
C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 3

1 An Approach to the Art of Programing

Learning Objectives
• Describe the difficulties you will encounter in your quest to become a C# programmer
• List and describe the features of an integrated development environment (IDE)
• List and describe the stages of the “flow”
• List and describe the three roles you will play as a programming student
• State the purpose of the project-approach strategy
• List and describe the steps of the project-approach strategy
• List and describe the steps of the development cycle
• List and describe two types of project complexity
• State the meaning of the phrases “maximize cohesion” and “minimize coupling”
• Describe the differences between functional decomposition and object-oriented design
• State the meaning of the term “isomorphic mapping”

Chapter 1

An Approach To The
Art Of Programming

Rosslyn, VA

Vo
ig

tla
nd

er
 B

es
sa

-L
 / 

15
m

m
 S

up
er

 W
id

e-
H

el
ia

r 



Introduction Chapter 1: An Approach To The Art Of Programming

4 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Introduction

Programming is an art; there’s no doubt about it. Good programmers are artists in every sense of the 
word. They are a creative bunch, although some would believe themselves otherwise out of modesty. As 
with any art, you can learn the secrets of the craft. That is what this chapter is all about. 

Perhaps the most prevalent personality trait I have noticed in good programmers is a knack for prob-
lem solving. Problem solving requires creativity, and lots of it. When you program a computer you are 
solving a problem with a machine. You transfer your knowledge of a particular problem into code, trans-
form the code into a form understandable by a machine, and run the result on a machine. Doing this 
requires lots of creativity, especially when you find yourself stumped by a particular problem. 

The material presented here is wrought from experience. Believe it or not, the hardest part about learn-
ing to program a computer, in any programming language, is not the learning of the language itself; rather, 
it is learning how to approach the art of problem solving with a computer. To this end, the material in this 
chapter is aimed squarely at the beginner. However, I must issue a word of warning. If you are truly a nov-
ice, then some of what you read in this chapter will make less sense to you than to someone already famil-
iar with programming concepts. Don’t worry, it’s that way by design. If you feel like skipping parts of this 
chapter now, then go right ahead. The material will be here when you need it. In fact, you will grow to 
appreciate this chapter more as you gain experience as a programmer. 

The Difficulties You Will Encounter Learning C#

During your studies of the C# programming language you will face many challenges and frustrations. 
However, the biggest problem you will encounter is not the learning of the language itself, but the many 
other skills and tools you must learn before writing programs of any significance or gaining any measure of 
proficiency in solving problems with C#. If you are a seasoned student or practicing computer professional 
returning to the classroom to upgrade your skills, you have the advantage of experience. You can concen-
trate on learning the syntax and nuances of C# and very quickly apply its powers to problems at hand. If 
you are an absolute beginner, however, you have much to learn. 

Required Skills

In addition to the syntax and semantics of the C# language you will need to master the following skills 
and tools:

• A development environment, which could be as simple as the combination of a text edi-
tor and command-line compiler or as complex as a commercial product that integrates 
editing, compiling, and project management capabilities into one suite of tools

• A computing platform of your choice (i.e., a computer running Microsoft Windows 7, or 
later, operating system.)

• Problem solving skills
• Project approach techniques
• Project complexity management techniques
• The ability to put yourself in the mood to program
• The ability to stimulate your creativity
• Object-oriented analysis and design
• Object-oriented programming principles
• Microsoft .NET Framework Application Programming Interface (.NET API)



Chapter 1: An Approach To The Art Of Programming Personality Traits Found In Great Programmers

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 5

The Planets Will Come Into Alignment

I use a metaphor to describe what it takes before you can get even the simplest program to execute 
properly. It’s as if the planets must come into alignment. You must learn a little of each skill and tool listed 
above, with the exception of object-oriented programming principles and object-oriented analysis and 
design, to write, compile, and run your first C# program. But, when the planets do come into alignment, 
and you see your first program compile and execute, and you begin to make sense of all the class notes, 
documentation, and text books you have studied up to that point, you will spring up from your chair and do 
a victory dance. It’s a great feeling! 

How This Chapter Will Help You

This chapter gives you the information you need to bring the planets into alignment sooner rather than 
later. It presents an abbreviated software development methodology that formalizes the three primary roles 
you play as a programming student: analyst, architect, and programmer. It offers tips on how you can tap 
into the “flow”, a transcendental state often experienced by artists when they are completely absorbed in 
and focused on their work. It also offers several strategies to help you manage project complexity, some-
thing you will not need to do for very small projects, but should still get into the habit of doing as soon as 
possible. 

I recommend you read this chapter at least once in its entirety and refer back to it as necessary as you 
progress through the text.

Personality Traits Found In Great Programmers

Software engineers come in all shapes, sizes, and temperaments. I’ve worked with many over the 
years. Here I’d like to discuss what I believe are a few of the most important personality traits shared by 
the best. I’m not trying to describe the perfect person; we all have our strengths and weaknesses. But by 
observing some really smart people in action, I have formulated a definite opinion regarding the traits they 
possess that enable them to work well by themselves while at the same time permitting them to perform 
well in a team environment. 

Creative

Like I said at the beginning of the chapter, the most prevalent personality trait great programmers pos-
sess is that of creativity. Solving problems in such a manner that allows them to be executed by a machine 
takes truck loads of creativity. 

If you say to yourself, “But I’m not creative!” My advice to you is not to sell yourself short. A large 
part of being creative is simply having an open mind. You must be receptive to alternative solutions and 
not limit yourself to a “this way or the highway” way of thinking.

Tenacious

Great programmers never give up! As computers, operating systems, and programming languages 
grow increasingly complex, so too grows the complexity of their associated development environments 
and the range of issues and problems you will encounter when developing solutions for these machines. If 
you are the type of person who likes to bite into a problem like a pit bull and keep at it until you’ve licked 
it, then you’ll do well as a programmer.



Personality Traits Found In Great Programmers Chapter 1: An Approach To The Art Of Programming

6 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Resilient

Great programmers bounce back! When a particular problem has given you a thorough trouncing you 
must come back strong the next day and fight the battle again. Programming is one continuous stream of 
problem solving. This you must be willing to repeat ad-infinitum. To paraphrase an old Timex® watch 
advertisement campaign slogan, you must be able to “...take a licking and keep on ticking!” 

Methodical

Great programmers approach everything they do in a methodical way. This holds true regardless of if 
you program alone or as part of a team or if a formal methodology does or does not exist. You must be able 
to formulate problem attack plans and execute those plans. 

Meticulous

Great programmers are meticulous. Close attention to detail is paramount in the programming profes-
sion. One identifier misspelled, one token out of place, can break entire systems. 

Honest

Great programmers can be trusted to do the right thing in the code when no one is looking. They must 
be honest with themselves but especially towards other programmers. Honest programmers put in an hon-
est day’s work and give realistic estimates regarding task completion. 

Proactive

Great programmers recognize and capitalize upon opportunity. They get up out of their chair and go 
out and talk to their fellow programmers. When they see problems in the code or areas for improvement 
they bring it to the attention of the team. 

Humble

Great programmers know when to seek guidance or help. They don’t let their ego stand in the way of 
the greater good. They get up off their duff and talk to their fellow programmers. They share their knowl-
edge and wisdom so that someday they can take a vacation. Most importantly, admitting that they don’t 
know something early on can save hundreds of wasted work hours down the line. 

Be a Generalist and a Just-in-Time Specialist

Great programmers are well-versed in all aspects of computing. Rarely have I ever met any who 
referred to themselves as only a this type of programmer or a that type of programmer. I’d rather hire gen-
eralists with solid educational backgrounds and the proven ability to teach themselves new tricks, than to 
bank on a specialist who refuses to grow professionally. In other words, great programmers have a broad 
range of skills they can apply to the problem. Great programmers can gather requirements, design a solu-
tion, write the code, conduct testing, write supporting documentation, deploy the application if necessary, 
and carry on intelligent conversations with the customer to boot. 



Chapter 1: An Approach To The Art Of Programming Project Management

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 7

Project Management

Three Software Development Roles

You will find yourself assuming the duties and responsibilities of three software development roles: 
analyst, architect, and programmer.

Analyst

The first software development role you will play as a programming student is that of analyst. When 
you are first handed a class programming project you may not understand what, exactly, the instructor is 
asking you to do. Hey, it happens! Regardless, you, as the student, must read the assignment and design 
and implement a solution. 

Programming project assignments come in several flavors. Some instructors go into painful detail 
about how they want the student to execute the project. Others prefer to generally describe the type of pro-
gram they want, thus leaving the details, and the creativity, up to you. There is no one correct method of 
writing a project assignment; each has its benefits and limitations.

A detailed assignment takes a lot of the guesswork out of what outcome the instructor expects. On the 
other hand, having every design decision made for you may prevent you from solving the problem in a 
unique, creative way.

A general project assignment delegates a lot of decision making to the student while also adding the 
responsibility of determining what project features will satisfy the assignment. 

Both types of assignments model the real world to some extent. Sometimes, software requirements are 
well defined leaving little doubt what shape the final product will take and how it must perform. More 
often than not, however, requirements are ill-defined and vaguely worded. As an analyst, you must clarify 
what is being asked of you. In an academic setting, do this by talking to your instructor and asking them to 
clarify the assignment. A clear understanding of the assignment will yield valuable insight into possible 
approaches to a solution.

Architect

The second software development role you will play is that of architect. Once you understand the 
assignment you must design a solution. If your project is extremely small, you could perhaps skip this step 
with no problem. However, if your project contains several objects that interact with each other, then your 
design, and the foundation it lays, could make the difference between success and failure. A well-designed 
project reflects a sublime quality that poorly designed projects do not. (See the discussion of the Quality 
without a Name (QWAN) in Chapter 25 — Helpful Design Patterns)

Two objectives of good software design are the abilities to accommodate change and tame complexity. 
Accommodating change, in this context, means the ability to incrementally add features to your project as 
it grows without breaking the code you have already written. Several important object-oriented principles 
have been formulated to help tame complexity and will be discussed later in the book. For starters though, 
begin by imposing good organization upon your source code files. For simple projects you can group 
source code files together in one directory. For more complex projects you will want to organize source 
code files into subfolders and group related type definitions into namespaces. (See Chapter 20 — Database 
Access)



Project Management Chapter 1: An Approach To The Art Of Programming

8 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Programmer

The third software development role you will play is that of programmer. As the programmer, you will 
execute your design. The important thing to note here is that if you do a poor job in the roles of analyst and 
architect, your life as a programmer will be miserable. That doesn’t mean the design has to be perfect. I 
will show you how to incrementally develop and make improvements to your design as you code.

Now that you know what roles you will play as a student, let’s discuss how you might approach a proj-
ect.

A Project-Approach Strategy

Most students have difficulty implementing their first significant programming assignment, not 
because they lack brains or talent, but because they lack experience. If you are a novice and feel over-
whelmed by your first programming project, rest assured you are not alone. The good news is that with 
practice and some small victories, you will quickly gain proficiency at formulating approach strategies to 
your programming projects.

Even experienced programmers may not immediately know how to solve a problem or write a particu-
lar piece of code when tasked to do so. What they do know, however, is how to formulate a strategy to 
solve the problem. 

You Have Been Handed A Project — Now What?

Until you gain experience and confidence in your programming abilities, the biggest problem you will 
face when given a large programming assignment is where to begin. What you need to help you in this sit-
uation is a project-approach strategy. The strategy is presented below and discussed in detail. I have also 
summarized the strategy in a checklist located in Appendix A. Feel free to reproduce the checklist to use as 
required.

The project-approach strategy is a collection of areas of concern to take into consideration when you 
begin a programming project. It’s not a hard, fast list of steps you must take. It’s intended to put you in con-
trol, to point you in the right direction, and give you food for thought. It is flexible. You will not have to 
consider every area of concern for every project. After you have used it a few times to get started, you may 
never use it explicitly again. As your programming experience grows, feel free to tailor the project-
approach strategy to suit your needs.

Strategy Areas of Concern

The project-approach strategy consists of several programming project areas of concern. These areas 
of concern include application requirements, problem domain, language features, and application design. 
When you use the strategy to help you solve a programming problem, your efforts become focused and 
organized rather than ad hoc and confused. You will feel like you are making real progress rather than 
drowning in a sea of confusion. 

Application Requirements

An application requirement is an assertion about a particular aspect of expected application behavior. 
A project’s application requirements are contained in a project specification or programming assignment. 
Before you proceed with the project you must ensure that you completely understand the project specifica-
tion. Seek clarification if you do not know or if you are not sure what problem the project specification is 
asking you to solve. In my academic career, I have seen projects so badly written that I thought I had a 
comprehension problem. I’d read the thing over and over again until struck by a sudden flash of inspira-



Chapter 1: An Approach To The Art Of Programming Project Management

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 9

tion. But more often than not, I would verify what I believed an instructor required by asking them to clar-
ify any points I did not understand.

Problem Domain

The problem domain is the body of knowledge necessary to implement a software solution apart and 
distinct from the knowledge of programming itself. For example, consider the following application 
requirement: “Write a program to simulate elevator usage in a skyscraper.” You may understand what is 
being asked of you (requirements understanding) but not know anything about elevators, skyscrapers, or 
simulations (problem domain). You need to become enough of an expert in the problem domain for what 
you are solving such that you understand the issues involved. In the real world, subject matter experts 
(SMEs) augment development teams, when necessary, to help developers understand complex problem 
domains.

Programming Language Features

One source of great frustration to novice programming students at the opening stages of the project is 
knowing what solution to design without knowing enough of the programming language features to start 
the design process. This is when panic sets in and students begin to buy extra books in hopes of discover-
ing the Holy Grail of project wisdom.

To save yourself from panic, make a list of the language features you need to understand. Study each 
one, marking it off your list as you go. This provides focus and a sense of progress. As you read about each 
feature, take notes on its usage. Then refer to your notes when you sit down to formulate your program’s 
design.

High-Level Design & Implementation Strategy

When you are ready to design a solution, you will usually be forced to think along two completely dif-
ferent lines of thought: procedural vs. object-oriented.

Procedural-based Design Approach

A procedural-based design approach identifies and implements program data structures separately 
from the program code that manipulates those data structures. When taking a procedural-based approach to 
a solution you generally break the problem into small, easily solvable pieces called functions, implement 
the solution to each function separately, and then combine the functions into a complete solution. This 
methodology is also known as functional decomposition. 

Although C# does not support standalone functions (C# has methods and a method must belong to a 
class), you can still use a procedural-based design approach to create a working C# program. However, 
taking such an approach usually results in a sub-optimal design. 

Object-Oriented Design Approach

Object-oriented design entails thinking of an application in terms of objects and the interactions 
between these objects. This approach no longer considers data structures and the methods that manipulate 
those data structures to be separate. The data an object needs to do its work is contained within the object 
itself and resides behind a set of public interface methods. (Encapsulation) Data structures and the meth-
ods that manipulate them combine to form classes from which objects can then be created. 

To solve a programming problem with an object-oriented approach, decompose it into a set of objects 
and their associated behavior. You can use design tools such as the Unified Modeling Language (UML) to 
help with this task. Once you’ve identified system objects, you then define object interface methods. From 



Project Management Chapter 1: An Approach To The Art Of Programming

10 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

here you declare classes or structures and implement those interface methods. Finally, you combine these 
classes or structures together to form the final program. (This usually takes place in an iterative fashion 
over a period of time according to a well-defined development process.) Note that when using the object-
oriented approach, you are still breaking a problem into solvable pieces, only now the solvable pieces are 
objects that represent the interrelated parts of a system.

The primary reason the object-oriented approach is superior to functional decomposition is due to the 
isomorphic mapping between the problem domain and the design domain as figure 1-1 illustrates. 

Referring to figure 1-1 — Real world objects such as weapon systems, sensors, propulsion systems, 
and vessels can have a corresponding representation in the software system design. The correlation 
between real world objects and software components fuels the power of the object-oriented approach.

Once you get the hang of object-oriented design, you will never return to functional decomposition 
again. However, after having identified the objects in your program and the interfaces they should have, 
you must still implement your design. This means writing class member methods one line of code at a 
time.

Think Abstractly

One mistake students often make is to think too literally. It is very important to remember that the act 
of solving a real world problem with a computer requires abstraction. The real world is too complex to 
model sufficiently with a computer program. One day, perhaps, the human race will produce a genius who 
will show us how it’s done. Until then, analysts must focus on the essence of a problem and distill unneces-
sary details into a tractable solution that can then be modeled effectively in software.

The Strategy In A Nutshell

The project-approach strategy can be summarized as follows: Identify the problem, understand the 
problem, make a list of language features you need to study, and check them off as you go. Once you for-
mulate a solution to the problem, break the problem into manageable pieces, solve each piece of the prob-
lem, and then combine the solved pieces to form a total solution. 

Figure 1-1: Isomorphic Mapping Between Problem Domain and Design Domain



Chapter 1: An Approach To The Art Of Programming The Art Of Programming

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 11

Applicability To The Real World

The project-approach strategy presented previously is not intended to replace a formal course on soft-
ware engineering, but it will help you when you enter the real world as a paid programmer. In that world, 
you will soon discover that all companies and projects are not created equal. Different companies have dif-
ferent software development methodologies. Some companies have no software development methodol-
ogy. If you find yourself working for such a company, you will probably be the software engineering 
expert. Good luck!

The Art Of Programming

Programming is an art. Any programmer will agree — it takes a lot of creativity to solve problems 
with a computer. Creative people have an advantage in that they are not afraid to explore new avenues of 
design. Their open-mindedness and readiness to accept new ideas gives them the ability to see problems 
differently from people who tend towards the “cut and dry”. This section offers a few suggestions on how 
you can stimulate your creativity. 

Don’t Start At The Computer

Unless you have a good idea about what source code to write, sitting down at the computer without 
first thinking through some design issues is the worst mistake you can make. If you have ever suffered 
from writer’s block when writing a paper for class, then you can begin to understand what you will experi-
ence if you begin your project at the computer.

I recommend you forget the computer, go someplace quiet and relaxing with pen and paper, and draft a 
design document. It doesn’t have to be big or too detailed. Entire system designs can be sketched on the 
back of a napkin. The important thing is that you give some prior thought regarding your program’s design 
and structure before you start coding.

Your choice of relaxing locations is important. It should be someplace where you feel really comfort-
able. If you like quiet spaces, then seek quiet spaces; if you like to watch people walk by and observe the 
world, then an outdoor cafe may be the place for you. Inside, outside, at the beach, on the ski slope, wher-
ever you prefer.

What you seek is the ability to let your mind grind away on the solution. Let your mind do the work. 
Writing code at the computer is a mechanical process. Formulating the solution is where real creativity is 
required, and is the part of the process that requires the most brainpower. Typing code is more like an exer-
cise in paying attention to detail.

Inspiration Strikes At The Weirdest Time

If you let your mind work on the problem, it will offer its solution to you at the weirdest times. I solve 
most of my programming problems in my sleep. As a student, I kept computers in the bedroom and would 
get up at all hours of the night to work on ideas that had popped into my head in a dream. 

Try to have something to write on close at hand at all times. A pad of paper and pen next to the bed or 
next to the toilet can come in handy! You can also use a small tape recorder, digital memo recorder, or your 
personal digital assistant. Whatever means suit your style. Just be prepared. There’s nothing worse than the 
sinking feeling of having had the solution come to you in the middle of the night, in the shower, or on the 
drive home from work or school, only to forget it later. You’ll be surprised at how many times you’ll say to 
yourself, “Hey, that will work!” only to forget it and have no clue what you were thinking when you finally 
get hold of a pen.



The Art Of Programming Chapter 1: An Approach To The Art Of Programming

12 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Own Your Own Computer

Do not rely on the computer lab! I repeat, do not rely on the computer lab! The computer lab is the 
worst possible place for inspiration and cranking out code. If at all possible, own your own computer. It 
should be one sufficiently powerful to use for C# software development.

You Either Have Time and No Money, or Money and No Time

The one good reason for not having your own personal computer is severe economic hardship. Full-
time students sometimes fall into this category. If you are a full-time student, what you usually have 
instead of a job or money is gobs of time. So much time that you can afford to spend your entire day at 
school and complain to your friends about not having a social life. But you can stay in the computer lab all 
day long, even when it is relatively quiet.

On the other hand, you may work full-time and be a part-time student. If this describes you, then you 
don’t have time to screw around driving to school to use the computer lab. You will gladly pay for any 
book or software package that makes your life easier and saves you time. 

The Family Computer Is Not Going To Cut It!

If you are a family person working full-time and attending school part-time, then your time is a pre-
cious commodity. If you have a family computer that everyone shares, adults as well as children, then get 
another computer, put it off limits to everyone but yourself, and password-protect it. This will ensure that 
your loving family does not accidentally wipe out your project the night before it is due. Don’t kid your-
self, it happens. Ensure your peace of mind by having your own computer in your own little space with a 
sign on it that reads, “Touch This Computer And Die!”

Set The Mood

When you have a good idea on how to proceed with entering source code, you will want to set the 
proper programming mood. 

Location, Location, Location

Locate your computer work area someplace that’s free from distraction. If you are single, this may be 
easier than if you are married with children. If you live in a dorm or frat house, good luck! Perhaps the 
computer lab is an alternative for you after all.

Have your own room, if possible, or at least your own corner of a larger room that is recognized as a 
quiet zone. Noise-canceling headphones might help if you find yourself in this situation.

Set rules. Let your friends and family know that it’s not cool to bother you when you are programming. 
I know it sounds rude, but when you get into the flow, which is discussed in the following section, you will 
become agitated when someone interrupts your train of thought to ask you about school lunch tomorrow or 
the location of the car keys. Establish the ground rules up front that say when it is a good time to disturb 
you when you are programming. The best rule is never!

Concept Of The Flow

Artists tend to become absorbed in their work, not eating and ignoring personal hygiene for days, even 
weeks, at a time. Those who have experienced such periods of intense concentration and work describe it 
as a transcendental state where they have complete clarity of the idea of the finished product. They tune out 
the world around them, living inside a cocoon of thought and energy. 



Chapter 1: An Approach To The Art Of Programming The Art Of Programming

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 13

Programmers can get into the flow. I have achieved the flow. You too can achieve the flow. When you 
do, you will crave the feeling of the flow again. It is a good feeling, one of complete and utter understand-
ing of what you are doing and where you are going with your source code. You can do amazing amounts of 
programming while in the flow.

The Stages of Flow

As with sleep, there are stages to the flow. 

Getting Situated

The first stage: You sit down at the computer and adjust your keyboard and stuff around you. Take a 
few deep breaths to help you relax. By now, you should have a good idea of how to proceed with your cod-
ing. If not, you shouldn’t be sitting at the computer. 

Restlessness

The second stage. You may find it difficult to clear your mind of the everyday thoughts that block your 
creativity and energy. Maybe you had a bad day at work, or even a great day. Perhaps your spouse or sig-
nificant other is being a complete jerk! Perhaps he or she is being especially nice and you’re wondering 
why. 

Close your eyes, breathe deeply and regularly. Clear your mind and think of nothing. It is hard to do at 
first, but with practice it becomes easy. When you can clear your mind and free yourself from distracting 
thoughts, you will find yourself ready to begin coding. 

Settling In

The third stage: Now your mind is clear. Non-productive thoughts are tucked neatly away. You begin 
to program. Line by line, your program takes shape. You settle in. The clarity of your purpose takes hold 
and propels you forward.

Calm and Complete Focus

The fourth stage: You don’t notice it at first, but at some point between this stage and the previous 
stage, you have slipped into a deeply relaxed state. You are utterly focused on the task at hand. It is like 
becoming completely absorbed in a good book. Someone can call your name, but you will not notice. You 
will not respond until someone either shouts at you or does something to break your concentration. 

You know you were in the flow, if only to a small degree, when being interrupted brings you out of this 
focused state, leaving you feeling agitated and eager to settle in once again. If you avoid getting up from 
your chair for fear of breaking your concentration or losing your thought process, then you are in the flow! 

Be Extreme

Kent Beck, in his book Extreme Programming Explained, describes the joy of doing really good pro-
gramming. The following programming cycle is synthesized from his extreme programming philosophy.



The Art Of Programming Chapter 1: An Approach To The Art Of Programming

14 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

The Programming Cycle

Plan

Plan a little. Your project design should serve as a guide in your programming efforts. Your design 
should also be flexible and accommodate change. This means that as you program, you may make changes 
to the design. 

Essentially, you will want to design to the point where you have enough of the design to allow you to 
begin coding. The act of coding will either soon reinforce your design decisions, or uncover fatal flaws that 
you must correct if you hope to have a polished, finished project.

Code

Code a little. Write code in small, cohesive modules. A class or method at a time usually works well. 

Test

Test a lot. Test each class, module, or method both separately and in whatever grouping makes sense. 
You will find yourself writing little programs on the side called test cases to test the code you have written. 
This is a good practice to get into. A test case is nothing more than a little program you write and execute 
in order to test the functionality of some component or feature before integrating that component or feature 
into your project. The objective of testing is to break your code and correct its flaws before it has a chance 
to break your project in ways that are hard to detect.

Integrate/Test

Integrate often, and perform regression testing. Once you have a tested module of code, be it either a 
method or complete set of related classes, integrate the tested component(s) into your project regularly. 
The objective of regular integration and regression testing is to see if the newly integrated component or 
newly developed functionality breaks any previously tested and integrated component(s) or integrated 
functionality. If it does, then remove it from the project and fix the problem. If a newly integrated compo-
nent breaks something, you may have discovered a design flaw or a previously undocumented dependency 
between components. If this is the case, then the next step in the programming cycle should be performed.

Refactor

Refactor the design whenever possible. If you discover design flaws or ways to improve the design of 
your project, you must revise and improve the design to accommodate further development. An example of 
design refactoring is the migration of common elements from derived classes into the base class to take 
better advantage of code reuse.

Repeat

Apply the programming cycle in an iterative fashion. You will quickly reach a point in your project 
where it all starts to come together, and very quickly so. 

The Programming Cycle Summarized

Plan a little, code a little, test a lot, integrate often, refactor the design when possible. Don’t Wait 
Until You Think You Are Finished Coding The Entire Project To Compile! Trying to write the entire 
program before compiling a single line of code is the most frequent mistake new programmers tend to 
make. The best advice I can offer is this: don’t do it! Use the iterative programming cycle previously out-



Chapter 1: An Approach To The Art Of Programming Managing Project Complexity

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 15

lined. Nothing will depress you more than seeing a million compiler errors scroll up the screen after wait-
ing until the bitter end to compile your project.

A Helpful Trick: Stubbing

Use stubbing to both speed development and avoid writing a ton of code just to get something useful to 
compile. Stubbing is a programming trick that is best illustrated by example. 

Suppose your project requires you to display a text-based menu of program features on the screen. The 
user would then choose one of the menu items and press ENTER, thereby invoking that menu command. 
What you would really like to do first is write and test the menu’s display and selection methods before 
worrying about having it actually perform the indicated action. You can do exactly that with stubbing.

A stubbed method, in its simplest form, is a method with an empty body. It’s also common to have a 
stubbed method display a simple message to the screen saying in effect, “Yep, the program works great up 
to this point. If it were actually implemented, you’d be using this feature right now!”

Stubbing is a great way to incrementally develop your project. Stubbing will change your life!

Fix The First Compiler Error First

OK. You compile some source code, and it results in a slew of compiler errors. What should you do? I 
recommend you stay calm, take a deep breath, and fix the first compiler error first. Not the easiest compiler 
error, but the first compiler error. The reason for this is that the first compiler error, if fatal, will generate 
other compiler errors. Fix the first one first, and you will generally find a lot of the other errors will also be 
resolved. If you pick an error from the middle of the pack and fix it, you may introduce more errors into 
your source code. Fix the first compiler error first! 

Managing Project Complexity

Software engineers generally encounter two types of project complexity: conceptual and physical. All 
programming projects exhibit both types of complexity to a certain degree, but the approach and technique 
used to manage small-project complexity will prove woefully inadequate when applied to medium, large, 
or extremely large programming projects. This section discusses both types of complexity, and suggests an 
approach for the management of each.

Conceptual Complexity

Conceptual complexity is that aspect of a software system that is manifested in, dictated by, and con-
trolled by its architectural design. A software architectural design is a specification of how each software 
module or component will interact with other software components. A project’s architectural design 
directly results from the solution approach conceived by one or more software engineers to implement a 
software solution for a particular problem domain. In formulating this solution, the software engineers are 
influenced by their education and experience, available technology, and project constraints. 

An engineer versed in procedural programming and functional decomposition techniques will 
approach the solution to a programming problem differently from an engineer versed in object-oriented 
analysis and design techniques. The former will think in terms of modules and sub-modules, while the lat-
ter will draw a direct correlation to real world objects and their derived software components. The func-
tional decomposition approach will almost always yield software modules that are difficult to use out of 
context. Modules are so tightly integrated with each other that extracting one for reuse in another system 
may be impossible. Software architectures based on functional decomposition tend to be brittle and change 



Managing Project Complexity Chapter 1: An Approach To The Art Of Programming

16 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

resistant. By brittle, I mean that a change in one module will have negative effects on other, seemingly 
unrelated modules. Software based on such change resistant architectures is hard to maintain, modify, or 
extend. 

An understanding of software design patterns will give the object-oriented engineer a double advan-
tage. Such patterns capture the knowledge and experience of many talented software engineers. Their use 
can significantly increase the flexibility, maintainability, and extensibility of the applications upon which 
they are based.

However, writing a program in C#, or in any other object-oriented programming language does not 
automatically result in a good object-oriented architecture. It takes lots of training and practice to develop 
good, robust, change-receptive and resilient software architectures. 

Managing Conceptual Complexity

Conceptual complexity can either be tamed by a good software architecture, or it can be aggravated by 
a poor one. Software architectures that seem to work well for small to medium-sized projects will be diffi-
cult to implement and maintain when applied to large or extremely large projects. 

Tame conceptual complexity by applying sound object-oriented analysis and design principles and 
techniques to formulate robust software architectures that are well-suited to accommodate change. Well-
formulated object-oriented software architectures are much easier to maintain compared to procedural-
based architectures of similar or smaller size. That’s right — large, well-designed object-oriented software 
architectures are easier to maintain and extend than small, well-designed procedural-based architectures. 
It’s easier for object-oriented programmers to “get their heads around” an object-oriented design than it is 
for programmers of any school of thought to get their heads around a procedural-based design. 

The Unified Modeling Language (UML)

The Unified Modeling Language (UML) is the de facto standard modeling language of object-oriented 
software engineers. UML provides several types of diagrams, which are used during various phases of the 
software development process such as use-case, component, class, and sequence diagrams. However, 
UML is more than just pretty pictures. UML is a modeling meta-language implemented by software-
design tools like No Magic, Inc’s MagicDraw. Software engineers can use these design tools to control the 
complete object-oriented software engineering process. C# For Artists uses UML class and sequence dia-
grams to illustrate program designs.

Physical Complexity

Physical complexity is that aspect of a software system determined by the number of design and pro-
duction documents and other artifacts produced by software engineers during the project lifecycle. A small 
project will generally have fewer, if any, design documents than a large project. A small project will also 
have fewer source-code files than a large project. As with conceptual complexity, the steps taken to man-
age the physical complexity of small projects will prove inadequate for larger projects. However, there are 
some techniques you can learn and apply to small programming projects that you can in turn use to help 
manage the physical complexity of large projects as well. 

Managing Physical Complexity

You can manage physical complexity in a variety of ways. Selecting appropriate class names and pack-
age structures are two basic techniques that will prove useful not only for small projects, but for large proj-
ects as well. However, large projects usually need some sort of configuration-management tool to enable 
teams of programmers to work together on large source-code repositories. CVS and Subversion are two 



Chapter 1: An Approach To The Art Of Programming The Engineer’s Notebook

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 17

examples of configuration-management tools. The projects in this book do not require a configuration-
management tool. However, the lessons you will learn regarding class naming and namespace structure 
can be applied to large projects as well.

The Relationship Between Physical and Conceptual Complexity

Physical complexity is related to conceptual complexity in that the organization of a software system’s 
architecture plays a direct role in the organization of a project’s physical source-code files. A simple pro-
gramming project consisting of a handful of classes might be grouped together in one directory. It might be 
easy to compile every class in the directory at the same time. However, the same one-directory organiza-
tion will simply not work on a large project with teams of programmers creating and maintaining hundreds 
or thousands of source files. 

Maximize Cohesion — Minimize Coupling

An important way to manage both conceptual and physical complexity is to maximize software mod-
ule cohesion and minimize software module coupling. 

Cohesion is the degree to which a software module focuses on its intended purpose. A high degree of 
cohesion is desirable. For example, a method intended to display an image on the screen would have high 
cohesion if that’s all it did, and poor cohesion if it did some things unrelated to image display. 

Coupling is the degree to which one software module depends on external software modules. A low 
degree of coupling is desirable. Coupling can be controlled in object-oriented software by depending upon 
interfaces or abstract classes rather than upon concrete implementation classes. These concepts are 
explained in detail later in the book.

The Engineer’s Notebook

If you don’t already keep one, I strongly recommend you start and maintain an engineer’s notebook. 
The primary purpose of an engineer’s notebook is to record design challenges and their solutions for future 
reference. What you ultimately jot down in your engineer’s notebook will be as personal and as varied as 
you are unique as an individual. In mine I write down system configuration settings when I install software 
like databases or application servers. I can’t recall how many times I’ve had to refer back to my notebook 
to recall a particular configuration setting.

I also capture customer requirements or change requests in my notebook, which I later transfer to a for-
mal requirements management system. I make design sketches in UML or list changes that I must make to 
the code during a particular day’s work. In this regard it functions as a daily work journal. If your boss 
asks, “What did you do for me this year?” you should be able to point to your engineer’s notebook and 
astound him with your productivity and cunning. 

Mostly, however, I record particularly vexing development problems and, when I’ve found a suitable 
solution, I write that down too. This has saved me countless hours I’d normally spend solving the same 
problem again, which is likely to happen if enough time has passed between subsequent encounters.

Over the years I’ve flirted with different notebook formats from loose-leaf paper in a 3-ring binder to 
single subject spiral notebooks. Lately I’ve settled on the college-ruled, 100 sheet, cardboard-covered 
composition book that looks like figure 1-2:

Referring to figure 1-2 — You can find these notebooks practically everywhere stationary supplies are 
sold. I prefer these because they’re slightly more compact than standard 8 1/2 x 11 inch paper while not 
being too small. The front and back covers are nice and stiff which allows easy writing on both sides of the 



Summary Chapter 1: An Approach To The Art Of Programming

18 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

paper from the first page to the last whereas loose leaf paper in a 3-ring binder is too bulky and clumsy to 
work with, especially when sitting in front of a server taking notes on deployment configuration. 

When I start a new notebook I write the Start Date on the front cover and when I’ve filled it up I note 
the End Date as well so I can see at a glance the period it covers. 

You’ll find your engineer’s notebook to be an invaluable resource as you grow as a software engineer. 

Summary

The source of a student’s difficulty with learning a programming language lies not with the language 
itself, but with the many other skills that must be mastered almost simultaneously along the way. You will 
find it helpful to know the development roles you must play and to have a project-approach strategy.

Great programmers are creative, tenacious, resilient, methodical, meticulous, honest, proactive, and 
humble. Great programmers cultivate a broad range of skills and focus on a particular technology when 
necessary.

The three development roles you will play as a student are those of analyst, architect, and programmer. 
As the analyst, strive to understand the project’s requirements and what must be done to satisfy those 
requirements. As the architect, you are responsible for the design of your project. As the programmer, you 
will implement your project’s design in the C# programming language.

The project-approach strategy helps both novice and experienced students systematically formulate 
solutions to programming projects. The strategy deals with the following areas of concern: application 
requirements, problem domain, language features, and application design. By approaching projects in a 
systematic way, you can put yourself in control and can maintain a sense of forward momentum during the 
execution of your projects. The project-approach strategy can also be tailored to suit individual needs.

Programming is an art. Formulating solutions to complex projects requires lots of creativity. There are 
certain steps you can take to stimulate your creative energy. Sketch the project design before sitting at the 
computer. Reserve quiet space in which to work and, if possible, have a computer dedicated to school and 
programming projects.

There are five steps to the programming cycle: plan, code, test, integrate, and refactor. 
Use method stubbing to test sections of source code without having to code the entire method.

Figure 1-2: Engineer’s Notebook: College-Ruled Composition Book with Sample Pages



Chapter 1: An Approach To The Art Of Programming Skill-Building Exercises

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 19

There are two types of complexity: conceptual and physical. Object-oriented programming and design 
techniques help manage conceptual complexity. Physical complexity is managed with smart project file-
management techniques, by splitting projects into multiple files, and using packages to organize source 
code.

Skill-Building Exercises

None

Suggested Projects

1. Feng Shui: If you haven’t already done so, stake your claim to your own quiet, private space where you 
will work on your programming projects. If you are planning on using the school’s programming lab, 
stop by and familiarize yourself with the surroundings.

2. Procure and Install IDE: If you are doing your programming on your own computer make sure you 
have procured and loaded an integrated development environment (IDE) that will meet your program-
ming requirements. If in doubt, check with your instructor.

3. Project-Approach Strategy Checklist: Familiarize yourself with the project-approach strategy check-
list in Appendix A. 

4. Obtain Reference Books: Seek your instructor’s or a friend’s recommendation of any C# reference 
books that might be helpful to you during this course. There are also many good computer book-review 
sites available on the Internet. Also, there are many excellent C# reference books listed in the reference 
section of each chapter in this book.

5. Web Search: Conduct a web search for C# and object-oriented programming sites. Bookmark any site 
you feel might be helpful to you as you master the C# language. Microsoft’s site should be first on your 
list!

Self-Test Questions

1. List at least seven skills you must master in your studies of the C# programming language.

2. What three development roles will you play as a student?

3. What is the purpose of the project-approach strategy?

4. List and describe the four areas of concern addressed in the project-approach strategy.

5. List and describe the five steps of the programming cycle.



References Chapter 1: An Approach To The Art Of Programming

20 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

6. What are the two types of complexity?

7. What is meant by the term isomorphic mapping?

8. Why do you think it would be helpful to write self-commenting source code?

9. What can you do in your source code to maximize cohesion?

10. What can you do in your source code to minimize coupling?

References

Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley, Reading, Massa-
chusetts, 2000. ISBN 201-61641-6

Daniel Goleman. Emotional Intelligence: Why it can matter more than IQ. Bantam Books, New York, 
NY. ISBN: 0-553-37506-7

Notes




