
C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 297

11 Inheritance and Interfaces

Learning Objectives
• State the three essential purposes of inheritance
• State the purpose of a base class
• State the purpose of a derived class
• State the purpose of an abstract method
• State the purpose of an abstract base class
• Define the following keywords: “sealed”, “virtual,” “override”, “new”, and “protected”
• Demonstrate your ability to use inheritance to create class hierarchies
• Demonstrate your ability to override base class methods in derived classes
• State the purpose of an interface
• Demonstrate your ability to create classes that implement interfaces
• State the definition of the term polymorphism
• Demonstrate your ability to write polymorphic code
• Express inheritance relationships using UML class diagrams

Chapter 11

InheritanceFairview Park

Pe
nt

ax
 6

7
/ S

M
C

 T
ak

um
ar

 5
5/

2.
8

/ K
od

ak
 T

ri-
X

 P
ro

fe
ss

io
na

l

and Interfaces

Introduction Chapter 11: Inheritance and Interfaces

298 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Introduction

Inheritance is a powerful feature provided by modern object-oriented programming languages. The
behavior provided or specified by one class can be adopted or extended by another class. Up to this point
you have been using inheritance in every program you have written, although mostly this has been done for
you behind the scenes by the C# compiler. For example, every user-defined class you create automatically
inherits from the System.Object class.

In this chapter, you will learn how to create new derived classes from existing classes and interfaces.
There are three ways of doing this: 1) by extending the functionality of an existing class, 2) by implement-
ing one or more interfaces, or 3) by combining these two methods to create derived classes that both extend
the functionality of a base class and implement the operations declared in one or more interfaces.

Along the way I will show you how to create and use abstract methods to create abstract classes. You
will learn how to create and utilize interfaces in your program designs, as well as how to employ the sealed
keyword to inhibit the inheritance mechanism. You will also learn how to use a Unified Modeling Lan-
guage (UML) class diagram to show inheritance hierarchies.

By the time you complete this chapter, you will fully understand how to create an object-oriented C#
program that exhibits dynamic polymorphic behavior. Most importantly, however, you will understand
why dynamic polymorphic behavior is a desired object-oriented design objective.

This chapter also builds on the material presented in Chapter 10 - Compositional Design. The primary
code example in this chapter demonstrates the design possibilities you can achieve when you combine
inheritance with compositional design.

Three Purposes Of Inheritance

Inheritance serves three essential purposes. The first purpose of inheritance is to serve as an object-ori-
ented design mechanism that enables you to think and reason about the structure of your programs in terms
of both generalized and specialized class behavior. A base class implements, or specifies, generalized
behavior common to all of its subclasses. Subclasses derived from this base class capitalize on the behavior
it provides. Additionally, subclasses may specify, or implement, specialized behavior if required in the
context of the design.

When designing with inheritance, you create class hierarchies, where base classes that implement gen-
eralized behavior appear at or near the top of the hierarchy, and derived classes that implement specialized
behavior appear toward the bottom. Figure 11-1 gives a classic example of an inheritance hierarchy show-
ing generalized/specialized behavior.

Referring to figure 11-1 — The Auto class sits at the top of the inheritance hierarchy and provides gen-
eralized behavior for all of its derived classes. The Truck and Car classes derive from Auto. They provide
specialized behavior found only in Trucks and Car objects. The DumpTruck and PickupTruck classes
derive from Truck, which means that Truck is also serving as a base class. DumpTruck and PickupTruck
inherit Truck’s generalized behavior and also implement the specialized behavior required of these class
types. The same holds true for the PassengerCar and SportsCar classes. Their direct base class is Car,
whose direct base class is Auto. For more real world examples of inheritance hierarchies simply consult
the .NET API documentation or refer to chapter 5.

The second purpose of inheritance is to provide a way to gain a measure of code reuse within your pro-
grams. If you can implement generalized behavior in a base class that’s common to all of its subclasses,
then you don’t have to re-write the code in each subclass. If, in one of your programming projects, you cre-
ate an inheritance hierarchy and find you are repeating a lot of the same code in each of the subclasses,

Chapter 11: Inheritance and Interfaces Three Purposes Of Inheritance

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 299

then it’s time for you to refactor your design and migrate the common code into a base class higher up in
your inheritance hierarchy.

The third purpose of inheritance is to enable you to incrementally develop code. It is rare for a pro-
grammer, or more often, a team of programmers, to sit down and in one heroic effort completely code the
entire inheritance hierarchy for a particular application. It’s more likely the case that the inheritance hierar-
chy, and its accompanying classes, grows over time. Take the .NET Framework API as a prime example.

Implementing The “is a” Relationship

A class that belongs to an inheritance hierarchy participates in what is called an is a relationship.
Referring again to figure 11-1, a Truck is an Auto and a Car is an Auto. Likewise, a DumpTruck is a
Truck, and since a Truck is an Auto, a DumpTruck is an Auto as well. In other words, class hierarchies are
transitive in nature when navigating from specialized classes to more generalized classes. They are not
transitive in the opposite direction, however. For instance, an Auto is not a Truck or a Car, etc.

A thorough understanding of the is a relationships that exist within an inheritance hierarchy will pay
huge dividends when you want to substitute a derived class object in code that specifies one of its base
classes. This is a critical skill in C#.NET programming and in object-oriented programming in general.

The Relationship Between The Terms Type, Interface, and Class

Before moving on, it will help you to understand the relationship between the terms type, interface and
class. C# is a strongly typed programming language. This means that when you write a program and wish
to call a method on a particular object, the compiler must know, in advance, the type of object to which you
refer. In this context, the term type refers to that set of operations or methods a particular object supports.
Every object you use in your programs has an associated type. If, by mistake, you try and call a non-sup-
ported method on an object, you will be alerted to your mistake by a compiler error when you try to com-
pile your program.

Meaning Of The Term Interface

An interface is a construct that introduces a new data type and its set of authorized operations in the
form of method, property, event, or indexer declarations. An interface member declaration provides a spec-
ification only and no implementation. Interfaces are discussed in more detail later in the chapter.

Figure 11-1: Inheritance Hierarchy Illustrating Generalized and Specialized Behavior

The Auto class sits at the
top of the inheritance hier-
archy and provides the
most general behavior
common to all Auto
objects.

Derived classes provide
increasingly specific
behavior.

Expressing Generalization And Specialization In The UML Chapter 11: Inheritance and Interfaces

300 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Meaning Of The Term Class

A class is a construct that introduces and defines a new data type. Like the interface, the class specifies
a set of legal operations that can be performed on an object of its type. However, the class can go one step
further and provide definitions (i.e., behavior) for some or all of its methods, properties, events, or index-
ers. A class that provides definitions for all of its members is a concrete class, meaning that objects of that
class type can be created with the new operator. (i.e., They can be instantiated.) If a class definition omits
the body, and therefore the behavior, of one or more of its members, then that class must be declared to be
an abstract class. Abstract class objects cannot be created with the new operator. I will discuss abstract
classes in greater detail later in the chapter.

Quick Review

Inheritance serves three essential purposes: 1) it is an object-oriented design mechanism that enables
you to think and reason about your program structure in terms of generalized and specialized class behav-
ior, 2) it provides you with a measure of code reuse within your program by locating common class behav-
ior in base classes, and 3) it provides a means to incrementally develop your programs over time.

Classes that belong to an inheritance hierarchy participate in an is a relationship between themselves
and their chain of base classes. This is a relationship is transitive in the direction of specialized to general-
ized classes, but not vice versa.

Class and interface constructs are each used to create new, user-defined data types. The interface con-
struct specifies a set of authorized type operations and omits their behavior; the class construct specifies a
set of authorized type operations and, optionally, their behavior as well. A class construct, like an interface,
can omit the bodies of one or more of its members. Such members must be declared to be abstract. A class
that declares one or more abstract members must be declared an abstract class. Abstract class objects can-
not be created with the new operator.

Expressing Generalization And Specialization In The UML

Generalization and specialization relationships can be expressed in a UML class diagram by drawing a
solid line with a hollow-tipped arrow from the derived class to the base class, as figure 11-2 illustrates.

Referring to figure 11-2 — BaseClass acts as the direct base class to DerivedClass. Behavior provided
by BaseClass is inherited by DerivedClass. The extent of BaseClass behavior that’s inherited by Derived-
Class is controlled by the use of the member access modifiers public, protected, internal, pro-
tected internal, and private. Generally speaking, base class members declared to be public,
protected, internal, or protected internal are inherited by a derived class. A detailed discussion
of how these access modifiers are used to control horizontal and vertical member access is presented later
in this chapter. For now, however, let’s take a look at an example program that implements the two classes
shown in figure 11-2.

A Simple Inheritance Example

The simple inheritance example program presented in this section expands on the UML diagram
shown in figure 11-2. The behavior implemented by BaseClass is kept intentionally simple so that you can
concentrate on the topic of inheritance. You’ll be introduced to more complex programs soon enough.

Chapter 11: Inheritance and Interfaces A Simple Inheritance Example

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 301

The UML Diagram

A more complete UML diagram showing the fields, properties, and methods of BaseClass and
DerivedClass is presented in figure 11-3

Referring to figure 11-3 — BaseClass contains one private field named _message which is of type
String. It has one public property named Message. BaseClass has three public methods: two constructors
and the PrintMessage() method. One of the constructors is a default constructor that takes no arguments.

BaseClass provides generalized
behavior.

DerivedClass provides specialized
behavior.

A solid line with a hollow-tipped
arrow denotes a generalization -
specialization relationship between
two classes

Figure 11-2: UML Class Diagram Showing DerivedClass Inheriting from BaseClass

Figure 11-3: UML Diagram of BaseClass and DerivedClass Showing Fields, Properties, and Methods

A Simple Inheritance Example Chapter 11: Inheritance and Interfaces

302 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

The second constructor has one parameter of type String named message. Based on this information,
objects of type BaseClass can be created in two ways. Once an object of type BaseClass is created, the
PrintMessage() method and the Message property can be called on that object.

DerivedClass has only two constructors that are similar to the constructors found in BaseClass. It
inherits the public members of BaseClass, which include the Message property and the PrintMessage()
method. Let’s now take a look at the source code for each class.

BaseClass Source Code
11.1 BaseClass.cs

1 using System;
2
3 public class BaseClass {
4 private String _message;
5
6 public String Message {
7 get { return _message; }
8 set { _message = value; }
9 }
10
11 public BaseClass(String message){
12 Console.WriteLine("BaseClass object created...");
13 Message = message;
14 }
15
16 public BaseClass():this("Default BaseClass message"){ }
17
18 public void PrintMessage(){
19 Console.WriteLine("BaseClass PrintMessage(): " + _message);
20 }
21 }

Referring to example 11.1 — BaseClass is fairly simple. Its first constructor begins on line 11 and
declares one string parameter named message. The _message field is set via the Message property. The
default constructor begins on line 16. It calls the first constructor with the string literal “Default BaseClass
message!” The PrintMessage() method begins on line 18. It simply prints the Message property to the con-
sole. A BaseClass object’s message can be changed by setting its Message property.

Since the Message property and the PrintMessage() method each have a body, and are therefore
defined, the BaseClass is considered a concrete class. This means that objects of type BaseClass can be
created or instantiated with the new operator.

Example 11.2 gives the code for DerivedClass.

DerivedClass Source Code
11.2 DerivedClass.cs

1 using System;
2
3 public class DerivedClass:BaseClass {
4
5 public DerivedClass(String message):base(message){
6 Console.WriteLine("DerivedClass object created...");
7 }
8
9 public DerivedClass():this("Default DerivedClass message"){ }
10 }

Referring to example 11.2 — DerivedClass inherits the functionality of BaseClass by extending Base-
Class. Note that on line 3, the name BaseClass follows the colon character ‘:’. DerivedClass itself provides
only two constructors. The first constructor begins on line 5. It declares a string parameter named message.

Chapter 11: Inheritance and Interfaces A Simple Inheritance Example

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 303

The first thing this constructor does is call the string parameter version of the BaseClass constructor using
the base() method with the message parameter as an argument. Note how the call to base() follows the
colon.This is referred to as constructor chaining. The next thing the DerivedClass constructor does is print
a short message to the console.

DerivedClass’s default constructor begins on line 9. It calls its version of the string parameter construc-
tor using the string literal “Default DerivedClass message!” as an argument to the this() call. This ulti-
mately results in a call to the version of the BaseClass constructor that takes a string argument.

Let’s now take a look at how these two classes can be used in a program.

DriverApplication Program
11.3 DriverApplication.cs

1 public class DriverApplication {
2 public static void Main(){
3 BaseClass b1 = new BaseClass();
4 BaseClass b2 = new DerivedClass();
5 DerivedClass d1 = new DerivedClass();
6
7 b1.PrintMessage();
8 b2.PrintMessage();
9 d1.PrintMessage();
10 }
11 }

The DriverApplication class tests the functionality of BaseClass and DerivedClass. The important
thing to note in this example is which type of object is being declared and created on lines 3 through 5.
Starting on line 3, a BaseClass reference named b1 is declared and initialized to point to a BaseClass
object. On line 4, another BaseClass reference named b2 is declared and initialized to point to a Derived-
Class object. On line 5, a DerivedClass reference named d1 is declared and initialized to point to a
DerivedClass object. Note that a reference to a base class object can also point to a derived class object.
Also note that this example only uses the default constructors to create each object. This results in the
default message text being used upon the creation of each type of object.

Continuing with example 11.3 — On lines 7 through 9, the PrintMessage() method is called on each
reference. It’s time now to compile and run the code. Figure 11-4 gives the results of running example 11.3.

As you will notice from studying figure 11-4, there are eight lines of program output that correspond to
the creation of the three objects and the three PrintMessage() method calls on each reference b1, b2, and
d1. Creating a BaseClass reference and initializing it to a BaseClass object results in the BaseClass version
(the only version at this point) of the PrintMessage() method being called, which prints the default Base-
Class text message.

Creating a BaseClass reference and initializing it to point to a DerivedClass object has slightly differ-
ent behavior. The value of the resulting text printed to the console shows that a DerivedClass object was
created, which resulted in the BaseClass _message field being set to the DerivedClass default value. Note
that DerivedClass does not have a PrintMessage() method, therefore it is the BaseClass version of Print-

Figure 11-4: Results of Running Example 11.3

Another Inheritance Example: Person - Student Chapter 11: Inheritance and Interfaces

304 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Message() that is called. The PrintMessage() method is inherited by DerivedClass (i.e., it is accessible to it)
because it is declared public.

Finally, declaring a DerivedClass reference and initializing it to point to a DerivedClass object appears
to have the same effect as the previous BaseClass reference/DerivedClass object combination. This is the
case in this simple example because DerivedClass simply inherits BaseClass’s default behavior and, except
for its own constructors, leaves it unchanged.

Quick Review

A base class implements default behavior in the form of public, protected, internal, and protected inter-
nal members that can be inherited by derived classes. There are three reference/object combinations: 1) if
the base class is a concrete class (meaning it is not abstract) then a base class reference can point to a base
class object, 2) a base class reference can point to a derived class object, and 3) a derived class reference
can point to a derived class object.

Another Inheritance Example: Person - Student

Let’s now take a look at a more realistic example of inheritance. This example uses the Person class
presented in chapter 9 as a base class. The derived class will be called Student. Let’s take a look at the
UML diagram for this inheritance hierarchy.

The Person - Student UML Class Diagram

Figure 11-5 gives the UML class diagram for the Student class inheritance hierarchy. Notice the behav-
ior provided by the Person class in the form of its public interface methods and properties. The Student
class extends the functionality of Person and provides a small bit of specialized functionality of its own in
the form of the StudentNumber and Major properties.

Since the Student class participates in an is-a relationship with class Person, a Student object can be
used wherever a Person object is called for in your source code. However, now you must be keenly aware
of the specialized behavior provided by the Student class, as you will soon see when you examine and run
the driver application program for this example.

Person - Student Source Code
11.4 Person.cs

1 using System;
2
3 public class Person {
4
5 //enumeration
6 public enum Sex {MALE, FEMALE}
7
8 // private instance fields
9 private String _firstName;
10 private String _middleName;
11 private String _lastName;
12 private Sex _gender;
13 private DateTime _birthday;
14
15 //default constructor
16 public Person(){
17 _firstName = string.Empty;

Chapter 11: Inheritance and Interfaces Another Inheritance Example: Person - Student

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 305

18 _middleName = string.Empty;
19 _lastName = string.Empty;
20 _gender = Sex.MALE;
21 _birthday = DateTime.Now;
22 }
23
24 public Person(String firstName, String middleName, String lastName,
25 Sex gender, DateTime birthday){
26 _firstName = firstName;
27 _middleName = middleName;
28 _lastName = lastName;
29 _gender = gender;
30 _birthday = birthday;
31 }
32
33 // public properties
34 public String FirstName {
35 get { return _firstName; }
36 set { _firstName = value; }
37 }
38
39 public String MiddleName {
40 get { return _middleName; }
41 set { _middleName = value; }
42 }
43
44 public String LastName {
45 get { return _lastName; }
46 set { _lastName = value; }
47 }
48
49 public Sex Gender {
50 get { return _gender; }
51 set { _gender = value; }
52 }
53
54 public DateTime Birthday {

Figure 11-5: UML Diagram Showing Student Class Inheritance Hierarchy

Another Inheritance Example: Person - Student Chapter 11: Inheritance and Interfaces

306 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

55 get { return _birthday; }
56 set { _birthday = value; }
57 }
58
59 public int Age {
60 get {
61 int years = DateTime.Now.Year - _birthday.Year;
62 int adjustment = 0;
63 if(DateTime.Now.Month < _birthday.Month){
64 adjustment = 1;
65 }else if((DateTime.Now.Month == _birthday.Month) && (DateTime.Now.Day < _birthday.Day)){
66 adjustment = 1;
67 }
68 return years - adjustment;
69 }
70 }
71
72 public String FullName {
73 get { return FirstName + " " + MiddleName + " " + LastName; }
74 }
75
76 public String FullNameAndAge {
77 get { return FullName + " " + Age; }
78 }
79
80 public override String ToString(){
81 return FullName + " is a " + Gender + " who is " + Age + " years old.";
82 }
83
84 } // end Person class

The Person class code is unchanged from chapter 9.
11.5 Student.cs

1 using System;
2
3 public class Student:Person {
4 private String _studentNumber;
5 private String _major;
6
7 public String StudentNumber {
8 get { return _studentNumber; }
9 set { _studentNumber = value; }
10 }
11
12 public String Major {
13 get { return _major; }
14 set { _major = value; }
15 }
16
17 public Student(String firstName, String middleName, String lastName,
18 Sex gender, DateTime birthday, String studentNumber,
19 String major):base(firstName, middleName, lastName, gender, birthday) {
20 _studentNumber = studentNumber;
21 _major = major;
22 }
23
24 public override String ToString(){
25 return (base.ToString() + " Student Number: " + _studentNumber + " Major: " + _major);
26 }
27 } // end Student class definition

Referring to example 11.5 — The Student class extends Person and implements specialized behavior
in the form of the StudentNumber and Major properties. The Student class has one constructor. With the
exception of the last two parameters, studentNumber and major, the parameters are those required by the

Chapter 11: Inheritance and Interfaces Another Inheritance Example: Person - Student

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 307

Person class. Note how the required person constructor arguments are used in the call to base() on line 19.
The parameters studentNumber and major are then used on lines 20 and 21, respectively to set a Student
object’s _studentNumber and _major fields.

The Student class also overrides the ToString() method, which begins on line 24. Note how the Person
class’s version of ToString() is called via base.ToString(). The required additional Student information is
appended to this string and returned.

This is all the specialized functionality required of the Student class for this example. The majority of
its functionality is provided by the Person class. Let’s now take a look at these two classes in action. Exam-
ple 11.6 gives the test driver program.

11.6 PersonStudentTestApp.cs
1 using System;

2
3 public class PersonStudentTestApp {

4 public static void Main(){

5 Person p1 = new Person("Ulysses", "S", "Grant", Person.Sex.MALE,

6 new DateTime(1822, 04, 22));

7 Person p2 = new Student("Steven", "Jay", "Jones", Person.Sex.MALE,
8 new DateTime(1986, 03, 21), "1234564", "Finance");

9 Student s1 = new Student("Virginia", "LeAnn", "Mattson", Person.Sex.FEMALE,

10 new DateTime(1973, 09, 14), "8798765", "Computer Science");

11 Console.WriteLine(p1);
12 Console.WriteLine(p2);

13 Console.WriteLine(s1);

14

15 // p2.Major = "Criminal Justice"; // ERROR: p2 is a Person reference

16 s1.Major = "Physics";
17

18 Console.WriteLine("---");

19 Console.WriteLine(p2);

20 Console.WriteLine(s1);
21 }

22 }

Referring to example 11.6 — This program is similar in structure to example 11-3 in that it declares
three references and shows you the effects of accessing methods and properties via those references. A Per-
son reference named p1 is declared on line 5 and initialized to point to a Person object. On line 7, another
Person reference named p2 is declared and initialized to point to a Student object. On line 9, a Student ref-
erence is declared and initialized to point to a Student object. On lines 11, 12, and 13, each object’s infor-
mation is written to the console.

Line 15 is commented out. This line, if you were to try to compile it, will cause a compiler error
because an attempt is made to set the Major property on a Student object via a Person reference. Now,
repeat the previous sentence to yourself several times until you fully understand its meaning. Good! Now,
you may ask, and rightly so at this point, “But wait, why can’t you set the Major property on a Student
object?” You can, but p2 is a Person type reference, which means that the compiler is enforcing the inter-
face defined by the Person class. Remember the “C# is a strongly-typed language...” spiel I delivered ear-
lier in this chapter? I will show you how to use casting to resolve this issue after I show you how this
program runs.

Continuing with example 11.6, on line 16, the Major property is set on a Student object via a Student
reference. Finally, on lines 19 and 20, the information for references p2 and s1 is written to the console.
Figure 11-6 gives the results of running example 11.6.

Casting

OK, now let’s take a look at a modified version of example 11.6 that takes care of the problem encoun-
tered on line 15. Example 11.7 gives the modified version of PersonStudentTestApp.cs.

Another Inheritance Example: Person - Student Chapter 11: Inheritance and Interfaces

308 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

11.7 PersonStudentTestApp.cs (Mod 1)
1 using System;

2

3 public class PersonStudentTestApp {

4 public static void Main(){

5 Person p1 = new Person("Ulysses", "S", "Grant", Person.Sex.MALE,

6 new DateTime(1822, 04, 22));

7 Person p2 = new Student("Steven", "Jay", "Jones", Person.Sex.MALE,

8 new DateTime(1986, 03, 21), "1234564", "Finance");

9 Student s1 = new Student("Virginia", "LeAnn", "Mattson", Person.Sex.FEMALE,

10 new DateTime(1973, 09, 14), "8798765", "Computer Science");

11 Console.WriteLine(p1);

12 Console.WriteLine(p2);

13 Console.WriteLine(s1);

14

15 ((Student)p2).Major = "Criminal Justice"; // OK - Person reference is cast to type Student

16 s1.Major = "Physics";

17

18 Console.WriteLine("---");

19 Console.WriteLine(p2);

20 Console.WriteLine(s1);

21 }

22 }

Referring to example 11.7 — Notice on line 15 that the compiler has been instructed to treat the p2 ref-
erence as though it were a Student type reference. This form of explicit type coercion is called casting.
Casting only works if the object the reference actually points to is of the proper type. In other words, you
can cast p2 to a Student type because it points to a Student object. However, you could not cast the p1 ref-
erence to Student since it actually points to a Person object. Figure 11-7 shows the results of running exam-
ple 11.7.

Use Casting Sparingly

Casting is a helpful feature, but too much casting usually means your design is not optimal from an
object-oriented point of view. You will see more situations in this book where casting is required, but
mostly, I try to show you how to design programs that minimize the need to cast.

Figure 11-6: Results of Running Example 11.6

Figure 11-7: Results of Running Example 11.7

Chapter 11: Inheritance and Interfaces Overriding Base Class Methods

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 309

Quick Review

The Person class provided the default behavior for the Student class. The Student class inherited Per-
son’s default behavior and implemented its own specialized behavior.

Reference variables have an associated type. Method calls to an object pointed to by a reference will
succeed without casting as long as the reference type supports the method you are trying to call. Casting
forces, or coerces, the compiler into treating a reference to an object of one type as if it were a reference to
an object of another. This is extremely helpful in some circumstances but, as a rule, use casting sparingly.
Also, casting only works if the object really is of the type you are casting it to.

Overriding Base Class Methods

So far you have only seen examples of inheritance in which the derived class fully accepted the behav-
ior provided by its base class. This section shows you how to override base class behavior in the derived
class by overriding base class methods.

To override a base class method in a derived class you need to redefine the method with the exact sig-
nature in the derived class. The overriding derived class method must also return the same type as the over-
ridden base class method and be declared with the keyword override. You also need to add the keyword
virtual to the base class method declaration. By using the virtual/override keyword pair, you can
achieve polymorphic behavior.

Let’s take a look at a simple example. Figure 11-8 gives a UML class diagram for the revised Base-
Class and DerivedClass classes.

Referring to figure 11-8 — Notice that DerivedClass now has a public method named PrintMessage().
BaseClass has been modified by adding the keyword virtual to the declaration of its PrintMessage()
method, which is not shown in the diagram. Example 11.8 gives the source code for the modified version
of BaseClass.

11.8 BaseClass.cs (Mod 1)
1 using System;
2
3 public class BaseClass {
4 private String _message;
5
6 public String Message {

Figure 11-8: UML Class Diagram For BaseClass & DerivedClass

Overriding Base Class Methods Chapter 11: Inheritance and Interfaces

310 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

7 get { return _message; }
8 set { _message = value; }
9 }
10
11 public BaseClass(String message){
12 Console.WriteLine("BaseClass object created...");
13 _message = message;
14 }
15
16 public BaseClass():this("Default BaseClass message"){ }
17
18 public virtual void PrintMessage(){
19 Console.WriteLine("BaseClass PrintMessage(): " + _message);
20 }
21 }

Referring to example 11.8 — The only change to BaseClass is the addition of the virtual keyword to
the definition of the PrintMessage() method. The virtual keyword enables the PrintMessage() method to
be overridden in DerivedClass. If you omit the virtual keyword from a base class method or other over-
rideable member, then you will get a compiler error if you attempt to override that member in a derived
class.

Example 11.9 gives the code for the modified version of DerivedClass.
11.9 DerivedClass.cs (Mod 1)

1 using System;
2
3 public class DerivedClass:BaseClass {
4
5 public DerivedClass(String message):base(message){
6 Console.WriteLine("DerivedClass object created...");
7 }
8
9 public DerivedClass():this("Default DerivedClass message"){ }
10
11 public override void PrintMessage(){
12 Console.WriteLine("DerivedClass PrintMessage(): " + Message);
13 }
14 }

Referring to example 11.9 —The DerivedClass’s version of PrintMessage() on line 11 overrides the
BaseClass version. Note the use of the override keyword in the PrintMessage() method definition. How
does this affect the behavior of these two classes? A good way to explore this issue is to recompile and run
the DriverApplication given in example 11.3. Figure 11-9 shows the results of running the program using
the modified versions of BaseClass and DerivedClass.

Referring to figure 11-9 — Compare these results with those of figure 11-4. The first message is the
same, which is as it should be. The b1 reference points to a BaseClass object. The second message is dif-
ferent, though. Why is this so? The b2 reference is pointing to a DerivedClass object. When the PrintMes-
sage() method is called on the DerivedClass object via the BaseClass reference, the overriding
PrintMessage() method provided in DerivedClass is called. This is an example of polymorphic behavior. A

Figure 11-9: Results of Running Example 11.3 with Modified Versions of BaseClass and DerivedClass

Chapter 11: Inheritance and Interfaces Abstract Methods and Abstract Base Classes

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 311

base class reference, b2, points to a derived class object. You call a method provided by the base class
interface via the base class reference, but it’s overridden in the derived class and, voila, you have polymor-
phic behavior. Pretty cool, huh?

Quick Review

Derived classes can override base class behavior by providing overriding methods. An overriding
method is a method in a derived class that has the same signature as the base class method it is intending to
override. Use the virtual keyword to declare an overrideable base class method. Use the override key-
word to define an overriding derived class method. Overriding methods can be called polymorphically via
a base class reference that points to a derived class object.

Abstract Methods and Abstract Base Classes

An abstract method is one that appears in the body of a class declaration but omits the method body. A
class that declares one or more abstract methods must be declared to be an abstract class. If you create an
abstract method and forget to declare the class as being abstract, the compiler will inform you of your mis-
take.

Now, you could simply declare a class to be abstract even though it provides implementations for all of
its methods. This would prevent you from creating objects of the abstract class directly with the new oper-
ator. This may or may not be the intention of your application design goals.

The Primary Purpose Of An Abstract Base Class

The primary purpose of an abstract base class is to provide a set of one or more public interface meth-
ods whose implementations are expected to be found in some derived class further down the inheritance
hierarchy. The key phrase is “expected to be found in some derived class further down the inheritance hier-
archy.” This means that as a designer, you would employ an abstract class in your application architecture
when you want a base class to specify rather than implement behavior, and you expect derived classes to
actually implement the behavior specified by the base class interface.

OK, why would you want to do this? Why create a class that does nothing but specify a set of interface
methods? Good questions! The short answer is that abstract classes will constitute the upper tier of your
inheritance hierarchy. The upper tier of an inheritance hierarchy is where you expect to find specifications
for the general behavior inherited by derived classes, which appear in the lower tier of an inheritance hier-
archy. The derived classes, at some point, must provide implementations for those abstract methods speci-
fied in their base classes. Designing application architectures in this fashion — abstractions at the top and
concrete implementations at the bottom — enables the architecture to be extended, rather than modified, to
accommodate new functionality. This design technique injects a good dose of stability into your applica-
tion architecture. This and other advanced object-oriented design techniques are discussed in more detail in
chapter 23.

Expressing Abstract Base Classes In UML

Figure 11-10 shows a UML diagram that contains an abstract base class named AbstractClass.
Referring to figure 11-10 — The stereotype <<abstract>> is optional, but if you draw your UML

diagrams by hand, it’s hard to write in italics, so, this notation comes in handy. Abstract classes can have
the same kinds of members as normal classes, but abstract members are shown in italics. Let’s now have a
look at a short abstract class inheritance example.

Abstract Methods and Abstract Base Classes Chapter 11: Inheritance and Interfaces

312 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Abstract Class Example

Figure 11-11 gives the UML class diagram for our example:

Referring to figure 11-11 — AbstractClass has two methods and one property. The first method is its
default constructor and it is not abstract. (Remember, constructors cannot be abstract.) The next method,
PrintMessage(), is shown in italics and is therefore an abstract method. The Message property is also
abstract in this example but a limitation in MagicDraw prevents it from being displayed in italics, other-
wise, MagicDraw is a fine UML design tool.

DerivedClass inherits from AbstractClass. Since AbstractClass’s PrintMessage() method is abstract
and has no implementation, DerivedClass must provide an implementation for it. DerivedClass’s Print-
Message() method is in plain font, indicating it has an implementation.

Now, if for some reason, you as a designer decided to create a class that inherited from DerivedClass,
and you defer the implementation of the PrintMessage() method to that class, then DerivedClass would
itself have to be declared to be an abstract class. I just wanted to mention this because in most situations
you will have more than the two-tiered inheritance hierarchy I have used here in this simple example.

Let’s now take a look at the code for these two classes. Example 11.10 gives the code for Abstract-
Class.

Figure 11-10: Expressing an Abstract Class in the UML

Class name in italics
Stereotype of <<abstract>>

Abstract methods in italics

Figure 11-11: UML Class Diagram Showing the AbstractClass and DerivedClass Inheritance Hierarchy

Chapter 11: Inheritance and Interfaces Abstract Methods and Abstract Base Classes

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 313

11.10 AbstractClass.cs
1 using System;
2
3 public abstract class AbstractClass {
4
5 public abstract String Message {
6 get;
7 set;
8 }
9
10 public AbstractClass(){
11 Console.WriteLine("AbstractClass object created...");
12 }
13
14 public abstract void PrintMessage();
15 }

Referring to example 11.10 — The important point to note is that on line 3 the keyword abstract
indicates that this is an abstract class definition. The abstract keyword is also used on lines 5 and 14 in
the Message property definition and the PrintMessage() method declaration. An abstract member is implic-
itly virtual, so you don’t need to add the virtual keyword to an abstract member definition. In fact, doing
so will produce a compiler warning. Also note how the Message property’s get and set accessors are ter-
minated with a semicolon, indicating they have no implementation. (i.e., No curly braces, no body, no
implementation.) The same holds true for the PrintMessage() method. Example 11.11 gives the code for
DerivedClass.

11.11 DerivedClass.cs
1 using System;
2
3 public class DerivedClass:AbstractClass {
4 private String _message;
5
6 public override String Message {
7 get { return _message; }
8 set { _message = value; }
9 }
10
11 public DerivedClass(String message){
12 _message = message;
13 Console.WriteLine("DerivedClass object created...");
14 }
15
16 public DerivedClass():this("Default DerivedClass message"){ }
17
18 public override void PrintMessage(){
19 Console.WriteLine("DerivedClass PrintMessage(): " + _message);
20 }
21 }

Referring to example 11.11 — DerivedClass extends AbstractClass. DerivedClass provides an imple-
mentation for each of AbstractClass’s abstract members. Let’s take a look now at the test driver program
that exercises these two classes.

11.12 DriverApplication.cs
1 public class DriverApplication {
2 public static void Main(){
3 AbstractClass a1 = new DerivedClass(); // preferred combination
4 DerivedClass d1 = new DerivedClass();
5 a1.PrintMessage();
6 d1.PrintMessage();
7 a1.Message = "New Message";
8 d1.Message = "Another Message";
9 a1.PrintMessage();
10 d1.PrintMessage();
11 }

Interfaces Chapter 11: Inheritance and Interfaces

314 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

12 }

Referring to example 11.12 — Remember, you cannot directly instantiate an abstract class object. On
line 3, a reference to an AbstractClass type object named a1 is declared and initialized to point to a
DerivedClass object. On line 4, a reference to a DerivedClass type object named d1 is declared and initial-
ized to point to a DerivedClass object.

The comment on line 3 that says “preferred combination” means that the abstract type reference point-
ing to the derived class object is the preferred combination in an object-oriented program. Remember, your
goal is to write code that works the same regardless of what type of object a reference points to. The
abstract class serves as a specification for behavior. As long as it points to an object that implements the
specified behavior, things should work fine.

Figure 11-12 shows the results of running example 11.12.

Quick Review

An abstract member is a member that omits its body and has no implementation behavior. A class that
declares one or more abstract members must be declared to be abstract.

The primary purpose of an abstract class is to provide a specification for behavior whose implementa-
tion is expected to be found in some derived class further down the inheritance hierarchy.

Designers employ abstract classes to provide a measure of application architectural stability.

Interfaces

An interface is a construct that functions like an implicit abstract class. In C#, a derived class can
extend the behavior of only one class, but it can implement as many interfaces as it requires. Interfaces
themselves can inherit (i.e., extend) multiple interfaces.

The Purpose Of Interfaces

The purpose of an interface is to provide a specification for behavior in the form of abstract properties,
methods, events, and indexers. An interface declaration introduces a new data type, just as class declara-
tions and definitions do.

Authorized Interface Members

C# interfaces can only contain four types of members. These include:
• Properties — Implicitly public and abstract.
• Methods — Implicitly public and abstract.
• Events — Implicitly public and abstract.

Figure 11-12: Results of Running Example 11.12

Chapter 11: Inheritance and Interfaces Interfaces

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 315

• Indexers — Implicitly public and abstract.

The Differences Between An Interface And An Abstract Class

Table 11-1 summarizes the differences between abstract classes and interfaces.

Expressing Interfaces In UML

Interfaces are expressed in the UML in two ways as is shown in figure 11-13.

Referring to figure 11-13 — One way to show an interface in UML is by using a circle with the name
of the interface close by. The second way involves the use of an ordinary class diagram that includes the
stereotype <<interface>>. Each of these diagrams, the circle and the class diagram, can represent the
use of interfaces in an inheritance hierarchy, as is discussed in the following section.

Expressing Realization In A UML Class Diagram

When a class implements an interface it is said to be realizing that interface. Interface realization is
expressed in UML in two distinct forms: 1) the simple form in which the circle represents the interface and
is combined with an association line to create a lollipop diagram, or 2) the expanded form in which an
ordinary class diagram represents the interface. Figure 11-14 illustrates the use of the lollipop diagram to
convey the simple form of realization. Figure 11-15 shows an example of the expanded form of realization.

Abstract Class Interface

Must be declared abstract with the abstract key-
word.

Is implicitly abstract.

Can contain abstract and concrete members. Can only contain abstract members. All members in an in-
terface are implicitly public and abstract.

Can contain fields, constants, and static members. Can only contain declarations for properties, methods,
events, and indexers.

Can contain nested class and interface declarations. Can only contain declarations for properties, methods,
events, and indexers.

Can extend one class and implement many interfac-
es.

Can extend many interfaces.

Table 11-1: Differences Between Abstract Classes and Interfaces

Figure 11-13: Two Types of UML Interface Diagrams

Interfaces Chapter 11: Inheritance and Interfaces

316 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

An Interface Example

Let’s turn our attention to a simple example of an interface in action. Figure 11-16 gives the UML dia-
gram of the IMessagePrinter interface and a class named MessagePrinter that implements the IMessage-
Printer interface. The source code for these two classes is given in examples 11.13 and 11.14.

11.13 IMessagePrinter.cs
1 using System;
2
3 public interface IMessagePrinter {
4 String Message {
5 get;
6 set;
7 }
8
9 void PrintMessage();
10 }

11.14 MessagePrinter.cs
1 using System;
2
3 public class MessagePrinter:IMessagePrinter {
4 private String _message;
5
6 public String Message {

Dependency line

Figure 11-14: UML Diagram Showing the Simple Form of Realization

SomeClass depends on
SomeInterface.

AnotherClass implements
or realizes SomeInterface.

Figure 11-15: UML Diagram Showing the Expanded Form of Realization

SomeClass depends on
SomeInterface.

Dependency line

Dashed line with hollow-
tipped arrow denotes reali-
zation.

Chapter 11: Inheritance and Interfaces Interfaces

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 317

7 get { return _message; }

8 set { _message = value; }

9 }

10

11 public MessagePrinter(String message){

12 _message = message;

13 Console.WriteLine("MessagePrinter object created...");

14 }

15

16 public MessagePrinter():this("Default MessagePrinter message"){ }

17

18 public void PrintMessage(){

19 Console.WriteLine("MessagePrinter PrintMessage(): " + _message);

20 }

21 }

11.15 DriverApplication.cs
1 public class DriverApplication {

2 public static void Main(){

3 IMessagePrinter i1 = new MessagePrinter();

4 MessagePrinter m1 = new MessagePrinter();

5 i1.PrintMessage();

6 m1.PrintMessage();

7 i1.Message = "New Message";

8 m1.Message = "Another Message";

9 i1.PrintMessage();

10 m1.PrintMessage();

11 }

12 }

As you can see from example 11.13, the IMessagePrinter interface is short and simple. All it does is
declare two interface members: the Message property and the PrintMessage() method. The implementation
of these interface members is left to any class that implements the IMessagePrinter interface, as the Mes-
sagePrinter class does in example 11.14.

Example 11.15 gives the test driver program for this example. As you can see on line 3, you can
declare an interface type reference. I called this one i1. Although you cannot instantiate an interface
directly with the new operator, you can initialize an interface-type reference to point to an object of any
concrete class that implements the interface. The only object members you can access via the interface-
type reference are those members specified by the interface. You could of course cast to a different type if
required, as long as the object implements that type’s interface, but strive to minimize the need to cast in
this manner.

Figure 11-17 gives the results of running example 11.15.

Figure 11-16: UML Diagram Showing the MessagePrinter Class Implementing the IMessagePrinter Interface

Controlling Horizontal And Vertical Access Chapter 11: Inheritance and Interfaces

318 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Quick Review

The purpose of an interface is to specify behavior. Interfaces can have four types of members: 1) prop-
erties, 2) methods, 3) events, and 4) indexers. Classes can extend only one other class, but they can imple-
ment as many interfaces as required. Interfaces can extend as many interfaces as necessary.

Controlling Horizontal And Vertical Access

The term horizontal access describes the level of access an object of one type has to the members of
another type. I discussed this topic in detail in chapter 9. The term vertical access refers to the level of
access a derived class has to its base class members. In both cases access is controlled by the access modi-
fiers public, protected, private, internal, and protected internal.

The default class member access is private. That is, when you omit an explicit access modifier from
the definition of a class member, the member’s accessibility is set to private by default. Conversely, inter-
face members are implicitly public and no other access specifier can be applied to an interface member
declaration. A derived class does not have access to a base class’s private members. (i.e., Private members
are not inherited.)

Derived classes have access to their base class’s public, protected, internal, and protected internal
members. (i.e., These members are inherited by the derived class.)

The most frequently used access modifiers are private, public, and protected. As a rule of
thumb you will declare a class’s fields and one of more of its methods to be private. You saw an example of
this already with private fields. Utility methods meant to be used only by their containing class are usually
declared to be private as well.

If you want a member to be inherited by derived classes (i.e., accessible vertically) but not accessible
horizontally by other classes or code, declare it to be protected. If you want a member to be both hori-
zontally and vertically accessible to all code within an assembly but only vertically accessible to derived
classes outside the assembly, declare it to be protected internal.

Quick Review

Use the access modifiers private, protected, public, internal, and protected internal to
control horizontal and vertical member access.

Figure 11-17: Results of Running Example 11.15

Chapter 11: Inheritance and Interfaces Sealed Classes And Methods

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 319

Sealed Classes And Methods

Sometimes you want to prevent classes from being extended or individual methods of a particular class
from being overridden. Use the keyword sealed for these purposes. When used to declare a class, it pre-
vents that class from being extended.

When used to declare a method in a base class, it prevents the method from being overridden in a
derived class.

If the base class method is virtual, and is overridden in a derived class, use the sealed keyword in
conjunction with the override keyword to prevent further overriding in another derived class. In other
words, a sealed method is an overridden method that you want to prevent from being further overridden in
the future.

You cannot use the keyword sealed in combination with the keyword abstract for obvious rea-
sons.

Quick Review

Use the sealed keyword to stop the inheritance mechanism or prevent base class methods from being
overridden in derived classes.

Polymorphic Behavior

A good definition of polymorphism is “The ability to operate on and manipulate different derived
objects in a uniform way.” (Sadr) Add to this the following amplification: “Without polymorphism, the
developer ends up writing code consisting of large case or switch statements. This is in fact the litmus test
for polymorphism. The existence of a switch statement that selects an action based upon the type of an
object is often a warning sign that the developer has failed to apply polymorphic behavior effectively.”
(Booch)

Polymorphic behavior is easy to understand. In a nutshell, it is simply the act of using the set of public
interface members defined for a particular class (or interface) to interact with that class’s (or interface’s)
derived classes. When you write code, you need some level of a priori knowledge about the type of objects
your code will manipulate. In essence, you have to set the bar at some level, meaning that at some point in
your code, you need to make an assumption about the type of objects with which you are dealing and the
behavior they manifest. An object’s type, as you know, is important because it specifies the set of opera-
tions that are valid for objects of that type and its subtypes.

Code that’s written to take advantage of polymorphic behavior is generally cleaner, easier to read, eas-
ier to maintain, and easier to extend. If you find yourself casting a lot, you are not writing polymorphic
code. If you use the typeof operator frequently to determine object types, then you are not writing polymor-
phic code. Polymorphic behavior is the essence of object-oriented programming.

Quick Review

Polymorphic behavior is achieved in a program by targeting a set of operations specified by a base
class or interface and manipulating their derived class objects via those operations. This uniform treatment
of derived class objects results in cleaner code that’s easier to extend and maintain. Polymorphic behavior
is the essence of object-oriented programming.

Inheritance Example: Employee Chapter 11: Inheritance and Interfaces

320 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Inheritance Example: Employee

This section offers an inheritance example that extends, once again, the functionality of the Person
class given in chapter 9. Figure 11-18 gives the UML diagram.

Fi
gu

re
 1

1-
18

: E
m

pl
oy

ee
 C

la
ss

 In
he

rit
an

ce
 H

ie
ra

rc
hy

IP
ay

ab
le

 in
te

rf
ac

e
de

cl
ar

es
 th

e
Pa

y(
)

m
et

ho
d.

Em
pl

oy
ee

 c
la

ss
 d

ef
er

s
im

pl
em

en
ta

tio
n

of
 P

ay
()

m

et
ho

d
to

 d
er

iv
ed

 c
la

ss
es

m

ak
in

g
it

an
 a

bs
tra

ct
 c

la
ss

.
D

er
iv

ed
 c

la
ss

es

im
pl

em
en

t u
ni

qu
e

be
ha

vi
or

 fo
r P

ay
()

m
et

ho
d.

Chapter 11: Inheritance and Interfaces Inheritance Example: Employee

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 321

Referring to figure 11-18 — The Employee class extends Person and implements the IPayable inter-
face. However, in this example, as you will see later, the implementation of the Pay() method specified in
the IPayable interface is deferred by the Employee class to its derived classes. It does this by mapping the
IPayable.Pay() method to an abstract method, which means the Employee class now becomes an abstract
class.

The HourlyEmployee and SalariedEmployee classes extend the functionality of Employee. Each of
these classes will implement the Pay() method in its own special way.

From a polymorphic point of view, you could write a program that uses these classes in several ways.
It just depends on which set of interface methods you want to target. For instance, you could write a pro-
gram that contains an array of Person references. Each of these Person references could then be initialized
to point to an HourlyEmployee object or a SalariedEmployee object. In either case, the only members you
can access on these objects via a Person reference without casting are those public members specified by
the Person class.

Another approach would be to declare an array of IPayable references. Then again, you could initialize
each IPayable reference to point to either an HourlyEmployee object or a SalariedEmployee object. Now
the only members of each object that you can access without casting is the Pay() method.

A third approach would be to declare an array of Employee references and initialize each reference to
point to either an HourlyEmployee object or a SalariedEmployee object. In this scenario, you could then
access any member specified by Person, IPayable, and Employee. This is the approach taken in the
EmployeeTestApp program listed in example 11.20.

The code for each of these classes (except Person class, which was shown earlier in the chapter) along
with the EmployeeTestApp class is given in examples 11.16 through 11.20.

11.16 IPayable.cs
1 public interface IPayable {
2 double Pay();
3 }

11.17 Employee.cs
1 using System;
2
3 /***
4 * The Employee class extends Person and implements
5 * IPayable, but since it defers the actual
6 * implementation of IPayable's Pay() method
7 * to derived classes it must be declared an
8 * abstract class.
9 **/
10
11 public abstract class Employee : Person, IPayable {
12 private String _employeeNumber;
13
14 public String EmployeeNumber {
15 get { return _employeeNumber; }
16 set { _employeeNumber = value; }
17 }
18
19 public Employee(String firstName, String middleName, String lastName,
20 Sex gender, DateTime birthday, String employeeNumber):
21 base(firstName, middleName, lastName, gender, birthday){
22 _employeeNumber = employeeNumber;
23 }
24
25 public abstract double Pay(); // map IPayable.Pay() to an abstract method
26 // and defer implementation
27 } // end Employee class definition

Inheritance Example: Employee Chapter 11: Inheritance and Interfaces

322 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

11.18 HourlyEmployee.cs
1 using System;
2
3 public class HourlyEmployee : Employee {
4
5 private int _hoursWorked;
6 private double _hourlyWage;
7
8 public int HoursWorked {
9 get { return _hoursWorked; }
10 set { _hoursWorked = value; }
11 }
12
13 public double HourlyWage {
14 get { return _hourlyWage; }
15 set { _hourlyWage = value; }
16 }
17
18 public HourlyEmployee(String firstName, String middleName, String lastName,
19 Sex gender, DateTime birthday, String employeeNumber, int hoursWorked,
20 double hourlyWage): base(firstName, middleName, lastName, gender, birthday,
21 employeeNumber){
22 _hoursWorked = hoursWorked;
23 _hourlyWage = hourlyWage;
24 }
25
26 public override double Pay(){
27 return _hoursWorked * _hourlyWage;
28 }
29 }

11.19 SalariedEmployee.cs
1 using System;
2
3 public class SalariedEmployee : Employee {
4
5 private double _salary;
6
7 public double Salary {
8 get { return _salary; }
9 set { _salary = value; }
10 }
11
12 public SalariedEmployee(String firstName, String middleName, String lastName,
13 Sex gender, DateTime birthday, String employeeNumber, double salary):
14 base(firstName, middleName, lastName, gender, birthday, employeeNumber){
15 _salary = salary;
16 }
17
18 public override double Pay(){
19 return _salary/24;;
20 }
21 }

11.20 EmployeeTestApp.cs
1 using System;
2
3 public class EmployeeTestApp {
4 public static void Main(){
5 Employee[] employees = new Employee[4];
6
7 employees[0] = new HourlyEmployee("Rick", "W", "Miller", Person.Sex.MALE,
8 new DateTime(1964,02,02), "11111111", 80, 17.00);
9
10 employees[1] = new SalariedEmployee("Steve", "J", "Jones", Person.Sex.MALE,
11 new DateTime(1975,08,09), "22222222", 130000.00);

Chapter 11: Inheritance and Interfaces Inheritance Example: Engine Simulation

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 323

12
13 employees[2] = new HourlyEmployee("Bob", "E", "Evans", Person.Sex.MALE,
14 new DateTime(1956,12,23), "33333333", 80, 25.00);
15
16 employees[3] = new SalariedEmployee("Coralie", "S", "Miller", Person.Sex.FEMALE,
17 new DateTime(1967,11,21), "44444444", 67000.00);
18
19 for (int i=0; i<employees.Length; i++){
20 Console.WriteLine(employees[i].FullName + " " +
21 String.Format("{0:C}", employees[i].Pay()));
22 }
23 } // end Main()
24 } // end class definition

Referring to example 11.20 — On line 5, the EmployeeTestApp program declares an array of
Employee references named employees. On lines 7 through 17, it initializes each Employee reference to
point to either an HourlyEmployee or SalariedEmployee object.

In the for statement on line 19, each Employee object is manipulated polymorphically via the inter-
face specified by the Employee class, which includes the interfaces inherited from Person and IPayable.
The results of running this program are shown in figure 11-19.

Inheritance Example: Engine Simulation

This example expands on the engine simulation originally presented in chapter 10. Here the concepts
of inheritance fuse with compositional design to yield a truly powerful combination.

Engine Simulation UML Diagram

Figure 11-20 shows the UML diagram for this version of the engine simulation. Note now that most of
the functionality of a part resides in the Part class. In addition to its constructor method, the Part class con-
tains two private fields: _partStatus and _partName, and two public read-write properties: Status, Part-
Name. It contains one read-only property named IsWorking, which simply returns true or false depending
on the part’s current status.

The IManagedPart interface declares two methods: SetFault() and ClearFault(). The EnginePart class
extends the Part class and implements IManagedPart. The EnginePart class also contains one private field
named _registeredEngineNumber and a corresponding public property named RegisteredEngineNumber.
It has one read-only property named PartIdentifier that returns a string containing the name of the part and
its registered engine number. It also defines a private utility method named DisplayStatus() that is called
internally by the SetFault() and ClearFault() methods. The EnginePart class is declared to be an abstract
class to prevent the creation of EnginePart objects with the new operator.

The classes OilPump, FuelPump, Compressor, WaterPump, OxygenSensor, and TemperatureSensor all
extend from EnginePart. The Engine class is an aggregate of all of its parts. It contains an array of
EngineParts named _itsParts. It also contains several other private fields, _engineNumber and _isRunning,
along with their corresponding public properties EngineNumber and IsRunning. It has four public meth-

Figure 11-19: Results of Running Example 11.20

Inheritance Example: Engine Simulation Chapter 11: Inheritance and Interfaces

324 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Fi
gu

re
 1

1-
20

: E
ng

in
e

Si
m

ul
at

io
n

U
M

L
C

la
ss

 D
ia

gr
am

Chapter 11: Inheritance and Interfaces Complete Engine Simulation Code Listing

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 325

ods: StartEngine(), StopEngine(), SetPartFault(), and ClearPartFault(). It has one private method named
CheckEngine(), which is used internally by the StartEngine(), SetPartFault(), and ClearPartFault() meth-
ods.

Simulation Operational Description

Examples 11.31 and 11.32 give the source code for the Engine and EngineTestApp classes. Refer to
them for this discussion. The results of running example 11.32 can be seen in figure 11-21.

Referring first to example 11.32 — The EngineTestApp declares an Engine reference named e1 and
creates an Engine object with an engine number of 1. This is followed by a call to both the StartEngine()
and StopEngine() methods. Next, a fault is set in the OilPump via a call to the SetPartFault() method. An
attempt is then made to call StartEngine(), but because of the now faulty oil pump the engine will not start.
The fault is cleared with a call to ClearPartFault(), and the next call to StartEngine() works fine. You can
follow this sequence of events in figure 11-21.

Compiling The Engine Simulation Code

You can compile the engine simulation code by putting all the code in one directory and issuing the
following command: csc *.cs

Complete Engine Simulation Code Listing

11.21 PartStatus.cs
1 namespace EngineSimulation {

2

3 public enum PartStatus { WORKING, NOT_WORKING }

4

5 }

Figure 11-21: Results of Running the EngineTestApp

Complete Engine Simulation Code Listing Chapter 11: Inheritance and Interfaces

326 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

11.22 Part.cs
1 using System;
2
3 namespace EngineSimulation {
4
5 public class Part {
6 private PartStatus _partStatus;
7 private String _partName;
8
9 public PartStatus Status {
10 get { return _partStatus; }
11 set { _partStatus = value; }
12 }
13
14 public String PartName {
15 get { return _partName; }
16 set { _partName = value; }
17 }
18
19 public bool IsWorking {
20 get { return (Status == PartStatus.WORKING); }
21 }
22
23 public Part(PartStatus status, String partName) {
24 _partName = partName;
25 _partStatus = status;
26 Console.WriteLine("Part Created...");
27 }
28 } // end class definition
29 } // end namespace

11.23 IManagedPart.cs
1 namespace EngineSimulation {
2 public interface IManagedPart {
3 void SetFault();
4 void ClearFault();
5 }
6 }

11.24 EnginePart.cs
1 using System;
2
3 namespace EngineSimulation {
4 public abstract class EnginePart : Part, IManagedPart {
5 private int _registeredEngineNumber;
6
7 public int RegisteredEngineNumber {
8 get { return _registeredEngineNumber; }
9 set { _registeredEngineNumber = value; }
10 }
11
12 public String PartIdentifier {
13 get { return PartName + " For Engine Number: " + _registeredEngineNumber; }
14 }
15
16 public EnginePart(PartStatus status, String partName, int engineNumber):
17 base(status, partName){
18 _registeredEngineNumber = engineNumber;
19 }
20
21 public void SetFault() {
22 Status = PartStatus.NOT_WORKING;
23 DisplayStatus();
24 }

Chapter 11: Inheritance and Interfaces Complete Engine Simulation Code Listing

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 327

25
26 public void ClearFault() {
27 Status = PartStatus.WORKING;
28 DisplayStatus();
29 }
30
31 private void DisplayStatus(){
32 Console.WriteLine(PartIdentifier + " status is now: " + Status);
33 }
34 } // end class definition
35 } // end namespace

11.25 Compressor.cs
1 using System;
2
3 namespace EngineSimulation {
4
5 public class Compressor : EnginePart {
6
7 public Compressor(PartStatus status, int engineNumber):
8 base(status, "Compressor", engineNumber){
9 Console.WriteLine("Compressor created...");
10 }
11 } // end class
12 } // end namespace

11.26 FuelPump.cs
1 using System;
2
3 namespace EngineSimulation {
4
5 public class FuelPump : EnginePart {
6
7 public FuelPump(PartStatus status, int engineNumber):
8 base(status, "FuelPump", engineNumber){
9 Console.WriteLine("FuelPump created...");
10 }
11 } // end class
12 } // end namespace

11.27 OilPump.cs
1 using System;
2
3 namespace EngineSimulation {
4
5 public class OilPump : EnginePart {
6
7 public OilPump(PartStatus status, int engineNumber):
8 base(status, "OilPump", engineNumber){
9 Console.WriteLine("OilPump created...");
10 }
11 } // end class
12 } // end namespace

11.28 OxygenSensor.cs
1 using System;
2
3 namespace EngineSimulation {
4
5 public class OxygenSensor : EnginePart {
6
7 public OxygenSensor(PartStatus status, int engineNumber):
8 base(status, "OxygenSensor", engineNumber){
9 Console.WriteLine("OxygenSensor created...");
10 }
11 } // end class
12 } // end namespace

Complete Engine Simulation Code Listing Chapter 11: Inheritance and Interfaces

328 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

11.29 TemperatureSensor.cs
1 using System;
2
3 namespace EngineSimulation {
4
5 public class TemperatureSensor : EnginePart {
6
7 public TemperatureSensor(PartStatus status, int engineNumber):
8 base(status, "TemperatureSensor", engineNumber){
9 Console.WriteLine("TemperatureSensor created...");
10 }
11 } // end class
12 } // end namespace

11.30 WaterPump.cs
1 using System;
2
3 namespace EngineSimulation {
4
5 public class WaterPump : EnginePart {
6
7 public WaterPump(PartStatus status, int engineNumber):
8 base(status, "WaterPump", engineNumber){
9 Console.WriteLine("WaterPump created...");
10 }
11 } // end class
12 } // end namespace

11.31 Engine.cs
1 using System;
2
3 namespace EngineSimulation {
4 public class Engine {
5 private int _engineNumber;
6 private bool _isRunning;
7 private EnginePart[] _itsParts;
8
9 public int EngineNumber {
10 get { return _engineNumber; }
11 }
12
13 public bool IsRunning {
14 get { return _isRunning; }
15 }
16
17 public Engine(int engineNumber){
18 _engineNumber = engineNumber;
19 _isRunning = false;
20 _itsParts = new EnginePart[6];
21 _itsParts[0] = new Compressor(PartStatus.WORKING, EngineNumber);
22 _itsParts[1] = new FuelPump(PartStatus.WORKING, _engineNumber);
23 _itsParts[2] = new OilPump(PartStatus.WORKING, _engineNumber);
24 _itsParts[3] = new WaterPump(PartStatus.WORKING, _engineNumber);
25 _itsParts[4] = new OxygenSensor(PartStatus.WORKING, _engineNumber);
26 _itsParts[5] = new TemperatureSensor(PartStatus.WORKING, _engineNumber);
27 Console.WriteLine("Engine number {0} created", _engineNumber);
28 }
29
30 private bool CheckEngine(){
31 Console.WriteLine("Checking engine number {0}...", _engineNumber);
32 bool is_working = false;
33
34 for(int i=0; i<_itsParts.Length; i++){
35 is_working = _itsParts[i].IsWorking;
36 if(!is_working){
37 Console.WriteLine(_itsParts[i].PartIdentifier + " " + _itsParts[i].Status);

Chapter 11: Inheritance and Interfaces Complete Engine Simulation Code Listing

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 329

38 break;
39 }
40 }
41
42 if(is_working){
43 Console.WriteLine("Engine number {0} working properly!", _engineNumber);
44 }else{
45 Console.WriteLine("Engine number {0} malfunction!", _engineNumber);
46 StopEngine();
47 }
48 return is_working;
49 }
50
51 public void StartEngine(){
52 if(!_isRunning){
53 _isRunning = CheckEngine();
54 if(!_isRunning){
55 Console.WriteLine("Engine number {0} failed to start!", _engineNumber);
56 }else{
57 Console.WriteLine("Engine number {0} started!", _engineNumber);
58 }
59 }else{
60 Console.WriteLine("Engine number {0} is already running!", _engineNumber);
61 }
62 }
63
64 public void StopEngine(){
65 if(_isRunning){
66 _isRunning = false;
67 Console.WriteLine("Engine number {0} has been stopped!", _engineNumber);
68 }else{
69 Console.WriteLine("Engine number {0} is not running!", _engineNumber);
70 }
71 }
72
73 public void SetPartFault(String partName){
74 for(int i=0; i<_itsParts.Length; i++){
75 if(_itsParts[i].PartName.Equals(partName)){
76 _itsParts[i].SetFault();
77 Console.WriteLine("The status of Engine number {0}'s {1} is {2}", _engineNumber,
78 _itsParts[i].PartName, _itsParts[i].Status);
79 break;
80 }
81 }
82 CheckEngine();
83 }
84
85 public void ClearPartFault(String partName){
86 for(int i=0; i<_itsParts.Length; i++){
87 if(_itsParts[i].PartName.Equals(partName)){
88 _itsParts[i].ClearFault();
89 Console.WriteLine("The status of Engine number {0}'s {1} is {2}", _engineNumber,
90 _itsParts[i].PartName, _itsParts[i].Status);
91 break;
92 }
93 }
94 CheckEngine();
95 }
96 } // end class
97 } // end namespace

Summary Chapter 11: Inheritance and Interfaces

330 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

11.32 EngineTestApp.cs
1 using EngineSimulation;
2
3 public class EngineTestApp {
4 public static void Main(){
5 Engine e1 = new Engine(1);
6 e1.StartEngine();
7 e1.SetPartFault("OilPump");
8 e1.ClearPartFault("OilPump");
9 e1.StartEngine();
10 e1.StopEngine();
11 } // end Main()
12 } // end class

Summary

Inheritance serves three essential purposes: 1) it is an object-oriented design mechanism that enables
you to think and reason about a program’s structure in terms of generalized and specialized class behavior,
2) it provides you with a measure of code reuse within your program by locating common class behavior in
base classes, and 3) it provides a means to incrementally develop your programs over time.

Classes that belong to an inheritance hierarchy participate in an is a relationship between themselves
and their chain of base classes. This is a relationship is transitive in the direction of specialized to general-
ized classes but not vice versa.

Class and interface constructs introduce new, user-defined data types. The interface construct is used to
specify a set of authorized type operations but omits their behavior; the class construct is used to specify a
set of authorized type operations and, optionally, their behavior as well. A class construct, like an interface,
can omit the bodies of one or more of its members, however, such members must be declared to be
abstract. A class that declares one or more of its members to be abstract must itself be declared to be an
abstract class. Abstract class objects cannot be created with the new operator.

A base class implements default behavior in the form of public, protected, internal, and protected
internal members that can be inherited by derived classes. There are three reference/object combinations:
1) if the base class is a concrete class, meaning it is not abstract, then a base class reference can point to a
base class object, 2) a base class reference can point to a derived class object, and 3) a derived class refer-
ence can point to a derived class object.

Reference variables have an associated type. Method calls to an object pointed to by a reference will
succeed without casting as long as the reference’s type supports the method you are trying to call. You can
force, or coerce, the compiler to treat a reference to an object of one type as if it were a reference to an
object of another. This is extremely helpful in some circumstances, but as a rule, use casting sparingly.
Also, casting only works if the object really is of the type you are casting it to.

Derived classes can override base class behavior by providing overriding methods. An overriding
method is a method in a derived class that has the same method signature as the base class method it is
overriding. Use the virtual keyword to declare an overrideable base class method. Use the override
keyword to define an overriding derived class method. Overriding methods can be called polymorphically
via a base class reference that points to a derived class object.

An abstract member is a member that omits its body and has no implementation behavior. A class that
declares one or more abstract members must be declared to be abstract. The primary purpose of an abstract
class is to provide a specification for behavior whose implementation is expected to be found in some
derived class further down the inheritance hierarchy. Designers employ abstract classes to provide a mea-
sure of application architectural stability.

The purpose of an interface is to specify behavior. Interfaces can have four types of members: 1) prop-
erties, 2) methods, 3) events, and 4) indexers. Classes can inherit from or extend only one other class, but

Chapter 11: Inheritance and Interfaces Skill-Building Exercises

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 331

they can implement as many interfaces as are required. Interfaces can extend as many other interfaces as
necessary.

Use the access modifiers private, protected, public, internal, and protected internal to
control horizontal and vertical member access.

Use the sealed keyword to stop the inheritance mechanism or prevent base class methods from being
overridden in derived classes.

Polymorphic behavior is achieved in a program by targeting a set of operations specified by a base
class or interface and manipulating their derived class objects via those operations. This uniform treatment
of derived class objects results in cleaner code that’s easier to extend and maintain. Polymorphic behavior
is the essence of object-oriented programming.

Skill-Building Exercises

1. Simple Inheritance: Write a small program to test the effects of inheritance. Create a class named
ClassA that implements the following methods: A(), B(), and C(). Each method should print a short text
message to the console. Create a default constructor for ClassA that prints a message to the console
announcing the creation of a ClassA object. Next, create a class named ClassB that extends ClassA.
Give ClassB a default constructor that announces the creation of a ClassB object. In a test driver pro-
gram create three references. Two of the references should be of type ClassA and the third should be of
type ClassB. Initialize the first reference to point to a ClassA object, initialize the second reference to
point to a ClassB object, and initialize the third reference to point to a ClassB object as well. Call the
methods A(), B(), and C() via each of the references. Run the test driver program and note the results.

2. Overriding Methods: Reusing some of the code you created in the previous exercise create another
class named ClassC that extends ClassA and provides overriding methods for each of ClassA’s methods
A(), B(), and C(). Have each of the methods defined in ClassC print short messages to the console. In the
test driver program declare three references, the first two of type ClassA and the third of type ClassC.
Initialize the first reference to point to an object of type ClassA, the second to point to an object of type
ClassC, and the third to point to an object of ClassC as well. Call the methods A(), B(), and C() via each
of the references. Run the test driver program and note the results.

3. Abstract Classes: Create an abstract class named AbstractClassA and give it a default constructor and
three abstract methods named A(), B(), and C(). Create another class named ClassB that extends ClassA.
Provide overriding methods for each of the abstract methods declared in ClassA. Each overriding
method should print a short text message to the console. Create a test driver program that declares two
references. The first reference should be of type ClassA, the second reference should be of type ClassB.
Initialize the first reference to point to an object of type ClassB, and the second reference to point to an
object of ClassB as well. Call the methods A(), B(), and C() via each of the references. Run the program
and note the results.

4. Interfaces: Convert the abstract class you created in the previous exercise to an interface. What changes
did you have to make to the code? Compile your interface and test driver program code, re-run the pro-
gram and note the results.

5. Mental Exercise: Consider the following scenario: Given an abstract base class named ClassOne with
the following abstract public interface methods A(), B(), and C(). Given a class named ClassTwo that
derives from ClassOne, provides implementations for each of ClassOne’s abstract methods, and defines

Suggested Projects Chapter 11: Inheritance and Interfaces

332 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

one additional method named D(). Now, you have two references. One is of type ClassOne, the other of
type ClassTwo.

Answer these questions: What methods can be called via the ClassOne reference without casting? Like-
wise, what methods can be called via the ClassTwo reference without casting?

Suggested Projects

1. Draw Sequence Diagram: Draw a UML sequence diagram of the Engine constructor call. Refer to the
code supplied in examples 11.21 through 11.32.

2. Draw Sequence Diagram: Draw a UML sequence diagram of the Engine StartEngine() method.

3. Draw Sequence Diagram: Draw a UML sequence diagram of the Engine CheckEngine() method.

4. Extend Functionality: Extend the functionality of the Employee example given in this chapter. Create a
subclass named PartTimeEmployee that extends HourlyEmployee. Limit the number of hours a PartTi-
meEmployee can have to 30 hours per pay period.

5. Oil Tanker Pumping System: Design and create an oil tanker pumping system simulation. Assume
your tanker ship has five oil cargo compartments as shown in the diagram below.

Each compartment can be filled and drained from either the port or starboard service header. The oil
pumping system consists of 14 valves numbered 1 through 16. Even-numbered valves are located on the
port side of the ship and odd-numbered valves are located on the starboard side of the ship. Note: Valve
numbers 13 and 15 are not used.

Chapter 11: Inheritance and Interfaces Self-Test Questions

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 333

The system also consists of two pumps that can be run in two speeds, slow or fast speed, and in two
directions, drain and fill. When a pump is running in the drain direction it is taking a suction from the tank
side. When running in the fill direction it is taking a suction from the hull side. Assume a pumping capacity
of 1,000 gallons per minute in fast mode.

Each tank contains one tank-level indicator that is a type of sensor. The indicators sense a continuous
tank level from 0 (empty) to 100,000 gallons.

Your program should let you drain and fill the oil compartments by opening and closing valves and
starting and setting pump speeds. For instance, to fill tank A quickly you could open valves 1, 2, 11, 12, 14
and 16, and start pumps P1 and P2 in the fill direction in the fast mode.

Self-Test Questions

1. What are the three essential purposes of inheritance?

2. A class that belongs to an inheritance hierarchy participates in what type of relationship with its base
class?

3. Describe the relationship between the terms interface, class, and type.

4. How do you express generalization and specialization in a UML class diagram? You may draw a picture
to answer the question.

5. Describe how to override a base class method in a derived class.

6. Why would it be desirable to override a base class method in a derived class?

7. What’s the difference between an ordinary method and an abstract method?

8. How many abstract methods must a class have before it must be declared to be an abstract class?

9. List several differences between classes and interfaces.

10. How do you express an abstract class in a UML class diagram?

11. Hi, I’m a class that declares a set of interface methods but fails to provide an implementation for those
methods. What type of class am I?

12. List the four authorized members of an interface.

13. Which two ways can you express realization in a UML class diagram? You may use pictures to answer
the question.

14. How do you call a base class constructor from a derived class constructor?

15. How do you call a base class method, other than a constructor, from a derived class method?

16. Describe the effects of using the access modifiers public, private, protected, internal, and

References Chapter 11: Inheritance and Interfaces

334 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

protected internal has on horizontal and vertical member access.

17. What can you do to prevent or stop a class from being inherited?

18. What can you do to prevent a method from being overridden in a derived class?

19. State, in your own words, a good definition for the term polymorphism.

References

Grady Booch, et. al. The Unified Modeling Language User Guide. Addison-Wesley, Reading, MA,
1998. ISBN: 0-201-57168-4

Grady Booch. Object-Oriented Analysis and Design with Applications. Second Edition. The Benja-
min/Cummings Publishing Company, Inc., Redwood City, CA, 1994. ISBN: 0-8053-5340-2

Babak Sadr. Unified Objects: Object-Oriented Programming Using C++. The IEEE Computer Soci-
ety, Los Alamitos, CA. ISBN: 0-8186-7733-3

Antero Taivalsaari. On the Notion of Inheritance. ACM Computing Surveys, Vol. 28, No. 3, Septem-
ber 1996, pp. 438 - 479.

Clyde Ruby and Gary T. Levens. Safely Creating Correct Subclasses without Seeing Superclass Code.
In OOPSLA ‘00 Conference Proceedings.

Derek Rayside and Gerard T. Campbell. An Aristotelian Understanding of Object-Oriented Program-
ming. OOPSLA ‘00 Conference Proceedings.

ECMA-335 Common Language Infrastructure (CLI), 6th Edition, June 2012 http://www.ecma-interna-
tional.org/publications/standards/Ecma-335.htm

ECMA-334 C# Language Specification, 4th Edition, June 2006 http://www.ecma-international.org/
publications/standards/Ecma-334.htm

Microsoft Developer Network (MSDN) http://www.msdn.com

Chapter 11: Inheritance and Interfaces Notes

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 335

Notes

Notes Chapter 11: Inheritance and Interfaces

336 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

