
C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 219

9 Toward Problem Abstraction: Creating New Data Types

Learning Objectives
• Describe the purpose and use of abstract data types
• State the purpose and use of an enumeration
• State the purpose and use of a structure
• State the purpose and use of a class
• List and describe the differences between structures and classes
• State the purpose and use of methods
• Demonstrate your ability to create structures, classes, and methods
• State the purpose and use of overloaded methods
• State the purpose and use of constructor methods
• State the definition of the term “method signature”
• Demonstrate your ability to overload ordinary methods and constructor methods
• State the purpose and use of the keyword “static”
• Demonstrate your ability to create class fields and methods
• State the purpose and use of a UML class diagram
• Demonstrate your ability to create classes that represent abstract data types

Chapter 9

Toward Problem Abstraction:
Clare and Dons Beach Shack, Falls Church, VA

N
ik

on
 F

3H
P,

 N
ik

ko
r 5

0m
m

/f1
.2

, I
lfo

rd
 H

P5
 P

lu
s

Creating New Data Types

Introduction Chapter 9: Toward Problem Abstraction

220 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Introduction

A computer program is a model of a real world problem. But real world problems are notoriously com-
plex. It is impossible to capture all the details and nuances of a real world problem in software. However, it
is possible to study the problem closely, identify its important points or components, and then create new
software data types that represent the essential features or elements of these components. The process of
selecting the essential elements of a problem with an eye towards modeling them in software is referred to
as problem abstraction.

This chapter shows you how to approach the process of problem abstraction. Along the way, you will
learn more about classes, methods, fields, Unified Modeling Language (UML) class diagrams, and object-
oriented programming. You will learn how to break functionality into logical groups to formulate methods.
These methods provide a measure of code reuse that will save you both work and time.

The primary focus of this chapter is the class construct and its use in abstract data type modeling. At
the end of the chapter, I present a brief section on structures and explain the similarities and differences
between structures and classes. I then offer suggestions on when you might want to implement an abstract
data type as a structure and the ramifications of making such a decision.

The material discussed here builds upon that presented in previous chapters. By now you should be
very comfortable using your chosen development environment and a handful of .NET Framework classes.
You should be able to create simple C# programs, control the flow of program execution with if, if/
else, for, while, and do/while statements, and you should understand the concepts and use of single-
dimensional arrays. You should also be an expert at looking through the .NET API documentation for
classes that can help you solve problems.

Upon completion of this chapter, you will have added several powerful tools to your programmer’s
toolbag. These tools will enable you to write increasingly complex programs with ease.

Abstraction: Amplify The Essential, Eliminate The Irrelevant

The process of problem abstraction is summarized nicely in the following mantra: amplify the essen-
tial, eliminate the irrelevant. The very nature of programming demands that a measure of simplification be
performed on real world problems. Consider for a moment the concept of numbers. Real numbers can have
infinite precision. This means that in the real world, numbers can have an infinite number of digits to the
right of the decimal point. This is not possible in a computer with finite resources, therefore the machine
representation of real numbers is only an approximation. However, for all practical purposes, an approxi-
mation is all the precision required to yield acceptable calculations. In C#, real number approximations are
provided by the float and double data types.

Abstraction Is The Art Of Programming

When compared with all other aspects of programming, problem abstraction requires the most creativ-
ity. You must analyze the problem at hand, extract its essential elements, and model these in software.
Also, the process of identifying which abstractions to model may entail the creation of software entities
that have no corresponding counterpart in the problem domain. Have you ever heard the term, “think out-
side the box”? It means that to make progress you must shed your old ways of thinking. You must check
your prejudices and preconceived notions at the door. Successful programmers have mastered the art of
thinking outside, inside, over, under, to the left of, and to the right of the box. With their minds, they trans-
form real world problems into a series of program instructions that are then executed on a machine. Suc-

Chapter 9: Toward Problem Abstraction Abstraction: Amplify The Essential, Eliminate The Irrelevant

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 221

cessful programmers have mastered the art of reducing real world problems to a state that can be put inside
of a box!

Like any form of art, the mastery of problem abstraction requires lots of practice. The only way to get
lots of practice with problem abstraction is to solve lots of problems and write lots of code.

Where Problem Abstraction Fits Into The Development Cycle

Problem abstraction straddles the analysis and design phases of the development cycle. Project
requirements may or may not be fully or adequately documented. In fact, on most projects, the important
requirements that deeply affect the quality of the source code are not documented at all, and must be
derived or deduced from existing or known requirements. Nonetheless, you must be able to distinguish the
“signal” of the problem from its “noise”. The abstractions you choose to help model the problem in soft-
ware directly influence its design (architecture).

Creating Your Own Data Types

The end result of problem abstraction is the identification and creation of one or more new data types.
These data types will interact with each other in some way to implement the solution to the problem at
hand. In C#, you create a new data type by defining a new enumeration, structure, class, or interface.
Arrays and delegates are data types as well, but not useful for the purposes discussed here. These data
types can then be used by other data types. This is referred to as design by composition. New data types
created through the process of problem abstraction are referred to as abstract data types or user-defined
types.

To introduce you to the process of problem abstraction and the creation of new data types, I will walk
you through a small case-study project. The rest of this chapter is devoted to developing the data types
identified in the project specification along with a detailed discussion about the inner workings of the C#
class construct. Most everything you learn about classes also applies to structures. I will discuss the differ-
ences between structures and classes at the end of the chapter.

Case-Study Project: Write A People Manager Program

Figure 9-1 gives the project specification that will be used to build the program presented in this chap-
ter.

The project specification offers some guidance and several hints. Let’s concentrate on the tasks. First,
it says that you must write a program to manage people. A full-blown people management program is
obviously out of the question, so our first simplification will be to put a bound on exactly what functional-
ity is provided in the final solution. Luckily, we are guided in this decision by the next sentence that says
the program should focus on the following functions:

• Add a person
• Delete a person
• Set a person’s first, middle, and last names
• Query a person’s first, middle, and last names
• Set a person’s birth date
• Query a person’s birth date
• Query a person’s gender
• Set a person’s gender
• Query a person’s age

The project specification also says that you must store person objects in a single-dimensional array.
This is clear enough, but where will this array reside? Again, the next sentence provides a clue. It says that

Abstraction: Amplify The Essential, Eliminate The Irrelevant Chapter 9: Toward Problem Abstraction

222 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

you must write a separate application that utilizes the services of a PeopleManager class. This is a great
hint that provides you with a candidate name for one of the classes that makes up the completed program.

This will suffice for a first-pass analysis of the project specification. The trick now is to derive addi-
tional requirements that are not specifically addressed. You can begin by making some assumptions. I rec-
ommend you start by identifying the number of classes you will need to write the program. One class,
PeopleManager, is spelled out for you in the specification. Another class is also alluded to in the last sen-
tence, and that is the application class. You could name the class anything you want, but I will use the name
PeopleManagerApplication. That should make the purpose of that class clear to anyone reading your code.

OK, you have two classes so far: PeopleManager and PeopleManagerApplication. Since you will need
person objects to work with, you need to create another user-defined type named Person. The Person class
will implement the functionality of a person as required to fulfill the project requirements. You can add
additional functionality to exceed the project specification if you desire.

I recommend now that you make a list of the classes identified thus far and assign to them the function-
ality each requires. One possible list for this project is given in table 9-1.

Class Name Functionality Required

Person The Person class will embody the concept of a person entity. A person
will have the following attributes:

• first name
• middle name
• last name
• gender
• birth date

The Person class will provide the capability to set and query each of its
attributes as well as calculate the age of a person given a person’s birth
date and the current date.

Table 9-1: People Manager Program Class Responsibilities

People Manager Program

Objectives:
• Apply problem abstraction to determine essential program ele-
ments.

• Create user-defined data types using the class construct
• Utilize user-defined data types in a C# application
• Create and manipulate arrays of user-defined data type objects

Tasks:
• Write a simple program that lets you manage people. The program
should let users add or delete a person when necessary. The
program should also let users set and query a person’s last,
middle, and first names as well as his or her birth date and
gender. It should also let you determine a person’s age.

• Store the people objects in a single-dimensional array.
• Create a separate application class that utilizes the services
of a PeopleManager class.

Figure 9-1: People Management Program Project Specification

Chapter 9: Toward Problem Abstraction The UML Class Diagram

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 223

This looks like a good start. As you progress with the design and implementation of each class, espe-
cially the Person and PeopleManager classes, you may find they require functionality not originally
thought of or imagined. That’s OK — software design is an iterative process. As you progress with the
design and implementation of a program, you gain a deeper insight or understanding of the problem you
are trying to solve. This knowledge is then used to improve later versions of the software. Alright, enough
soap boxing! On with the project.

The next step I recommend taking is to examine each class and see which piece of its functionality
might be provided by a class from the .NET Framework API. Let’s look closely at the Person class. The
requirement to calculate a person’s age means that we will have to perform some sort of date calculation.
The question is, “Is this sort of thing already done for us by the .NET Framework API?” The answer is yes.
The place to look for this sort of utility functionality is in the System namespace. There you will find the
DateTime class. Take time now to familiarize yourself with the DateTime class, as you will find it helpful
in other projects as well.

This completes the analysis phase of this project. You should have a fairly clear understanding of the
project requirements and the number of user-defined data types required to implement the solution. The
next step I recommend you take is to concentrate on the Person class and implement and test its functional-
ity in its entirety. The Person class is the logical place to start since all the other classes depend on it.

Quick Review

Problem abstraction requires lots of programmer creativity and represents the art in the art of pro-
gramming. Your guiding mantra during problem abstraction is to amplify the essential, eliminate the irrel-
evant. Problem abstraction is performed in the analysis and design phase of the development cycle. The
abstractions you choose to model a particular problem will directly influence a program’s design.

The end result of problem abstraction is the identification and creation of one or more new data types.
The data types derived through problem abstraction are referred to as abstract data types (ADTs) or user-
defined data types. User-defined data types can be implemented as structures or classes. These structures
or classes will interact with each other in some capacity to implement the complete problem solution.

The UML Class Diagram

Now that the three classes of the People Manager project have been identified, you can express their
relationship to each other via a UML class diagram. The purpose of a UML class diagram is to express the

PeopleManager The PeopleManager class will manage an array of Person objects. It
will have the following attribute:

• an array of Person objects
The PeopleManager class will also provide the following functionality:

• add a person to the array
• delete a person from the array
• list the people in the array

PeopleManagerApplication The PeopleManagerApplication class will be the C# application class
that has the Main() method. This class will be used to test the function-
ality of the PeopleManager and Person classes as they are developed.

Class Name Functionality Required

Table 9-1: People Manager Program Class Responsibilities

The UML Class Diagram Chapter 9: Toward Problem Abstraction

224 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

static relationship between classes, interfaces, and other components of a software system. UML class dia-
grams are used to communicate and solidify your understanding of software designs to yourself, to other
programmers, to management, and to clients. Figure 9-2 gives a basic UML diagram showing the static
relationship between the classes identified in the People Manager project.

Each rectangle shown in figure 9-2 represents a class. The lines tipped with the hollow arrowheads
represent generalization and specialization. The arrow points from the specialized class to the generalized
class. This represents an “is a...” relationship between the classes. As figure 9-2 illustrates, the classes Per-
son, PeopleManager, and PeopleManagerApplication extend the functionality provided by the Sys-
tem.Object class. The Object class serves as the direct base class for all reference types that do not
explicitly extend another class. I discuss inheritance in detail in chapter 11.

Each class rectangle can be drawn either as a simple rectangle or with three compartments. The upper-
most compartment will have the class name, the middle compartment will list the fields, and the bottom
compartment will list the methods.

Figure 9-2 further shows that the PeopleManagerApplication class is an application. This is indicated
with the use of the <<application>> stereotype. A stereotype introduces a new type of element within a
system. The name of the new element is contained within the guillemet characters << >>. The application
will have one method, Main(). Since it is a class, it could have fields and other methods, but in this exam-
ple no other fields or methods are required.

The PeopleManagerApplication class uses the services of the PeopleManager class. This is indicated
by the dashed arrow pointing from the PeopleManagerApplication class to the PeopleManager class. The
dashed arrow represents a dependency. The PeopleManager class will have several attributes and methods
which have yet to be defined.

The PeopleManager class will use the services of the Person class. The Person class will have fields,
properties, and methods as well. These will be developed in the next several sections.

The Person class uses the services of the System.DateTime structure. The DateTime structure will give
the Person class the ability to calculate the age of each Person object.

Now that you have a basic design for the People Manager project, you can concentrate on one piece of
the design and implement its functionality. Over the next several sections, I discuss the class construct in
detail and show you how to create the Person and PeopleManager classes. Along the way I will show you
how to test these classes using the PeopleManagerApplication class.

PeopleManagerApplicationPeopleManagerPerson
<< application >>

uses

+ Main(String[] args): void

uses

is a

// fields // fields

// methods // methods

Figure 9-2: Class Diagram for People Manager Classes

is ais auses

System.DateTime System.Object

// fields - (none required)

Chapter 9: Toward Problem Abstraction Overview Of The Class Construct

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 225

Quick Review

A UML class diagram shows the static relationship between classes that participate in a software
design. Programmers use the class diagram to express and clarify design concepts to themselves, to other
programmers, to management, and to clients.

In UML, a rectangle represents a class. The rectangle can have three compartments. The uppermost
compartment contains the class name, the middle compartment contains fields, and the bottom compart-
ment contains the methods.

A stereotype introduces a new type of element within a system. The stereotype name is contained
within the guillemet characters << >>.

Generalization and specialization are indicated by lines tipped with hollow arrows. The arrow points
from the specialized class to the generalized class. The generalized class is the base class, and the special-
ized class is the derived or subclass. Generalizations specify “is a...” relationships between base and sub-
classes.

Dependencies are indicated by dashed arrows pointing to the class being depended upon. Dependen-
cies are one way to indicate “uses...” relationships between classes.

Overview Of The Class Construct

This section presents an overview of the C# class construct. You have already been exposed to the
structure of a C# application class in chapter 6 so some of this material will be a review.

Eleven Categories Of Class Members

C# classes can contain eleven different types of members: fields, constants, methods, properties,
events, indexers, operators, instance constructors, static constructors, finalizers, and nested type declara-
tions. In this section I present a brief description of each member type. The rest of the chapter will demon-
strate the use of fields, constants, methods, properties, and instance constructors, as these are the most
often used class members. I will discuss the remaining class member types later in the book when their use
becomes appropriate. I find it best not to present too much information at one go, or your head will
explode!

Fields

Fields are variables that are used to set and maintain object state information. Fields can be either static
or non-static.

Static Or Class-Wide Fields

A static field represents an attribute that is shared among all object instances of a particular class. This
means that the field’s value exists independently of any particular instance, and therefore does not require
a reference to an object to access it. Another term used to describe static fields is class or class-wide fields.

Non-Static Or Instance Fields

Non-static fields represent attributes for which each object has its very own copy. Another term used to
describe non-static fields is instance fields. It’s through the use of instance fields that objects can set and
maintain their attribute state information. For example, if we are talking about Person objects, each Person
object will have its own first name, middle name, last name, gender, and birth date. This instance attribute

Overview Of The Class Construct Chapter 9: Toward Problem Abstraction

226 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

state information is not shared with other Person objects. Figure 9-3 graphically illustrates the relationship
between static and non-static fields.

Readonly Fields

It’s often helpful to have a field maintain its first-assigned value throughout the life of the program.
Such a field is said to be a constant. Instance readonly fields can be initialized at the point of declaration or
in one or more constructors, where each constructor might assign a different value to the readonly field.
Static readonly fields can be initialized at the point of declaration or in a static constructor. This can be
done by declaring a field to be “readonly” with the readonly keyword. Let’s take a look at the behavior
of an ordinary field vs. a readonly field. Example 9.1 offers a simple code example.

9.1 ReadOnlyTest.cs
1 using System;
2
3 public class ReadOnlyTest {
4 int field_1 = 1;
5 readonly int field_2 = 25;
6
7 static void Main(){
8 ReadOnlyTest rot = new ReadOnlyTest();
9 Console.WriteLine(rot.field_1);
10 Console.WriteLine(rot.field_2);
11 }
12 }

Referring to example 9.1 — Two fields have been declared and initialized on lines 4 and 5. The field
named field_2 has been declared readonly. This short program simply prints the field values to the console,
as is shown in figure 9-4.

As long as you don’t try to change the value of a readonly field, you’ll be fine. Example 9.2 gives a
short program that attempts to change the values of both fields. The error produced when I attempt to com-
pile the program is shown in figure 9-5.

9.2 ReadOnlyTest.cs (Mod 1)
1 using System;
2
3 public class ReadOnlyTest {

Figure 9-3: Static and Non-Static Fields

Static fields reside on
the stack and are
shared by all objects
belonging to a particu-
lar class.

Each object has its
own instance fields.
These are not shared
among objects.

Figure 9-4: Results of Running Example 9.1

Chapter 9: Toward Problem Abstraction Overview Of The Class Construct

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 227

4 int field_1 = 1;

5 readonly int field_2 = 25;

6

7 static void Main(){

8

9 ReadOnlyTest rot = new ReadOnlyTest();

10 Console.WriteLine(rot.field_1);

11 Console.WriteLine(rot.field_2);

12

13 rot.field_1 = 2;

14 rot.field_2 = 26; // this will cause an error

15

16 Console.WriteLine(rot.field_1);

17 Console.WriteLine(rot.field_2);

18 }

19 }

Referring to example 9.2 — The value of field_1 is modified on line 13 with no problem. The attempt
to modify the value of field_2 results in a compiler error.

As you can see from the two previous example programs, a readonly field is a constant. Since neither
field_1 nor field_2 are declared static, they are both instance fields, which means that each object of type
ReadOnlyTest contains its very own copy of these values. It is generally desirable to conserve storage
space and declare class constants to be static. This way, the constant values are shared among all objects of
a particular class, as figure 9-3 illustrated. To make field_2 a static field, simply add the keyword static
to the declaration like so:

static readonly int field_2 = 25;

Doing this, however, changes the field’s behavior. Since it’s a static field, it can only be accessed either
via the class name or directly from within a class’s static or non-static methods, as example 9.3 illustrates.

9.3 ReadOnlyTest.cs (Mod 2)
1 using System;

2

3 public class ReadOnlyTest {

4 int field_1 = 1;

5 static readonly int field_2 = 25; // now it's a class-wide constant

6

7 static void Main(){

8 ReadOnlyTest rot = new ReadOnlyTest();

9 Console.WriteLine(rot.field_1);

10 Console.WriteLine(ReadOnlyTest.field_2); // access via class name

11 Console.WriteLine(field_2); // or directly because it is static!

12 }

13 }

Referring to example 9.3 — Adding the static keyword to the declaration of field_2 makes it a static
field. Static fields can be accessed directly by a class’s static or non-static methods or via the class name, as
is shown on line 10. Figure 9-6 gives the results of running this program.

Figure 9-5: Error Resulting from an Attempt to Assign to a Readonly Field

Overview Of The Class Construct Chapter 9: Toward Problem Abstraction

228 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Constants

As you saw in the previous section, class constants can be created by declaring a static readonly field.
C# provides a shortcut way to do this with the const keyword. Example 9.4 shows how it’s done.

9.4 ConstantTest.cs
1 using System;

2

3 public class ConstantTest {

4 int field_1 = 1;

5 static readonly int field_2 = 25;

6 const int CONSTANT_1 = 35;

7

8 static void Main(){

9 ConstantTest ct = new ConstantTest();

10 Console.WriteLine(ct.field_1); // can only be accessed via reference since it's non-static

11 Console.WriteLine(ConstantTest.field_2); // can be accessed via class

12 Console.WriteLine(field_2); // or directly because it's static

13 Console.WriteLine(ConstantTest.CONSTANT_1); // can be accessed via class

14 Console.WriteLine(CONSTANT_1); // or directly because it's static

15 }

16 }

Referring to example 9.4 — On line 6 the keyword const declares a class-wide constant member.
This is akin to declaring a field to be static readonly, but there is a difference, which I explain in the
next section. Note that uppercase letters were used to form the constant’s identifier to make it stand out in
the program. Figure 9-7 gives the results of running this program.

The Difference Between const and readonly; Compile-Time vs. Runtime Constants

A constant declared with the const keyword must be initialized at the moment of declaration. The
const keyword is used to introduce what are called compile-time constants. Use the readonly keyword
to declare a constant if you need to create the constant object using the new keyword or if you need to ini-
tialize the constant value in a constructor. For example, if you need to create a constant DateTime object
that is initialized to a particular date, do something like the following:

static readonly DateTime MIN_VALID_SQL_DATE = new DateTime(01, 01, 1753);

Figure 9-6: Results of Running Example 9.3

Figure 9-7: Results of Running Example 9.4

Chapter 9: Toward Problem Abstraction Overview Of The Class Construct

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 229

Properties

A property is a class member that provides access to an object or class attribute. A property provides
accessors that contain statements that are executed when its value is read or written. Properties can be
static or non-static, read-only, write-only, or read-write.

Properties, at first glance, can be a confusing concept to grasp. One has a tendency to associate proper-
ties with fields, but they are more closely related to methods; property accessors get converted into meth-
ods during the compilation process.

Instance Properties

An instance property is a non-static member that must be accessed via an object reference.

Static Properties

A static property is a class-wide member that can be accessed via the class name or directly in static
and non-static methods.

Read-Only Properties

A read-only property is one whose value can only be read and not written. A read-only property
defines a get accessor.

Write-Only Properties

A write-only property is one whose value can only be written and not read. A write-only property
defines a set accessor.

Read-Write Properties

A read-write property is one whose value can be both read and written. A read-write property defines
both a get and a set accessor.

Properties In Action

Example 9.5 gives a short program demonstrating the use of properties.
9.5 PropertiesDemo.cs

1 using System;
2
3 public class PropertiesDemo {
4
5 /**** Constants and Fields *****/
6 private const String MESSAGE = "Hello Stranger";
7 private static int field_1 = 1;
8 private int field_2 = 2;
9
10 /***** Properties ******/
11 public String ClassName {
12 get { return this.GetType().ToString(); }
13 }
14
15 public String Message {
16 get { return MESSAGE; }
17 }
18
19 public static int ObjectCount {
20 get { return field_1; }

Overview Of The Class Construct Chapter 9: Toward Problem Abstraction

230 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

21 set { field_1 = value; }

22 }

23

24 public int SomeProperty {

25 get { return field_2; }

26 set { field_2 = value; }

27 }

28

29 static void Main(){

30 PropertiesDemo pd = new PropertiesDemo();

31 Console.WriteLine(pd.ClassName);

32 Console.WriteLine(pd.Message);

33 Console.WriteLine(ObjectCount);

34 ObjectCount++;

35 Console.WriteLine(ObjectCount);

36 Console.WriteLine(pd.SomeProperty++);

37 Console.WriteLine(pd.SomeProperty);

38 }

39 }

Referring to example 9.5 — The PropertiesDemo class has one constant and two fields. One of the
fields, field_1, is a static field. I have defined four properties. Note that each property has a type and a
name. Property names are by convention formed with Pascal case. Pascal case means the first letter of
each word in the identifier name is uppercase and the remaining letters of each word are lowercase.

Each property’s accessor definitions are enclosed in the property’s body, which is denoted by the open-
ing and closing brace. A read-only property has a get accessor defined, which itself has an opening and
closing brace and can contain any number of statements as long as it eventually returns an object of the
property’s specified type. For example, the ClassName property whose definition begins on line 11 is a
read-only property. It defines a get accessor that returns a string value. Note that the ClassName property
computes the value of the string, in this case the class name, by making a series of method calls on the
appropriate objects. Compare the behavior of the ClassName property to that of the Message property
whose definition starts on line 15. The Message property is a read-only property that simply returns the
value of the MESSAGE constant.

The ObjectCount property is a read-write property because it defines both get and set accessors. It is
also a static property because its definition includes the use of the static keyword. Note on line 21 the
use of the implicit parameter named “value” in the set accessor. Remember that these accessors will be
ultimately invoked as method calls. The value parameter is automatically supplied by the compiler when a
set accessor is called.

The SomeProperty property is a read-write instance property.
These four properties are used in the body of the Main() method that starts on line 29. Note specifically

how properties can be used in ways similar to fields. Instance properties must be accessed in a static
method via an object reference. Static properties can be accessed via the class name or directly in static and
instance methods. Figure 9-8 gives the results of running example 9.5.

Figure 9-8: Results of Running Example 9.5

Chapter 9: Toward Problem Abstraction Overview Of The Class Construct

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 231

Methods

A method is a class member that implements a series of instructions that can be executed or called via
a class or object. Methods, like fields and properties, can be static or non-static.

Methods can share the same name as long as their method signatures differ. This is referred to as
method overloading. A method’s signature includes its name, and the number and type of its formal param-
eters. I cover methods in greater detail in this chapter in the Methods section.

Instance Constructors

An instance constructor, or simply a constructor, is a special type of method that contains the instruc-
tions required to properly initialize an object. A constructor method takes the same exact name as the class
in which it appears and has no return type.

A default constructor is a constructor that has an empty parameter list. (i.e., It takes no parameters.) If
you fail to define a constructor the compiler will generate one for you. If you define at least one constructor
the compiler will not generate a default constructor.

Constructors, like ordinary methods, can be overloaded. This comes in handy when you want to define
several different ways to create an object.

Constructors are usually declared to have public accessibility, although in some cases it’s helpful to
declare them to be protected or private so you can maintain full control over how and when an instance
object is created. (Refer to the Singleton pattern in chapter 25 for an example.)

Use instance constructors to initialize non-static readonly fields. This is especially helpful if you need
the read-only constant value to be initialized differently according to which constructor is called.

You’ll see many examples of instance constructors throughout this book.

Static Constructors

A static constructor is a special method that contains the instructions required to properly initialize
static class fields. Static constructors take no parameters and are called automatically by the runtime envi-
ronment when the program executes. The use of access modifiers is not allowed with static constructors.
(i.e., A static constructor cannot be public or private.) Use a static constructor if you need to initialize static
readonly constants.

Events

An event is a class member that enables a class or an object to provide notifications. I cover events in
detail in Chapter 12 — Windows Forms Programming, and Chapter 13 — Custom Events.

Operators

An operator is a member that defines what it means to apply certain expression operators (like the ‘+’
or ‘==’ operators for example) to objects. This operator overloading allows you to create well-behaved
objects. Operator overloading is covered in detail in Chapter 21 — Operator Overloading.

Indexers

An indexer is a class member that allows an object to be indexed like an array. I give an example of an
indexer in Chapter 14 — Collections.

Overview Of The Class Construct Chapter 9: Toward Problem Abstraction

232 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Nested Type Declarations

A type definition that appears within the body of a class is referred to as a nested type. The most often
seen example of this is when an enumerated type (enumeration) is declared within the body of a class. The
overuse of nested types leads to hard-to-read and hard-to-maintain code. Generally avoid using them
unless you have a compelling reason to do so.

Finalizers

A finalizer is a class member that’s called automatically when an object is collected by the runtime
environment garbage collector. A finalizer contains the instructions required to clean up the object. An
example of object clean-up might be the release of network resources or file handles used during the
object’s lifetime.

A finalizer method takes the same name of the class with the tilde character ‘~’ prepended to its name.
Finalizers take no parameters and cannot be called explicitly. Because a finalizer method cannot be called
explicitly, there is no telling when it will be called. Therefore, the release of critical resources should not be
left, as a rule, to the whims of the garbage collector. In practice, use ordinary methods that can be called
explicitly to provide critical object clean-up services. The finalizer can then be relied upon as a back-up.

Access Modifiers

Use the access modifiers public, protected, private, internal, and protected internal to
control access to class members. If no access is specified, then private is assumed. The following sections
describe the use of these access modifiers in greater detail.

Public

The keyword public indicates that the member is accessible to all client code. Generally speaking,
most of the methods, constants, and properties you declare in a class will be public.

Private

The keyword private indicates that the member is intended for internal class use only and is not
available for use by client programs. You will usually declare non-static instance fields to be private. You
can think of private fields as being surrounded by the protective cocoon of the class, though if you’re not
careful, you can breach this encapsulation by absentmindedly returning a reference to a private field via a
method or property.

You can also declare methods to be private as well. Private methods are intended to be utilized exclu-
sively by other methods within the class. These private methods are often referred to as utility methods
since they are usually written to perform some utility function that is not intended to be part of the class’s
public interface.

Protected

The keyword protected prevents horizontal access to members, but allows them to be inherited or
accessed by subclasses. I discuss the protected keyword in detail in Chapter 11 — Inheritance.

Internal

The meaning of the internal keyword is “for use within this program”. An alternative meaning for
the internal keyword might be “local public”. Essentially, if you declare a member to have internal accessi-

Chapter 9: Toward Problem Abstraction Overview Of The Class Construct

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 233

bility, it can be freely accessed by other classes and members within the same assembly. This includes sep-
arate .netmodules that are compiled together using the /addmodule compiler switch.

If, however, you create a dynamic link library (dll) using the /target:library compiler switch,
then internal members are accessible to other internal classes and members within that dll, but are not
available for use by external code that links to it.

Protected Internal

A member declared to have protected internal accessibility is visible to all components con-
tained within the dll just as the internal keyword specifies. Additionally, it can be inherited by subclasses of
the member’s containing type regardless of the assembly to which the subclass belongs.

The Concepts Of Horizontal Access, Interface, and Encapsulation

The term horizontal access describes the access a client object has to the members of a server object.
The client object represents the code that uses the services of another object. It can do this in two ways: 1)
by accessing a class’s public static members via the class name, or 2) by creating an instance of the class
and accessing its public non-static members via an object reference.

The members (usually constants, properties, methods, constructors, and events) a class exposes as pub-
lic are collectively referred to as its public interface. Client code becomes dependent upon these public
interface members. The wrong kind of change to a class’s interface will break any code that depends upon
that interface. When changing a class’s public interface, the rule-of-thumb is that you can add public mem-
bers but never remove them. If you look through the .NET API you will see lots of classes with deprecated
members. A deprecated member is a member that is targeted for deletion in some future version of the API.
These members are not yet removed because doing so would break existing programs that use (depend
upon) those members.

Any member declared private is said to be encapsulated within its class, as it is shielded from horizon-
tal access by client code. Generally speaking, a class’s interface can be thought of as the set of services it
provides to client programs. It provides those services by manipulating its private, or encapsulated, data
structures. The idea is that at some point in the future, programmers may think up new ways to enhance a
particular service’s functionality. They may do this by making changes to the class’s internal, or private,
data structures. Since these data structures are encapsulated, a change to them will have no effect on client
code, except perhaps for the effects of an improvement to the service provided.

Figure 9-9 illustrates the concept of horizontal access and the effects of using public and private
access modifiers.

Figure 9-9: Horizontal Access Controlled via Access Modifiers public and private

Horizontal access to pri-
vate members is not autho-
rized.

Methods Chapter 9: Toward Problem Abstraction

234 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

The concepts of public interfaces, horizontal access, and encapsulation are important to the world of
object-oriented programming, which means they are important to you. You will deal with these concepts
every time you write code in the C# language.

Quick Review

C# classes can contain eleven different types of members: fields, constants, methods, properties,
events, indexers, operators, instance constructors, static constructors, finalizers, and nested type declara-
tions.

The access modifiers public, protected, private, internal, and protected internal are
used to control access to class and instance members. If no access is specified then private is assumed.

The term horizontal access describes the access a client object has to the members of a server object.
The client object represents the code that uses the services of another object. It can do this in two ways: 1)
by accessing a class’s public static members via the class name, or 2) by creating an instance of the class
and accessing its public non-static members via an object reference.

Methods

A method is a named module of executable program functionality. A method contains program state-
ments that, when grouped together, represent a basic level of code reuse. Access the functionality of a
method by calling the method using its name in a program. I use the term program here to mean any piece
of code that could possibly use the services of the class that defines the method. This might include 1)
another method within the class you are defining, 2) another class within your program, or 3) a third-party
program that wants to use the services provided by your program.

In the C# language, a method must belong to a class; methods cannot exist or be defined outside of a
class construct.

Method Naming: Use Action Words That Indicate The Method’s Purpose

Use action words (verbs) when naming a method that provide an indication of the method’s intended
purpose. See Appendix C: Identifier Naming and Self-Commenting Code for a detailed discussion on how
to formulate identifier names in a way that makes your code humanly readable.

Maximize Method Cohesion

The first rule of thumb to keep in mind when writing a method is to keep the functionality of the
method focused on the task at hand. The formal term used to describe a method’s focus characteristic is
cohesion. Your goal is to write highly cohesive methods. A method that does things it really shouldn’t be
doing is not focused and is referred to as minimally cohesive. You can easily write cohesive methods if you
follow this two-step approach:

Step 1: Follow the advice offered in the previous subsection and start with a good method
name. The name of the method must indicate the method’s intended purpose.

Step 2: Keep the method’s body code focused on performing the task indicated by the
method’s name. A well-named, maximally-cohesive method pulls no surprises!

Sounds simple enough. But if you’re not careful, you can slip functionality into a method that doesn’t
belong there. Sometimes you will do this because you are lazy, and sometimes it will happen no matter
how hard you try to avoid doing so. Practice makes perfect!

Chapter 9: Toward Problem Abstraction Methods

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 235

Structure Of A Method Definition

A method definition declares and implements a method. A method definition consists of several
optional and mandatory components. These include method modifiers, a return type or void, method name,
and parameter list. I discuss these method components in detail below. Figure 9-10 shows the structure of a
method definition.

Any piece of the method definition structure shown in figure 9-10 that’s labeled with the subscript opt
is optional and can be omitted from a method definition depending on the method’s required behavior. In
this chapter, I focus on just a few of the potentially many method variations you can write. You will be
gradually introduced to different method variations as you progress through the book. The following sec-
tions describe each piece of the method definition structure in more detail.

Method Modifiers (optional)

Use method modifiers to specify a particular aspect of method behavior. Table 9-2 lists and describes
the C# keywords that can be used as method modifiers.

Modifier Description

public The public keyword declares the method’s accessibility to be public. Public methods can
be accessed by client code (i.e., grants horizontal access to the method).

protected The protected keyword declares the method’s accessibility to be protected. Protected ac-
cessibility prevents horizontal access but allows the method to be inherited by derived class-
es.

private The private keyword declares the method’s accessibility to be private. It prevents both
horizontal access and method inheritance. Private members are said to be encapsulated with-
in the object.

internal The meaning of the internal keyword is “for use within this program”. Internal methods
can be freely accessed by other classes and members within the same assembly. This in-
cludes separate .netmodules compiled together using the /addmodule compiler switch.
If, however, you create a dynamic link library (dll) using the /target:library compil-
er switch, then internal methods are accessible to other internal classes and members within
that dll, but are not available for use by external code that links to it.

protected internal A method declared to have protected internal accessibility is visible to all compo-
nents contained within the assembly as specified by the internal keyword, and for use (i.e.,
can be inherited) by subclasses of the member’s containing type, regardless to which assem-
bly the subclass belongs.

static The static keyword declares a static or class method.

Table 9-2: Method Modifiers

method_modifiersopt return_type or voidopt method_name(parameter_listopt){
 // method body - program statements go here
 }

Figure 9-10: Method Definition Structure

Methods Chapter 9: Toward Problem Abstraction

236 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Return Type Or Void (optional)

A method can return a result as a side effect of its execution. If you intend for a method to return a
result, you must specify the return type of the result. If the method does not return a result, then you must
use the keyword void.

The return type and void are optional because constructor methods return neither. Constructor meth-
ods are discussed in detail later in this section.

Method Name (mandatory)

The method name is mandatory. As I discussed earlier, you should use verbs in method names since
methods perform some sort of action. If you chose to ignore good method naming techniques, you will find
that your code is hard, if not impossible, to read and understand. As a result, it will also be hard to fix if it’s
broken.

Parameter List (optional)

A method can specify one or more formal parameters. Each formal parameter has a type, a name, and
an optional modifier (ref or out). The name of the parameter has local scope within the body of the
method and hides any field members having the same name. By default, arguments are passed to method
parameters by value. The ref parameter modifier can be used to pass arguments by reference. The out
parameter modifier is used to return values to the calling program via the method arguments.

Method Body (optional for abstract or external methods)

The method body is denoted by a set of opening and closing brackets. Any code that appears between
a method’s opening and closing brackets is said to be in the body of the method. If you are declaring an
abstract or external method, omit the braces and terminate the method declaration with a semicolon.

abstract The abstract keyword declares a method that contains no body (no implementation). The
purpose of an abstract method is to defer the implementation of a method’s functionality to
a subclass. Abstract methods are discussed in Chapter 11 — Inheritance.

new The new keyword declares a member with the same name or method signature as an inher-
ited member. This new member hides the base member. The new keyword is covered in de-
tail in Chapter 11 — Inheritance.

override The override keyword designates a method as overriding an inherited method. The
override keyword is covered in detail in Chapter 11 — Inheritance.

virtual The virtual keyword designates a method as being virtual. A virtual method can be over-
ridden in a subclass. The virtual keyword is covered in detail in Chapter 11 — Inheri-
tance.

sealed The sealed keyword prevents a method from being overridden in derived classes. Sealed
methods are covered in detail in Chapter 11 — Inheritance.

extern The extern keyword designates a method as being external. An external method is one
that is implemented in a language other than C#. (C++ or C for example) The use of the ex-
tern keyword is not covered in this book.

Modifier Description

Table 9-2: Method Modifiers

Chapter 9: Toward Problem Abstraction Methods

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 237

Method Definition Examples

This section offers a few examples of method definitions. The body code is omitted so that you can
focus on the structure of each method definition. The following line of code would define a method that
returns a String object that represents the first name of some object (perhaps a Person object).

public String GetFirstName(){ // body code goes here }

Notice that the above method definition uses the public access modifier, declares a return type of
String, and takes no arguments because it declares no parameters. The name of the method is GetFirst-
Name, which does a good job of describing the method’s purpose.

The next method declaration might be used to set an object’s first name:

public void SetFirstName(String first_name){ // body code goes here }

This method is also public, but it does not return a result, hence the use of the keyword void. It con-
tains one parameter named first_name that is of type String.

The following method definition might be used to get a Person object’s age:

public int GetAge(){ // body code goes here }

This method is public and returns an integer type result. It takes no arguments.
See if you can guess what type of method is being defined by the following definition:

public Person(String f_name, String m_name, String l_name){
 // body code goes here
 }

If you guessed that it was a constructor method, you would be right. Constructor methods have no
return type, not even void. This particular constructor declares three formal parameters having type String.

Method Signatures

Methods have a distinguishing characteristic known as a signature. A method’s signature consists of its
name and the number, modifiers, and types of its parameters. Method modifiers and return types are not
part of a method’s signature. It’s important that you understand the concept of method signatures so that
you can understand the concept of method overloading, which is discussed in the next section.

Methods with different names and the same parameter list have different signatures. Methods with the
same name and different parameter lists have different signatures as well, and are said to be overloaded
(because they share the same name). Methods cannot have the same name and identical parameter lists.
This will cause a compiler error.

Overloading Methods

A class can define more than one method with the same name but having different signatures. This is
referred to as method overloading. You would overload methods when the method performs the same
function but in a slightly different way or on different argument types. The most commonly overloaded
method is the class constructor. You will see many examples of overloaded class constructors throughout
the remaining chapters of this book.

Building And Testing The Person Class Chapter 9: Toward Problem Abstraction

238 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Another frequently encountered method overloading scenario occurs when you want to provide a pub-
lic method for horizontal access but actually do the work behind the scenes with a private method. The
only rule, as stated above, is that each method must have a different signature, which means their names
can be the same but their parameter lists must be different in some way. The fact that one is public and the
other is private has no bearing on their signatures.

Constructor Methods

Constructor methods are special methods whose purpose is to set up or build the object in memory
when it is created. You can chose not to define a constructor method for a particular class if you desire. In
that case, the compiler creates a default constructor for you. This default constructor will usually not pro-
vide the level of functionality you require except perhaps in the case of very simple or trivial class declara-
tions. If you want to be sure of the state of an object when it is created, you must define one or more
constructor methods.

Quick Review

Methods are named modules of executable program functionality. Methods contain program state-
ments that, when grouped together, represent a basic level of code reuse. You access the functionality of a
method by calling the method using its name in a program.

Methods should be well named and maximally cohesive. A well named, maximally cohesive method
will pull no surprises.

Method definitions have structure. Their behavior can be optionally modified with method modifiers,
they can optionally specify a return result type or void, and they can have an optional parameter list.

Methods have a distinguishing characteristic known as a method signature. Methods with different
names and parameter lists are said to have different signatures. Methods with different names and the same
parameter list also have different signatures. Methods with the same name and different parameter lists
have different signatures as well and are said to be overloaded (because they share the same name). Meth-
ods cannot have the same name and identical parameter lists. This will cause a compiler error.

Constructor methods set up or build an object when it’s created in memory. If you do not provide one,
the compiler will create a default constructor for you, but it may or may not provide the level of functional-
ity you require.

Building And Testing The Person Class

Now that you have been introduced to the C# class construct in more detail, it’s time to apply some of
what was discussed above to create and test the Person class. To get the Person class in working order, you
will have to take the results of the analysis performed earlier and map attributes and functionality to fields,
properties, and methods. As you build the Person class, you may discover that you need to add members as
necessary to fully implement the class to your satisfaction. That’s a normal part of the design and program-
ming process.

To write the code for the Person class, I will use the development cycle presented in chapter 1 and
explained in detail in chapter 3. The development cycle is applied iteratively. (i.e., I will apply the steps of
plan, code, test, and integrate repeatedly until I have completed the code.)

Chapter 9: Toward Problem Abstraction Building And Testing The Person Class

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 239

Start By Creating The Source File And Class Definition Shell

I recommend you start this process by creating the Person.cs source file and the Person class definition
shell. Example 9.6 gives the code for this early stage of the program.

9.6 Person.cs (1st Iteration)
1 public class Person {

2

3 } //end Person class

At this point, I recommend you compile the code to ensure you’ve typed everything correctly and that
the name of the class matches the name of the file. Because you are defining a class that contains no Main()
method, you’ll get an error stating such unless you create a module using the /target:module compiler
switch. The complete command required to compile the Person.cs file will be:

csc /target:module Person.cs

A successful compilation results in no errors or warnings, and a file named Person.netmodule will be
written to the project directory.

The next thing to do is to refer to table 9-1 and see what attributes or fields the Person class must con-
tain, and add those fields. This is done in the next section.

Defining Person Instance Fields

After consulting table 9-1, you learn that the Person class represents a person entity in our problem
domain. Each person has his or her own name, gender, and birth date, so these are good candidates for
instance fields in the Person class. Example 9.7 shows the Person class code after the instance fields have
been added.

9.7 Person.cs (2nd Iteration)
1 using System;

2

3 public class Person {

4 private String _firstName;

5 private String _middleName;

6 private String _lastName;

7 private String _gender;

8 private DateTime _birthday;

9 } // end Person class

Two .NET Framework classes are used for the fields in example 9.7: String and DateTime. The using
keyword on line 1 provides shortcut naming for both the String and DateTime types. These fields represent
a first attempt at defining fields for the Person class. Each field is declared to be private, which means
they will be encapsulated by the Person class to prevent horizontal access. The only way to access or mod-
ify these fields will be through the Person class’s public interface properties or methods. Let’s define a few
of these right now. But, before you move on, compile the Person.cs source file again to make sure you
didn’t break anything. Compiling the Person class in its present state will result in several compiler warn-
ings, one for each unused field. You may safely ignore those warnings for now.

Defining Person Properties And Constructor Method

Now that several Person class instance fields have been created, it’s time to define a way to set and
manipulate those fields. My approach starts by defining Person’s instance properties. I will then use the
properties in one or more constructor methods to set the value of each field at the time of object creation.
After you’ve defined several properties and a constructor method, you can use them to test those aspects of
Person class behavior.

Building And Testing The Person Class Chapter 9: Toward Problem Abstraction

240 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Adding Properties

Properties are the preferred way to get or set an object’s attributes. In this simple example, the initial
set of properties defined for the Person class will correspond to its instance fields. Example 9.8 shows the
code for an initial set of read/write properties.

9.8 Person.cs (3rd Iteration)
1 using System;
2
3 public class Person {
4
5 // private instance fields
6 private String _firstName;
7 private String _middleName;
8 private String _lastName;
9 private String _gender;
10 private DateTime _birthday;
11
12
13 // public properties
14 public String FirstName {
15 get { return _firstName; }
16 set { _firstName = value; }
17 }
18
19 public String MiddleName {
20 get { return _middleName; }
21 set { _middleName = value; }
22 }
23
24 public String LastName {
25 get { return _lastName; }
26 set { _lastName = value; }
27 }
28
29 public String Gender {
30 get { return _gender; }
31 set { _gender = value; }
32 }
33
34 public DateTime Birthday {
35 get { return _birthday; }
36 set { _birthday = value; }
37 }
38 } // end Person class

Referring to example 9.8 — Each read/write property implements a get and set accessor. Remember
that the identifier named “value” is an implied parameter. Compiling the Person.cs file in its current state
will clear up the unused field warnings now that each field is used in a property definition.

Adding A Constructor Method

The purpose of a constructor method is to properly initialize an object when it is created in memory. In
the case of the Person class, this means that each person object’s fields must be initialized to some valid
value. To make this happen, I will add a constructor method that takes a parameter list matching the fields
contained in the Person class. These parameters will then be used to initialize each field. The approach I
will take will be to initialize the fields via the properties. Example 9.9 gives the code for the Person class
definition after the constructor has been added.

Chapter 9: Toward Problem Abstraction Building And Testing The Person Class

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 241

9.9 Person.cs (4th Iteration)
1 using System;
2
3 public class Person {
4
5 // private instance fields
6 private String _firstName;
7 private String _middleName;
8 private String _lastName;
9 private String _gender;
10 private DateTime _birthday;
11
12
13 public Person(String firstName, String middleName, String lastName,
14 String gender, DateTime birthday){
15 _firstName = firstName;
16 _middleName = middleName;
17 _lastName = lastName;
18 _gender = gender;
19 _birthday = birthday;
20 }
21
22 // public properties
23 public String FirstName {
24 get { return _firstName; }
25 set { _firstName = value; }
26 }
27
28 public String MiddleName {
29 get { return _middleName; }
30 set { _middleName = value; }
31 }
32
33 public String LastName {
34 get { return _lastName; }
35 set { _lastName = value; }
36 }
37
38 public String Gender {
39 get { return _gender; }
40 set { _gender = value; }
41 }
42
43 public DateTime Birthday {
44 get { return _birthday; }
45 set { _birthday = value; }
46 }
47 } // end Person class

Referring to example 9.9 — The Person constructor method begins on line 13. Notice that it is
declared to be public and has no return value. It has five parameters. Each parameter is used in the body of
the constructor to set the Person’s field values.

OK, now that you’ve got the constructor written, compile the Person.cs source file to ensure you didn’t
break anything. It’s now time to test this puppy.

Testing The Person Class: A Miniature Test Plan

Testing the Person class at this stage of the development cycle consists of creating a Person object and
then writing and reading each of its properties. When you create a Person object using the constructor
defined in the previous section, you are testing that constructor. To fully test each property, you’ll need to
set and read each property’s value.

Building And Testing The Person Class Chapter 9: Toward Problem Abstraction

242 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Use The PeopleManagerApplication Class As A Test Driver

To test the Person class functionality, you’ll need to create a separate application class. Since you need
to create the PeopleManagerApplication class anyway, you may as well use that class as a test driver. The
term driver means a small program written specifically to run or test another program. Example 9.10 gives
the code for the PeopleManagerApplication class with a few lines of code that tests the functionality of the
Person class developed thus far.

9.10 PeopleManagerApplication.cs (Testing Person)
1 using System;
2
3 public class PeopleManagerApplication {
4 public static void Main(){
5 Person p1 = new Person("Ulysses", "S", "Grant", "Male", new DateTime(1822, 04, 22));
6 Console.WriteLine(p1.FirstName + " " + p1.MiddleName + " " + p1.LastName + " "
7 + p1.Gender + " " + p1.Birthday);
8 p1.FirstName = "Rick";
9 p1.MiddleName = "Warren";
10 p1.LastName = "Miller";
11 p1.Gender = "Male";
12 p1.Birthday = new DateTime(1965, 02, 14);
13 Console.WriteLine(p1.FirstName + " " + p1.MiddleName + " " + p1.LastName + " "
14 + p1.Gender + " " + p1.Birthday);
15 } // end Main
16 } // end class definition

Referring to example 9.10 — Notice how a new DateTime object must be created before being used as
an argument for the Person constructor method. To compile this program with the Person.netmodule, use
the following command:

csc /addmodule:Person.netmodule PeopleManagerApplication.cs

Figure 9-11 shows the results of running this program. Everything appears to run fine. It’s now time to
add a few more features to the Person class.

Adding Features To The Person Class: Calculating Age

Returning to table 9-1 for some direction reveals the requirement to calculate a person’s age. This
could be done in several ways. Think for a moment how you might go about doing this in real life. You
might ask people for their birth date and perform the calculation yourself, or you could just ask them how
old they are and let them do the calculation for you. I will take the later approach. I’ll add a read-only prop-
erty named Age that computes a Person object’s age and returns the result. Example 9.11 shows the modi-
fied Person class code.

9.11 Person.cs (5th Iteration)
1 using System;
2
3 public class Person {
4
5 // private instance fields
6 private String _firstName;

Figure 9-11: Results of Running Example 9.10

Chapter 9: Toward Problem Abstraction Building And Testing The Person Class

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 243

7 private String _middleName;
8 private String _lastName;
9 private String _gender;
10 private DateTime _birthday;
11
12 public Person(String firstName, String middleName, String lastName,
13 String gender, DateTime birthday){
14 _firstName = firstName;
15 _middleName = middleName;
16 _lastName = lastName;
17 _gender = gender;
18 _birthday = birthday;
19 }
20
21 // public properties
22 public String FirstName {
23 get { return _firstName; }
24 set { _firstName = value; }
25 }
26
27 public String MiddleName {
28 get { return _middleName; }
29 set { _middleName = value; }
30 }
31
32 public String LastName {
33 get { return _lastName; }
34 set { _lastName = value; }
35 }
36
37 public String Gender {
38 get { return _gender; }
39 set { _gender = value; }
40 }
41
42 public DateTime Birthday {
43 get { return _birthday; }
44 set { _birthday = value; }
45 }
46
47 public int Age {
48 get {
49 int years = DateTime.Now.Year - _birthday.Year;
50 int adjustment = 0;
51 if(DateTime.Now.Month < _birthday.Month){
52 adjustment = 1;
53 }else if((DateTime.Now.Month == _birthday.Month) && (DateTime.Now.Day < _birthday.Day)){
54 adjustment = 1;
55 }
56 return years - adjustment;
57 }
58 }
59 } // end Person class

Referring to example 9.11 — The Age property definition begins on line 47. As you can see, calculat-
ing someone’s age takes some doing.

After making the necessary modifications to the Person class you can test the changes in the People-
ManagerApplication class. Example 9.12 shows the code for the modified PeopleManagerApplication
class.

Building And Testing The Person Class Chapter 9: Toward Problem Abstraction

244 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

9.12 PeopleManagerApplication.cs
(Testing Person Age property)

1 using System;
2
3 public class PeopleManagerApplication {
4 public static void Main(){
5 Person p1 = new Person("Ulysses", "S", "Grant", "Male", new DateTime(1822, 04, 22));
6 Console.WriteLine(p1.FirstName + " " + p1.MiddleName + " " + p1.LastName + " "
7 + p1.Gender + " " + p1.Birthday);
8 Console.WriteLine(p1.FirstName + " is " + p1.Age + " years old!");
9 p1.FirstName = "Rick";
10 p1.MiddleName = "Warren";
11 p1.LastName = "Miller";
12 p1.Gender = "Male";
13 p1.Birthday = new DateTime(1965, 02, 14);
14 Console.WriteLine(p1.FirstName + " " + p1.MiddleName + " " + p1.LastName + " "
15 + p1.Gender + " " + p1.Birthday);
16 Console.WriteLine(p1.FirstName + " is " + p1.Age + " years old!");
17 } // end Main
18 } // end class definition

Figure 9-12 shows the results of running this program.

Adding Features To The Person Class: Convenience Properties

The Age property seems to work pretty well. However, it’s a hassle to get a Person object’s full name
and other vital information by calling each individual property. It might be a good idea to add a property
that will do the job for you. While you’re at it, you could add a property that returns both the full name and
age. Each of these properties can use the services of existing properties. Example 9.13 shows the modified
Person class.

9.13 Person.cs (6th Iteration)
1 using System;
2
3 public class Person {
4
5 // private instance fields
6 private String _firstName;
7 private String _middleName;
8 private String _lastName;
9 private String _gender;
10 private DateTime _birthday;
11
12 public Person(String firstName, String middleName, String lastName,
13 String gender, DateTime birthday){
14 _firstName = firstName;
15 _middleName = middleName;
16 _lastName = lastName;
17 _gender = gender;
18 _birthday = birthday;
19 }
20

Figure 9-12: Results of Running Example 9.12

Chapter 9: Toward Problem Abstraction Building And Testing The Person Class

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 245

21 // public properties
22 public String FirstName {
23 get { return _firstName; }
24 set { _firstName = value; }
25 }
26
27 public String MiddleName {
28 get { return _middleName; }
29 set { _middleName = value; }
30 }
31
32 public String LastName {
33 get { return _lastName; }
34 set { _lastName = value; }
35 }
36
37 public String Gender {
38 get { return _gender; }
39 set { _gender = value; }
40 }
41
42 public DateTime Birthday {
43 get { return _birthday; }
44 set { _birthday = value; }
45 }
46
47 public int Age {
48 get {
49 int years = DateTime.Now.Year - _birthday.Year;
50 int adjustment = 0;
51 if(DateTime.Now.Month < _birthday.Month){
52 adjustment = 1;
53 }else if((DateTime.Now.Month == _birthday.Month) && (DateTime.Now.Day < _birthday.Day)){
54 adjustment = 1;
55 }
56 return years - adjustment;
57 }
58 }
59
60 public String FullName {
61 get { return FirstName + " " + MiddleName + " " + LastName; }
62 }
63
64 public String FullNameAndAge {
65 get { return FullName + " " + Age; }
66 }
67 } // end Person class

Referring to example 9.13 — The FullName property appears on line 60. It concatenates the First-
Name, MiddleName, and LastName properties and returns the resulting String object that represents the
Person object’s full name.

The FullNameAndAge property on line 64 utilizes the services of the FullName and Age properties.
This is a good example of code reuse at the class level. Since the properties exist and already provide the
required functionality it’s a good idea to use them.

It’s time to compile the Person class and test the changes. Example 9.14 gives the modified People-
ManagerApplication class with the changes required to test the Person class’s new functionality. Notice the
code is a lot cleaner now.

9.14 PeopleManagerApplication.cs
(Testing Person FullNameAndAge Property)

1 using System;
2
3 public class PeopleManagerApplication {
4 public static void Main(){

Building And Testing The Person Class Chapter 9: Toward Problem Abstraction

246 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

5 Person p1 = new Person("Ulysses", "S", "Grant", "Male", new DateTime(1822, 04, 22));
6 Console.WriteLine(p1.FullNameAndAge);
7 p1.FirstName = "Rick";
8 p1.MiddleName = "Warren";
9 p1.LastName = "Miller";
10 p1.Gender = "Male";
11 p1.Birthday = new DateTime(1965, 02, 14);
12 Console.WriteLine(p1.FullNameAndAge);
13 } // end Main
14 } // end class definition

Figure 9-13 shows the results of running this program.

Adding Features To The Person Class: Finishing Touches

It’s time to take a step back and look at the Person class with an eye towards adding any methods,
properties, or other members that might make its usage easier or more intuitive. There are, in fact, many
ways to improve upon the design of Person class, but some of what can be done will have to wait until
you’ve gone a little farther in the book.

One thing I’d like to add is a default constructor. This way I can quickly create instances of Person
objects and set their properties later.

Another helpful member to add is an overriding ToString() method. Although I do not formally cover
the concept of method overriding until Chapter 11 — Inheritance, it won’t hurt to give you a peek at a sim-
ple example.

One last thing. It would be nice to limit the range of authorized values the Gender property can
assume. This is a perfect use for an enumeration. Example 9.15 gives the code for the improved Person
class.

9.15 Person.cs (7th Iteration)
1 using System;
2
3 public class Person {
4
5 //enumeration
6 public enum Sex {MALE, FEMALE}
7
8 // private instance fields
9 private String _firstName;
10 private String _middleName;
11 private String _lastName;
12 private Sex _gender;
13 private DateTime _birthday;
14
15 //default constructor
16 public Person(){
17 _firstName = string.Empty;
18 _middleName = string.Empty;
19 _lastName = string.Empty;
20 _gender = Sex.MALE;
21 _birthday = DateTime.Now;
22 }
23

Figure 9-13: Results of Running Example 9.14

Chapter 9: Toward Problem Abstraction Building And Testing The Person Class

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 247

24 public Person(String firstName, String middleName, String lastName,
25 Sex gender, DateTime birthday){
26 _firstName = firstName;
27 _middleName = middleName;
28 _lastName = lastName;
29 _gender = gender;
30 _birthday = birthday;
31 }
32
33 // public properties
34 public String FirstName {
35 get { return _firstName; }
36 set { _firstName = value; }
37 }
38
39 public String MiddleName {
40 get { return _middleName; }
41 set { _middleName = value; }
42 }
43
44 public String LastName {
45 get { return _lastName; }
46 set { _lastName = value; }
47 }
48
49 public Sex Gender {
50 get { return _gender; }
51 set { _gender = value; }
52 }
53
54 public DateTime Birthday {
55 get { return _birthday; }
56 set { _birthday = value; }
57 }
58
59 public int Age {
60 get {
61 int years = DateTime.Now.Year - _birthday.Year;
62 int adjustment = 0;
63 if(DateTime.Now.Month < _birthday.Month){
64 adjustment = 1;
65 }else if((DateTime.Now.Month == _birthday.Month) && (DateTime.Now.Day < _birthday.Day)){
66 adjustment = 1;
67 }
68 return years - adjustment;
69 }
70 }
71
72 public String FullName {
73 get { return FirstName + " " + MiddleName + " " + LastName; }
74 }
75
76 public String FullNameAndAge {
77 get { return FullName + " " + Age; }
78 }
79
80 public override String ToString(){
81 return FullName + " is a " + Gender + " who is " + Age + " years old.";
82 }
83 } // end Person class

Referring to example 9.15 — The enumeration Sex is defined on line 6 and provides two authorized
values: MALE and FEMALE. The _gender field’s type on line 12 is now Sex vs. String. A similar change
was made to the constructor’s gender parameter. The default constructor starts on line 16. On line 49 the

Building and Testing The PeopleManager Class Chapter 9: Toward Problem Abstraction

248 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

type of the Gender property was changed to Sex. Finally, the overriding ToString() method definition
begins on line 80.

Example 9.16 shows the modified Person class being tested in the PeopleManagerApplication class.
9.16 PeopleManagerApplication.cs

(Testing modified Person class)
1 using System;

2

3 public class PeopleManagerApplication {

4 public static void Main(){

5 Person p1 = new Person("Ulysses", "S", "Grant",

6 Person.Sex.MALE, new DateTime(1822, 04, 22));

7 Console.WriteLine(p1);

8 p1.FirstName = "Rick";

9 p1.MiddleName = "Warren";

10 p1.LastName = "Miller";

11 p1.Gender = Person.Sex.MALE;

12 p1.Birthday = new DateTime(1965, 02, 14);

13 Console.WriteLine(p1);

14 } // end Main

15 } // end class definition

Referring to example 9.16 — Note the use of the enumeration in the constructor argument list to set the
Person object’s gender. Also note now that because Object’s ToString() method has been overridden, all
that’s required to print a Person object’s vital information is to simply call the WriteLine() method with the
argument p1. Figure 9-14 shows the results of running this program.

Quick Review

Incrementally build and test abstract data types by iteratively applying the steps of the development
cycle. Start with the class definition shell and then add fields, properties, and methods as required to fulfill
the class’s design objectives.

Test class functionality with the help of a test driver. A test driver is a small program that’s used to
exercise the functionality of another program.

Building and Testing The PeopleManager Class

Now that the Person class is finished, it’s time to shift focus to the PeopleManager class. Consulting
table 9-1 again reveals that the PeopleManager class will manipulate an array of Person objects. It must
insert Person objects into the array, delete Person objects from the array, and list the names and perhaps
other information for Person objects contained in the array.

The same approach used to develop the Person class is used here to develop the PeopleManager class.
The development cycle is applied iteratively to yield the final result.

Figure 9-14: Results of Running Example 9.16

Chapter 9: Toward Problem Abstraction Building and Testing The PeopleManager Class

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 249

Defining The PeopleManager Class Shell

Example 9.17 gives the source code for the PeopleManager class definition shell. Compile the code the
same way you did the Person class by using the compiler’s /target:module switch.

9.17 PeopleManager.cs (1st Iteration)
1 public class PeopleManager {
2
3
4
5 } // end PeopleManager class

To this shell you will add fields and methods.

Defining PeopleManager Fields

Table 9-1 says the PeopleManager class will manage an array of Person objects. This means it will
need a field that is a single-dimensional array of type Person. Example 9.18 gives the modified source code
for the PeopleManager class after the declaration of a Person array named _peopleArray.

9.18 PeopleManager.cs (2nd Iteration)
1 public class PeopleManager {
2 Person[] _peopleArray;
3
4
5 } // end PeopleManager class

Additional fields may be required, but for now this is a good start. You can compile this file in its cur-
rent state using two approaches. If you want to use the Person.netmodule created earlier you can use the
following compiler command:

csc /target:module /addmodule:Person.netmodule PeopleManager.cs

Alternatively, you can compile both the Person.cs and PeopleManager.cs files together using the fol-
lowing compiler command:

csc /target:module PeopleManager.cs Person.cs

Both approaches yield a new module named PeopleManager.netmodule. Now it’s time to add some
methods.

Defining PeopleManager Constructor Methods

We’ll give the PeopleManager class two constructors. One will be a default constructor and the other
constructor will do most of the dirty work of initializing the PeopleManager object. This includes initializ-
ing the _peopleArray and any other fields we add to the PeopleManager class. The default constructor will
simply call the other constructor with a default array length value.

To create the _peopleArray object, you will need to know how long the array must be. (i.e., how many
Person references you need it to store.) You will supply the length via a constructor parameter. If you do
not supply a length argument when you create an instance of PeopleManager then the default constructor
will create the _peopleArray with some default length value. In the following example, I use a default
length of 10. Example 9.19 gives the modified PeopleManager class after the constructors have been
added.

9.19 PeopleManager.cs (3rd Iteration)
1 using System;
2
3 public class PeopleManager {
4 // private fields

Building and Testing The PeopleManager Class Chapter 9: Toward Problem Abstraction

250 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

5 private Person[] _peopleArray;
6
7 // overloaded constructor
8 public PeopleManager(int length){
9 _peopleArray = new Person[length];
10 }
11
12 // default constructor
13 public PeopleManager():this(10){ }
14
15 } // end PeopleManager class

Referring to example 9.19 — The constructor on line 8 takes an integer parameter named length and
uses it to dynamically create the _peopleArray in memory. The default constructor starts on line 13. It takes
no parameters. It calls the constructor defined on line 8 via the peculiar-looking this(10) call. The compiler
will sort out which constructor this() refers to by examining the parameter list. Since there is a constructor
defined to take an integer as a parameter, it will use that constructor.

Compile the code to ensure you didn’t break anything. Then add some more methods so you can start
seriously testing the PeopleManager class.

Defining Additional PeopleManager Methods

I recommend adding the capability to add Person objects to the _peopleArray first. Then you can add
the capability to list their information, and finally, the capability to delete them.

A good candidate name for a method that adds a person would be AddPerson(). Likewise, a good can-
didate name for a method that lists the Person objects in the array might be ListPeople(). Example 9.20
gives the source code for the PeopleManager class containing the newly created AddPerson() and ListPeo-
ple() methods.

9.20 PeopleManager.cs (4th Iteration)
1 using System;
2
3 public class PeopleManager {
4 // private fields
5 private Person[] _peopleArray;
6 int index = 0;
7
8 // overloaded constructor
9 public PeopleManager(int length){
10 _peopleArray = new Person[length];
11 }
12
13 // default constructor
14 public PeopleManager():this(10){ }
15
16
17 public void AddPerson(String firstName, String middleName, String lastName,
18 Person.Sex gender, int dob_year, int dob_month, int dob_day){
19 if(index >= _peopleArray.Length){
20 index = 0;
21 }
22 if(_peopleArray[index] == null){
23 _peopleArray[index++] = new Person(firstName, middleName, lastName, gender,
24 new DateTime(dob_year, dob_month, dob_day));
25 }
26 } // end method
27
28
29 public void ListPeople(){
30 for(int i = 0; i<_peopleArray.Length; i++){
31 if(_peopleArray[i] != null){
32 Console.WriteLine(_peopleArray[i]);

Chapter 9: Toward Problem Abstraction Building and Testing The PeopleManager Class

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 251

33 }
34 }
35 } // end method
36 } // end PeopleManager class

Referring to example 9.20 — Let’s look at the AddPerson() method for a moment. It has a parameter
list that contains all the elements required to create a Person object. These include firstName, middleName,
lastName, gender, dob_year, dob_month, and dob_day. The first thing the AddPerson() method does is to
check to see if the value of the index field is greater than or equal to the length of the _peopleArray. If so,
it resets its value to 0. This guards against the possibility of exceeding the bounds of the array. Next, the
AddPerson() method checks to see if a particular array element is equal to null. The first time the AddPer-
son() method is called on a particular PeopleManager object all the _peopleArray elements will be null.

In this simple example, the AddPerson() method will add Person objects to the array until the array is
full. From then on it will only insert Person objects if the array element it’s trying to access is null. There
are better ways to implement this method and they are left as exercises at the end of the chapter.

The ListPerson() method simply iterates over the _peopleArray. If the array element is not null (mean-
ing it points to a Person object) it uses that array element as an argument to the WriteLine() method, which
in turn calls the Person object’s ToString() method automatically.

Testing The PeopleManager Class

You can use the PeopleManagerApplication class once again to test the functionality of the People-
Manager class. Example 9.21 gives the source code for the modified PeopleManagerApplication class.

9.21 PeopleManagerApplication.cs
(Testing the PeopleManager class)

1 using System;
2
3 public class PeopleManagerApplication {
4 public static void Main(){
5 PeopleManager pm = new PeopleManager(); // default constructor call
6 pm.AddPerson("Jeff", "J", "Meyer", Person.Sex.MALE, 1975, 03, 12);
7 pm.AddPerson("Pete", "M", "Luongo", Person.Sex.MALE, 1967, 06, 18);
8 pm.AddPerson("Alex", "T", "Remily", Person.Sex.MALE, 1965, 11, 24);
9 pm.ListPeople();
10 } // end Main
11 } // end class definition

Referring to example 9.21 — The PeopleManager default constructor is tested on line 5. This also tests
the other PeopleManager constructor. Killed two birds with one stone here! The AddPerson() method is
tested on lines 6 through 8, and the ListPeople() method is tested on line 9. Everything appears to work as
expected. You can now add the capability to delete Person objects and perhaps some other functionality as
well. Figure 9-15 shows the results of running this program.

Adding Features To The PeopleManager Class

The PeopleManager class now implements two out of three required features. You can add Person
objects to the _peopleArray and you can list information about each Person object contained in the _peo-

Figure 9-15: Results of Running Example 9.21

Building and Testing The PeopleManager Class Chapter 9: Toward Problem Abstraction

252 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

pleArray. It’s now time to implement the capability to delete Person objects from the array. A good candi-
date name for a method to delete a Person object from the array is DeletePerson(). See — method naming
isn’t so hard! But wait, not so fast. You just can’t delete a Person from an arbitrary element. It might be bet-
ter instead to delete a Person object from a specific _peopleArray element, in which case you might want
to better name the method DeletePersonAtIndex().

While you’re at it, you might want to add the capability to insert Person objects into a specific element
within the array. A good candidate name for such a method might be InsertPersonAtIndex(). Example 9.22
gives the source code for the modified PeopleManager class.

9.22 PeopleManagerClass.cs (5th Iteration)
1 using System;

2
3 public class PeopleManager {
4 // private fields

5 private Person[] _peopleArray;
6 int index = 0;
7
8 // overloaded constructor

9 public PeopleManager(int length){
10 _peopleArray = new Person[length];
11 }
12

13 // default constructor
14 public PeopleManager():this(10){ }
15

16 public void AddPerson(String firstName, String middleName, String lastName,
17 Person.Sex gender, int dob_year, int dob_month, int dob_day){
18 if(index >= _peopleArray.Length){
19 index = 0;

20 }
21 if(_peopleArray[index] == null){
22 _peopleArray[index++] = new Person(firstName, middleName, lastName, gender,
23 new DateTime(dob_year, dob_month, dob_day));

24 }
25 } // end method
26
27 public void ListPeople(){

28 for(int i = 0; i<_peopleArray.Length; i++){
29 if(_peopleArray[i] != null){
30 Console.WriteLine(_peopleArray[i]);

31 }
32 }
33 } // end method
34

35 public void DeletePersonAtIndex(int index){
36 if(!(index < 0) || (index >= _peopleArray.Length)){
37 _peopleArray[index] = null;
38 this.index = index;

39 }
40 }
41
42 public void InsertPersonAtIndex(int index, String firstName, String middleName,

43 String lastName, Person.Sex gender, int dob_year,
44 int dob_month, int dob_day){
45 if(!(index < 0) || (index >= _peopleArray.Length)){

46 this.index = index;
47 _peopleArray[this.index++] = new Person(firstName, middleName, lastName, gender,
48 new DateTime(dob_year, dob_month, dob_day));
49 }

50 }
51 } // end PeopleManager class

Chapter 9: Toward Problem Abstraction Building and Testing The PeopleManager Class

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 253

Referring to example 9.22 — Examine closely for a moment the DeletePersonAtIndex() method
whose definition starts on line 35. It declares one parameter named index. This parameter name will hide
the field named index which is the desired behavior in this case. There is also a danger that the argument
used in the DeletePersonAtIndex() method call might be invalid given the length of the _peopleArray. The
if statement on line 37 enforces the precondition that the value of the index parameter must be greater
than or equal to zero or less than the length of the _peopleArray. A similar test is made on the index param-
eter of the InsertPersonAtIndex() method.

Example 9.23 gives the source code for the PeopleManagerApplication class that tests the newly added
PeopleManager class functionality.

9.23 PeopleManagerApplication.cs
1 using System;

2

3 public class PeopleManagerApplication {

4 public static void Main(){

5 PeopleManager pm = new PeopleManager(); // default constructor call

6 pm.AddPerson("Jeff", "J", "Meyer", Person.Sex.MALE, 1975, 03, 12);

7 pm.AddPerson("Pete", "M", "Luongo", Person.Sex.MALE, 1967, 06, 18);

8 pm.AddPerson("Alex", "T", "Remily", Person.Sex.MALE, 1965, 11, 24);

9 pm.ListPeople();

10 Console.WriteLine("--");

11 pm.DeletePersonAtIndex(0);

12 pm.ListPeople();

13 Console.WriteLine("--");

14 pm.InsertPersonAtIndex(0, "Coralie", "S", "Miller", Person.Sex.FEMALE, 1963, 04, 04);

15 pm.ListPeople();

16 } // end Main

17 } // end class definition

At this point you can compile all three source files (Person.cs, PeopleManager.cs, and PeopleManager-
Application.cs) together to create the executable assembly like so:

 csc *.cs

Figure 9-16 shows the results of running this program.

Quick Review

The PeopleManager class implementation process followed the same pattern as that of class Person. It
started with the class shell and added fields and methods as required to implement the necessary function-
ality. Develop code incrementally by applying the development cycle in an iterative fashion.

Figure 9-16: Results of Running Example 9.23

More About Methods Chapter 9: Toward Problem Abstraction

254 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

More About Methods

In this section I’d like to focus your attention on several behavioral aspects of methods you will find
helpful to fully understand before attempting more complex programming projects. You need to know the
difference between value parameters and reference parameters, and be aware of local variable scoping
rules.

Value Parameters And Reference Parameters

There are two ways to pass arguments to methods: 1) by value, or 2) by reference. A method parameter
that omits the optional ref modifier is a value parameter by default. It’s critical that you understand com-
pletely the difference between these two modes of parameter behavior or your methods may not work as
you expect.

Value Parameters: The Default Parameter Passing Mode

Two sorts of things can be passed as arguments to a method: 1) a value type object or 2) a reference
that points to an object, otherwise simply referred to as a reference. When an argument is passed to a
method, a copy of the argument is made and assigned to its associated method parameter. This is referred to
as pass by copy or pass by value. I say again, behind the scenes, both categories of objects, value and refer-
ence, are copied into memory areas accessible to the method. Once copied, value types behave one way
and reference types behave another way.

Consider for a moment the following method declaration:
public void SomeMethod(int int_param, Object object_ref_param){

 // body statements omitted
 }

The SomeMethod() method declares two parameters: one value type int parameter and one Object ref-
erence parameter. This means that SomeMethod() can take two arguments: the first must be an integer and
the second can be a reference to any Object. Remember — classes are reference types and structures are
value types! Also remember that a reference contains a value that represents the memory location of the
object to which it points. The values contained in these two arguments (an int and a reference) are copied
to their corresponding parameters during the early stages of the call to SomeMethod(). When Some-
Method() executes, it is only operating on its parameters, meaning it is only operating on copies of the
original argument values.

For value types, this simply means that any change of value made to a method’s parameter will only
affect the copy — not the original value. The same holds true for reference parameters. A reference param-
eter will point to the same object the reference argument points to unless, during the method call, the refer-
ence parameter is changed to point to a different object. This change will only affect the parameter or copy
— not the original reference used as an argument to the method call. Bear in mind, however, that as long as
a reference parameter points to the same object the argument points to, changes to the object made via the
parameter will have the same effect as though they were made via the argument itself. Figure 9-17 illus-
trates these concepts using a class’s fields as method arguments.

Referring to figure 9-17 — Prior to a method call, value type and reference fields contain values.
During method setup these values are copied to their corresponding method parameters. The parameters
can be manipulated by the method during the method’s lifetime. Changes to the parameter values will only
affect the parameters, not the original arguments. After the method call, value types and references used as
arguments will retain their original values. Changes to the object pointed to by the reference parameter will
remain in effect.

Chapter 9: Toward Problem Abstraction More About Methods

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 255

Reference Parameters: Using The ref Parameter Modifier

The ref modifier can be applied to parameters to change the way they behave inside of a method.
Consider for a moment this modified version of SomeMethod():

public void SomeMethod(ref int int_param, ref Object object_ref_param){

 // body statements omitted

}

In this version, the ref modifier is applied to each parameter. Figure 9-18 illustrates how these refer-
ence parameters behave differently from value parameters.

Referring to figure 9-18 — The ref modifier changes the behavior of the method’s parameters. Value
type arguments like int, float, double, etc., behave as though they are references. Any change made to a
value type ref parameter in the body of the method affects the original argument. In the case of reference
type arguments, the ref parameter is a reference to a reference, as you can see from the diagram. What this
means is that if you create a new object in the body of the method and assign its address to a reference
parameter, it will be assigned to the original argument reference and it will now point to the new object.

Figure 9-17: Default Value Parameter Behavior

Before method call: value type field will have an
int value and reference field will contain the
address of an object.

During method setup
values contained in
fields are copied to
method parameters.

During the method’s lifetime it manipulates its param-
eters, which contain copies of the original arguments.

Upon completion of method call
only original arguments remain.

Before method call: value type field will have an
int value and reference field will contain the
address of an object.

During method setup
values contained in
fields are copied to
method parameters.

During the method’s lifetime int_param behaves like a
reference while object_ref_param is a reference to a
reference.

Upon completion of method call only orig-
inal arguments remain, but they may con-
tain modified values.

Figure 9-18: Reference Parameter Behavior — Using ref Modifier

More About Methods Chapter 9: Toward Problem Abstraction

256 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

I see that glazed look in your eyes. Check out the following two programs and note their behavior.
Example 9.24 demonstrates the scenario shown in figure 9-17. Example 9.25 demonstrates the scenario
shown in figure 9-18.

9.24 ValueParameterTest.cs
1 using System;
2 using System.Text;
3
4 public class ValueParameterTest {
5
6 int int_field;
7 StringBuilder object_ref_field = new StringBuilder();
8
9 public void F(int int_param, StringBuilder object_ref_param){
10 int_param = 2;
11 Console.WriteLine("Value of int_param modified in method: " + int_param);
12 object_ref_param.Append("Two");
13 Console.WriteLine("The value of object_ref_param after calling Append() in method: "
14 + object_ref_param);
15 object_ref_param = new StringBuilder();
16 object_ref_param.Append("Three");
17 Console.WriteLine("The value of object_ref_param after calling Append() in method: "
18 + object_ref_param);
19 }
20
21 public void G(){
22 int_field = 1;
23 object_ref_field.Append("One");
24 Console.WriteLine("The value of int_field before method call is: " + int_field);
25 Console.WriteLine("The value of the object_ref_field before method call is: " +
26 object_ref_field);
27 Console.WriteLine("---");
28 F(int_field, object_ref_field);
29 Console.WriteLine("---");
30 Console.WriteLine("The value of int_field after method call is: " + int_field);
31 Console.WriteLine("The value of the object_ref_field after method call is: " +
32 object_ref_field);
33 }
34
35 public static void Main(){
36 ValueParameterTest pt = new ValueParameterTest();
37 pt.G();
38 } // end Main
39 } // end class definition

Referring to example 9.24 — The ValueParameterTest class declares two fields: int_field and
object_ref_field. The object_ref_field is of type StringBuilder. The method F() whose definition begins on
line 9 declares two parameters, one of type int named int_param and one of type StringBuilder named
object_ref_param. The important thing to note in the body of method F() is that after the Append() method
is called on the initial object_ref_param value, a new StringBuilder is created on line 15 and its reference is
assigned to object_ref_param. Note that this has no effect on the reference value contained in object_ref_-
field.

Method G() whose definition begins on line 21 simply prints field values to the console before and
after calling method F(). Again, value parameter passing is the default mode. Compare this code with
example 9.25.

9.25 RefParameterTest.cs
1 using System;
2 using System.Text;
3
4 public class RefParameterTest {
5
6 int int_field;

Chapter 9: Toward Problem Abstraction More About Methods

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 257

7 StringBuilder object_ref_field = new StringBuilder();

8

9 public void F(ref int int_param, ref StringBuilder object_ref_param){

10 int_param = 2;

11 Console.WriteLine("Value of int_param modified in method: " + int_param);

12 object_ref_param.Append("Two");

13 Console.WriteLine("The value of object_ref_param after calling Append() in method: "

14 + object_ref_param);

15 object_ref_param = new StringBuilder();

16 object_ref_param.Append("Three");

17 Console.WriteLine("The value of object_ref_param after calling Append() in method: "

18 + object_ref_param);

19 }

20

21 public void G(){

22 int_field = 1;

23 object_ref_field.Append("One");

24 Console.WriteLine("The value of int_field before method call is: " + int_field);

25 Console.WriteLine("The value of the object_ref_field before method call is: " +

26 object_ref_field);

27 Console.WriteLine("--");

28 F(ref int_field, ref object_ref_field);

29 Console.WriteLine("---");

30 Console.WriteLine("The value of int_field after method call is: " + int_field);

31 Console.WriteLine("The value of the object_ref_field after method call is: " +

32 object_ref_field);

33 }

34

35 public static void Main(){

36 RefParameterTest pt = new RefParameterTest();

37 pt.G();

38 } // end Main

39 } // end class definition

Referring to example 9.25 — The differences between this code and the previous example is the fol-
lowing: 1) the class name, 2) the ref modifier has been applied to both of method F()’s parameters, and 3)
the ref argument modifier has been applied to the arguments passed to the F() method call on line 28. This
is required otherwise you will receive a compiler error. Figures 9.19 and 9.20 show the results of running
these programs.

The out Parameter Modifier

The out parameter modifier indicates that a parameter will be used to return a result to the calling pro-
gram via its associated argument. An out parameter is similar to a ref parameter, but differs in that the
initial value of an out parameter’s associated argument is not important. Example 9.26 shows the use of the
out parameter modifier.

Figure 9-19: Results of Running Example 9.24

More About Methods Chapter 9: Toward Problem Abstraction

258 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

9.26 OutParamTest.cs
1 using System;

2

3 public class OutParamTest {

4 int _a = 2;

5 int _count = 10;

6 long _result;

7

8 public void Factor(int value, int power, out long total){

9 total = 1;

10 for(int i = 1; i <= power; i++){

11 total = total * value;

12 Console.WriteLine("Value of i is {0} and value of total is {1}", i, total);

13 }

14 }

15

16 public void Run(){

17 Console.WriteLine("The value of _result before calling Factor is: " + _result);

18 Console.WriteLine("--");

19 Factor(_a, _count, out _result);

20 Console.WriteLine("--");

21 Console.WriteLine("The value of _result after calling Factor is: " + _result);

22 }

23

24 public static void Main(){

25 OutParamTest pt = new OutParamTest();

26 pt.Run();

27 } // end Main

28 } // end class definition

Referring to example 9.26 — The class defines three fields: _a, _count, and _result. The Factor()
method, whose definition begins on line 8, declares three parameters, the last of which is an out parameter
named total. The Run() method on line 16 writes the value of _result to the console before and after the
Factor() method call. Figure 9-21 shows the results of running this program.

Figure 9-20: Results of Running Example 9.25

Figure 9-21: Results of Running Example 9.26

Chapter 9: Toward Problem Abstraction More About Methods

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 259

Parameter Arrays: Using The params Modifier

Methods can take an indefinite number of arguments with the help of parameter arrays. Use the
params modifier to declare an array parameter argument. If a parameter array appears in a method’s
parameter list, it must be either the last parameter in the list or the only parameter. Example 9.27 offers a
short program that demonstrates the use of a parameter array.

9.27 ParamArrayTest.cs
1 using System;

2

3 public class ParamArrayTest {

4

5 public void ParamMethod(params String[] args){

6 Console.WriteLine("Method called with {0} arguments.", args.Length);

7 for(int i = 0; i<args.Length; i++){

8 Console.WriteLine("Argument " + i + " is " + args[i]);

9 }

10 }

11

12 public static void Main(){

13 ParamArrayTest pt = new ParamArrayTest();

14 pt.ParamMethod();

15 pt.ParamMethod("one");

16 pt.ParamMethod("one", "two");

17 pt.ParamMethod(new String[] {"one", "two", "three"});

18 }

19 }

Referring to example 9.27 — The ParamMethod() whose definition begins on line 5 declares a String
parameter array. The method simply prints the number of arguments it was called with, and then prints the
value of each argument to the console. The method’s use is demonstrated in the Main() method. The
ParamMethod() is called on line 14 with no arguments, followed by a call with one argument, next with
two arguments, then finally with a String array that contains three arguments. I included this last method
call to show you how arguments can also be passed as an array of the type expected by the method. Figure
9-22 shows the results of running this program.

Local Variable Scoping

Methods can declare variables for use within the method body. These variables are known as local
variables. The scope of a local variable includes the method body block or code block in which it is
declared, however, it is only available for use after its point of declaration. Parameters are considered to be
local variables and are available for use from the beginning to the end of the method body.

A local variable whose name is the same as a class or instance field will hide that field from the
method body. To access the field you must preface its name with the this keyword. Or, better still, change
the field’s name or the local variable’s name to eliminate the problem!

Figure 9-22: Results of Running Example 9.27

Structures vs. Classes Chapter 9: Toward Problem Abstraction

260 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Anywhere An Object Of <type> Is Required, A Method That Returns <type> Can Be Used

The title of this section says it all. Anywhere an object of a certain type is required, a method that
returns a result of that type can be used. Substitute the word type in the previous sentence for any value or
reference type you require. For reference types, the new keyword can be used to create argument objects on
the fly. Refer to the following method declaration once again:

public void SomeMethod(int int_param, Object object_ref_param){
 // body statements omitted
 }

Assume for this example that the following fields and methods exist as well: int_field, object_refer-
ence_field, GetInt() and GetObject(). Assume for this example that GetInt() returns an int value and that
GetObject() returns a reference to an Object. Given these fields and methods the SomeMethod() could be
called in the following ways:

SomeMethod(int_field, object_reference_field);

SomeMethod(GetInt(), object_reference_field);

SomeMethod(int_field, GetObject());

SomeMethod(GetInt(), GetObject());

SomeMethod(GetInt(), new Object());

As you progress through this book and your knowledge of C# grows, you will be exposed to all the
above forms of a method call plus several more.

Quick Review

By default, arguments are passed to a method call by value. This is also referred to as pass by copy.
The method parameters contain a copy of the argument values. Any change to the parameter values only
affect the copies, not the actual arguments. Changes to an object pointed to by a reference parameter will
affect the original object. However, a change to what a reference parameter points to only affects the
parameter, not the original reference argument.

Use the ref parameter modifier to change parameter behavior so that changes made to the parameters
also affect the original argument values. By using the ref parameter, a change to what a reference param-
eter points to (i.e., creating a new object with the new operator) will also change what the original refer-
ence argument points to.

Use the out parameter modifier if you need to return method results via one or more of its arguments.
Use the params modifier to create parameter arrays.
Methods can contain local variables whose scope is the body code block or the code block in which

they are declared. Local variables are available for use after the point of their declaration up to the end of
the code block. Method parameters are local variables that are available to the entire method body.

Anywhere an object of <type> is required, a method that returns that <type> can be used in its place.

Structures vs. Classes

Structures (structs) share many similarities with classes with one huge difference; a structure defines a
new value type whereas a class defines a new reference type, as is shown in figure 9-23. This section high-
lights the differences between structures and classes and offers some advice on when you might want to
use a structure vs. a class.

Chapter 9: Toward Problem Abstraction Structures vs. Classes

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 261

Value Semantics vs. Reference Semantics

A structure type (value type) variable directly contains the data associated with the structure as
opposed to a class type (reference type) variable that contains a reference to an object in memory. It is pos-
sible for two different reference variables to point to the same object in memory. But not so for value type
variables, where each variable has its own copy of the data.

Structures are not allocated on the heap unless they undergo a boxing operation. Boxing and unboxing
are covered below.

Because structure variables are not reference variables they cannot be null.

Ten Authorized Members vs. Eleven

Structures can have constants, fields, methods, properties, events, indexers, operators, constructors,
static constructors, and nested type declarations.

A structure cannot have a finalizer, nor can you define an explicit parameterless (default) constructor.

Default Variable Field Values

As stated above, you cannot define a parameterless (default) constructor for a structure. The compiler-
supplied default constructor will set all a structure’s value type fields to their default values and any refer-
ence type fields to null. Also, you cannot use instance field initializers to set the values of each field.

Behavior During Assignment

The assignment of one value type variable to another causes a complete copy of the structure’s data
being assigned. Compare this behavior to that of a reference type where only the reference to an object is
copied from the variable being assigned. Recall that when value types are passed as arguments to methods,
a copy of the argument is assigned to its corresponding parameter. This behavior was discussed in detail
earlier in this chapter. (Also, see Chapter 22 — Well-Behaved Objects)

System.ValueType

System.Object System.Object

Struct

Class

Figure 9-23: Structures vs. Value Types

Structures are value types and implicitly
inherit from System.ValueType which in
turn inherits from System.Object.
Classes are reference types and implicitly
inherit directly from System.Object.

Structures vs. Classes Chapter 9: Toward Problem Abstraction

262 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

this Behaves Differently

In a structure, this is considered a variable via which the values of the structure can be assigned to
and modified. In an instance constructor, this functions like an out parameter. In an instance method,
this functions like a ref parameter.

Inheritance Not Allowed

You cannot extend a structure. Structures are never abstract and always inherently sealed. Structures
can implement interfaces but they cannot specify a base class. Structure members cannot be abstract or vir-
tual. The override keyword is only allowed when overriding members of System.ValueType.

Boxing And Unboxing

If you need to treat a value type like a reference type, you can box the value-type into an object that is
then allocated on the heap. Look at the following example.

9.28 BoxingDemo.cs
1 using System;
2
3 public class BoxingDemo {
4
5 public static void Main(){
6 int i = 3;
7 Console.WriteLine("Unboxed i = " + i);
8 object o = i; // boxing
9 Console.WriteLine("o = " + o);
10 o = 4; // treat o like an int
11 Console.WriteLine("Modified o = " + o);
12 Console.WriteLine("Unboxed i = " + i);
13 i = (int)o; // unboxing
14 Console.WriteLine("Modified i = " + i);
15 }
16 }

Referring to example 9.28 — The local variable i is declared and initialized to the value 3. On line 8,
an object reference named o is declared and the value type i is boxed by the assignment to o. The reference
o now points to a boxed integer value type. Line 10 demonstrates that assignments to o can take place like
assignments to ordinary integers. On line 13, the value type contained in o is unboxed and assigned to the
variable i. The explicit cast is required. Figure 9-24 shows the results of running this program.

When To Use Structures

Structures are appropriate when the amount of data they contain is small. Remember, when one struc-
ture variable is assigned to another a complete copy of the assigned structure’s data is copied over. The
ultimate answer to the structure vs. class question can only be answered by thoroughly assessing a project’s
design and performance requirements.

Figure 9-24: Results of Running Example 9.28

Chapter 9: Toward Problem Abstraction Summary

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 263

Summary

Problem abstraction requires lots of programmer creativity and represents the art in the art of pro-
gramming. Your guiding mantra during problem abstraction is to amplify the essential, eliminate the irrel-
evant. Problem abstraction is performed in the analysis and design phase of the development cycle. The
abstractions you choose to model a particular problem will directly influence a program’s design.

The end result of problem abstraction is the identification and creation of one or more new data types.
The data types derived through problem abstraction are referred to as abstract data types (ADTs) or user-
defined data types. User-defined data types can be implemented as structures or classes. These structures
or classes will interact with each other in some capacity to implement the complete problem solution.

A UML class diagram shows the static relationship between classes that participate in a software
design. Programmers use the class diagram to express and clarify design concepts to themselves, to other
programmers, to management, and to clients.

In UML, a rectangle represents a class. The rectangle can have three compartments. The uppermost
compartment contains the class name, the middle compartment contains fields, and the bottom compart-
ment contains the methods.

A stereotype introduces a new type of element within a system. The stereotype name is contained
within the guillemet characters << >>.

Generalization and specialization are indicated by lines tipped with hollow arrows. The arrow points
from the specialized class to the generalized class. The generalized class is the base class, and the special-
ized class is the derived or subclass. Generalizations specify “is a...” relationships between base and sub-
classes.

Dependencies are indicated by dashed arrows pointing to the class being depended upon. Dependen-
cies are one way to indicate “uses...” relationships between classes.

C# classes can contain eleven different types of members: fields, constants, methods, properties,
events, indexers, operators, instance constructors, static constructors, finalizers, and nested type declara-
tions.

The access modifiers public, protected, private, internal, and protected internal are
used to control access to class and instance members. If no access is specified then private is assumed.

The term horizontal access describes the access a client object has to the members of a server object.
The client object represents the code that uses the services of another object. It can do this in two ways: 1)
by accessing a class’s public static members via the class name, or 2) by creating an instance of the class
and accessing its public non-static members via an object reference.

Methods are named modules of executable program functionality. Methods contain program state-
ments that, when grouped together, represent a basic level of code reuse. You access the functionality of a
method by calling the method using its name in a program.

Methods should be well named and maximally cohesive. A well named, maximally cohesive method
will pull no surprises!

Method definitions have structure. Their behavior can be optionally modified with method modifiers,
they can optionally specify a return result type or void, and they can have an optional parameter list.

Methods have a distinguishing characteristic known as a method signature. Methods with different
names and parameter lists are said to have different signatures. Methods with different names and the same
parameter list also have different signatures. Methods with the same name and different parameter lists
have different signatures as well and are said to be overloaded (because they share the same name). Meth-
ods cannot have the same name and identical parameter lists. This will cause a compiler error.

Constructor methods set up or build an object when it’s created in memory. If you do not provide one,
the compiler will create a default constructor for you, but it may or may not provide the level of functional-

Skill-Building Exercises Chapter 9: Toward Problem Abstraction

264 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

ity you require. The compiler only generates default constructors if you fail to define a constructor. As
soon as you define a constructor, the compiler will not generate a default constructor.

Incrementally build and test abstract data types by iteratively applying the steps of the development
cycle. Start with the class definition shell and then add fields, properties, and methods as required to fulfill
the class’s design objectives.

Test class functionality with the help of a test driver. A test driver is a small program that’s used to
exercise the functionality of another program.

By default, arguments are passed to a method call by value. This is also referred to as pass by copy.
The method parameters contain a copy of the argument values. Any change to the parameter values only
affect the copies, not the actual arguments. Changes to an object pointed to by a reference parameter will
affect the original object. However, a change to what a reference parameter points to only affects the
parameter, not the original reference argument.

Use the ref parameter modifier to change parameter behavior so that changes made to the parameters
also affect the original argument values. By using the ref parameter, a change to what a reference param-
eter points to (i.e., creating a new object with the new operator) will also change what the original refer-
ence argument points to.

Use the out parameter modifier if you need to return method results via one or more of its arguments.
Use the params modifier to create parameter arrays.
Methods can contain local variables whose scope is the body code block or the code block in which

they are declared. Local variables are available for use after the point of their declaration up to the end of
the code block. Method parameters are local variables that are available to the entire method body.

Anywhere an object of <type> is required, a method that returns that <type> can be used in its place.

Skill-Building Exercises

1. .NET API Drill: Browse through the .NET Framework and look for classes that contain static class
methods or fields. Note how they are being used in each class.

2. Problem Abstraction Drill: Revisit the Robot Rat project presented in chapter 3. Study the project
specification and identify candidate classes. Make a table of the classes and list their names along with a
description of their potential fields and functionality. Try not to be influenced by the solution approach
taken in chapter 3. Instead, focus on breaking the problem into potential classes and assigning function-
ality to those classes. For example, the program written in chapter 3 is included in one large application
class. At a minimum you will want to have a separate application class. Draw a UML diagram to express
your design.

3. Problem Abstraction Drill: Consider the problem of modeling the functionality of an automobile in
code. Create a list of candidate classes and include potential fields and methods. Draw a UML diagram
to express your design.

4. Problem Abstraction Drill: Consider the problem of modeling the functionality of an airplane in code.
Create a list of candidate classes and include potential fields and methods. Draw a UML diagram to
express your design.

5. Problem Abstraction Drill: Consider the problem of modeling the functionality of a nuclear subma-
rine. Create a list of candidate classes and include potential fields and methods. Draw a UML diagram to
express your design.

Chapter 9: Toward Problem Abstraction Suggested Projects

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 265

6. Further Research: Research the topic of data encapsulation. The goal of your research should be to
understand the role design plays in determining the level of data encapsulation and what design and pro-
gramming strategies you can use to enforce data encapsulation.

7. Coding Exercise: Write a program that lets you experiment with the effects of method parameter pass-
ing. The names of the class and any fields and methods required are left to your discretion. The idea is to
create a class that contains several value type and reference fields. It should also contain several meth-
ods that return value types and references. Write a method that takes at least one value type and one ref-
erence type parameter. Practice calling the method using a combination of fields, methods, and the new
operator. Manipulate the parameters in the body of the method and note the results. Change the method’s
parameter behavior with the use of the ref and out modifiers. Again, write some code that calls the
method and note the results on both the arguments supplied to the method and to the method’s parame-
ters during the method’s lifetime.

8. Problem Abstraction Drill: Consider the problem of modeling the functionality of a computer in code.
Create a list of candidate classes and include potential fields and methods. Draw a UML diagram to
express your design.

9. Problem Abstraction Drill: Consider the problem of modeling the functionality of a coffee maker. Cre-
ate a list of candidate classes and include potential fields and methods. Draw a UML diagram to express
your design.

10. Problem Abstraction Drill: Consider the problem of modeling the functionality of a gasoline pump.
Create a list of candidate classes and include potential fields and methods. Draw a UML diagram to
express your design.

Suggested Projects

1. Improve the PeopleManager.AddPerson() Method: Improve the functionality of the AddPerson()
method of the PeopleManager class presented in this chapter. In its current state, the AddPerson()
method only creates a new Person object and assigns the reference to the array element if the array ele-
ment is null. Otherwise it does nothing and gives no indication that the creation and insertion of a new
Person object failed. Make the following modifications to the AddPerson() method:

a. Search the _peopleArray for a null element and insert the new Person reference at that element.
b. If the array is full, increase the size of the array by 1.5 times its current size. This will require the use
of a temporary array. Copy the non-null elements from the _peopleArray to the temporary array, create a
new _peopleArray the required size, copy the non-null elements back to the _peopleArray, and then
insert the new Person object.
c. Have the AddPerson() method return a boolean value indicating success or failure of the new Person
object creation and insertion operation.

2. Write a Submarine Commander Program: Using the results of the problem abstraction performed in
skill-building exercise 5, write a program that lets you create a fleet of nuclear submarines. You should
be able to add submarines to the fleet, remove them from the fleet, and list all the submarines in your
fleet. You will want to power-up their nuclear reactors and shut down their nuclear reactors. You will
also want to fire their weapons. To keep this programming exercise manageable, just write simple mes-

Suggested Projects Chapter 9: Toward Problem Abstraction

266 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

sages to the console in response to commands sent to each submarine object.

3. Write a Gasoline Pump Operation Program: Using the results of the analysis you performed in skill-
building exercise 10, write a program that lets you control the operation of a gasoline pump. You should
be able to turn the gas pump on and off. You should only be able to pump gas when the pump is on.
When you are done pumping gas, indicate how much gas was pumped in gallons or liters and give the
total price of the gas pumped. Provide a way to set the price of gas.

4. Write a Calculator Program: Write a program that implements the functionality of a simple calculator.
The focus of this project should be the creation of a class that performs the calculator’s operations. Give
the Calculator class the ability to add, subtract, multiply, and divide integers and floating point numbers.
Some of the Calculator class methods may need to be overloaded to handle different types of arguments.

5. Write a Library Manager Program: Write a program that lets you catalog the books in your personal
library. The Book class should have the following attributes: title, author, and International Standard
Book Number (ISBN). You can add any other attributes you deem necessary. Create a class named
LibraryManager that lets you create and add books to your library, delete books from your library, and
list the books in your library. Use an array to hold the books in your library. Research sorting routines
and implement a SortBooks() method.

6. Write a Doubly-Linked Circular List Program: A special property of C# classes is that the name of
the class you are defining can be used to declare fields within that class. Consider the following code
example:

9.29 Node.cs (Partial Listing)
1 public class Node {

2 private Node previous = null;

3 private Node next = null;

4 private Object payload = null;

5

6 // methods omitted for now

7 }

Here, the class name Node appears in the body of the Node class definition to declare two Node refer-
ences named previous and next. This technique creates data structures designed for use within a linked list.
Use the code shown in example 9.29 to help you write a program that manages a linked list. Here are a few
hints to get you started:

Referring to figure 9-25 — A doubly-linked circular list contains one or more nodes, a head, and a tail.
The head points to the first node in the list. The tail always points to the last node in the list. Each node has
a next and previous attribute along with a payload. Figure 9-25 shows a linked list having three nodes. The
first node element’s next attribute points to the second node element, and the second node element’s next
attribute points to the third node element. The third node element is the last node in the list and its next
attribute points to the head, which always points to the first node in the list. Each node’s previous attribute
works in the opposite fashion. Because each node has a next and a previous attribute, it can be used to cre-
ate circular linked list as is shown in figure 9-25.

For this project, write a linked list manager program that lets you add, delete, and list the contents of
each node in the list. You will have to add methods or properties to the Node class code given in example
9.29. At a minimum you should add properties for each field.

This is a challenging project and will require you to put some thought into the design of both the Node
and the LinkedListManager class. The most complicated part of the design will be figuring out how to
insert and delete nodes into and from the list. When you successfully complete this project, you will have a

Chapter 9: Toward Problem Abstraction Self-Test Questions

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 267

good, practical understanding of references and how they are related to pointers in other programming lan-
guages.

7. Convert The Library Manager To Use A Linked List: Rewrite the library manager program pre-
sented in suggested project 5 to use a linked list of books instead of an array.

Self-Test Questions

1. Define the term problem abstraction. Explain why problem abstraction requires creativity.

2. What is the end result of problem abstraction?

3. Describe in your own words how you would go about the problem abstraction process for a typical pro-
gramming problem.

4. What is the purpose of the UML class diagram? What geometric shape is used to depict classes in a
UML class diagram? Where are class names, fields, and methods depicted on a class symbol?

5. What do the lines tipped with hollow arrowheads depict in a UML class diagram?

6. What are the eleven categories of C# class members?

7. What’s the difference between static and non-static fields?

8. What the difference between static and non-static methods?

9. What’s the difference between readonly fields and const fields?

10. List and describe the purpose of member access modifiers.

11. Explain the concept of horizontal access. Draw a picture showing how client code access to a server
class’s members is controlled using the access modifiers public and private.

Figure 9-25: Circular Linked List with Three Nodes

References Chapter 9: Toward Problem Abstraction

268 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

12. What is a method?

13. List and describe the desirable characteristics of a method.

14. Explain the concept of cohesion as it pertains to methods.

15. (True/False) A method should be maximally cohesive.

16. What steps can you take as a programmer to ensure your methods are maximally cohesive?

17. What’s the purpose of a method definition?

18. What parts of a method definition are optional?

19. What is meant by the term method signature?

20. What parts of a method are included in a method’s signature?

21. What constitutes an overloaded method?

22. Give at least one example for which method overloading is useful.

23. What makes constructor methods different from ordinary methods?

24. Describe in your own words how arguments are passed to methods.

References

ECMA-335 Common Language Infrastructure (CLI), 6th Edition, June 2012 http://www.ecma-interna-
tional.org/publications/standards/Ecma-335.htm

ECMA-334 C# Language Specification, 4th Edition, June 2006 http://www.ecma-international.org/
publications/standards/Ecma-334.htm

Microsoft Developer Network (MSDN) http://www.msdn.com

MSDN, Capitalization Styles, http://msdn.microsoft.com/en-us/library/x2dbyw72(v=vs.71).aspx

Donald E. Knuth. The Art of Computer Programming. Volume 3: Sorting and Searching, Second Edi-
tion. Addison-Wesley. Reading MA. ISBN: 0-201-89685-0

Grady Booch. Object-Oriented Analysis And Design With Applications, Second Edition. The Benja-
min/Cummings Publishing Company, Inc., Redwood City, CA. ISBN: 0-8053-5340-2

Sinan Si Alhir. UML In A Nutshell: A Desktop Quick Reference. O’Reilly and Associates, Inc., Sebas-
topol, CA. ISBN: 1-56592-448-7

Chapter 9: Toward Problem Abstraction Notes

C# For Artists © 2015 Rick Miller and Pulp Free Press — All Rights Reserved 269

Notes

Notes Chapter 9: Toward Problem Abstraction

270 © 2015 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

