59 }
60 }//end inner for
61 }
62
63 /***************** get grade weights *********************/
64 weights = new double[grade_count];
65 Console.WriteLine("Enter grade weights. Make sure they total 100%");
66 for (int i = 0; i < weights.Length; i++) {
67 Console.Write("Weight for grade " + (i + 1) + ": ");
68 try {
69 weights[i] = Double.Parse(Console.ReadLine());
70 }
71 catch (FormatException) {
72 Console.WriteLine("That was not a double!");
73 Console.WriteLine("The weight will be set to 25");
74 weights[i] = 25.0;
75 }
76 }
77
78 /****************** calculate weighted grades ********************/
79 for (int i = 0; i < grades.GetLength(0); i++) {
80 for (int j = 0; j < grades.GetLength(1); j++) {
81 grades[i, j] *= weights[j];
82 }//end inner for
83 }
84
85 /***************** calculate and print final grade *********************/
86 for (int i = 0; i < grades.GetLength(0); i++) {
87 Console.WriteLine("Weighted grades for " + students[i] + ": ");
88 final_grade = 0;

Chapter 8: Arrays The Main() Method’s String Array

C# For Artists © 2008 Rick Miller — All Rights Reserved 181

89 for (int j = 0; j < grades.GetLength(1); j++) {
90 final_grade += grades[i, j];
91 Console.Write(grades[i, j] + " ");
92 }//end inner for
93 Console.WriteLine(students[i] + "'s final grade is: " + final_grade);
94 }
95 }// end if
96 }// end Main
97 }// end class

Figure 8-24 shows the results of running this program.

Quick Review

C# supports two kinds of multidimensional arrays: rectangular and ragged. A rectangular array is a multidimen-

sional array whose shape is fixed based on the length of each dimension or rank. All of a rectangular array’s dimen-

sions must be specified when the array object is created. A ragged array is an array of arrays. Ragged arrays can be

any number of dimensions, but the last, or rightmost, dimension is omitted from the array creation expression. Each

rightmost array object must then be created during program execution, introducing the possibility that the array’s

dimensions may differ in length.

The Main() Method’s String Array

Now that you have a better understanding of arrays, the Main() method’s string array should make more sense.

This section explains the purpose and use of the Main() method’s string array.

Purpose And Use Of The Main() Method’s String Array

The purpose of the Main() method’s string array is to enable C# applications to accept and act upon command-

line arguments. The csc compiler is an example of a program that takes command-line arguments, the most important

of which is the name of the file to compile. This chapter and the previous chapter also gave several examples of

accepting program input via the command line. Now that you are armed with a better understanding of how arrays

work, you have the knowledge to write programs that accept and process command-line arguments.

Example 8.13 gives a short program that accepts a line of text as a command-line argument and displays it in

lower or upper case depending on the first command-line argument.

8.13 CommandLine.cs

Figure 8-24: Results of Running Example 8.12

Manipulating Arrays With The System.Array Class Chapter 8: Arrays

182 © 2008 Rick Miller — All Rights Reserved C# For Artists

1 using System;
2 using System.Text;
3
4 public class CommandLine {
5 static void Main(String[] args){
6 StringBuilder sb = null;
7 bool upper_case = false;
8 int start_index = 0;
9
10 /********** check for upper case option **************/
11 if(args.Length > 0){
12 switch(args[0][0]){ // get the first character of the first argument
13 case '-' :
14 if(args[0].Length > 1){
15 switch(args[0][1]){ // get the second character of the first argument
16 case 'U' :
17 case 'u' : upper_case = true;
18 break;
19 default: upper_case = false;
20 break;
21 }
22 }
23 start_index = 1;
24 break;
25 default: upper_case = false;
26 break;
27
28 }// end outer switch
29
30 sb = new StringBuilder(); //create StringBuffer object
31
32 /******* process text string **********************/
33 for(int i = start_index; i < args.Length; i++){
34 sb.Append(args[i] + " ");
35 }//end for
36
37 if(upper_case){
38
39 Console.WriteLine(sb.ToString().ToUpper());
40 }else {
41
42 Console.WriteLine(sb.ToString().ToLower());
43 }//end if/else
44
45 } else { Console.WriteLine("Usage: CommandLine [-U | -u] Text string");}
46
47 }//end main
48 }//end class

Figure 8.25 shows the results of running this program.

Manipulating Arrays With The System.Array Class

The .NET platform makes it easy to perform common array manipulations such as searching and sorting with the

System.Array class. Example 8.14 offers a short program that shows the Array class in action sorting an array of inte-

gers.
8.14 ArraySortApp.cs

49 using System;
50
51 public class ArraySortApp {
52 static void Main() {
53 int[] int_array = { 100, 45, 9, 1, 34, 22, 6, 4, 3, 2, 99, 66 };
54
55 for (int i = 0; i < int_array.Length; i++) {

Figure 8-25: Results of Running Example 8.13

Chapter 8: Arrays Numeric Formatting

C# For Artists © 2008 Rick Miller — All Rights Reserved 183

56 Console.Write(int_array[i] + " ");
57 }
58 Console.WriteLine();
59
60 Array.Sort(int_array);
61
62 for (int i = 0; i < int_array.Length; i++) {
63 Console.Write(int_array[i] + " ");
64 }
65 } // end Main() method
66 } // end ArraySortApp class definition

Figure 8-26 shows the results of running this program.

Numeric Formatting

C# makes it easy to format numeric strings. You have seen several examples of numeric formatting in both this

and the previous chapter. You can format numeric results using the String.Format() method or the Console.Write() or

Console.WriteLine() methods.

A format string takes the form Cfnn where Cf is a format specifier character and nn specifies the number of deci-

mal digits. Table 8-2 lists the standard C# numeric format strings along with some brief example code.

Summary

C# array types have special functionality because of their special inheritance hierarchy. C# array types directly

inherit functionality from the System.Array class and implement the ICloneable, IList, ICollection, and IEnumerable

interfaces. Arrays are also serializable.

Single-dimensional arrays have one dimension — length. You can get an array’s length by calling the

GetLength() method with an integer argument that indicates the dimension in which you are interested. You can also

get the length of a single dimensional array by accessing its Length property. Arrays can have elements of either value

Character Description Example Code Results

C or c Currency Console.Write("{0:C}", 4.5);

Console.Write("{0:C}", -4.5);

$4.50

($4.50)

D or d Decimal Console.Write("{0:D5}", 45); 00045

E or e Scientific Console.Write("{0:E}", 450000); 4.500000E+005

F or f Fixed-point Console.Write("{0:F2}", 45);

Console.Write("{0:F0}", 45);

45.00

45

G or g General Console.Write("{0:G}", 4.5); 4.5

N or n Number Console.Write("{0:N}", 4500000); 4,500,000.00

X or x Hexadecimal Console.Write("{0:X}", 450);

Console.Write("{0:X}", 0xabcd);

1C2

ABCD

Table 8-2: Numeric Formatting

Figure 8-26: Results of Running Example 8.14

Skill-Building Exercises Chapter 8: Arrays

184 © 2008 Rick Miller — All Rights Reserved C# For Artists

or reference types. An array type is created by specifying the type name of array elements followed by one set of

brackets []. Use System.Array class methods and properties to get information about an array.

Each element of an array is accessed via an index value contained within a set of brackets. Value-type element

values can be directly assigned to array elements. When an array of value types is created, each element is initialized

to the types default value. Each element of an array of references is initialized to null. Each object that a reference

element points to must either already exist or be created during program execution.

C# supports two kinds of multidimensional arrays: rectangular and ragged. A rectangular array is a multidimen-

sional array whose shape is fixed based on the length of each dimension or rank. All of a rectangular array’s dimen-

sions must be specified when the array object is created.

A ragged array is an array of arrays. Ragged arrays can be any number of dimensions but the last, or rightmost,

dimension is omitted from the array creation expression. Each rightmost array object must then be created during pro-

gram execution, introducing the possibility that the array’s dimensions may differ in length.

Use the built-in methods and properties of the System.Array class to perform certain array manipulations such as

sorting.

Skill-Building Exercises

1. Further Research: Study the System.Array class and the interfaces it implements to better familiarize yourself

with the functionality it provides.

2. Further Research: Conduct a web search for different applications for single and multidimensional arrays.

3. Single-Dimensional Arrays: Write a program that lets you create a single-dimensional array of integers of differ-

ent sizes at program runtime using command-line inputs.

4. Single-Dimensional Arrays: Write a program that reverses the order of text entered on the command line. This

will require the use of the Main() method’s string array.

5. Further Research: Conduct a web search on different sorting algorithms and how arrays are used to implement

these algorithms. Also, there are several good sources of information regarding sorting algorithms listed in the ref-

erences section of this chapter.

6. Multidimensional Arrays: Modify Example 8.9 so that it creates two-dimensional arrays of characters. Initialize

each element with the character ‘c’. Run the program several times to create character arrays of different sizes.

7. Multidimensional Arrays: Modify Example 8.9 again so that the character array is initialized to the value of the

first character read from the command line. Hint: Refer to Example 8.13 to see how to access the first character of

a string.

Suggested Projects

1. Matrix Multiplication: Given two matrices Aij and Bjk, the product Cik can be calculated with the following equa-

tion:

Chapter 8: Arrays Suggested Projects

C# For Artists © 2008 Rick Miller — All Rights Reserved 185

Write a program that multiplies the following matrices together and stores the results in a new matrix. Print the

resulting matrix values to the console.

2. Modify Histogram Program: Modify the histogram program given in Example 8.8 so that it counts the occur-

rence of the digits 0 through 9 and the punctuation marks period ‘.’, comma ‘,’, question mark ‘?’, colon ‘:’, and

semicolon ‘;’.

3. Computer Simulator: You are a C# developer with a high-tech firm doing contract work for the Department of

Defense. Your company has won the proposal to develop a proof-of-concept model for an Encrypted Instruction

Set Computer System Mark 1 (EISCS Mk1). Your job is to simulate the operation of the EISCS Mk1 with a C#

application.

Supporting Information: The only language a computer understands is its machine-language instruction set. The

EISCS Mk1 is no different. The EISCS machine language instruction set will consist of a four-digit integer with

the two most significant digits being the operation code (opcode) and the two least significant digits being the

operand. For example, consider the following instruction:

The number 11 represents the opcode and the number 33 represents the operand. The following table lists and

describes each EISCS machine instruction.

Opcode Mnemonic Description

Input/Output Operations

10 READ Reads an integer value from the console and stores it in memory location

identified by the operand.

11 WRITE Writes the integer value stored in memory location operand to the console.

Load/Store Operations

20 LOAD Loads the integer value stored at memory location operand into the accu-

mulator.

Table 8-3: EISCS Machine Instructions

Cik AijB jk
j 1=

n

∑=

2 3

3 4

4 5

2 3 4

3 4 5

1133

opcode operand

Suggested Projects Chapter 8: Arrays

186 © 2008 Rick Miller — All Rights Reserved C# For Artists

Sample Program: Using the instruction set given in Table 8-3, you can write simple programs that will run on the

EISCS Mk1 computer simulator. The following sample program reads two numbers from the input, multiplies

them together, and writes the results to the console.

21 STORE Stores the integer value residing in the accumulator into memory location

operand.

Arithmetic Operations

30 ADD Adds the integer value located in memory location operand to the value

stored in the accumulator and leaves the result in the accumulator.

31 SUB Subtracts the integer value located in memory location operand from the

value stored in the accumulator and leaves the result in the accumulator.

32 MUL Multiplies the integer value located in memory location operand by the val-

ue stored in the accumulator and leaves the result in the accumulator.

33 DIV Divides the integer value stored in the accumulator by the value located in

memory location operand.

Control and Transfer Operations

40 BRANCH Unconditional jump to memory location operand.

41 BRANCH_NEG If accumulator value is less than zero jump to memory location operand.

42 BRANCH_ZERO If accumulator value is zero then jump to memory location operand.

43 HALT Stop program execution.

Memory

Location

Instruction /

Contents

Action

00 1007 Read integer into memory location 07

01 1008 Read integer into memory location 08

02 2007 Load contents of memory location 07 into accumulator

03 3208 Multiply value located in memory location 08 by value stored in accumula-

tor. Leave result in accumulator

04 2109 Store value currently in accumulator to memory location 09

05 1109 Write the value located in memory location 09 to the console

06 4010 Jump to memory location 10

07

08

09

10 4300 Halt program

Opcode Mnemonic Description

Table 8-3: EISCS Machine Instructions

Chapter 8: Arrays Self-Test Questions

C# For Artists © 2008 Rick Miller — All Rights Reserved 187

Basic Operation: This section discusses several aspects of the EISCS computer simulation operation to assist you

in completing the project.

Memory: The machine language instructions that constitute an EISCS program must be loaded into memory

before the program can be executed by the simulator. Represent the computer simulator’s memory as an array of

integers 100 elements long.

Instruction Decoding: Instructions are fetched one at a time from memory and decoded into opcodes and oper-

ands before being executed. The following code sample demonstrates one possible decoding scheme:

Hints:

• Use switch/case structure to implement the instruction execution logic.

• You may either hard code sample programs in your simulator or allow a user to enter a program

into memory via the console.

• Use an array of 100 integers to represent memory.

Self-Test Questions

1. Arrays are contiguously allocated memory elements of homogeneous data types. Explain in your own words what

this means.

2. What’s the difference between arrays of value types vs. arrays of reference types?

3. C# array types directly inherit functionality from what class?

4. How do you determine the length of an array?

5. (T/F) An array can be resized after it has been created.

6. (T/F) One or more of the dimensions of a rectangular array can be left unspecified upon array object creation.

7. Ragged arrays are _______________ of ______________.

8. When a ragged array is created, which dimensions are optional and which dimensions are mandatory?

9. What is meant by the term “ragged array”?

10. What’s the purpose of the Main() method’s string array?

instruction = memory[program_counter++];
 operation_code = instruction / 100;
 operand = instruction % 100;

References Chapter 8: Arrays

188 © 2008 Rick Miller — All Rights Reserved C# For Artists

References

ECMA-335 Common Language Infrastructure (CLI), 4th Edition, June 2006 [http://www.ecma-international.org/

publications/standards/Ecma-335.htm]

ECMA-334 C# Language Specification, 4th Edition, June 2006 [http://www.ecma-international.org/publications/

standards/Ecma-334.htm]

Microsoft Developer Network (MSDN) [http://www.msdn.com]

Rick Miller. Java For Artists: The Art, Philosophy, And Science Of Object-Oriented Programming. Pulp Free

Press, Falls Church, VA. ISBN: 1-932504-05-2

Donald E. Knuth. The Art of Computer Programming. Volume 3: Sorting and Searching, Second Edition. Addi-

son-Wesley. Reading Massachusetts. ISBN: 0-201-89685-0

Notes

