
C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 21

2 Small Victories: Creating C# Projects

Learning Objectives
• List and describe the minimum development tools required to create C# programs
• State the purpose of operating system environment variables, including the PATH variable
• Demonstrate your ability to set environment variables in Windows 7 and Windows 10
• List and describe the steps required to create C# programs from the command prompt
• Demonstrate your ability to create C# projects from the command prompt
• Describe the functions and features generally found in an Integrated Development Environment
• Demonstrate your ability to create C# projects using Microsoft Visual Studio Community 2017
• Demonstrate your ability to use the NuGet package manager
• Demonstrate your ability to install Microsoft’s Roslyn compiler tools using the NuGet package

manager
• Explain the difference between the Roslyn C# compiler and the .NET Framework’s C# compiler
• Learn how to obtain additional Microsoft development tools from Microsoft Imagine

Chapter 2

Small Victories
Creating C# Projects

Bike Racer

Introduction Chapter 2: Small Victories: Creating C# Projects

22 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Introduction

I call this chapter Small Victories because understanding your development tools and properly config-
uring your development environment easily accounts for seventy-five percent of the headaches you’ll suf-
fer when starting down the road of C# .NET development. Creating, compiling, and running your first
program represents the biggest hurdle novice programmers face. The information in this chapter is
designed to help you clear that hurdle and do a victory dance.

Here you will learn several critical software development skills. First, I explain exactly what you need
to write, compile, and run C# programs. The good news is that you don’t need a fortune to start program-
ming with C# and the .NET Framework. Microsoft offers powerful software development tools absolutely
free. Next, I will explain the purpose and use of operating system environment variables and show you
how to configure the PATH environment variable so you can compile and run C# programs from the com-
mand prompt. And, since you may not be familiar with the command prompt, I will explain its purpose and
demonstrate the use of several important commands.

Next, I’ll show you how to create programs using Microsoft Visual Studio Community. Visual Studio
Community is Microsoft’s free Integrated Development Environment (IDE). An IDE increases program-
mer productivity by providing, under a common user interface, several important software development
tools including source code editing, compiling, debugging, and execution profiling, and more.

Compiling C# Programs From The Command-Line

You only need two things to create professional, robust, C# programs: the Microsoft .NET Framework
and a suitable text editor. Both can be obtained free of charge, although you will most likely want to buy a
good text editor. I’m a big fan of Notepad++.

The .NET Framework supplies the C# compiler — csc.exe. The compiler transforms source code into
Microsoft Intermediate Language (MSIL) modules which can be executed by the .NET Common Lan-
guage Runtime (CLR).

You may be wondering, “Why?”. “Why, if Microsoft offers Visual Studio, do I need to know how to
create programs using the C# compiler from the command-line?” Well, that’s a good question with several
answers, and they go something like this: Visual Studio is a powerful program. In fact, it’s so powerful that
you can spend a lot of time just learning what it does and how to use it. So, in order to let you focus on
learning the C# language, I recommend you learn how to use the command-line tools first and postpone
your involvement with Visual Studio until after you’ve gained some programming experience.

My second answer to the question has a more practical side. You may have little or no experience
using the command prompt. You may be familiar with the Windows interface, and with pointing and click-
ing a mouse, but you may have no experience issuing commands from the command-line.

I consider the ability to use the command prompt and to compile programs with the C# compiler from
the command-line to be fundamental skills all programmers need to have in their tool belt. Mastering these
skills will let you better understand what Visual Studio is doing under the covers. You may find it neces-
sary one day to dive into the code generated automatically by Visual Studio to make a few adjustments.
The only way you’ll be able to do that is to take complete control of your development environment and
understand how to use the command-line to compile and run C# programs.

Chapter 2: Small Victories: Creating C# Projects Compiling C# Programs From The Command-Line

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 23

Download And Install The .NET Framework

The first thing you need to do is to download and install the .NET Framework. Windows already
comes with the .NET Framework installed, but it may not be the latest version. (NOTE: If you’re install-
ing .NET Framework 4.7.2 on Windows 7 make sure you’ve updated to Service Pack 1 (SP1)).

You will find the .NET Framework on Microsoft’s .NET site: https://www.microsoft.com/net. Click
the Downloads menu and select the .NET Framework. Download the latest edition of the .NET Frame-
work Developer Pack, which, at the moment I write this is version 4.7.2.

At a minimum, you only need to download the .NET Framework. It provides the .NET runtime envi-
ronment and the C# compiler, which supports the C# language up to version 5.0. If you want to target lan-
guage features found in versions greater that 5.0, you’ll need to download and install either the Roslyn
compiler or Visual Studio Community 2017, which comes with the Roslyn compiler. I’ll show you how to
do both later in the chapter.

You can optionally download and install the Microsoft Windows Software Development Kit (SDK).
The Microsoft Windows SDK provides additional development tools. However, before you can install the
SDK, you must download and install the .NET Framework, or download the .NET Framework Developer
Pack, which you can find with a quick Google search.

Installation of the .NET Framework is straightforward. The important thing to note during the installa-
tion process is where on your hard drive the .NET Framework is installed. The path to the .NET Frame-
work installation directory will be c:\Windows\Microsoft.NET\Framework64\. Figure 2-1 shows
the .NET Framework directory structure as it appears on my computer.

Referring to figure 2-1 — The C# compiler (csc.exe) resides in the v4.0.30319 folder. Figure 2-2
shows a partial directory listing of the v4.0.30319 folder. In there you’ll find the C# compiler command-
line tool.

Now that you’ve installed the .NET Framework, you have everything you need to compile and run C#
programs. What you need now is a way to create C# source files, and for that you’ll need a good text editor.
I recommend Notepad++.

Download And Install Notepad++

If you really wanted to rough-it you could use Notepad, the text editor that ships with Microsoft Win-
dows. Notepad is perfectly suitable for creating small source files and lite editing jobs, but for program-
ming projects, I recommend getting yourself a copy of Notepad++ from Notepad-Plus-Plus.org http://
notepad-plus-plus.org/.

Installation of Notepad++ is quick and straightforward. During installation be sure to check the box to
have a shortcut automatically installed on your desktop.

Figure 2-1: Microsoft.NET Framework Installation Directory

Compiling C# Programs From The Command-Line Chapter 2: Small Victories: Creating C# Projects

24 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Notepad++ is free to use, but if you like it and have the means, I recommend you make a small dona-
tion via the website to support its further development.

Armed now with the .NET Framework and a suitable text editor, you have everything you need to cre-
ate, compile, and run C# programs. But before you get started you’ll need to properly configure your
development environment so that you can compile programs from the command-line.

Configuring Your Development Environment

A properly configured development environment is critical to the software creation process. In this
section I will show you how to create and use operating system environment variables, how to create a
project folder, how to set folder options so you can see filename suffixes, and how to set-up and configure
shortcuts to the command console. I focus on two versions of Microsoft Windows, 7 and 10, and highlight
the differences between the two where necessary. The skills you learn in this section will prove time and
again to be absolutely invaluable throughout your software engineering career.

Environment Variables

Environment variables are used to store data about the operating system environment. There are gener-
ally two types of environment variables: system variables and user variables.

System environment variables store data that pertains to and affects the operating system environment
for all users. User environment variables store data that pertains to and affects the operating system envi-
ronment for a particular user. Some system and user environment variables are automatically created and
initialized by the operating system when it is installed, when applications are installed, and when users are
created.

Several important environment variables must be created or edited before you can use the command-
line tools to compile and run C# programs. These include: 1) a variable named DOT_NET_FRAME-
WORK_HOME that contains the path to the installation location of the .NET Framework, and 2) the PATH
variable that includes a reference to the DOT_NET_FRAMEWORK_HOME variable so the operating sys-
tem knows where to find .NET-related executable files like the C# compiler (csc.exe).

Create Environment Variables in Windows 7

The first environment variable you will set will be the location of the home directory of the .NET
Framework. Navigate to that folder now so that you can copy the path to the .NET Framework directory;
later, you will paste this value into the environment variable’s value field. (Copying and pasting prevents

Figure 2-2: Partial Directory Listing of the v4.0.30319 Folder

The C# command-line
compiler tool.

Chapter 2: Small Victories: Creating C# Projects Compiling C# Programs From The Command-Line

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 25

you from making mistakes when typing long path names) The path to this folder will be c:\Win-
dows\Microsoft.NET\Framework64\v4.0.30319. (Refer to figure 2-2) When you open the folder,
select the path that shows up in the file explorer Address box and copy it using CTRL-C.

Next, you’ll create the user environment variable named DOT_NET_FRAMEWORK_HOME. See
figure 2-3 for an illustration of the complete environment variable creation process.

Right-click the Computer icon located on your desktop. If this icon is not located on your desktop,
click the Windows Start button located in the lower left part of the taskbar, right-click Computer and and
click Properties from the pop-up to open the System control panel. In the System control panel click
Advanced system settings located in the left-hand column to open the System Properties dialog.

In the System Properties dialog click the Advanced tab, then click the Environment Variables button
to open the Environment Variables dialog window. Underneath the User variables section, click the New
button to create a new environment variable. This will open the New User Variable dialog window. Enter
DOT_NET_FRAMEWORK_HOME into the Variable name textbox. Paste the path to the .NET Frame-
work home directory you copied earlier into the Variable value textbox. After entering both values, your
New User Variable dialog window will look similar to the completed example shown in figure 2-3. Check
your work for accuracy, then click the OK button to close the New User Variable dialog window. Click the
OK button for each of the remaining open dialog windows to accept the changes. Congratulations! You
just created an environment variable.

Create or Edit the PATH Environment Variable

Once you have the DOT_NET_FRAMEWORK_HOME environment variable set, you can use it to
create or edit other environment variables. The next environment variable that you must either create or
edit is the PATH variable. The operating system uses the PATH environment variable to locate executable
files. An instance of the PATH (or Path) variable most likely already exists in the System Environment
Variables section. I recommend leaving that version alone and creating another PATH environment vari-
able in the User Environment Variables section. The two are combined to formulate the complete PATH
value.

To create a new user PATH environment variable, follow the process illustrated in figure 2-3. Enter
“PATH” into the Variable name text field. Enter the following into the Variable value text field:
%DOT_NET_FRAMEWORK_HOME%. Click the OK buttons to accept the changes. (Note: To refer-
ence an environment variable’s value, add a “%” to the beginning and end of the variable name.)

To edit an existing PATH environment variable, you’ll need to select it and click the Edit button. Place
your cursor in the Variable value text field and move to the far right end of the value that’s entered there. If
the existing value is not terminated with a semicolon, you’ll need to add one before adding the
%DOT_NET_FRAMEWORK_HOME% variable to the end like so:

preexisting path value;%DOT_NET_FRAMEWORK_HOME%
Figure 2-4 shows the PATH user environment variable being edited on my machine. Note the semico-

lons separating each environment variable in the PATH.

Test Newly Created Environment Variables

You can now check that you have set your environment variables correctly by running several tests.
The first test entails opening a command prompt and using the DOT_NET_FRAMEWORK_HOME vari-
able in a command. The second test is running the C# compiler from the command-line.

First, open a command prompt window. Do this by clicking on Start->All Programs->Accessories-
>Command Prompt. This will open a command prompt window like that shown in figure 2-5. Next, enter
the following command at the command prompt: cd %DOT_NET_FRAMEWORK_HOME% The cd command
stands for “Change Directory”. If you have set the DOT_NET_FRAMEWORK_HOME environment vari-

Compiling C# Programs From The Command-Line Chapter 2: Small Victories: Creating C# Projects

26 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

able correctly, entering this command should take you to the C:\Windows\Microsoft.NET\Frame-
work64\v4.0.30319 directory as figure 2-6 illustrates.

Now test the PATH environment variable. Execute the following command in a command prompt win-
dow: csc This should run the C# compiler which will produce a result similar to that shown in figure 2-7.
If your results look like those shown in figure 2-7, then you’re good to go. Great job! If not, recheck your
environment variable settings and try again until you have everything set just right.

Note that when you run the compiler (csc.exe) with no source file input you’ll receive an error, like the
one shown in figure 2-7. You’ll also receive a message stating this version of the compiler only supports

Figure 2-3: Creating an Environment Variable in Windows 7

Right-click Computer and
click Properties.

Click Advanced system set-
tings, then click the Environ-
ment Variables button

Click the New button under the
User variables section.

Enter the environment variable name in the upper text
field and its value in the lower text field, then click
OK. Click the OK button to close each dialog box
and accept the changes.

1

2 3

4

5

6

7

Chapter 2: Small Victories: Creating C# Projects Compiling C# Programs From The Command-Line

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 27

up to version 5 of the C# language. This will only be an issue if you try to use features found in language
versions 6 or higher.

Creating Environment Variables in Windows 10

The steps required to create environment variables in Windows 10 are similar to Windows 7 with a
few exceptions and icon name changes. Click the Windows Start button and click on the File Explorer
Icon. Right-click on This PC in the left-hand panel and select Properties from the pop-up menu. This will
take you to the System control panel as is shown in figure 2-8.

Referring to figure 2-8 — Click on Advanced System Settings located in the left hand panel.This will
open the System Properties window. Click the Environment Variables... button to open the Environment
Variables window. Under the User variables section click the New... button. This will open a New User
Variable dialog box as is shown in figure 2.9.

Figure 2-4: Editing the PATH User Environment Variable

Figure 2-5: Command Prompt Window (A.K.A., Command Console)

Command prompt

Figure 2-6: Testing the DOT_NET_FRAMEWORK_HOME Environment Variable

Figure 2-7: Testing the PATH Environment Variable by Running the C# Compiler

Compiling C# Programs From The Command-Line Chapter 2: Small Victories: Creating C# Projects

28 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Referring to figure 2-9 — Enter the name of the environment variable in the Variable name box, and
either paste the file path into the Variable value box or click the Browse Directory... button to locate the
directory and have its path automatically entered into the box.

Next, select the user’s Path environment variable and click the Edit... button. This will open the Edit
environment variable window as shown in figure 2-10.

Figure 2-8: System Control Panel - Windows 10

Click Advanced system
settings

Figure 2-9: New User Variable Dialog - Windows 10

Figure 2-10: Editing Path Environment Variable in Windows 10

Chapter 2: Small Victories: Creating C# Projects Compiling C# Programs From The Command-Line

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 29

Referring to figure 2-10 — To add a new entry to the Path environment variable click the New button.
This will allow entry into the next open field. Click OK to commit the edit and close the dialog window.
Test your environment variables in Windows 10 using the command-line as explained in the previous sec-
tion.

Create A Projects Folder

The next thing you should do to set up your development environment is to create a folder named
Projects in which to store your C# project folders and files. This folder will serve as the root folder for any
individual projects you create. You will store each project in its own sub-folder under the Projects folder.

A good place to create the Projects folder is right on your desktop. To do this, right-click your desktop
and select New->Folder from the pop-up menu as figure 2-11 illustrates.

Name the new folder “Projects”. Note that when you create a folder on your desktop, you are actually
creating it in the [C:\Users\username\Desktop] folder, where “username” is the username of the
account you used to log on to the computer. On my Windows 7 machine, the full path to the Projects folder
created on the desktop is: [C:\Users\swodog\Desktop\Projects]

Set Folder Options in Windows 7

You’ll need to change folder options so you can see file-type extensions. Both novice and experienced
programmers alike sometimes have difficulty trying to compile a C# file because the file they thought had
an extension of “.cs” was in fact saved with an extension of “.cs.txt”, where the “.txt” extension was auto-
matically added by a text editor, unbeknownst to the programmer. When this happens, the C# compiler will
fail to recognize the file as a C# source file. To help prevent such headaches, it’s a great idea to change the
folder options of all your folders to show file extensions.

To do this, open the Projects folder you just created and in it create a new text file. The easiest way to
create the text file is to simply right-click in the open folder and select New->Text Document from the
pup-up menu. Save the text document with the default name provided. Your Projects folder should now
look like figure 2-12. Notice the name of the document you created simply shows as “New Text Docu-
ment”. The “.txt” extension is hidden by default. So let’s unhide file extensions. Click the Organize drop-
down menu and click Folder and search options. Click the View tab and scroll down until you see the
check box that says, “Hide extensions for known file types”. This box is checked by default. Uncheck the
box as is shown in figure 2-13.

Click the Apply to All Folders button in the Folder views section, then click the Apply button and
lastly the OK button to dismiss the dialog. Your Projects folder should now look like figure 2-14.

Figure 2-11: Creating a New Folder

Compiling C# Programs From The Command-Line Chapter 2: Small Victories: Creating C# Projects

30 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Notice now you can see the “.txt” file extension.

Figure 2-12: Projects Folder Before Setting Folder Options

Figure 2-13: Folder Options Dialog Window

Uncheck this box to show
file extensions.

Figure 2-14: Projects Folder After Setting Folder Options

Chapter 2: Small Victories: Creating C# Projects Compiling C# Programs From The Command-Line

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 31

Set Folder Options in Windows 10

To set folder options in Windows 10, open a folder and click the View menu as is shown in figure 2-
15.

Referring to figure 2-15 — In the Show/hide section check both the File name extensions and Hidden
items check boxes.

Create A Shortcut To The Command Prompt And Set Its Properties

Since you’ll be using the command prompt to compile C# programs you’ll find it convenient to place a
command prompt shortcut on your desktop. To do this in Windows 7, click Start->All Programs->Acces-
sories. Right-Click Command Prompt and select Send to... Desktop (Create Shortcut). This will create a
new Command Prompt icon on the desktop named “Command Prompt”.

In Windows 10 you can find the command prompt in the Windows System group under ‘W’ when you
list All apps.

Test the shortcut by double-clicking it to open the command prompt window. By default, it should
open to the directory C:\Users\username, where “username” is the account you used to log on to the
computer. Figure 2-16 shows how the command prompt window looks with its default settings on my
machine.

Change The Name Of The Command Prompt Shortcut

The first bit of command prompt shortcut customization you’ll want to do is to change its name. Do
this by clicking twice on the shortcut icon’s name, pausing between clicks longer than a standard double-

Figure 2-15: Setting Folder Options in Windows 10

Figure 2-16: Default Command Console Window

Compiling C# Programs From The Command-Line Chapter 2: Small Victories: Creating C# Projects

32 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

click. If you click too fast, you’ll simply open the command prompt window. If this happens simply close
the window and try again. Rename the shortcut to anything you want, but I recommend changing it to
“Projects”, or “C# Projects”.

Change The Startup Folder Settings Windows 7 or Windows 10

Now that you’ve changed the shortcut’s name, let’s make a more meaningful change. It would be nice
if the command prompt opened automatically in the Projects directory. To make this happen in Windows 7,
right-click the command prompt shortcut icon located on your desktop and select Properties. This opens
the properties dialog window for that shortcut. For example, if you renamed your shortcut to “Projects”,
the name of the properties dialog will be “Projects Properties”. If you left the name of the shortcut with its
default value, the name will be “Command Prompt Properties” as figure 2-17 illustrates. Note: The Short-
cut tab is selected by default.

To make the command prompt automatically start in the Projects directory, change the Start in prop-
erty by replacing its default contents with the full path to the Projects folder. If you placed your Projects
folder on the desktop this will be C:\Users\username\Desktop\Projects\, where “username” is the
account name you used to log on to the computer. Figure 2-18 shows the command prompt Start in prop-
erty after I set it on my machine.

Click the OK button to accept the changes. Test the configuration by double-clicking the command
prompt shortcut. It should open either in the Projects folder, or the folder you designated. If not, recheck
your settings and try again until everything works as expected.

To do this in Windows 10 watch this video: https://youtu.be/bVWY1KYxfVU

Change The Layout Properties

The last adjustment left to make to the command prompt shortcut is to change its default screen buffer
size. This will allow you to increase the length and width of the command prompt window to see more
information without the lines wrapping. Once again, right-click the command prompt shortcut and click

Figure 2-17: Command Prompt Properties Dialog

You’re going to change the
Start in property.

Chapter 2: Small Victories: Creating C# Projects Compiling C# Programs From The Command-Line

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 33

the Properties item to open the Properties dialog window. Click the Layout tab and set the screen buffer
size Width property to 120, and change the Height property to 3000, as figure 2-19 illustrates.

Click the OK button to accept the new changes. Now, double-click the command prompt shortcut to
launch the command prompt. Change its height and width by dragging the lower right-hand corner. You’ll
find this to be a big help when troubleshooting and debugging your programs when you compile them
from the command-line.

Start in property set to
the path of your Proj-
ects folder.

Figure 2-18: Setting the Start in Property

Figure 2-19: Setting Command Console Layout Properties

Change the Width and
Height properties to see
more information in the
console.

Compiling C# Programs From The Command-Line Chapter 2: Small Victories: Creating C# Projects

34 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Final Configuration Test

As a final test of the configuration, create and run a short C# program. To do this, you’ll need to create
the C# source file with the text editor, compile the source file using the C# command-line compiler, and
then run the program.

Creating The Source File

Using either Notepad++ or another text editor create a new file named “HelloWorld.cs” and save it in
your Projects folder. Enter the code shown in example 2.1 into your source file and save the file.

2.1 HelloWorld.cs
1 using System;

2

3 public class HelloWorld {

4

5 public static void Main(){

6

7 Console.WriteLine("Hello World!");

8 }

9 }

Compiling The Source File

To compile the HelloWorld.cs file, open the command prompt and change to the directory where you
saved the file. If you saved it in the Projects folder, then you’re already there. If you created a sub-folder
then change to that directory by using the cd command. For example, I saved the file in a folder named
“Chapter2” located in the Projects folder. To change to the Chapter2 directory from the Projects directory I
entered cd chapter2, then pressed the Return or Enter key. Figure 2-20 shows how the console looks on
my machine when I use the dir command to list the directory contents.

To compile the HelloWorld.cs file, enter csc followed by the name of the source file at the command
prompt. If you entered the source code correctly, you should see results similar to those shown in figure 2-
21.

If you execute another dir command to display the directory contents, you’ll see a new file named
“HelloWorld.exe”. This is the executable program file.

Executing The Application

To run the executable file, simply enter its name at the command prompt. Figure 2-22 shows the
results of running the Hello World program.

Figure 2-20: Directory Listing of the Chapter2 Directory Showing the HelloWorld.cs File

Chapter 2: Small Victories: Creating C# Projects Compiling C# Programs From The Command-Line

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 35

Fixing Compiler Errors

No matter how careful you try to be, you’re bound to make a mistake or two (or more) when writing
programs. Most of these mistakes will be simple typos, like forgetting to terminate a statement with a semi-
colon, or misspelling the name of a variable, reserved keyword, etc. When you compile a program that
contains a compiler error, you will see something similar to the output shown in figure 2-23.

When the compiler encounters a problem it will output one or more warning or error messages. Warn-
ings are usually non-fatal, which means your program will still run if the compiler signals only a warning
message. Error messages, on the other hand, must be addressed before your program will compile com-
pletely.

The error message will contain the name of the source file, the line number and character position of
the problem, along with the compiler error code. The C# compiler error codes can be found on the Micro-
soft C# language reference site, but searching for them on Microsoft’s website is tedious. The best way to
find detailed information about a particular C# compiler error is to enter the following search query into
Google: “C# compiler error CSNNNN”, where “NNNN” is the compiler error number. The first result
from this query will usually lead straight to the Microsoft C# compiler error page for that compiler error
number. Figure 2-24 shows the detailed information page for Compiler Error CS1002.

Figure 2-21: Compiling HelloWorld.cs Using the csc C# Compiler Command

Figure 2-22: Running the HelloWorld Program

Program output:

Figure 2-23: Compiler Output Showing Compiler Error on Line 6 at Position 39

Compiling C# Programs From The Command-Line Chapter 2: Small Victories: Creating C# Projects

36 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Fix The First Compiler Error First

The best advice I can offer when dealing with compiler errors is to always fix the first compiler error
first. The reason for this is that some compiler errors trigger other errors. Fixing the first error generally
eliminates many other errors on the list.

Quick Review

All you need to create robust Microsoft C# applications is a good text editor and the C# compiler that’s
included with the .NET Framework. Both can be obtained free of charge.

You must configure your development environment before you can compile programs from the com-
mand-line. This includes creating or editing one or more operating system environment variables. An envi-
ronment variable is used to store data about the operating system environment. There are generally two
types of environment variables: system variables and user variables. System environment variables store
data that affects the operating system environment for all users; user environment variables store data that
affects the operating system environment for a particular user.

Environment variable values can be accessed by enclosing the variable name in percent ‘%’ characters.

The operating system uses the PATH environment variable to locate executable files. You must create
or edit the PATH environment variable to include the full path to the C# compiler (csc.exe).

It’s helpful to create a project folder and a shortcut to the command prompt on your desktop. Set the
command prompt shortcut’s Start in property so it will automatically open in your designated projects
folder. Increase the command prompt shortcut’s screen buffer height and width properties to see more
information in the console window.

Figure 2-24: C# Compiler Error CS1002 “; expected”

Chapter 2: Small Victories: Creating C# Projects Creating Projects With Microsoft Visual Studio

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 37

It’s also a good idea to set your folder options to display file type extensions. This will prevent head-
aches associated with accidentally saving source files with a “.txt” extension.

To create a C# program you must first create the source file, compile the source file with the csc com-
piler tool, and then execute the program by typing its name at the command prompt and pressing the
Return or Enter key.

You’re bound to get a few compiler errors when you start writing your own programs. Use Google to
search for the error code. This will lead you straight to the answer on Microsoft’s documentation website.
Remember to always fix the first compiler error first!

Creating Projects With Microsoft Visual Studio

Microsoft Visual Studio is an Integrated Development Environment (IDE) that combines text editing,
project management, debugging, code profiling, and a host of other features, united by a common user
interface. It lets you develop in a wide array of programming languages including C#, F#, Visual Basic,
C++, Python, and R. With Visual Studio you can create classic Windows desktop applications and applica-
tions that run on Apple’s OS X and Linux. You can do so much with the latest release of Visual Studio in
general that the choices of languages and target technologies can be overwhelming.

Visual Studio comes in three flavors: Community, Professional, and Enterprise.Visual Studio Commu-
nity has all the features necessary and important to individual developers, and while it doesn’t have all the
features of the Professional or Enterprise editions, what it does lack you may never notice. I recently led a
team of talented software engineers building complex applications using Visual Studio Professional and
we could have done everything just as easily with the Community edition because we didn’t need or use
the advanced features. So don’t feel like you’re settling for less if you don’t have the Professional edition.

Installing Visual Studio Community 2017

Go to VisualStudio.com http://visualstudio.com and download the Visual Studio Community 2017
installer. The installation screen looks like that shown in figure 2-25.

Figure 2-25: Visual Studio Community 2017 Installation Screen

Creating Projects With Microsoft Visual Studio Chapter 2: Small Victories: Creating C# Projects

38 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Referring to figure 2-25 — When I wrote this, the current version was 15.8.2. Your version may be
more recent. There are three tabs across the top: Workloads, Individual components, and Language packs.
You can install whatever you like, but for this book you’ll need the .NET desktop development, and
ASP.NET and web development workloads. Under the Summary section, starting from the bottom, expand
the ASP.NET and web development section and select all optional components with the exception of F#.
Next, expand the .NET desktop development section and select all optional components except F# as is
shown in figure 2-26.

Next, click the Individual components tab and under the .NET section check all the boxes as shown in
figure 2-27.

That’s all you need and most likely more than you need for the projects in this book. Click the Install
(or Modify) button when you’re ready. You can get up and get some coffee now while everything installs.

Creating the HelloWorld Solution in Visual Studio Community 2017

When installation completes launch Visual Studio, complete the first startup tasks, and select File ->
New Project...to open the New Project dialog as is shown in figure 2-28.

Referring to figure 2-28 — In the left panel expand the Visual C# section and select Windows Desk-
top. In the center panel select Console App (.NET Framework). Down below, set the project Name to
HelloWorld, set the Location to your Projects folder, and check the Create directory for solution box.
Set the Solution name to HelloWorld as well. Check everything twice for good measure then click the OK
button. Your HelloWorld project window will look similar to figure 2-29.

Referring to figure 2-29 — Note that the main window contains the code for a source file named Pro-
gram.cs, which contains the definition for a class named Program. In the Solution Explorer panel located to
the right you’ll see a solution named HelloWorld which contains one project named HelloWorld.

The first order of business, although this is strictly not necessary, is to rename the Program.cs file to
HelloWorld.cs. To do this, right-click the Program.cs file and select Rename from the pop-up menu.
Rename the file HelloWorld.cs. When asked if you want to update references to the file click Yes. Your
project window will now look like figure 2-30.

Figure 2-26: Selecting Optional Features and Components

Chapter 2: Small Victories: Creating C# Projects Creating Projects With Microsoft Visual Studio

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 39

Referring to figure 2-30 — Note the asterisk to the right of HelloWorld.cs tab. This means the file is
not yet saved. Click the disk icon in the toolbar or use the key combination CTRL-S to save the file.You
can see that Visual Studio has done a lot of the heavy lifting for you by way of creating boilerplate code.
Note the using statements on lines 1 through 5. All we need is the using System; on line 1, but you can
leave the others in as well. Note also that Visual Studio used a different version of the Main() method, spe-

Figure 2-27: Selecting All Individual Components Under .NET Section

Figure 2-28: Creating New Visual C# Console App (.NET Framework)

Creating Projects With Microsoft Visual Studio Chapter 2: Small Victories: Creating C# Projects

40 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Figure 2-29: HelloWorld Project Window

Figure 2-30: Renaming Program.cs to HelloWorld.cs

Chapter 2: Small Victories: Creating C# Projects Creating Projects With Microsoft Visual Studio

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 41

cifically, Main(string[] args). You can leave this the way it is, too. All that’s left to add to the Main()
method is the following line of code: Console.WriteLine(“Hello World!”); as figure 2-31 shows.

Referring to figure 2-31 — Notice that as you type, Visual Studio attempts to complete the line by
showing what members (methods, properties, fields, etc.) are available. As you type Console.Write, Intel-
liSense offers you a choice between Write and WriteLine. You can hit the down arrow key to select
WriteLine and then the tab key to complete the line with WriteLine.When you type the opening parenthe-
sis ‘(‘, IntelliSense offers you a choice of overloaded methods to chose from as is shown in figure 2-32.

Referring to figure 2-32 — Notice there are 19 versions of the WriteLine() method. You’ll learn more
about method overloading later in the book. For now, complete the method by typing “Hello World!”.
Don’t forget the closing parenthesis ‘)’ and the line-ending semicolon ‘;’. To run the program click Start
in the toolbar next to the green triangle. If all goes well, the program will compile with no errors, and
Visual Studio will launch the program. A black console window will appear briefly then disappear. The
Output panel will open below the main program window as is shown in figure 2-33.

Referring to figure 2-33 — Note that you don’t see the text Hello World! in the output window
because it doesn’t show console output. To run the program in such a way as to see the output you can do
two things: 1) navigate to the project’s output folder and run the program from there using the command
prompt, or 2) add a line of code below the Console.WriteLine() method that pauses the program so you can
see the output. I’ll show you how to do both.

Running HelloWorld.exe From Project Output Directory

When you click Start, Visual Studio first builds the solution and the project it contains. In this case, it
has only one project named HelloWorld. It then launches the program. In the case of a simple console
application, it runs the program and immediately exits. That’s why you only briefly see the black console
window appear and then vanish. The results of building the Hello World project are contained in the proj-
ect’s bin\Debug folder as is shown in figure 2-34.

Figure 2-31: IntelliSense in Action

Creating Projects With Microsoft Visual Studio Chapter 2: Small Victories: Creating C# Projects

42 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Referring to figure 2-34 — Notice the HelloWorld.exe file. Open a command prompt and change
directory to the HelloWorld project’s bin\debug folder. On my Windows 10 machine, the full path is:
C:\Projects\HelloWorld\HelloWorld\bin\Debug

Type HelloWorld at the command prompt to run the program. Your results will look similar to figure
2-35.

Figure 2-32: IntelliSense Showing Overloaded WriteLine() Methods

Figure 2-33: Output Panel Showing Results of Debug Session

Chapter 2: Small Victories: Creating C# Projects Creating Projects With Microsoft Visual Studio

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 43

Pausing A Console Program To See It’s Output

To pause the program briefly so you can see the results of running a console application launched from
Visual Studio, add the following line of code to the HelloWorld program:

Console.ReadKey();

While you’re at it, add the public keyword in front of the keyword class in the class definition on
line 9. The source code for this version of HelloWorld.cs will look like example 2.2.

2.2 HelloWorld.cs (Modified)
1 using System;

2 using System.Collections.Generic;

3 using System.Linq;

4 using System.Text;

5 using System.Threading.Tasks;

6

7 namespace HelloWorld

8 {

9 public class HelloWorld

10 {

11 static void Main(string[] args)

12 {

13 Console.WriteLine("Hello World!");

14 Console.ReadKey();

15 }

16 }

17 }

Referring to example 2.2 — When you run this version, the console will pause until you press a key on
the keyboard.

Visual Studio is a powerful IDE and this short demo didn’t even begin to highlight its significant capa-
bilities. I still strongly recommend learning how to create and compile C# programs using only Notepad++
and the C# compiler tool, even if that route makes you think harder and creates a little more struggle on
your part. In this case, a little pain creates a lot of gain.

Figure 2-34: HelloWorld Project’s bin\debug Folder

Figure 2-35: Running HelloWorld.exe via the Command Prompt from Debug Directory

Creating Projects With Microsoft Visual Studio Chapter 2: Small Victories: Creating C# Projects

44 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

The Roslyn Compiler

If you installed Visual Studio Community 2017 you have access to the Roslyn compiler, which sup-
ports the C# language up to and including versions 6 and above. No need to set any environment variables,
just find the Developer Command Prompt for VS 2017. It will be in the Visual Studio 2017 folder in Win-
dows 7 and 10. Launch the Developer Command Prompt and the Projects command prompt you created
earlier and compare them side-by-side as is shown in figure 2-36.

Referring to figure 2-36 — Note that the compiler tool provided with the .NET Framework version
4.7.1 is version 4.7.2556.0, while the Roslyn compiler is version 2.4.0.62225. Even I find this numbering
to be somewhat confusing. Bottom line, if I introduce a C# language feature that requires the Roslyn com-
piler, I’ll highlight that fact in the text and give you step-by-step instructions on how to compile the code.

What is the Roslyn Compiler?

Roslyn is Microsoft’s codename for the .NET Compiler Platform, first introduced around 2011. Ros-
lyn is actually a set of open-source C# and Visual Basic compilers that make it easier for developers to
write advanced code analysis tools. Essentially, the Roslyn compilers integrate better with Visual Studio
and support advanced features offered by C# language versions 6 and above.

A detailed discussion of the differences between the C# compiler that ships with the.NET Framework
and the Roslyn compiler is beyond the scope of this book. For more information about the .NET Compiler
Platform visit the Roslyn GitHub site: https://github.com/dotnet/roslyn

The important points to note about Roslyn are that it’s open source and you can download it free from
the GitHub site. I show you how to install and use the Roslyn compiler from the command-line using the
NuGet package manager in the next section.

Figure 2-36: Projects Command Prompt Above; Developer Command Prompt Below

Chapter 2: Small Victories: Creating C# Projects Installing The Roslyn Compiler Stand-Alone

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 45

Quick Review

Visual Studio is a powerful Integrated Development Environment (IDE) that combines editing, com-
piling, debugging, code profiling, and other services. Visual Studio Community is freely available from
Microsoft.

Even though Visual Studio is a powerful tool, it will serve you well to learn how to compile C# pro-
grams from the command-line. This will enable you to better understand what’s happening under the cov-
ers and let you fix things when something goes wrong.

If you install Visual Studio the Roslyn compilers are already installed. To use the Roslyn compiler
from the command-line simply open the Visual Studio Developer Command Prompt.

Installing The Roslyn Compiler Stand-Alone

This section explains how to download, install, and use the Roslyn compiler from the command-line.
The overall process goes like this:

• Download and install the NuGet package manager
• Use the NuGet package manager to download and install the Roslyn compilers
• Configure environment variables to point to the Roslyn compiler installation location
• Test the configuration by running csc.exe from the command-line

Download and Install the NuGet Package Manager

Go to https://www.nuget.org/downloads and download the latest release of the NuGet package
manager nuget.exe. I recommend putting the executable in the following directory, which you’ll need to
create:

c:\DevTools\NuGet
Open a command prompt and change to the NuGet installation directory and type nuget to get a list of

help commands. Your console output should look similar to figure 2.37.
Referring to figure 2-37 — You’ll use the NuGet install command to install the Microsoft.Net.Compil-

ers package. At the command prompt type nuget install /help to get detailed instructions on how to
use the NuGet install command as is shown in figure 2-38.

Referring to figure 2-38 — Use the -OutputDirectory or -o option to specify the installation direc-
tory.

Use the NuGet Package Manager to Download and Install Rosslyn

I recommend installing the compilers in the following directory:
c:\DevTools\Roslyn

Type the following NuGet command at the command prompt to install the most current version of
Roslyn compilers into this directory:

nuget install Microsoft.Net.Compilers -o c:\DevTools\Roslyn
Your results should look similar to figure 2-39 depending on the version of the Microsoft.Net.Compil-

ers installed.
Referring to figure 2-39 — I recommend inspecting the installation directory to see what was installed

and where. Figure 2-40 shows the contents of the installation directory on my machine.
Referring to figure 2-40 — Note that the csc.exe file is located in the C:\DevTools\Roslyn\Mic-

rosoft.Net.Compilers.2.4.0\tools directory.

Installing The Roslyn Compiler Stand-Alone Chapter 2: Small Victories: Creating C# Projects

46 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Figure 2-37: Type nuget with no Arguments to get List of Commands

Figure 2-39: Results of Installing Microsoft.Net.Compilers NuGet Package

Chapter 2: Small Victories: Creating C# Projects Installing The Roslyn Compiler Stand-Alone

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 47

Configure Environment Variables

Using the environment variable configuration process described earlier in this chapter, I recommend
creating a new user environment variable named ROSLYN_COMPILER_HOME and setting its value to
the path to the Roslyn compiler tools directory.

Next, and this is the tricky part, add the ROSLYN_COMPILER_HOME environment variable to the
user PATH environment variable, and make sure it appears above or before the DOT_NET_FRAME-
WORK_HOME environment variable. The reason for this ordering is that Windows will execute the first
csc.exe it finds in the PATH. (Note: You could actually remove the DOT_NET_FRAMEWORK_HOME
environment variable from the PATH if you use the Roslyn compiler.)

Figure 2-38: NuGet install Command Help

Figure 2-40: Contents of c:\DevTools\Roslyn\Microsoft.Net.Compilers.2.4.0\tools

LINQPad Chapter 2: Small Victories: Creating C# Projects

48 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Compile and Run a Test Program

When you’ve finished twiddling with the environment variables do a test drive. Open a command
prompt (not the Visual Studio Developer Command Prompt) and type csc. Your output should look simi-
lar to figure 2-41.

Quick Review

To compile C# programs that use features found in language versions 6 and above you’ll need to use
the Roslyn C# compiler. If you installed Visual Studio you already have access to the Roslyn compiler
from the command-line via the Visual Studio Developer Command Prompt.

To install the Roslyn compilers stand alone, first download and install the NuGet package manager,
then use it to download and install the Microsoft.Net.Compilers package. Set your environment variables
to point to the Roslyn compiler tools directory. Pay special attention to PATH environment variable order-
ing to ensure you are calling the correct C# compiler.

LINQPad

Another great tool available to help you learn C# is LINQPad. LINQPad lets you quickly test C#, F#,
and Visual Basic code, and connect to and query databases using LINQ (Language Integrated Query) or
SQL. You can obtain the standard edition of LINQPad free of charge.

Installation is straightforward. I recommend you check the box to add lprun.exe to the PATH to let you
run LINQPad from the command-line as is shown in Figure 2-42.

Figure 2-41: Testing Roslyn C# Compiler

Figure 2-42: Check the Box to Add lprun.exe to the PATH

Chapter 2: Small Victories: Creating C# Projects Helpful Command-Prompt Commands

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 49

Figure 2-43 shows a LINQPad session in progress running HelloWorld.

Referring to figure 2-43 — Note how the code only contains the Main() method and the output of the
program is displayed below the code in the Results window. Later in the book I’ll show you how to use
LINQPad to connect to and query a Microsoft SQL Server database using LINQ and SQL.

Quick Review

LINQPad is a great tool for quickly testing short C# code snippets or programs. I recommend down-
loading LINQPad and using it as a study aid.

Helpful Command-Prompt Commands

In this section, I want to provide you with a handful of command-prompt commands you’ll find help-
ful as you start down the path of Windows software development. You may wonder, “Why bother with the
command-prompt when you can just point, click, select, and drag things with a mouse?” Quite simply, a
little knowledge of the command-prompt lets you work faster and more efficiently. Let’s start with the help
command.

help (Getting help on command-prompt commands)

Type help at the command prompt to get a listing of commands as is shown in figure 2-44. To get
help for a specific command type help followed by the command. For example, to get help on the cd com-
mand type help cd as shown in figure 2-45.

Figure 2-43: Running HelloWorld in LINQPad

Helpful Command-Prompt Commands Chapter 2: Small Victories: Creating C# Projects

50 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

dir (List directory contents)

Use the dir command to get a listing of directory contents. The dir command has numerous options
which you can explore more deeply by typing help dir, but I use it mostly just as-is. Just type dir to get
a listing of the current directory. To list a subdirectory in the current directory type dir then a space and

Figure 2-44: help Command Partial Listing

Figure 2-45: Getting help on the cd Command

Chapter 2: Small Victories: Creating C# Projects Helpful Command-Prompt Commands

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 51

then the name of the directory. You can use absolute paths as well to list the contents of any directory from
any other directory, but I find this tedious. Figure 2-46 shows the dir command being run in my c:\Proj-
ects\BookProjects directory.

tree (Display graphic directory structure)

The tree command gives you a graphical display of a directory’s contents as is shown in figure 2-47.

Figure 2-46: dir Command

Figure 2-47: tree Command Partial Listing

Helpful Command-Prompt Commands Chapter 2: Small Victories: Creating C# Projects

52 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

cd (Change directory)

Use the cd command to change directories. Some terms are in order here. The working directory is the
directory you’re currently in. To change to a subdirectory simply type cd and the name of the subdirectory.
To change from the current or working directory to the parent directory use the shortcut cd .. — that’s
the command cd followed by two dots. You’ll need to surround the path with double quotes if any of the
directories in the path contain a space as shown in figure 2-48.

copy and xcopy (Copy files and directories)

Use the copy command to copy files from one location to another. Use the xcopy command to copy
files and entire directory structures. These commands have complex options which I encourage you to
lookup using the command-prompt help command.

md and mkdir (Make directory)

The md and mkdir commands are synonymous. They are both used to create new directories. Simply
type either md or mkdir followed by the name of the directory. You can use absolute path names as well.

del and erase (Delete files)

The del and erase commands are synonymous and are used to delete files. Be careful with these
commands especially if you use wild card characters. For example, to delete every file in a directory that
ends with .txt you would type erase *.txt.

rd and rmdir (Remove directory)

The rd and rmdir commands are synonymous and are used to delete entire directories. Use with cau-
tion!

Where To Go From Here

To learn more about the command-prompt including how to combine commands to create batch files I
recommend Elias Bachaalany’s excellent book “batchography: The Art of Batch Files Programming”.

Quick Review

Knowledge of how to effectively use the command-prompt will make you a more efficient program-
mer and can potentially save you a lot of time fiddling with windows and folders.

Figure 2-48: cd Command — Paths with Spaces Require Double Quotes

Chapter 2: Small Victories: Creating C# Projects Microsoft Imagine

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 53

Microsoft Imagine

Microsoft Imagine, http://imagine.microsoft.com, allows registered students and faculty to
gain access to professional development tools and other software. You already have access to some pretty
powerful development tools via Microsoft’s Visual Studio website, free of charge. Schools can subscribe
to Microsoft Imagine and make other development tools available as well, like Windows Server operating
systems.

Check with your school to find out if they subscribe to Microsoft Imagine and how to access the sub-
scription. You may be surprised at the amount of additional software you have at your disposal.

Summary

All you need to create robust Microsoft C# applications is a good text editor and the C# compiler that’s
included with the .NET Framework. Both can be obtained free of charge.

You must configure your development environment before you can compile programs from the com-
mand-line. This includes creating or editing one or more operating system environment variables. An envi-
ronment variable is used to store data about the operating system environment. There are generally two
types of environment variables: system variables and user variables. System environment variables store
data that affects the operating system environment for all users; user environment variables store data that
affects the operating system environment for a particular user.

Environment variable values can be accessed by enclosing the variable name in percent ‘%’ characters.
The operating system uses the PATH environment variable to locate executable files. You must create

or edit the PATH environment variable to include the full path to the C# compiler (csc.exe).
It’s helpful to create a project folder and a shortcut to the command prompt on your desktop. Set the

command prompt shortcut’s Start in property so it will automatically open in your designated projects
folder. Increase the command prompt shortcut’s screen buffer height and width properties to see more
information in the console window.

It’s also a good idea to set your folder options to display file type extensions. This will prevent head-
aches associated with accidentally saving source files with a “.txt” extension.

To create a C# program you must first create the source file, compile the source file with the csc com-
piler tool, and then execute the program by typing its name at the command prompt and pressing the
Return or Enter key.

You’re bound to get a few compiler errors when you start writing your own programs. Use Google to
search for the error code. This will lead you straight to the answer on Microsoft’s documentation website.
Remember to always fix the first compiler error first!

Visual Studio is a powerful Integrated Development Environment (IDE) that combines editing, com-
piling, debugging, code profiling, and other services. Visual Studio Community is freely available from
Microsoft.

Even though Visual Studio is a powerful tool, it will serve you well to learn how to compile C# pro-
grams from the command-line. This will enable you to better understand what’s happening under the cov-
ers and let you fix things when something goes wrong.

If you install Visual Studio the Roslyn compilers are already installed. To use the Roslyn compiler
from the command-line simply open the Visual Studio Developer Command Prompt.

To compile C# programs that use features found in language versions 6 and above you’ll need to use
the Roslyn C# compiler. If you installed Visual Studio you already have access to the Roslyn compiler
from the command-line via the Visual Studio Developer Command Prompt.

Skill-Building Exercises Chapter 2: Small Victories: Creating C# Projects

54 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

To install the Roslyn compilers stand alone, first download and install the NuGet package manager,
then use it to download and install the Microsoft.Net.Compilers package. Set your environment variables
to point to the Roslyn compiler tools directory. Pay special attention to PATH environment variable order-
ing to ensure you are calling the correct C# compiler.

LINQPad is a great tool for quickly testing short C# code snippets or programs. I recommend down-
loading LINQPad and using it as a study aid.

If you’re a registered student or faculty member, check with your institution to see if they subscribe to
Microsoft Imagine. You may have access to more powerful software development tools.

Skill-Building Exercises

1. Creating and Using Environment Variables: Create an environment variable named “PROJ-
ECTS_HOME”. For its value use the path to your projects folder.

2. Setting Up Your Development Environment: Set up your development environment following the
steps outlined in this chapter. Test your development environment by compiling and running the pro-
gram given in example 2.1.

3. Web Research: Visit Microsoft documentation website https://docs.microsoft.com and famil-
iarize yourself with the information it contains. Locate the C# compiler errors page and bookmark the
page in your web browser.

4. Roslyn Compiler Installation: Download and install the Roslyn compiler using the process explained
in this chapter. If you’ve already configured environment variables to compile programs from the com-
mand-line using the .NET Framework, be sure to order the ROSLYN_COMPILER_HOME environ-
ment variable correctly in the PATH to ensure the correct version of the C# compiler is called.
Optionally, you can remove the DOT_NET_FRAMEWORK_HOME environment variable from the
PATH altogether.

Suggested Projects

1. Alternative .NET Development Environments: Microsoft produces versions of Visual Studio that run
on Linux and Apple’s OS X (macOS). If you’re a Linux or Mac user, download Visual Studio for your
particular environment and create the HelloWorld project discussed in this chapter.

2. Using LINQPad: Download and install LINQPad. Use it to run the HelloWorld code listed in Example
2.2. but change the Console.ReadKey() method to Console.Read().

Self-Test Questions

1. What two things, at minimum, do you need to do C#.NET development?

2. What is an operating system environment variable?

Chapter 2: Small Victories: Creating C# Projects References

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 55

3. What is the difference between a user environment variable vs. a system environment variable?

4. List the general steps required to create environment variables in Windows 7 and 10.

5. What characters must you use before and after an environment variable to get its value?

6. What is the purpose of the PATH environment variable?

7. What should you do if you get more than one compiler error?

8. What’s the advantage of using an IDE like Visual Studio?

9. What are the general steps required to create, compile, and execute a C# program?

10. List a couple of steps you might take to better help you see the output of a console application that runs
briefly and terminates immediately?

References

Microsoft Developer Network website: https://www.msdn.com or https://developer.microsoft.com

Microsoft Visual Studio website: https://www.visualstudio.com

Microsoft TechNet website: https://technet.microsoft.com

Microsoft Docs website: https://docs.microsoft.com

Notes

Notes Chapter 2: Small Victories: Creating C# Projects

56 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

