
C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 103

4 Computers, Programs, And Algorithms

Learning Objectives
• State the purpose and use of a computer
• State the primary characteristic that makes a computer a unique device
• List and describe the four stages of the program execution cycle
• Explain how a computer stores and retrieves programs for execution
• State the difference between a computer and a computer system
• Define the concept of a program from both the human and computer perspective
• State the purpose and use of main, auxiliary, and cache memory
• Describe how programs are loaded into main memory and executed by a computer
• State the purpose and use of the Common Language Runtime (CLR)
• List the similarities between a virtual machine and a real computer 
• Explain the purpose of Common Intermediate Language (CIL)
• Define the concept of an algorithm

Chapter 4

Computers, Programs
And Algorithms

Ravaged Sock Monkey



Introduction Chapter 4: Computers, Programs, And Algorithms

104 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Introduction

Computers, programs, and algorithms are three closely related topics that deserve special attention 
before you start learning about C# proper. Why? Simply put, computers execute programs, and programs 
implement algorithms. As a programmer, you will live your life in the world of computers, programs, and 
algorithms.

As you progress through your studies, you will find it helpful to understand what a computer is, what 
particular feature makes a computer a truly remarkable device, and how a computer functions from a pro-
grammer’s point of view. You will also find it helpful to know how humans view programs, and how 
human-readable program instructions are translated into computer-executable form. 

Next, it will be imperative for you to thoroughly understand the concept of an algorithm and to under-
stand how good and bad algorithms ultimately affect program performance. 

Finally, I will show you how C# programs are transformed into intermediate language (IL) and exe-
cuted by the Common Language Runtime (CLR). Armed with a fundamental understanding of computers, 
programs, and algorithms, you will be better prepared to understand the concepts of a virtual machine, as 
well as its execution performance and security ramifications.

What Is A Computer?

A computer is a device whose function, purpose, and behavior is prescribed, controlled, and changed 
via a set of stored instructions. A computer can also be described as a general-purpose machine. One min-
ute a computer may execute instructions making it function as a word processor or page-layout machine, 
and the next minute it may function as a digital canvas for an artist. Again, this functionality is imple-
mented as a series of instructions. Indeed, in each case the only difference between the computer function-
ing as a word processor and the same computer functioning as a digital canvas is in the set of instructions 
the computer executes. This is what makes a computer a truly remarkable device — it’s a changeable 
machine.

Computer vs. Computer System

Due to the ever-shrinking size of the modern computer, it is often difficult for students to separate the 
concept of the computer from the computer system in which it resides. As a programmer, you will be con-
cerned with both. You will need to understand issues related to the particular processor that powers a com-
puter system in addition to issues related to the computer system as a whole. Luckily though, as a C# 
programmer, you can be extremely productive armed with only a high-level understanding of each. Ulti-
mately, I highly recommend spending the time required to get intimately familiar with how your computer 
operates. In this chapter I use an Intel processor based Apple Mac Pro® as an example, but the concepts are 
the same for any computer or computer system.

Computer System

A typical Apple Mac Pro computer system is pictured in figure 4-1. 
Referring to figure 4-1 — The computer system comprises the system unit, monitor, wireless key-

board, mouse, and any other peripheral devices. The computer system also includes any operating system 
or utility software required to make all the components work together. 

 The system unit houses dual microprocessor modules, the power supply, internal hard disk drives, 
memory, and other system components required to interface the computer to the outside world. 



Chapter 4: Computers, Programs, And Algorithms What Is A Computer?

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 105

These interface components consume the majority of available space within the system unit, as is 
shown in figure 4-2.

The dual microprocessor modules, or simply processors, are connected to the system unit’s main logic 
board with the help of a set of specialized chips referred to as a chipset. Different types of microprocessors 
require different chipsets to help integrate them into the computer system. Electronic pathways called 
buses connect the processors to various interface components. Other miscellaneous electronic components 
located on the main logic board control the flow of communication between the processors and the outside 
world. Figure 4-3 shows a block diagram of a Mac Pro main logic board.

Figure 4-1: Typical Apple Mac Pro Computer SystemImages courtesy Apple Computer, Inc.

System Unit

Wireless Mouse

Wireless Keyboard

Flat Panel Monitor

Figure 4-2: System Unit ComponentsImages courtesy Apple Computer, Inc.

Power Supply

Hard Drives

Microprocessor Module 
tray with memory

Expansion Slots

Figure 4-3: Mac Pro Main Logic Board Block DiagramImage courtesy Apple Computer, Inc.



What Is A Computer? Chapter 4: Computers, Programs, And Algorithms

106 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Figure 4-3 does a good job of highlighting the number of computer system support components 
required to help the processors do their job. The main logic board supports the addition of main memory, 
auxiliary storage devices, communication devices such as a modem, a wireless local area network card as 
well as high-speed Ethernet ports, keyboard, mouse, speakers, microphones, FireWire devices, and third-
party system expansion cards. The heart of the system, however, consists of two Intel Xeon™ X5675 six 
core microprocessors. Let’s take a closer look.

Processor

The Intel Xeon X5675 six core microprocessor pic-
tured in figure 4-4 is a 64-bit computer that contains six 
execution cores in one physical package. Furthermore, 
the Xeon X5675’s design provides two logical processors 
for each execution core. The logical processors are uti-
lized by Intel’s Hyper-Threading Technology (HTT) to 
increase overall instruction processing throughput in 
multithreaded software applications. 

Figure 4-5 shows a simplified block diagram of the 
Xeon X5675 processor architecture. As you can see in 
figure 4-5, a computer system containing two six core 
processors actually has 12 execution units and 24 logical 
processors. 

The Xeon X5675 (Westmere) processor provides 256K of level 2 cache per core, and 12MB of fully 
shared level 3 cache. Turbo Boost technology allows the processor to throttle its speed based on workload. 
For example, if an application is only using one core, the speed of that core will be increased while the 
other three cores will be shut down until needed. Shutting down idle cores saves energy and reduces heat, 
which becomes a problem with multi-core processors.

Figure 4-4: Intel Xeon X5675 Six Core Processor
Im

ag
e 

co
ur

te
sy

 o
f 

In
te

l C
or

p.
.

Figure 4-5: Two Intel Xeon X5675 Six Core Microprocessors

Single processor core



Chapter 4: Computers, Programs, And Algorithms What Is A Computer?

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 107

Three Aspects of Processor Architecture

There are three aspects of processor architecture programmers should be aware of: feature set, feature 
set implementation, and feature set accessibility.

Feature Set

A processor’s feature set derives from its design. Can floating point arithmetic be executed in hard-
ware or must it be emulated in software? Must all data pass through the processor, or can input/output be 
handled off-chip while the processor goes about its business? How much memory can the processor 
access? How fast can it run? How much data can it process per unit time? A processor’s design addresses 
these and other feature-set issues.

Feature Set Implementation

Feature set implementation primarily determines how a processor’s functionality is arranged and exe-
cuted in hardware. How does the processor implement the feature set? Is it a Reduced Instruction Set Com-
puter (RISC) or a Complex Instruction Set Computer (CISC)? Is it superscalar and pipelined? Does it have 
a vector execution unit? Is the floating-point unit on the chip with the processor, or does it sit off to the 
side? Is the super fast cache memory part of the processor, or is it located on another chip? These questions 
all deal with how processor functionality is achieved or how its design is executed.

Feature Set Accessibility

Feature set accessibility is the aspect of a processor’s architecture you are most concerned with as a 
programmer. Processor designers make a processor’s feature set available to programmers via the proces-
sor’s instruction set. A valid instruction in a processor’s raw instruction set is a set of voltage levels that, 
when decoded by the processor, have special meaning. A high voltage is usually translated as “on” or “1”, 
and a low voltage is usually translated as “off” or “0”. A set of on-and-off voltages is conveniently repre-
sented to humans as a string of ones and zeros. Instructions in this format are generally referred to as 
machine instructions or machine code. As processor power increases, the size of machine instructions 
grows as well, making it extremely difficult for programmers to deal directly with machine code. 

From Machine Code To Assembly Language

To make a processor’s instruction set easier for humans to understand and work with, each machine 
instruction is represented symbolically in a set of instructions referred to as assembly language. To the pro-
grammer, assembly language represents an abstraction layer between programmer and machine intended to 
make the act of programming more efficient. Programs written in assembly language must be translated 
into machine instructions before execution. A program called an assembler translates assembly language 
into machine code. 

Although assembly language is easier to work with than machine code, it requires a lot of effort to 
crank out an assembly code program. Assembly language programmers must busy themselves with issues 
like register usage and stack conventions. If you can program in assembly, you understand computer archi-
tecture. 

High-level programming languages like C# add yet another layer of abstraction. C#, with its object-
oriented language features, lets programmers think in terms of solving the problem at hand, not in terms of 
the processor or the machine code it’s ultimately executing. 



Memory Organization Chapter 4: Computers, Programs, And Algorithms

108 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Quick Review

A computer is a machine whose function depends upon the set of instructions it executes. A computer 
is a changeable machine, making it a truly remarkable device.

A computer system contains all the components required to support a processor and its operation. A 
computer system includes one or more processor modules, memory, hard drives, removable media, key-
board, mouse, screens, and other devices which facilitate human interaction with the computer. 

A typical processor module or package contains multiple computer cores. Each processor core sup-
ports two logical processor states which effectively doubles the number of processors. A computer with 
two 6-core Xeon processors has 12 physical cores and 24 logical processors. 

The three aspects of computer architecture are feature set, feature set implementation, and feature set 
accessibility. Essentially, different processors support different types of operations, which is a fundamental 
aspect of their design.

C# is a high-level programming language that abstracts away, or hides many of the difficulties nor-
mally associated with programming a computer with lower level languages.

Memory Organization

Most modern computers share similar memory systems design. As a programmer, you should be aware 
of how computer memory is organized and accessed. The best way to learn how your computer works is to 
poke around in memory and see what’s in there for yourself. This section provides a brief introduction to 
computer memory concepts to help get you started.

Memory Basics

A computer’s memory stores information in the form of electronic voltages. There are two general 
types of memory: volatile and non-volatile. Volatile memory stores data as long as it has power. It will lose 
stored data if power is removed for any length of time. Main memory and cache memory, two forms of ran-
dom access memory (RAM), are examples of volatile memory. Read-only memory (ROM) and auxiliary 
storage devices such as Blu-ray disks, CD-ROMs, DVDs, hard disk drives, USB flash drives, floppy disks, 
and tapes are examples of non-volatile memory. Non-volatile memory stores data indefinitely, even when 
power is removed. 

Figure 4-6: Memory Hierarchy



Chapter 4: Computers, Programs, And Algorithms Memory Organization

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 109

Memory Hierarchy

Computer systems contain several different types of memory. These memory types range from slow 
and cheap to fast and expensive. The proportion of slow and cheap memory to fast and expensive memory 
can be viewed in the shape of a pyramid commonly referred to as the memory hierarchy, as shown in figure 
4-6 above.

The job of a computer system designer with regards to memory subsystems is to make them perform as 
if all the memory they contained were fast and expensive. They use cache memory to store frequently used 
data and instructions close to the processor, and buffer disk reads into memory to give the appearance of 
faster disk access. Figure 4-7 shows a block diagram of the different types of memory used in a typical 
computer system. 

During program execution, the faster cache 
memory is searched first by the processor for any 
requested data or instruction. If it’s not there, a per-
formance penalty occurs in the form of longer overall 
access times required to retrieve the information 
from a slower memory source. As chip densities 
grow, more cache memory is co-located on the pro-
cessor, thus improving overall processing times. The 
Xeon X5675 processor hosts both level 2 and level 3 
cache within the processor package.

Bits, Bytes, Words

Program code and data are stored in main mem-
ory as electronic voltages. Since I’m talking about 
digital computers, the voltage levels represent two 
discrete states depending on the level. Usually, low 
voltages represent no value, off, or 0, while a high 
voltage represents on, or 1. 

When data is stored on auxiliary memory devices, electronic voltages are translated into either electro-
magnetic fields (tape drives, floppy and hard disks) or bumps that can be detected by laser beam (CDs, 
DVDs, etc.)

Bit

The bit represents one discrete piece of information stored in a computer. On most modern computer 
systems bits cannot be individually accessed from memory. However, after the byte to which a bit belongs 
is loaded into the processor, the byte can be manipulated to access a particular bit.

Byte

A byte contains 8 bits. Most computer memory is byte addressable, although as processors become 
increasingly powerful and can manipulate wider memory words, loading bytes by themselves into the pro-
cessor becomes increasingly inefficient. This is the case with the Xeon processor. For that reason, the fast-
est memory reads can be done a word at a time.

Word

A word is a collection of bytes. The number of bytes that comprise a word is computer-system depen-
dent. If a computer’s data bus is 64 bits wide and its processor’s registers are 64-bits wide, then the word 

Figure 4-7: Simplified Memory Subsystem Diagram



Memory Organization Chapter 4: Computers, Programs, And Algorithms

110 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

size would be 8 bytes long (64 bits / 8 bits = 8 bytes). Bigger computers will have larger word sizes. This 
means they can manipulate more information per unit time than a computer with a smaller word size.

Alignment and Addressability

You can expect to find your computer system’s memory to be byte addressable and word aligned. Fig-
ure 4-8 shows a simplified diagram of a main memory divided into bytes and the different buses connect-
ing it to the processor. In this diagram, the word size is 64 bits wide. 

The memory is byte addressable in that each byte can be individually accessed although the entire 
word that contains the byte is read into the processor. Data in memory can be aligned for efficient manipu-
lation. Alignment can be to either a natural boundary or other type of boundary. For example, on a Xeon 
system, the contents of memory assigned to instances of structures are aligned to natural boundaries, mean-
ing a one-byte data element will be aligned to a one-byte boundary. A two-byte element would be aligned 
to a two-byte boundary, and so on. Individual data elements not belonging to structures are usually aligned 
to eight-byte boundaries. 

Quick Review

Computer systems contain a mix of fast, expensive memory, and slow, inexpensive memory. Computer 
system designers must balance the use of each type of memory and structure the memory sub-system in a 
way that makes the computer perform as if the entire system was filled with fast, expensive memory.

Cache memory is high-speed memory located close to the processor. Modern processors contain level 
1, 2, and 3 cache either on the same chip as the processor core, or within the same processor package. 

A program must be fetched from auxiliary storage and loaded into main memory prior to execution. 
Recently accessed instructions and data are stored in cache memory for faster retrieval. A cache hit occurs 
when the processor finds what it’s looking for in the cache. Conversely, if the required data or instruction is 

Figure 4-8: Simplified Main Memory Diagram

.

.
.



Chapter 4: Computers, Programs, And Algorithms What Is A Program?

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 111

not found in the cache, a cache miss occurs instead, delaying program execution while the processor waits 
while the needed data is fetched from slower main memory.

A bit represents a voltage within the processor and is either on or off. A 1 represents on; a 0 represents 
off. A series of eight bits is called a byte. Multiple bytes together represent a word, and the length of a 
word is dictated by the type of processor and width of the memory bus. A 64-bit computer would have a 
word size of 64 bits or 8 bytes. Memory is read into the processor a word at a time.

What Is A Program?

Intuitively you already know the answer to this question. A program is something that runs on a com-
puter. This simple definition works well enough for most purposes, but as a programmer you will need to 
arm yourself with a better understanding of exactly what makes a program a program. In this section I dis-
cuss programs from two aspects: the computer, and the human. You will find this information extremely 
helpful, and it will tide you over until you take a formal course on computer architecture.

Two Views of a Program

A program is a set of programming language instructions plus any data the instructions act upon or 
manipulate. This is a reasonable definition if you are a human, but if you are a processor, it will just not fly. 
That’s because humans are great abstract thinkers and computers are not, so it is helpful to view the defini-
tion of a program from two points of view.

The Human Perspective

Humans are the masters of abstract thought; it is the hallmark of our intelligence. High-level, object-
oriented languages like C# give us the ability to analyze a problem abstractly and symbolically express its 
solution in a form that is both understandable by humans and readable by other programs. By other pro-
grams, I mean the code a programmer writes must be translated from source code instructions into machine 
instructions recognizable by a particular processor. This translation is performed by running a compiler 
that converts the C# code into an intermediate language that is then executed by the Common Language 
Runtime (CLR) Environment. 

To a programmer using an object-oriented programming language like C#, a program is a collection of 
classes that model the behavior of objects in a particular problem domain. These classes model object 
behavior by defining object attributes (data) and methods to manipulate these object attributes. On an even 
higher level, a program can be viewed as an interaction between objects. This view of a program is conve-
nient for humans. 

The Computer Perspective

From a computer’s perspective, a program is simply machine instructions and data. Usually both the 
instructions and data reside in the same memory space. This is referred to as a Von Neumann architecture. 
In order for a program to run, it must first be loaded into main memory. The processor must then fetch the 
address of the first instruction, at which point execution begins. In the early days of computing, programs 
were coded into computers by hand and then executed. Nowadays, all the nasty details of loading programs 
from auxiliary memory into main memory are handled by an operating system — which, by the way, is a 
program. 

Since both instructions and data reside in main memory, how does a computer know when it is dealing 
with an instruction or with data? The answer to this question will be discussed in detail shortly, but here’s a 



The Processing Cycle Chapter 4: Computers, Programs, And Algorithms

112 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

quick answer: it depends on what the computer is expecting. If a computer reads a memory location 
expecting to find an instruction and it does, everything runs fine. The instruction is decoded and executed. 
If it reads a memory location expecting to find an instruction but instead finds garbage, then the decode 
fails and the computer might lock up! Ever seen the blue screen of death in older Microsoft Windows oper-
ating systems?

Quick Review

A program is a set of programming language instructions plus any data the instructions act upon or 
manipulate.

To a programmer using an object-oriented programming language like C#, a program is a collection of 
classes that model the behavior of objects in a particular problem domain. These classes model object 
behavior by defining object attributes (data) and methods to manipulate these object attributes. On an even 
higher level, a program can be viewed as an interaction between objects.

From a computer’s perspective, a program is simply machine instructions and data. Usually both the 
instructions and data reside in the same memory space.

The Processing Cycle

Computers are powerful because they can do repetitive things really fast. When a computer executes a 
program, it constantly repeats a series of processing steps commonly referred to as the processing cycle. 
The processing cycle consists of four primary steps: Instruction Fetch, Instruction Decode, Instruction 
Execution, and Result Store. The step names can be shortened to simply Fetch, Decode, Execute, and 
Store. Different types of processors implement the processing cycle differently, but generally all processors 
carry out these four processing steps in some form or another. The processing cycle is depicted in figure 4-
9.

Fetch

In the Fetch step, the processor reads an instruc-
tion from memory and presents it to the decode sec-
tion. If cache memory is present, it is checked first. 
If the requested memory address contents resides in 
the cache, the read operation executes quickly, oth-
erwise, the processor must wait while the data is 
loaded from the next level cache or from slower 
main memory. A well-designed memory subsystem 
minimizes processor wait times.

Decode

In the Decode step, the instruction fetched from 
memory is translated into voltages that set-up the 
computer’s circuits for the particular operation at 
hand. If the computer thinks it is getting an instruction but instead gets garbage, there will be problems. A 
computer system’s ability to recover from such situations is generally the function of a robust operating 
system.

Figure 4-9: Processing Cycle



Chapter 4: Computers, Programs, And Algorithms Algorithms

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 113

Execute

If the fetched instruction is successfully decoded as a valid instruction in the processor’s instruction 
set, it is executed. A computer is a bunch of electronic switches. Executing an instruction means the com-
puter’s electronic switches are turned either on or off to carry out the actions required by a particular 
instruction. Different instructions cause different sets of switches to be turned on or off.

Store

When an instruction executes, the results, if any, must be stored somewhere. Most arithmetic instruc-
tions leave the result in one of the processor’s onboard registers. Memory-write instructions would then be 
used to transfer these results to main memory. Keep in mind that there is only so much storage space inside 
a processor. At any given time, almost all data and instructions reside in main memory, and are only loaded 
into the processor when needed.

Why A Program Crashes

Notwithstanding catastrophic hardware failure, a computer crashes or locks up because what it expects 
to be an instruction is not. The faulty instruction loaded from memory turns out to be an unrecognizable 
string of ones and zeros. When it fails to decode into a proper instruction, the computer halts because of 
improper switch alignment.

Quick Review

Computers are powerful because they can do repetitive things really fast. When a computer executes a 
program, it constantly repeats a series of processing steps commonly referred to as the processing cycle. 
The processing cycle consists of four primary steps: Instruction Fetch, Instruction Decode, Instruction 
Execution, and Result Store. The step names can be shortened to simply Fetch, Decode, Execute, and 
Store.

Algorithms

Computers run programs; programs implement algorithms. A good working definition of an algorithm 
for the purpose of this book is it’s a recipe for getting something done on a computer. Pretty much every 
line of source code you write is considered part of an algorithm. What I’d like to do in this brief section is 
to make you aware of the concept of good vs. bad algorithms.

Good vs. Bad Algorithms

There are good ways to do something in source code and there are bad ways to do the same exact 
thing. A good example of this can be found in the act of sorting. Suppose you want to sort in ascending 
order the following list of integers:

1, 10, 7, 3, 9, 2, 4, 6, 5, 8, 0, 11

One algorithm for doing the sort might go something like this:

Step 1: Select the first integer position in the list



Algorithms Chapter 4: Computers, Programs, And Algorithms

114 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Step 2: Compare the selected integer with its immediate neighbor
Step 2.2: If the selected integer is greater than its neighbor, swap the two integers
Step 2.3: Else, leave it where it is
Step 3: Continue comparing selected integer position with all other integers repeating steps 2.2 - 2.3
Step 4: Select the second integer position on the list and repeat the procedure beginning at step 2
Continue in this fashion until all integers have been compared to all other integers in the list and have 

been placed in their proper position.
This algorithm is simple and straightforward. It also runs pretty fast for small lists of integers, but it is 

painfully slow if the given list of integers to sort is really long. Another sorting algorithm to sort a list of 
integers goes as follows:

Step 1: Split the list into two equal sublists
Step 2: Repeat step 1 if any sublist contains more than two integers
Step 3: Sort each sublist of two integers
Step 4: Combine sorted sublists until all sorted sublists have been combined

This algorithm runs a little slow on small lists because of all the list splitting going on, but it sorts large 
lists of integers way faster than the first algorithm. The first algorithm lists the steps for a routine I call 
“dumb sort”. Example 4.1 gives the source code for a short program that implements the dumb sort algo-
rithm.

4.1 DumbSort.cs
1 using System;
2
3 public class DumbSort{
4 public static void Main(String[] args){
5 int[] a = {11,10,9,8,7,6,5,4,3,2,1,0};
6
7 int innerloop = 0;
8 int outerloop = 0;
9 int swaps = 0;
10
11 for(int i=0; i<12; i++){
12 outerloop++;
13 for(int j=1; j<12; j++){
14 innerloop++;
15 if(a[j-1] > a[j]){
16 int temp = a[j-1];
17 a[j-1] = a[j];
18 a[j] = temp;
19 swaps++;
20 }
21 }
22 }
23
24 for(int i=0; i<12; i++){
25 Console.Write(a[i] + " ");
26 }
27
28 Console.WriteLine();
29 Console.WriteLine("Outer loop executed " + outerloop + " times.");
30 Console.WriteLine("Inner loop executed " + innerloop + " times.");
31 Console.WriteLine(swaps + " swaps completed.");
32 }
33 }



Chapter 4: Computers, Programs, And Algorithms Algorithms

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 115

Included in the dumb sort source code are several variables intended to help collect statistics during 
execution. These are innerloop, outerloop, and swaps, declared on lines 7, 8, and 9, respectively. Fig-
ure 4-10 gives the results of running the dumb sort test program.

Notice that the inner loop executed 132 times and that 30 
swaps were conducted. Can the algorithm run any better? One 
way to check is to rearrange the order of the integers in the array. 
What if the list of integers is already sorted? Figure 4-11 gives 
the results of running dumb sort on an ordered list of integers:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

It appears that both the outer loop and inner loop execute the 
same number of times in each case, which is of course the way the code is written. But it did run a little 
faster this time because fewer swaps were necessary.

Can the algorithm run any worse? What if the list of integers is com-
pletely unsorted? Figure 4-12 gives the results of running dumb sort 
on a completely unsorted list:

11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0

The outer loop and inner loop 
executed the same number of times, but 66 swaps were necessary to 
put everything in ascending order. So it did run a little slower this 
time.

In dumb sort, because we’re sorting a list of 12 integers, the inner 
loop executes 12 times for every time the outer loop executes. If 
dumb sort needed to sort 10,000 integers, then the inner loop would 
need to execute 10,000 times for every time the outer loop executed. 
To generalize the performance of dumb sort, you could say that for 
some number n integers to sort, dumb sort executes the inner loop roughly n x n times or n2. There is some 
other stuff going on besides loop iterations, but when n gets really large, the loop iteration becomes the 
overwhelming measure of dumb sort’s performance as a sorting algorithm. Computer scientists would say 
that dumb sort has order n2 performance. That is, for a really large list of integers to sort, the time it takes 
dumb sort to do its job is approximately the square of the number n of integers that need to be sorted. 

Growth Rate

When an algorithm’s running time is a function of the size of its input, the term used to describe the 
growth in time to perform its job vs. the size of the input is called the growth rate. Figure 4-13 shows a plot 
of algorithms with the following growth rates: log n, n, n log n, n2, n3, nn.

A steeper plot indicates a worse-performing algorithm. As you can see from the graph, dumb sort, with 
a growth rate of n2, is a bad algorithm, but not as bad as some other algorithms. The good thing about 
dumb sort is that no matter how big its input grows, it will eventually sort all the integers. Sorting problems 
are easily solved. There are some problems, however, that defy straightforward algorithmic solutions. 

Really hard problems can’t be solved directly. These problems fall into either the NP-Hard or NP-
Complete classes. NP stands for nondeterministic polynomial time. For these problems, approximation 
algorithms are used to come close to a solution in a reasonable amount of time. Lots of time and effort is 

Figure 4-10: Dumb Sort Results 1

Figure 4-11: Dumb Sort Results 2

Figure 4-12: Dumb Sort Results 3



Virtual Machines And The Common Language Infrastructure Chapter 4: Computers, Programs, And Algorithms

116 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

spent in trying to find efficient algorithmic solutions for these types of hard problems. You can make a 
career out of the study of algorithms.

Don’t Reinvent The Wheel!

If you are new to programming, the best advice I can offer you is to seek the knowledge of those who 
have come before you. There are many good books on algorithms, some of which are listed in the reference 
section. Studying good algorithms helps you write better code. 

Dumb Sort vs. Merge Sort - Further Exploration

Included with the source code for this book are versions of dumb sort and merge sort that read in and 
sort a file of integers. Also included is a program that lets you generate a file containing any number of 
integers. You can run these programs with files containing different amounts of integers and compare their 
performance yourself.

Quick Review

An algorithm can be thought of as a recipe for getting something done on a computer. There are good 
algorithms and there are bad algorithms. An algorithm considered good for some workloads may perform 
poorly when subjected to other types of workloads. When considering the task of sorting integers, a good 
algorithm for sorting short lists of integers would be considered a bad algorithm for sorting large lists of 
integers. 

Virtual Machines And The Common Language Infrastructure

Figure 4-14 offers an overview of the C# compile and execute process. 
Referring to figure 4-14 — The C# compiler converts one or more C# source files into either a code 

module (.netmodule), a library (.dll), or one of two types of executable files: a console application (.exe) or 
a windows application (.winexe). Code modules are static Common Intermediate Language (CIL) code 
libraries whose code is referenced in your source file(s) and linked (added) to your project at compile time. 
A library, or dynamic link library (.dll), is a code module whose code is referenced in your source file(s) 
and loaded into the VES at application runtime. Hence the term “dynamic”. 

Figure 4-13: Algorithmic Growth Rates

log n

n

n log n

n2

n3

nn

Time

Number of elements to sort



Chapter 4: Computers, Programs, And Algorithms Virtual Machines And The Common Language Infrastructure

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 117

Executable files produced by the compiler can be loaded and executed by the Virtual Execution Sys-
tem (VES). The VES executes and translates the IL instructions contained in the executable managed 
assembly. With the help of a just-in-time (JIT) compiler, it produces machine code that is ultimately exe-
cuted by the target processor. The JIT compiler is so named because it translates IL into machine code as 
the IL instructions are executed by the VES. Blocks of compiled machine code are cached and tagged 
within the VES to prevent recompilation and to speed execution. Figure 4-15 shows what IL instructions 
look like. 

Referring to figure 4-15 — The Microsoft Intermediate Language (MSIL) Disassembler tool provided 
by the Microsoft Windows Software Development Kit (SDK) is used to disassemble the HelloWorld.exe 
program used in chapter 2. The IL instructions shown in the foreground window are those of the Main() 
method. These instructions are executed by the VES and translated into machine code when the Hel-
loWorld.exe program executes.

Virtual Machines

The VES described in the previous section is a program (one or more software components acting in 
concert together) that executes IL instructions. In reality, the VES does more than simply execute IL 
instructions. I present a more detailed description of its responsibilities in the next section. Programs like 
the VES are referred to as virtual machines. The benefit of having C# target a virtual machine instead of a 
specific processor and operating system is the increased flexibility in the range of hardware and operating 
system environments on which C# programs can run.

Figure 4-14: The C# Compile and Execution Process Overview



Virtual Machines And The Common Language Infrastructure Chapter 4: Computers, Programs, And Algorithms

118 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

A program written in any language whose compiler targets a specific processor must be recompiled for 
each different target processor on which the program must run. Not so with C#. Because the C# compiler 
targets a virtual machine, it can run on any computer platform that hosts an implementation of the VES. 
This cross-platform capability is made possible by an international standard known as ECMA - 335 Com-
mon Language Infrastructure (CLI) Partitions I to VI. So just what is this CLI and why should you care?

The Common Language Infrastructure (CLI)

ECMA - 335 specifies a CLI. As its name implies, the CLI specifies or lays down a set of rules that 
language makers, compiler makers, and virtual machine makers must follow if they want their languages 
and tools to run on different implementations of the CLI. 

Four Parts Of The Common Language Infrastructure

The CLI provides architectural specifications for four areas: the Common Type System (CTS), meta-
data, the Common Language Specification (CLS), and the VES. Figure 14-16 graphically illustrates the 
relationship between these pieces of the CLI.

The Common Type System (CTS)

The CTS is the heart of the CLI. The CTS specifies a large set of types and operations common to 
many programming languages. 

Metadata

The CLI uses metadata to describe and reference types defined by the CTS. Metadata can be thought of 
as data that describes data. Metadata is used by CLI tools and the Virtual Execution System (VES) to 
manipulate and manage IL code modules. Metadata is added to managed assemblies during the compila-
tion process.

Figure 4-15: MSIL Disassembler Session Showing Main() Method IL Instructions



Chapter 4: Computers, Programs, And Algorithms Virtual Machines And The Common Language Infrastructure

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 119

The Common Language Specification (CLS)

The CLS provides a set of rules language and compiler implementors must follow to make their lan-
guage interoperable with other CLI languages. Since languages share a CTS, modules generated by one 
language can be used or referenced by programs written in another language. For example, Visual 
Basic.NET modules can be linked to and used by a program written in C#.NET. This language interopera-
bility is made possible by the CLS.

The Virtual Execution System (VES)

The VES executes managed code modules with the help of embedded metadata. Note: You can also 
write programs in C# that include what are referred to as unmanaged code segments. Unmanaged code 
segments allow direct access to the underlying operating system and hardware and thus tie a program to a 
specific platform. 

Figure 4-16: The Common Language Infrastructure Architecture



Virtual Machines And The Common Language Infrastructure Chapter 4: Computers, Programs, And Algorithms

120 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

The Cross Platform Promise

As long as you avoid unmanaged code, you can achieve cross-platform independence as figure 4-17 
illustrates.

Referring to figure 4-17 — Microsoft now supports the mono project (http://mono-project.com) and 
cross platform compatibility is significantly enhanced from previous versions of Mono. As is shown in the 
diagram, the Mono project provides CLI implementations for Apple’s OS X and various Linux platforms. 
It also supports Sun Solaris, iOS, tvOS, watchOS, Nintendo Wii, and Sony PlayStation3 & 4, and a few 
others not listed including Microsoft Windows. Figure 4-18 shows the Robot Rat project of chapter 3 exe-
cuting in the Mono environment on a Mac Pro running Apple’s OS X.

Figure 4-19 gives a simple diagram of Microsoft’s .NET architecture. Compare this diagram with that 
of figure 4-16. Applications created with .NET languages consisting entirely of managed code segments 
are referred to as managed applications. Applications that combine managed and unmanaged code seg-
ments are referred to as hybrid applications. Microsoft’s implementation of the VES is called the Common 
Language Runtime (CLR). The CLR and the .NET class libraries are included with the .NET Framework.

Figure 4-17: Managed Assemblies can be Executed on any System that Implements the Common Language Infrastructure

Figure 4-18: Chapter 3’s Robot Rat Program Running in the Mono Environment on Apple OS X



Chapter 4: Computers, Programs, And Algorithms Virtual Machines And The Common Language Infrastructure

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 121

Visual Studio And Visual Studio Code

At the time this book was released, Microsoft offered Visual Studio and Visual Studio Code for 
MacOS (formally OS X), and Visual Studio Code for Linux platforms. Visual Studio Code allows you to 
develop cross-platform server applications using .NET Core. For more information about these non-Win-
dows .NET development environments refer to Microsoft’s reference sites.

Windows Forms Support In Mono For MacOS And Linux

As I write these words in late February 2018, MacOS support for Windows Forms programming in 
Mono doesn’t work, and neither can you create a Windows Forms application with Visual Studio for 
MacOS. You can create native MacOS GUI applications using C# and the Cocoa framework, but you must 
learn the Cocoa framework. Linux, however, supports mono in all its glory, including support for Windows 
Forms applications. Figure 4-20 shows a Windows Forms application running under Mono on CentOS 7 
Linux.

Figure 4-19: Microsoft .NET Architecture

Figure 4-20: Windows Forms Application Running under Mono on CentOS 7



Summary Chapter 4: Computers, Programs, And Algorithms

122 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

So here are your options, in my opinion, as I see them: You can build Windows Forms applications 
using C# in a Windows environment using the .NET Framework, or, you can build cross-platform console 
applications with relative ease on other operating systems using .NET Core. If you really need to create 
robust, cross-platform GUI applications — I recommend using Java. If you’re solely targeting the Win-
dows operating system, C# is the way to go!

Quick Review

Microsoft .NET is Microsoft’s implementation of the Common Language Infrastructure (CLI) specifi-
cation. The CLI specification, defined in ECMA-335, includes a Common Type System (CTS) which 
defines interoperable language types. Languages designed to run within the CLI are compiled into Com-
mon Intermediate Language (CIL) or simply Intermediate Language (IL) modules. These IL modules can 
be run on any computing system that implements a CLI runtime or Virtual Execution System (VES).

The C# compiler transforms source files into managed assemblies. These can be either console or Win-
dows executables, .netmodules, or Dynamically Linked Libraries (.dlls). Code modules and libraries are 
considered reusable code and can be compiled with source files to create complex applications.

Managed assemblies execute within the Common Language Runtime (CLR). Managed assemblies can 
be combined with native or unmanaged code to create hybrid applications, but this reduces cross-platform 
compatibility.

Summary

A computer is a machine whose function depends upon the set of instructions it executes. A computer 
is a changeable machine, making it a truly remarkable device.

A computer system contains all the components necessary to support a processor and its operation. A 
computer system includes one or more processor modules, memory, hard drives, removable media, key-
board, mouse, screens, and other devices which facilitate human interaction with the computer. 

A typical processor module or package contains multiple computer cores. Each processor core sup-
ports two logical processor states which effectively doubles the number of processors. A computer with 
two 6-core Xeon processors has 12 physical cores and 24 logical processors. 

The three aspects of computer architecture are feature set, feature set implementation, and feature set 
accessibility. Essentially, different processors support different types of operations, which is a fundamental 
aspect of their design.

C# is a high-level programming language that abstracts away, or hides many of the difficulties nor-
mally associated with programming a computer. 

Computer systems contain a mix of fast, expensive memory, and slow, inexpensive memory. Computer 
system designers must balance the use of each type of memory and structure the memory sub-system in a 
way that makes the computer perform as if the entire system was filled with fast, expensive memory.

Cache memory is high-speed memory located close to the processor. Modern processors contain level 
1, 2, and 3 cache either on the same chip as the processor core, or within the same processor package. 

A program must be fetched from auxiliary storage and loaded into main memory prior to execution. 
Recently accessed instructions and data are stored in cache memory for faster retrieval. A cache hit occurs 
when the processor finds what it’s looking for in the cache. Conversely, if the required data or instruction is 
not found in the cache, a cache miss occurs instead, delaying program execution while the processor waits 
while the needed data is fetched from slower main memory.

A bit represents a voltage within the processor and is either on or off. A 1 represents on; a 0 represents 
off. A series of eight bits is called a byte. Multiple bytes together represent a word, and the length of a 



Chapter 4: Computers, Programs, And Algorithms Skill-Building Exercises

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 123

word is dictated by the type of processor and width of the memory bus. A 64-bit computer would have a 
word size of 64 bits or 8 bytes. Memory is read into the processor a word at a time.

A program is a set of programming language instructions plus any data the instructions act upon or 
manipulate. To a programmer using an object-oriented programming language like C#, a program is a col-
lection of classes that model the behavior of objects in a particular problem domain. These classes model 
object behavior by defining object attributes (data) and methods to manipulate these object attributes. On 
an even higher level, a program can be viewed as an interaction between objects. From a computer’s per-
spective, a program is simply machine instructions and data. Usually both the instructions and data reside 
in the same memory space.

Computers are powerful because they can do repetitive things really fast. When a computer executes a 
program, it constantly repeats a series of processing steps commonly referred to as the processing cycle. 
The processing cycle consists of four primary steps: Instruction Fetch, Instruction Decode, Instruction 
Execution, and Result Store. The step names can be shortened to simply Fetch, Decode, Execute, and 
Store.

An algorithm can be thought of as a recipe for getting something done on a computer. There are good 
algorithms and there are bad algorithms. An algorithm considered good for some workloads may be per-
form poorly when subjected to other types of workloads. When considering the task of sorting integers, a 
good algorithm for sorting short lists of integers would be considered a bad algorithm for sorting large lists 
of integers. 

Microsoft .NET is Microsoft’s implementation of the Common Language Infrastructure (CLI) specifi-
cation. The CLI specification, defined in ECMA-335, includes a Common Type System (CTS) which 
defines interoperable language types. Languages designed to run within the CLI are compiled into Com-
mon Intermediate Language (CIL) or simply Intermediate Language (IL) modules. These IL modules can 
be run on any computing system that implements a CLI runtime or Virtual Execution System (VES).

The C# compiler transforms source files into managed assemblies. These can be either console or Win-
dows executables, .netmodules, or Dynamically Linked Libraries (.dlls). Code modules and libraries are 
considered reusable code and can be compiled with source files to create complex applications.

Managed assemblies execute within the Common Language Runtime (CLR). Managed assemblies can 
be combined with native or unmanaged code to create hybrid applications, but this reduces cross-platform 
compatibility.

Skill-Building Exercises

1. Research Sorting Algorithms: The second sorting algorithm listed on page 103 gives the steps for a 
Merge Sort. Obtain a book on algorithms, look for C# code that implements the Merge Sort algorithm, 
and compare it to Dumb Sort. What’s the growth rate for a Merge Sort algorithm? How does it compare 
to Dumb Sort’s growth rate?

2. Research Sorting Algorithms: Look for an example of a Bubble Sort algorithm. How does the Bubble 
Sort algorithm compare to Dumb Sort? What small changes can be made to Dumb Sort to improve its 
performance to that of Bubble Sort? What percentage of improvement is obtained by making the code 
changes? Will it make a difference for large lists of integers?

3. Research The CLI: Visit the ECMA website, download a copy of the CLI specification, and study the 
relationships between the CTS, metadata, the CLS, and the VES. https://www.ecma-international.org/
publications/standards/Ecma-335.htm



Suggested Projects Chapter 4: Computers, Programs, And Algorithms

124 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Suggested Projects

1. Research Computer Systems: Research your computer system. List all of its components including the 
type of processor. Go to the processor manufacturer’s website and download developer information for 
your systems processor. Look for a block diagram of the processor and determine how many registers it 
has and their sizes. How does it get instructions and data from memory? How does it decode the instruc-
tions and process data? 

2. Compare Dumb Sort with Merge Sort: Use the IntFileGenerator utility program included in the 
source code for this chapter to create files containing different amounts of integers. Sort each file with 
the included dumb sort and merge sort programs and note the differences in performance. I recommend 
you create files with: 200, 1000, 10K, 50K, 500K, and 1 million integers. 

3. Compare Different Processors: Select two different microprocessors and compare them to each other. 
List the feature set of each and determine how the architecture of each implements the feature set. 

4. Disassemble a Managed Assembly: The Microsoft Windows SDK is separate from the .NET Frame-
work that you may have downloaded in chapter 2. Download and install the SDK, and use the MSIL 
Disassembler to disassemble one of your C# project’s executable file and inspect its intermediate lan-
guage instructions.

Self-Test Questions

1. List at least five components of a typical computer system.

2. What device do the peripheral components of a computer system exist to support? 

3. From what two perspectives can programs be viewed? How does each perspective differ from the other?

4. What are the four steps of the processing cycle?

5. What, in your own words, does the term algorithm mean?

6. How does a processor’s architecture serve to implement its feature set?

7. How can programmers access a processor’s feature set?

8. What are the advantages of targeting a virtual machine vs. a physical processor? Can you think of any 
disadvantages?

9. What, if any, are the disadvantages of having unmanaged code segments in a C# program?

10. What is meant by the term just-in-time compiler? 



Chapter 4: Computers, Programs, And Algorithms References

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 125

References

ECMA-335 Common Language Infrastructure (CLI), 6th Edition, June 2012 http://www.ecma-interna-
tional.org/publications/standards/Ecma-335.htm

ECMA-334 C# Language Specification, 5th Edition, December 2017http://www.ecma-interna-
tional.org/publications/standards/Ecma-334.htm

Intel Xeon Processor X5675 Specification (12M Cache, 3.06 GHz, 6.40 GT/s Intel QPI) Data Sheet 
https://ark.intel.com/products/52577/Intel-Xeon-Processor-X5675-12M-Cache-3_06-GHz-6_40-GTs-
Intel-QPI

Microsoft Developer Network (MSDN) http://www.msdn.com

Microsoft’s Documentation Website http://docs.microsoft.com

Apple Computer, Incorporated website http://www.apple.com

Mono Project Supported Platforms http://www.mono-project.com/docs/about-mono/supported-plat-
forms

Mono Project Languages http://www.mono-project.com/docs/about-mono/languages



Notes Chapter 4: Computers, Programs, And Algorithms

126 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Notes


