
C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 147

6 Foundations

Learning Objectives
• State the required parts of a simple console application
• State the definition of the terms: “Application”, “Assembly”, and “Module”
• State the purpose of the Main() method
• Describe the differences between the four different versions of the Main() method
• State the purpose of the “using” directive
• Describe the differences between value types and reference types
• State the purpose of statements, expressions, and operators
• State the purpose of the “new” operator
• Apply the “new” operator to dynamically create objects in memory
• List and describe the use of the C# operators
• List and describe the use of the C# reserved keywords
• Demonstrate your ability to create simple C# programs
• Demonstrate your ability to compile C# programs using the command-line compiler

Chapter 6

FoundationsFat Rabbit Canoe Winch

Introduction Chapter 6: Foundations

148 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Introduction

This chapter lays a solid foundation for the understanding of material presented later in the book. Here
you will learn fundamental concepts crucial to building C# applications. Upon completion of this chapter
you will understand the C# type hierarchy and the differences between value types and reference types.
You will understand the purpose of the Main() method, and how to use value type and reference type
objects within the context of a Main() method. I will also show you how to use variables and constants in
simple programs. I will then discuss the C# language operators and demonstrate their use.

The primary challenge facing both students and teachers of a modern object-oriented programming
language like C# is the multitude of complexities presented by both the language itself and its accompany-
ing collection of framework classes, referred to as the .NET Framework Application Programming Inter-
face or simply the .NET API. Since the publication of the second edition of this book, Microsoft has
released the .NET Standard, and .NET Core, which adds to the confusion. I will mitigate this complexity in
this chapter by keeping the example programs concise, and by limiting the use of .NET API classes to
those required for simple console input and output.

Try as I may to make the material contained here easy to understand and free of confusing concepts, I
am hindered in doing so by the very nature of the C# language. For example, the simplest program you can
write in C# must be contained within a class. Thus, the concept of a class is forced upon you when it would
be nice to delay its discussion until later.

If you are completely new to programming, even the material I talk about in this chapter can be intim-
idating. Be patient and keep at it. A keen grasp of the fundamentals pays big dividends when you start to
tackle more complex concepts.

What Is A C# Program?

When I say to you, “Write a program in C# to do this or that...,” what do I mean? There are many
answers to this question, and all of them are correct. Each depends on the complexity of the problem being
solved and the particular approach you might take towards its solution. For example, as you will soon see
later in this chapter, if I ask you to write a program that adds two numbers and displays the result on the
screen, you can write this program as a console application contained in one class. The effort spent analyz-
ing the problem (i.e., adding two numbers and displaying the sum) will be minimal.

Another approach to writing the simple adding program might involve the use of graphical user inter-
face (GUI) components so users can enter the numbers to be added using a familiar Windows interface.
This version of the program can be written either as one class or as multiple classes, it all depends on how
you approach its design. One thing is certain, the GUI version of the program will use more .NET API
classes to create the window and handle user interactions within the interface.

The approach you take to the design of a program depends largely on how much you know about
designing programs. As you progress through this book, you will learn the C# language and program
design concepts hand-in-hand. At first you will see examples of simple, one-class programs. As you are
introduced gradually to object-oriented programming concepts, your knowledge of program design will
increase and you will be able to build more complex programs.

So, when I say, “Write a program in C# to do this or that...,” what you do might be as simple as creat-
ing one class and adding a few lines of code to do a simple operation. This simple program will be con-
tained in one source file. For more complex programming projects, you may need to spend considerable
time analyzing the problem at hand and designing a suitable solution using object-oriented analysis,
design, and programming techniques. The resulting program may be spread across multiple files. That will
come later, for now, let’s just start with a simple console application.

Chapter 6: Foundations A Simple Console Application

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 149

A Simple Console Application

In this section you will learn how to build a simple, one-class console application. This one-class pro-
gram design will serve as the basis for demonstrating many fundamental concepts throughout this and sev-
eral later chapters.

Structure Of A Simple Console Application

Example 6.1 gives the code for a simple C# application.
6.1 SimpleApp.cs

1 using System;
2
3 public class SimpleApp {
4 static void Main() {
5 Console.WriteLine("Howdy Stranger!");
6 }
7 }

Referring to example 6.1 — SimpleApp is the name of the class that contains the Main() method. On
line 1, a using directive tells the compiler that this source file refers to classes and constructs declared
within the System namespace. (I cover namespaces in chapter 9.) Specifically, in this short program, I am
using the System.Console class to send output to the command console.

Line 3 includes the reserved keywords public and class to declare the class SimpleApp. At the end of
line 3 there appears an opening curly brace ‘{‘. This signals the beginning of SimpleApp’s class body.
Everything belonging to a class, that is all fields, properties, methods, etc., appear in the class body
between the opening and closing curly braces.

The start of the Main() method begins on line 4. The keywords static and void are used to declare the
Main() method. The Main() method, as you can see, contains opening and closing parentheses “()”. The
parentheses denote the beginning and ending of an optional method parameter-list. A parameter represents
an object that will be passed to a method for processing when the method is called. (I’ll talk more about
Main() method parameters later.)

At the end of line 4, an opening curly brace denotes the beginning of the Main() method body. Any
code appearing between the Main() method’s opening and closing curly braces belongs to the Main()
method. In the case of example 6.1, the Main() method contains one line of code, line 5, which is a call to
the Console class’s WriteLine() method. The WriteLine() method writes different types of objects to the
console. In this case, I’m writing a string of characters (i.e., a String object) to the console. Line 6 contains
the Main() method’s closing curly brace ‘}’ and line 7 contains the SimpleApp class’s closing curly brace.

To compile this program at the command prompt, you would save the source code in a file named Sim-
pleApp.cs and use the csc compiler tool like so:

csc SimpleApp.cs
This creates an assembly named SimpleApp.exe. Figure 6-1 shows the results of running this program.

The following section discusses assemblies and Main() methods in greater detail.

Figure 6-1: Results of Running Example 6.1

Definition Of Terms: Assembly, Manifest, Module, Application, And Entry Point Chapter 6: Foundations

150 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Definition Of Terms: Assembly, Manifest, Module, Application, And Entry Point

In the words of the Common Language Infrastructure (CLI) standard: “An assembly is a collection of
resources that are built to work together to deliver a cohesive set of functionality,” or “An assembly is a set
of one or more files deployed as a unit.”

Every assembly contains a manifest that lists, among other things, its contents and the data types it
exports. An assembly can consist of one file, or it can consist of multiple files.

A module is a single file that can be executed by the virtual execution system (VES). (See chapter 4 for
a discussion of the VES). An assembly can consists of one or more modules. Every assembly contains at
least one module.

An application is an assembly that has an entry point. When an application is loaded into the VES, it
has to start execution at some point in the code. This point is referred to as the entry point. The entry point
for applications written in C# is the Main() method. I will talk more about the Main() method shortly.

Essentially, you compile a C# program into an assembly. This assembly can be an application (.exe) or
a dynamically linked library (.dll). You can also compile C# programs into .netmodules but these cannot
be executed unless they are linked to an assembly.

If your program has one class that contains a Main() method, then it can be compiled directly into an
application. This file will have a “.exe” filename extension. You can execute this file by typing its name at
a command prompt or by double-clicking its icon. If you try to compile a program into an application that
has no Main() method, you will get the following error message:

‘[assembly file name]’ does not contain a static ‘Main’ method suitable for
an entry point

Modules of different languages that conform to the CLI specification can be combined with modules
written in C# to form an executable assembly. Cross-language compatibility is one of the promises of both
the .NET and the broader CLI initiative.

Purpose Of The Main() Method

The purpose of the Main() method is to provide an entry point for application execution. As I stated
earlier, without a Main() method, the virtual execution system has no way of knowing where to start run-
ning a program.

Main() Method Signatures

The Main() method can have the following four signatures:
static void Main() { }
static void Main(string[] args) { }
static int Main() { }
static int Main(string[] args) { }
The term method signature refers to the combination of a method’s name and its parameter list. A

method’s return type is not considered part of its signature, but the Main() method can optionally return an
integer value, which yields four different versions. As these four method signatures show, the Main()
method can return void (nothing) or optionally an integer value, and take either no parameters or a string
array parameter.

The purpose of the string array parameter is to enable the passing of command-line arguments to the
program. I will show you how to do this in chapter 8 after you learn about arrays.

The SimpleApp class shown in example 6.1 used the first version of Main(). It could have easily used
the other versions as well. Example 6.2 shows the SimpleApp class employing the second version of the
Main() method.

Chapter 6: Foundations Reserved Keywords, Contextual Keywords, And Identifiers

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 151

6.2 SimpleApp (Version 2)
1 using System;
2
3 public class SimpleApp {
4 static void Main(string[] args) {
5 Console.WriteLine("Howdy Stranger!");
6 }
7 }

Referring to example 6.2 — This version of the SimpleApp class produces the same output when exe-
cuted as that shown in figure 6-1. In this case, the string array parameter named args is ignored.

Keep in mind that the only four versions of the Main() method authorized as entry points are those
shown above. If you tried to use a method named Main() that took a different type or number of parame-
ters, then you would receive a compiler warning. Let’s see what happens if we try to use a different Main()
method argument type. Example 6.3 gives the code.

6.3 SimpleApp (Version 3)
1 using System;
2
3 public class SimpleApp {
4 static void Main(int i) { // will not compile!
5 Console.WriteLine("Howdy Stranger!");
6 }
7 }

Referring to example 6.3 — The Main() method string parameter has been replaced with an integer
parameter. When you attempt to compile this version of the program, it produces the error messages shown
in figure 6-2.

Quick Review

A class that contains a Main() method can be compiled into an executable assembly referred to as an
application. A class with no Main() method can be compiled into either a library (.dll) or a .netmodule.
One or more libraries or .netmodules can be combined with source code to create complex assemblies.
Assemblies created in CLI compliant languages other than C# can be combined with C# assemblies to
form executable assemblies.

The Main() method provides an entry point for program execution. If you try to compile an application
without a Main() method, you’ll receive a compiler error.

Reserved Keywords, Contextual Keywords, And Identifiers

When you write programs in C#, you’ll need to be aware of keywords that are reserved for use by the
C# language, and contextual keywords that have special meaning depending on where they appear in the
code. You’ll also need to think up names for classes, structures, fields, properties, methods, and other enti-
ties within your program. To do this you must understand how to form proper identifiers and use names

Figure 6-2: Results of Compiling Example 6.3 with Improper Main() Method Signature

Reserved Keywords, Contextual Keywords, And Identifiers Chapter 6: Foundations

152 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

that don’t conflict with the reserved keywords. This section introduces you to C#’s reserved keywords,
contextual keywords, and identifier naming conventions.

Reserved Keywords

A keyword is a reserved, predefined identifier that has special meaning to the C# compiler. Table 6-1
lists the C# language reserved keywords.

Referring to table 6-1 — There’s no need to memorize the entire list. In time, as you write increasingly
complex programs, you will come to know most of them intimately. The important thing to note right now
is that reserved keywords have special meaning in the C# language. You can’t hijack them for your own
purpose.

In the SimpleApp code shown in example 6.1, you saw several keywords put to use. These included
class, public, static, void, string, and using. The class keyword is used to introduce a new class type name,
in this case the string of characters “SimpleApp”. Contextual Keywords

A contextual keyword holds special meaning depending upon where it appears in a program. Several
contextual keywords mean different things in different contexts. Table 6-2 lists the contextual keywords.

abstract as base bool break byte

case catch char checked class const

continue decimal default delegate do double

else enum event explicit extern false

finally fixed float for foreach goto

if implicit in in (Generic
Modifier)

int interface

internal is lock long namespace new

null object operator out out (Generic
Modifier)

override

params private protected public readonly ref

return sbyte sealed short sizeof stackalloc

static string struct switch this throw

true try typeof uint ulong unchecked

unsafe ushort using using static virtual void

volatile while

Table 6-1: C# Reserved Keywords

add alias ascending async await descending

dynamic from get global group into

join let nameof orderby partial (type) partial (method)

Table 6-2: Contextual Keywords

Chapter 6: Foundations Reserved Keywords, Contextual Keywords, And Identifiers

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 153

Keyword Categories

C# keywords can be organized into categories, which makes them easier to digest. Table 6-3 lists the
reserved keywords by category.

Referring to table 6-3 — The keywords you’ll learn first include a small handful of the type keywords
(object, string, int, char, class, struct), namespace keywords (using, namespace), modifiers (public, pri-
vate, static), operator keywords (new), access keywords (this), literal keywords (true, false, null), contex-
tual keywords (var), and finally statement keywords (if, else, while, do, for, foreach, return, try-catch).

Again, don’t bother, nor even try, to memorize these keywords. In short order, after you’ve written a
few programs, their use will become second nature. You won’t use all the keywords unless you do some
very complex programming.

remove select set value var when (filter con-
dition)

where (generic
type constraint)

where (query
clause)

yield

Keyword Category Keywords

Types bool, byte, char, class, decimal, delegate, double, dynamic, enum, float,
int, interface, long, object, sbyte, short, string, struct, uint, ulong, ushort,
var, void

Modifiers abstract, async, const, event, extern, in (generic modifier), internal, new,
out (generic modifier), override, partial, private, protected, public,
readonly, sealed, static, unsafe, virtual, volatile

Statement Keywords break, checked, continue, do, fixed, for, foreach-in, goto, if-else, lock, re-
turn, switch-case, throw, try-catch, try-finally, try-catch-finally, un-
checked, while

Method Parameters params, out (paremeter modifier), ref

Namespace Keywords extern alias, namespace, using, using static,

Operator Keywords as, await, is, nameof, new, new (constraint), sizeof, typeof, true, false,
stackalloc, nameof

Conversion Keywords explicit, implicit, operator

Access Keywords base, this

Literal Keywords null, default, true, false

Contextual Keywords add, async, await, dynamic, get, global, partial (type), partial (method), re-
move, set, value, var, when (filter condition), where (generic type con-
straint), yield

Query Keywords from, where, select, group, into, orderby, join, let, ascending, descending,
on, equals, by, in

Table 6-3: C# Keywords Organized by Category

Table 6-2: Contextual Keywords

Reserved Keywords, Contextual Keywords, And Identifiers Chapter 6: Foundations

154 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Identifiers

An identifier is a sequence of characters (letters, numbers, and symbols), that represents the name of a
class, structure, method, variable, constant, namespace, field, property, or other entity within a program.
Examples of identifiers you’ve encountered so far include all the reserved keywords, contextual keywords,
and, as I mentioned earlier, the name of the SimpleApp class in example 6.1.

The string of characters “SimpleApp” is an identifier that I made up. The act of programming requires
you to invent names for lots of things in your programs like variables, constants, class and method names.
As long as the names you choose for these objects are different from the reserved keywords, you’ll be fine.
But what would happen if you were to try and introduce a new name for an object within your program that
has already been reserved? Well, let’s see. Example 6.4 gives the code for a naughty little program that
tries to declare a class named “class”.

6.4 Naughty Program
1 using System;

2

3 public class class { // <-- will cause an error when compiled

4 static void Main(){

5 Console.WriteLine("Bad, bad program...!");

6 }

7 }

Referring to example 6.4 — An attempt is made on line 3 to introduce a new class named “class”. But
since class is a reserved keyword, this causes the compiler to pitch a fit, as is shown in figure 6-3.

Identifier Naming Rules

It’s easy to avoid trouble in formulating identifier names if you take the time to give the objects in your
code names that make sense within the context of the problem at hand. Creating valid identifiers is easy, as
you’ll see. What takes a little more skill is effectively naming objects within a program that correspond to
real world objects in the problem domain. For more information on this topic, see the discussion on iso-
morphic mapping in chapter 1.

Identifiers can start with a letter or the underscore ‘_’ character. The starting letter can be uppercase or
lowercase. The starting character can be followed by any number of letters, underscores and decimal dig-
its. Unicode character escape sequences can be used as well, but putting these in your identifiers makes
them difficult to read and understand.

Although I said earlier that reserved keywords cannot be used as identifiers, I will recant somewhat
and say that if you add the ‘@’ character in front of a keyword, you can use it as an identifier. The reason
you might want to do this is if you’re combining C# modules with modules written in other languages
where the keywords in C# are not necessarily keywords in the other language.

Example 6.5 shows how this is done.

Figure 6-3: Errors Produced when Attempting to Reintroduce a Reserved Keyword

Chapter 6: Foundations Types

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 155

6.5 Somewhat Bad Program
1 using System;
2
3 public class @class { // <-- This will work...!
4 static void Main(){
5 Console.WriteLine("Works but not recommended...!");
6 }
7 }

Referring to example 6.5 — The ‘@’ character is added to the beginning of the second occurrence of
the class keyword on line 3, which now forms a valid identifier. (The identifier is “@class”.) Although
this works, I don’t recommend doing this as the inevitable result will be code that’s hard to read, under-
stand, and maintain. I leave it up to you to compile example 6.5 and see for yourself the results of its exe-
cution.

Key Points To Remember

• Reserved keywords can’t be reused as a name or identifier
• Prefix ‘@’ to keywords to use them as identifiers (Not recommended)
• Keywords can be organized into categories: types, modifiers, statement keywords,
method parameters, namespace keywords, operator keywords, conversion keywords,
access keywords, literal keywords, contextual keywords, and query keywords

• Contextual keywords can be used as identifiers when not in the context in which they are
recognized as keywords (Not recommended)

Quick Review

Reserved keywords are identifiers that have special meaning within the C# language. You cannot rein-
troduce a reserved keyword as a name for an object within your program. You can, however, prefix the ‘@’
character to a reserved keyword to formulate a valid identifier, but I discourage you from doing this as it
renders code hard to read, understand, and maintain.

Identifiers are sequences of characters that represent names of objects in a program. Identifiers are
used to formulate the name of classes, structures, methods, variables, constants, properties, fields, enums,
etc.

Identifiers can start with either an uppercase or lowercase letter or an underscore ‘_’ character fol-
lowed by any number of letters, digits, and underscores.

Types

C# is a strongly typed programming language. The term strongly typed means that all objects in a C#
program must be associated with a particular type. An object’s type is a specification of the legal opera-
tions that can be performed on that object. For example, the ‘+’ operator can be applied to integer (int)
objects and strings, and the Append() method can be called on StringBuilder objects. Generally speaking,
if you try to perform an operation on an object that its particular type does not support, you will get a com-
piler error, or worse, a runtime error.

There are three categories of types in the C# language: value types, reference types, and pointer types.
Pointer types can be used when writing unmanaged code. I cover pointer types in chapter 26.

Figure 6-4 gives the complete C# type hierarchy. Referring to figure 6-4 — Value types and reference
types each have several type subcategories. The important thing to note in figure 6-4 is the existence of the
C# predefined types. These are the types that are built into the language and are aliases to corresponding
structures in the System namespace. Notice that the predefined type names all start with lowercase letters.

Types Chapter 6: Foundations

156 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

All but three of the predefined types are simple value types. The types object and string are class types,
which is a subcategory of reference types. The dynamic type allows you to interact with an object without
having to know its exact type. When you use a dynamic type you gain flexibility but lose static compiler
type checking, which, if you’re not careful, can lead to unexpected disasters when you attempt to call an
operation on a type that does not support that operation.

Value types behave differently from reference types, and I explain these behavioral differences in the
next section.

Value Type Variables vs. Reference Type Variables

This section explains the differences between value type and reference type variables.

Value Type Variables

A value type variable contains its very own copy of its data. Let’s take a look at a simple example of
value types in action.

6.6 ValueTypeTest.cs
1 using System;
2
3 public class ValueTypeTest {
4 static void Main(){
5 int i = 0;
6 int j = i;
7 j = j+1;
8 Console.WriteLine("The value of i is: " + i);
9 Console.WriteLine("The value of j is: " + j);
10 }
11 }

Referring to example 6.6 — An integer value type variable named i is declared and initialized on line
5. The term variable means a named storage location in memory whose value can be changed during pro-

Figure 6-4: C# Type Hierarchy

Chapter 6: Foundations Types

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 157

gram execution. On line 6, another integer variable named j is declared and initialized to the value of i. On
line 7, a simple addition operation is performed on the variable j adding 1 to its value. Adding 1 to the vari-
able j does not affect the value of the variable i. The code on lines 8 and 9 print the values of i and j to the
console. Figure 6-5 shows the results of running this program.

Reference Type Variables

A reference type variable contains the memory address of a reference type object. Two different refer-
ence type variables can point to the same reference type object in memory. The following program offers
an example.

6.7 ReferenceTypeTest.cs

1 using System;

2 using System.Text;

3

4 public class ReferenceTypeTest {

5 static void Main(){

6 StringBuilder sb1 = new StringBuilder();

7 StringBuilder sb2 = sb1;

8 sb1.Append("Howdy Pawdner!");

9 Console.WriteLine(sb1);

10 Console.WriteLine(sb2);

11 }

12 }

Referring to example 6.7 — On line 2, another using directive provides shortcut name access to the
StringBuilder class located in the System.Text namespace. On lines 6 and 7, in the body of the Main()
method, two StringBuilder reference variables named sb1 and sb2 are declared and initialized. Notice that
in order to create a StringBuilder object, you must use the new operator as is shown on line 6. On line 7, the
StringBuilder variable named sb2 is initialized to the same value as sb1. Remember, reference type vari-
ables store memory addresses to objects located in memory. So, when the value of sb1 is assigned to sb2,
sb2 is being assigned a memory address. Now sb1 and sb2 both “point” to or “reference” the same String-
Builder object in memory. Any operation performed on the object pointed to by sb1 affects the object
pointed to by sb2 since, in this case, it is the same object. This is what happens when the Append() method
is called via the sb1 variable adding the character string “Howdy Pawdner!”. Note the results of running
this program shown in figure 6-6.

Figure 6-5: Results of Running Example 6.6

Figure 6-6: The Results of Running Example 6.7

Types Chapter 6: Foundations

158 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Maybe Some Pictures Will Help

Figure 6-7 offers a simple conceptual view of value-type memory allocation based on the code pre-
sented in example 6.6.

Referring to figure 6-7 — The integer variables i and j each hold their very own copy of their assigned
values. When the value of variable i is assigned to the variable j, a copy of i’s value, in this case 0, is made
and stored in j’s memory location.

Figure 6-8 shows a simple conceptual view of reference type memory allocation based on the code
presented in example 6.7.

Referring to figure 6-8 — The StringBuilder variable sb1 contains the memory address of a String-
Builder object. The StringBuilder object was created with the expression “new StringBuilder()” which cre-
ates the object and returns the address of the object’s location in memory. When the value of sb1 is
assigned to the variable sb2, both variables will point to the same object in memory. When two reference
variables point to the same object, any operation performed on one affects the other, as is shown in figure
6-9.

Mapping Predefined Types To System Structures

All the predefined types, with the exception of dynamic, correspond to structures within the System
namespace of the .NET API. For example, the predefined simple type int is mapped to the System.Int32
structure. The System.Int32 structure inherits from the System.ValueType class, as do all value types and

Figure 6-7: Value Type Memory Allocation

Figure 6-8: Reference Type Memory Allocation

Figure 6-9: Results of Calling the Append() Method via the sb1 Variable

Chapter 6: Foundations Types

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 159

enumerations. Example 6.8 gives an alternative version of the ValueTypeTest code originally presented in
example 6.6.

6.8 ValueTypeTest.cs (Version 2)

1 using System;

2

3 public class ValueTypeTest {

4 static void Main(){

5 Int32 i = 0;

6 Int32 j = i;

7 j = j+1;

8 Console.WriteLine("The value of i is: " + i);

9 Console.WriteLine("The value of j is: " + j);

10 }

11 }

Referring to example 6.8 — Compare this program with example 6.6. Notice the only difference
between the two programs is the substitution here of the type Int32 for the simple type int. Table 6-4 lists
the predefined types along with their corresponding System namespace structures, default values, and
value ranges.

Type Description
 System Namespace
Structure or Class

Default Value† / Value Range

object The base class of all types Object Class Default value: null

string A sequence of Unicode code
units

String Class Default value: null

sbyte 8-bit signed integral type SByte Structure Default value: 0
-128 to 127

short 16-bit signed integral type Int16 Structure Default value: 0
-32768 to 32767

int 32-bit signed integral type Int32 Structure Default value: 0
-2,147,483,648 to 2, 147,483,647

long 64-bit signed integral type Int64 Structure Default value: 0
-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

byte 8-bit unsigned integral type Byte Structure Default value: 0
0 to 255

ushort 16-bit unsigned integral type UInt16 Structure Default value: 0
0 to 65535

uint 32-bit unsigned integral type UInt32 Structure Default value: 0
0 to 4,294,967,295

ulong 64-bit unsigned integral type UInt64 Structure Default value: 0
0 to 18,446,744,073,709,551,615

float single-precision floating point
type

Single Structure Default value: 0.0
-3.402823e38 to 3.402823e38

Table 6-4: Predefined Type Mappings, Default Values, and Value Ranges

Statements, Expressions, and Operators Chapter 6: Foundations

160 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Nullable Types

By default, reference types are nullable types, and value types are non-nullable. In other words, you
can assign the value null to an object reference like so:

StringBuilder sb = null;

...but you can’t ordinarily do this to value types (structures). You can, however, make a value type nul-
lable by appending the nullable operator ‘?’ to the type when you declare a variable like so:

int? i = null;

The nullable operator ‘?’ is short for Nullable<int> in this case.
Now, you don’t normally want to do this sort of thing in your code, but when dealing with databases

that may contain null values, nullable types come in handy. I discuss nullable types in greater detail in
chapter 20.

Quick Review

C# has three kinds of types: value types, reference types, and pointer types. Value type variables con-
tain the actual data as defined by the type. Reference type variables contain a reference to an object in
memory. Pointer types are used when writing unmanaged code.

Two or more reference type variables can reference the same object in memory. The C# predefined
types map to structures within the System namespace. System.Object is the base type for all types.

Statements, Expressions, and Operators

Statements are the fundamental building blocks of C# programs. A statement can be thought of as the
smallest standalone element of a program, and programs are built using sequences of statements. The sim-
plest type of statement is the empty statement. An empty statement would look like this:

;

It’s just a lonely semicolon on a line by itself, although it doesn’t have to be on a line by itself.

double double-precision 64-bit floating
point type

Double Structure Default value: 0.0
-1.79769313486232e308
to 1.79769313486232e308

bool Represents true or false Boolean Structure Default value: false
true or false

char character type (Unicode code
unit)

Char Structure Default value: \u0000
Any Unicode value

decimal decimal type with at least 28
significant digits

Decimal Structure Default value: 0
-79,228,162,514,264,337,593,543,950,335
to
79,228,162,514,264,337,593,543,950,335

† Default values are assigned to class or structure fields. Local method variables must be explicitly assigned.

Type Description
 System Namespace
Structure or Class

Default Value† / Value Range

Table 6-4: Predefined Type Mappings, Default Values, and Value Ranges

Chapter 6: Foundations Statements, Expressions, and Operators

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 161

You’ve already seen statements in action in this chapter’s example programs. The following line of
code is taken from example 6.6:

int i = 0;

This is an example of a local variable declaration statement. It’s a local variable declaration because
this line of code appeared within the body of a method, in this case, the Main() method. This variable dec-
laration statement contains within it an expression statement. The assignment operator ‘=’ assigns the
value 0 to the variable i. Complex statements can be formed by combining statements within statements.

Notice that the statement above is terminated by the semicolon ‘;’ character. The semicolon character
indicates a line of execution. Note the following three lines of code:

The results of the execution of line 1 will be fully complete before line 2 begins execution. And again,
the results of line 2 will be fully available when line 3 begins execution.

Statement Types

There are eighteen different types of statements in the C# language. These are listed in table 6-5.

Statement Type: Statement Lists and Block Statements

goto Statement

Local Constant Declarations

Local Variable Declarations

Expression Statements

if Statement

switch Statement

while Statement

do Statement

for Statement

foreach Statement

break Statement

continue Statement

return Statement

yield Statement

throw and try Statements

checked and unchecked Statements

lock Statement

Table 6-5: C# Statement Types

1 int i = 0;
2 int j = i;
3 int j = j + 1;

Statements, Expressions, and Operators Chapter 6: Foundations

162 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Referring to table 6-5 — A statement can be any of the statement types listed in the right column. All
of these statement types are discussed throughout the book, so I will not give examples of each here. With
sufficient programming experience, their use becomes second nature. I will, however, elaborate on how the
different types of C# operators are used in expression statements. This is the topic of the next section.

Operators And Their Use

Table 6-6 lists the C# operators by expression category and precedence.

using Statement

Category Operator Expression Description

Primary x.m Member access

x?.m Null conditional member access

x?[i] Null conditional index access

f(...) Method and delegate invocation

a[...] Array and indexer access

x++ Post-increment

x-- Post-decrement

new T(...) Object and delegate creation

new T(...){...} Object creation with initializer

new {...} Anonymous object initializer

new T[...] Array creation

typeof(T) Obtain System.Type object for T

checked(x) Evaluate expression in checked context

unchecked(x) Evaluate expression in unchecked context

default(T) Obtain default value of type T

delegate {...} Anonymous method

sizeof Returns size of type in bytes

-> Pointer dereferencing with member access

Table 6-6: Operator Categories by Precedence

Table 6-5: C# Statement Types

Chapter 6: Foundations Statements, Expressions, and Operators

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 163

Unary +x Identity

-x Negation

!x Logical Negation

~x Bitwise Negation

++x Pre-increment

--x Pre-decrement

(T)x Cast object x to type T

await Awaits a Task

&x Addressing

*x Dereferencing

Multiplicative x * y Multiplication

x / y Division

x % y Remainder (Modulus operator)

Additive x + y Addition, string concatenation, delegate combination

x - y Subtraction, delegate removal

Shift x << y Shift left

x >> y Shift right

Relational and Type-Test-
ing

x < y Less than

x > y Greater than

x <= y Less than or equal

x >= y Greater than or equal

x is y Return true if x is of type T, false otherwise

x as y Return x typed as T, or null if x is not of type T

Equality x == y Equal

x != y Not equal

Logical AND x & y Integer bitwise AND, boolean logical AND

Logical XOR x ^ y Integer bitwise XOR, boolean logical XOR

Logical OR x | y Integer bitwise OR, boolean logical OR

Conditional AND x && y Evaluates y only if x is true (Short circuiting AND)

Conditional OR x || y Evaluates y only if x is false (Short circuiting OR)

Category Operator Expression Description

Table 6-6: Operator Categories by Precedence

Statements, Expressions, and Operators Chapter 6: Foundations

164 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Referring to table 6-6 — I will demonstrate many of the operators listed above throughout the rest of
this chapter and defer the coverage of others, like the null coalescing and anonymous function operators
later in the book when the context for their use can be clarified.

Operator Precedence and Associativity

The term operator precedence refers to the order in which the C# compiler evaluates the operators in
an expression statement. Consider for a moment the following line of code:

int i = 25 - 2 * 2;

The variable i is being assigned some value. But what value? If you leave it to the compiler to apply its
precedence rules, the variable i will be assigned the value 21. The multiplication operator ‘*’ has a higher
precedence than the subtraction operator ‘-’. This may or may not be the way you intended the expression
to evaluate.

The term associativity refers to the direction in which the C# compiler performs a series of operations.
Binary arithmetic operators like the multiplication and subtraction operators used above have left-to-right
associativity. For example, given an expression of the form 2-2-2 the order in which the subtraction oper-
ations are performed is (2-2)-2. In the example statement given above, the expression 2*2 was per-
formed first because the multiplication operator has a higher precedence than the subtraction operator.

Assignment operations have right-to-left associativity. Thus, the compiler evaluates an expression of
the form i=j=k as i=(j=k).

Null Coalescing x ?? y Evaluates to y if x is null, to x otherwise

Conditional x ? y : z Evaluates y if x is true, z if x is false

Assignment x = y Assignment

x *= y Compound assignment with multiplication

x /= y Compound assignment with division

x %= y Compound assignment with remainder/modulus

x += y Compound assignment with addition

x -= y Compound assignment with subtraction

x <<= y Compound assignment with left shift

x >>= y Compound assignment with right shift

x &= y Compound assignment with bitwise AND

x ^= y Compound assignment with bitwise XOR

x |= y Compound assignment with bitwise OR

(T x) => y Anonymous function (lambda expression)

Null-Conditional ?. Null-conditional member access

?[Null-conditional index access

Category Operator Expression Description

Table 6-6: Operator Categories by Precedence

Chapter 6: Foundations Statements, Expressions, and Operators

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 165

Forcing Operator Precedence and Associativity Order With Parentheses

You can force the compiler to evaluate a complex expression a particular way by using parentheses. If
we apply parentheses to the expression shown above in the following manner:

int i = (25 - 2) * 2;
This will cause the subtraction operator ‘-’ to be evaluated before the multiplication operator ‘*’,

yielding the value 46. It’s good programming practice to always use parentheses to show how you intend
an expression to be evaluated. Doing so eliminates the possibility of making hard-to-find mistakes and
makes your code easier to read and understand.

Operators and Operands

Operators are applied to operands. For example, in the following expression fragment:
25 - 2
The subtraction operator takes two operands. In the following code fragment:
i = 25 - 2
The subtraction operation with its two operands is evaluated first, yielding a value of 23. This leaves

two operands for the assignment operator ‘=’ to work on: i and 23. As you will soon see, some operators
operate on one operand, some on two operands, and one on three operands.

Operator Usage Examples

In this section, I demonstrate the use of one or more operators from each of the operator categories
listed in table 6-6. You will most assuredly encounter all of these operators in more depth as you progress
through the book.

Primary Expression Operators

Primary expression operators have the highest precedence. The use of parentheses with these is not
usually necessary, nor legal in some cases, to force an unnatural association. You’ve seen several primary
expression operators in action already in this chapter. These included the new operator and the member
access ‘.’ operator.

The new operator creates a reference type object. The member access operator is used to access object
members. Consider, for example, the following two lines of code:

StringBuilder sb1 = new StringBuilder();
sb1.Append(“Adding this string to the sb1 object.”);

The new operator creates a new StringBuilder object in memory. The assignment operator assigns the
resulting memory address to the StringBuilder reference variable sb1. The StringBuilder’s Append()
method is called via the sb1 variable with the help of the member access operator.

Two other primary operators you will frequently use are the postfix increment and decrement opera-
tors, ‘++’ and ‘--’ respectively. Example 6.9 shows the operators in use.

6.9 PrimaryOperatorTest.cs
1 using System;
2
3 public class PrimaryOperatorTest {
4 static void Main(){
5 int i = 0;
6 Console.WriteLine(i++); // writes value of i then increments
7 Console.WriteLine(i--); // writes value of i then decrements
8 Console.WriteLine(i); // simply writes value of i
9 }
10 }

Statements, Expressions, and Operators Chapter 6: Foundations

166 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Referring to example 6.9 — An integer variable named i is created on line 5. On lines 6 and 7 the
increment and decrement operators are applied to the variable i, which is being used as an argument to the
Console.WriteLine() method. Notice on line 6 that the increment operator appears to the right of i. This is
the postfix application of this operator, which means “increment the value of i after the statement has been
evaluated.” The effects here are that the value 0 is written to the console.

On line 7, the decrement operator appears to the right of i. The effect is that the current value of i,
which is now 1, is printed to the console and then decremented. Line 8 simply prints the last value of i to
the screen. Figure 6-10 shows the results of running this program.

Unary Expression Operators

Unary expression operators operate on one operand. The unary expression operators include the prefix
increment ‘++’ and decrement ‘--’, the plus ‘+’ and minus ‘-’, the logical negation ‘!’, the bitwise com-
plement ‘~’, and the cast ‘(T2)T1’. The cast operator forces a change from one type T1 to another type T2.
The plus and minus unary operators change the sign of integral and floating point numbers. The logical
negation operator changes the value of boolean expressions from false to true and vice versa. The bitwise
complement operator switches the bit values of unsigned integral types. (i.e., If a bit is set to 1 it will be
changed to 0.)

Example 6.10 offers a short program showing some of these operators in action.
6.10 UnaryOperatorTest.cs

1 using System;
2
3 public class UnaryOperatorTest {
4 static void Main(){
5 int i = 25;
6 bool bool_var = true;
7 uint j = 1;
8 Console.WriteLine(-i);
9 Console.WriteLine(!bool_var);
10 Console.WriteLine(~j);
11 }
12 }

Referring to example 6.10 — On line 5 an integer variable named i is declared and initialized to the
value 25. On line 6 a boolean variable named bool_var is declared and initialized to the value true. On line
7, an unsigned integer (uint) variable named j is declared and initialized to the value 1. Each of these vari-
ables is then printed to the console after its value has been affected by the various unary operators. Figure
6-11 gives the results of running this program.

Figure 6-10: Results of Running Example 6.9

Figure 6-11: Results of Running Example 6.10

Chapter 6: Foundations Statements, Expressions, and Operators

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 167

Multiplicative Expression Operators

The multiplicative expression operators include the multiplication ‘*’, division ‘/’, and the remainder
‘%’ operators. The remainder operator ‘%’ is also referred to as the modulus operator.

The multiplicative operators are binary operators in that they operate on two operands. You are already
familiar with the notion of how the multiplication and division operators work from your elementary arith-
metic background. What you need to be acutely aware of, however, is how each of these operators behaves
given different types of numbers. For example, what happens if you multiply two numbers and try to
assign the result into a variable type that’s too small to accommodate the resultant value? What happens if
you divide two integer values vs. two floating point values? If you always keep in mind the relative range
of values the different simple types can represent, you will avoid most problems. Operations that attempt to
assign a large value to a type that’s too small to represent it will result in both a loss of precision and in a
compiler warning.

The remainder operator performs a division operation on integral values and returns only the remain-
der. Example 6.11 shows the remainder operator in action.

6.11 RemainderOperatorTest.cs
1 using System;
2
3 public class RemainderOperatorTest {
4 static void Main(){
5 int i = 10;
6 int j = 5;
7 int k = 3;
8 Console.WriteLine(i%j);
9 Console.WriteLine(i%k);
10 }
11 }

Referring to example 6.11 — Three integer variables i, j, and k are declared and initialized to the val-
ues 10, 5, and 3, respectively. Line 8 prints out the result of the remainder operator applied to the variables
i and j. Line 9 prints out the result of the remainder operator applied to the variables i and k. Figure 6-12
shows the results of running this program.

Additive Expression Operators

The additive expression operators include the arithmetic addition ‘+’ and subtraction ‘-’ operators. I
will forgo an example of these operators as they are easy and intuitive to use.

Shift Expression Operators

The shift expression operators include the left shift ‘<<‘ and right shift ‘>>’ operators. The shift opera-
tors perform bit shifting operations.

The important thing to know about the bit shifting operators is how they behave when applied to dif-
ferent integral types. If the value being shifted is a signed integral type, then an arithmetic shift is per-
formed. An arithmetic shift means that the sign of the value is preserved as the bits are shifted right. If the
value being shifted is an unsigned integral type, a logical shift occurs and high-order empty bit positions
are set to zero. Let’s take a look at the shift operators in action in example 6.12.

Figure 6-12: Results of Running Example 6.11

Statements, Expressions, and Operators Chapter 6: Foundations

168 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

6.12 ShiftOperatorTest.cs

1 using System;

2

3 public class ShiftOperatorTest {

4 static void Main(){

5 short i = -0x000F;

6 short j = 0x000F;

7 Console.WriteLine("The value of i before the shift: " + i);

8 Console.WriteLine("The value of j before the shift: " + j);

9 Console.WriteLine("The value of i after the shift: " + (i >> 2));

10 Console.WriteLine("The value of j after the shift: " + (j >> 2));

11 }

12 }

Referring to example 6.12 — Two short variables named i and j are declared and initialized using
hexadecimal literal values representing -15 and 15 respectively. Lines 7 and 8 print these values of i and j
to the console. Lines 9 and 10 print the values of i and j after the right shift operator has been applied, shift-
ing the bits two places to the right. What do you think the new values will be? Figure 6-13 shows the
results of running this program. Cover the figure and try to work it out before proceeding. A detailed expla-
nation follows the figure.

Referring to figure 6-13 — After the shift, the value of i is -4 and the value of j is 3. Here’s a brief
explanation as to why they are different. The value 15 is represented in hexadecimal as the letter F. The
hexadecimal value F is represented in binary as 1111. A short type is sixteen digits long, therefore the full
binary for the positive number 15 is:

0000000000001111

The value of the variable i is -15. To convert the binary value 15 to -15, you need to invert the bits and
add 1. This is known as 1’s complement. The resulting binary value representing the number -15 looks like
this:

1111111111110001

When this string of binary digits is shifted two places to the right, the new value becomes:

1111111111111100

This is the binary representation of the decimal value -4.

The value of the variable j is also shifted to the right two places, but because it’s a positive value, the
left-most binary digits are replaced with 0. The binary value of j after the shift looks like this:

0000000000000011

This is the binary representation for the decimal value 3.

Relational, Type-Testing, and Equality Expression Operators

This category of operators includes the comparison operators equals ‘==’, not equals ‘!=’, less than
‘<‘, greater than ‘>’, less than or equal to ‘<=’. and greater than or equal to ‘>=’. It also includes the type
testing operators ‘is’ and ‘as’.

Figure 6-13: Results of Running Example 6.12

Chapter 6: Foundations Statements, Expressions, and Operators

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 169

The comparison operators work on integral, floating point, decimal, and enumeration types, The ‘==’
and ‘!=’ operators work on boolean, reference, string, and delegate types. The behavior of these operators
is summed up in table 6-7.

The behavior of these operators is easy to understand in the context of numbers. However, the behavior
of the ‘==’ and ‘!=’ operators and how they work for reference objects begs for an example. These two
operators will work on string objects as expected but only because the String class provides a definition for
them. In other words, string objects know how to behave when compared to each other with the ‘==’ and
‘!=’ operators.

User-defined classes that do not overload the ‘==’ or ‘!=’ operators will be compared to each other
according to the rules the operators follow when comparing ordinary objects. Let’s look at an example.
Example 6.13 gives the code.

6.13 ReferenceEqualityTest.cs
1 using System;
2
3 public class ReferenceEqualityTest {
4 static void Main(){
5 Object o1 = new Object();
6 Object o2 = new Object();
7 Object o3 = o2;
8 String s1 = "Hello";
9 String s2 = "Hello";

Operator Behavior Operands

< Returns true if left operand is less than the right operand; false
otherwise

numeric types
enumeration types
reference types if overloaded

> Returns true if left operand is greater than the right operand; false
otherwise

numeric types
enumeration types
reference types if overloaded

<= Returns true if the left operand is less than or equal to the right
operand; false otherwise

numeric types
enumeration types
reference types if overloaded

>= Returns true if the left operand is greater than or equal to the right
operand; false otherwise

numeric types
enumeration types
reference types if overloaded

== Returns true if the left operand is equal to the right operand; false
otherwise

numeric types
enumeration types
boolean values
string objects
delegate types
reference types if overloaded

!= Returns true if the left operand is not equal to the right operand;
false otherwise

numeric types
enumeration types
boolean values
string objects
delegate types
reference types if overloaded

Table 6-7: Comparison Operator Behavior

Statements, Expressions, and Operators Chapter 6: Foundations

170 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

10 String s3 = "World";

11 Console.WriteLine(o1 == o2);

12 Console.WriteLine(o1 != o2);

13 Console.WriteLine(o2 == o3);

14 Console.WriteLine(s1 == s2);

15 Console.WriteLine(s1 == s3);

16 }

17 }

Referring to example 6.13 — Three Object reference variables named o1 through o3 are declared and
initialized on lines 5 through 7. The variables o1 and o2 point to unique objects. The variable o3 is
assigned the same address as the variable o2. This means that the variables o2 and o3 now point to the
same object.

On lines 8 through 10, three String variables are created. The variables s1 and s2 each point to identical
string values “Hello”. The variable s3 points to a string whose value is “World”. Now study the results of
running this program as shown in figure 6-14.

Referring to figure 6-14 — On line 11, the expression o1 == o2 evaluates to false because the variables
o1 and o2 point to different objects. The “==” operator’s natural behavior as defined in the Object class is
to test if we are comparing the same object. If not, the operator returns false. On the next line, the expres-
sion o1 != o2 returns true as expected. On line 13, the expression o2 == o3 returns true because the vari-
ables o2 and o3 do in fact point to the same object and so they must be equal.

These same operators behave somewhat differently when used with String objects. Notice now on line
14 that if two different Strings are compared the result will be true if their values (i.e., the characters they
contain) are identical. Different String objects with different values will return false, as is shown on the last
line.

Logical AND, OR, and XOR Expression Operators

The logical AND ‘&’, OR ‘|’, and XOR ‘^’ operators behave differently according to their parameter
types. Table 6-8 summarizes the logical operator behavior.

Operator Behavior Operands

& Integral operands: x & y performs bitwise logical AND
Enumeration operands: x & y performs bitwise logical
AND
Boolean operands: Performs conditional AND comparison

int, uint, long, ulong
enumeration
boolean

| Integral operands: x | y performs bitwise logical OR
Enumeration operands: x | y performs bitwise logical OR
Boolean operands: Performs conditional OR comparison

int, uint, long, ulong
enumeration
boolean

Table 6-8: Logical Operator Behavior

Figure 6-14: Results of Running Example 6.13

Chapter 6: Foundations Statements, Expressions, and Operators

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 171

Logical Operations on Integral Operands

When presented with integral operands, the logical operators perform bitwise logical operations on
their operands according to the truth tables shown in figure 6-15.

Example 6.14 shows these operators in action.
6.14 LogicalOperatorTest.cs

1 using System;

2

3 public class LogicalOperatorTest {

4 static void Main(){

5 int i = 0xFFFF;

6 int mask_1 = 0x0000;

7 int mask_2 = 0x0003;

8 int mask_3 = 0xFFFF;

9 Console.WriteLine("FFFF & 0000 = " + (i & mask_1));

10 Console.WriteLine("FFFF | 0000 = " + (i | mask_1));

11 Console.WriteLine("FFFF & 0003 = " + (i & mask_2));

12 Console.WriteLine("FFFF | 0003 = " + (i | mask_2));

13 Console.WriteLine("FFFF ^ FFFF = " + (i ^ mask_3));

14 }

15 }

Referring to example 6.14 — On line 5, an integer variable i is declared and initialized to the hexadec-
imal value FFFF. On lines 6 through 8, three more integer variables named mask_1 through mask_3 are
declared and initialized with the hexadecimal values 0000, 0003, and FFFF, respectively. Lines 9 through
13 use the logical operators to perform bit manipulation operations on the variable i using the various mask
values. Figure 6-16 shows the results of running this program.

^ Integral operands: x ^ y performs bitwise logical XOR
Enumeration operands: x ̂ y performs bitwise logical XOR
Boolean operands: Performs conditional XOR comparison

int, uint, long, ulong
enumeration
boolean

Operator Behavior Operands

Table 6-8: Logical Operator Behavior

Figure 6-15: Logical AND, OR, and XOR Truth Tables

Figure 6-16: Results of Running Example 6.14

Statements, Expressions, and Operators Chapter 6: Foundations

172 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Logical Operations on Enumeration Operands

The logical operators work with enumeration type operands. An enumeration is a type that represents
any one of a set of authorized values. Enumeration types are declared with the enum keyword and can be
defined outside of or within the body of a class, as the code in example 6.15 illustrates.

6.15 LogicalOperationEnumTest.cs
1 using System;
2
3 public class LogicalOperatorEnumTest {
4
5 public enum EYE_COLOR {BLACK, BROWN, HAZEL, BLUE, GREY}
6
7 static void Main(){
8 Console.WriteLine(EYE_COLOR.BLACK & EYE_COLOR.BROWN);
9 Console.WriteLine(EYE_COLOR.BROWN & EYE_COLOR.BROWN);
10 Console.WriteLine(EYE_COLOR.BLACK & EYE_COLOR.BLUE);
11 Console.WriteLine(EYE_COLOR.BLACK | EYE_COLOR.BROWN);
12 Console.WriteLine(EYE_COLOR.BROWN | EYE_COLOR.HAZEL);
13 Console.WriteLine(EYE_COLOR.BLACK | EYE_COLOR.BLUE);
14 Console.WriteLine(EYE_COLOR.BLACK ^ EYE_COLOR.BROWN);
15 Console.WriteLine(EYE_COLOR.BROWN ^ EYE_COLOR.BROWN);
16 Console.WriteLine(EYE_COLOR.BLACK ^ EYE_COLOR.BLUE);
17 }
18 }

Referring to example 6.15 — An enumerated type named EYE_COLOR is declared on line 5, and
within the curly braces there appear five names: BLACK, BROWN, HAZEL, BLUE, and GREY. The enu-
meration value BLACK equates to the value 0, which is the default value for the first enumeration value
unless explicitly set to be something else. The next enumeration value BROWN is assigned the value 1,
and so on. (Enumerated types are covered in more detail in chapter 9.)

Essentially, the logical operators treat enumeration types like they treat integers, which they ultimately
are. Figure 6-17 shows the results of running example 6.15.

Logical Operations on Boolean Operands

The logical operators also operate on boolean type operands. A boolean argument can be a boolean lit-
eral, a boolean variable, or a conditional expression that evaluates to a boolean value. Example 6.16
demonstrates the use of the logical operators on boolean literals. Just keep in mind that where the key-
words “true” or “false” appear in the program a complex expression that evaluates to “true” or “false” can
be substituted. Note that the ‘&’ and ‘|’ operators evaluate both operands even if the expression could be
completely evaluated with only the first operand. For example, the expression (false & true) is false,
but the second operand will be evaluated regardless. Figure 6-18 gives the results of running this program.
Compare its output with the truth tables given in figure 6-15.

6.16 LogicalBoolTest.cs
1 using System;
2
3 public class LogicalBoolTest {
4 static void Main(){

Figure 6-17: Results of Running Example 6.15

Chapter 6: Foundations Statements, Expressions, and Operators

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 173

5 Console.WriteLine("false & false = " + (false & false));
6 Console.WriteLine("true & false = " + (true & false));
7 Console.WriteLine("false & true = " + (false & true));
8 Console.WriteLine("true & true = " + (true & true));
9 Console.WriteLine("------------");
10 Console.WriteLine("false | false = " + (false | false));
11 Console.WriteLine("true | false = " + (true | false));
12 Console.WriteLine("false | true = " + (false | true));
13 Console.WriteLine("true | true = " + (true | true));
14 Console.WriteLine("------------");
15 Console.WriteLine("false ^ false = " + (false ^ false));
16 Console.WriteLine("true ^ false = " + (true ^ false));
17 Console.WriteLine("false ^ true = " + (false ^ true));
18 Console.WriteLine("true ^ true = " + (true ^ true));
19 }
20 }

Conditional AND and OR Expression Operators

The conditional operators AND ‘&&’ and OR ‘||’ are also referred to as the short-circuiting logical
operators. The reason for this alternate name is that they will skip the evaluation of the second operand if
the expression can be completely evaluated solely on the value of the first operand. For example, the sec-
ond operand in the expression (true || true) can be safely skipped because the OR operator requires
only one true operand. However, the second operand in the expression (false || true) must be evalu-
ated since the first operand was false. These operators are demonstrated in example 6.17. Figure 6-19 gives
the results of running this program.

6.17 ConditionalOpsTest.cs
1 using System;
2
3 public class ConditionalOpsTest {
4 static void Main(){
5 Console.WriteLine("false && false = " + (false && false));
6 Console.WriteLine("true && false = " + (true && false));
7 Console.WriteLine("false && true = " + (false && true));
8 Console.WriteLine("true && true = " + (true && true));
9 Console.WriteLine("--------------------");
10 Console.WriteLine("false || false = " + (false || false));
11 Console.WriteLine("true || false = " + (true || false));
12 Console.WriteLine("false || true = " + (false || true));
13 Console.WriteLine("true || true = " + (true || true));
14 }
15 }

Figure 6-18: Results of Running Example 6.16

Statements, Expressions, and Operators Chapter 6: Foundations

174 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Conditional (Ternary) Expression Operator

The conditional operator ‘?:’, also referred to as the ternary operator, takes one boolean operand
expression. Based on the results of its evaluation, it returns the results of one of two possible expressions.
For example, consider the following ternary operator statement:

(boolean conditional expression) ? expression A : expression B;

If the conditional expression evaluates to true, then expression A is evaluated and returned as a result
of the operation. If the conditional expression evaluates to false, then expression B is evaluated and
returned instead. The ternary operator never evaluates both alternate expressions. Example 6.18 shows the
ternary operator in use.

6.18 TernaryOperatorTest.cs
1 using System;

2

3 public class TernaryOperatorTest {

4 static void Main(){

5 Console.WriteLine(true ? "Return this string if true" : "Return this string if false");

6 Console.WriteLine(false ? "Return this string if true" : "Return this string if false");

7 Console.WriteLine();

8 int i = 3;

9 int j = 7;

10 Console.WriteLine((i < j) ? "Return this string if true" : "Return this string if false");

11 Console.WriteLine((i > j) ? "Return this string if true" : "Return this string if false");

12 }

13 }

Referring to example 6.18 — Lines 5 and 6 utilize the boolean literals “true” and “false” as arguments
to the ternary operator’s conditional expression. Since true is always true, the first string will be returned.
On line 6, the second string will always be returned. On lines 8 and 9, two integer variables i and j are
declared and initialized to the values 3 and 7, respectively. On lines 10 and 11, these variables are used to
demonstrate how an actual conditional expression might be constructed.

The use of the boolean literals on lines 5 and 6 triggers a compiler warning that says it has detected
unreachable code, as figure 6-20 shows. Figure 6-21 shows the results of running the program.

Figure 6-19: Results of Running Example 6.17

Figure 6-20: Compiler Warning due to Unreachable Code

Chapter 6: Foundations Statements, Expressions, and Operators

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 175

Assignment Expression Operators

The assignment expression operators include both the simple assignment operator ‘=’, which you
have seen used throughout this chapter, and the compound assignment operators +=. -=. *=. /=, %=. <<=,
>>=, &=, |=, and ^=. The ‘+=’ operator is also overloaded to include event assignment, which I will cover
in depth in chapter 12.

The compound operators, as their name suggests, combine the indicated operation with an assignment.
This makes for a convenient shorthand way of doing things. For example, the expression i = i + 1 can
be written i += 1 with the help of the compound operator. Example 6.19 demonstrates the use of several
compound operators. Figure 6-22 shows the results of running this program.

6.19 AssignmentOpsTest.cs
1 using System;
2
3 public class AssignmentOpsTest {
4 static void Main(){
5 int i = 0;
6 Console.WriteLine("The value of i initially = " + i);
7 Console.WriteLine("i += 1 = " + (i += 1));
8 Console.WriteLine("i -= 1 = " + (i -= 1));
9 Console.WriteLine("i += 2 = " + (i += 2));
10 Console.WriteLine("i *= 2 = " + (i *= 2));
11 Console.WriteLine("i /= 2 = " + (i /= 2));
12 }
13 }

Quick Review

Statements are the fundamental building blocks of C# programs. A statement can be thought of as the
smallest standalone element of a program. Programs are built using sequences of statements. C# offers
eighteen different types of statements.

The term operator precedence refers to the order in which the C# compiler evaluates the operators
appearing in an expression statement. The term associativity refers to the direction in which the C# com-
piler performs a series of operations.

Figure 6-21: Results of Running Example 6.18

Figure 6-22: Results of Running Example 6.19

C# 7 Enhanced Literal Readability Chapter 6: Foundations

176 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

C# 7 Enhanced Literal Readability

You’ve seen examples of hexadecimal literals earlier in this chapter. Hexadecimal literals begin with
the ‘0x’ prefix followed by any combination of the numbers 0-9, and A-F, where 0 represents the binary
value 0000, and F represents the binary value 1111, or 15 decimal.

To assign a hexadecimal value to an integer variable you’d do something like this:

int i_hex = 0x00010FFF; // assigns the value 69,631 in hex to the variable i

C# 7 introduced binary literals begin with the prefix ‘0b’ followed a sequence of 0’s and 1’s. Here’s
how the same assignment would look using a binary literal:

int i_bin = 0b00000000000000010000111111111111; // No doubt, this is hard to read.

To aid hexadecimal and binary literal readability, C# 7 also introduced the digit separator ‘_’, which is
an underscore character placed within either a hexadecimal or binary literal to improve readability. Here’s
what the previous two assignments look like with digit separators added for clarity:

int i_hex = 0x0001_0FFF; // C# 7
int i_bin = 0b0000_0000_0000_0001_0000_1111_1111_1111; //C# 7

This is a big improvement in readability, especially with the binary literal, and C# 7.2 went one step
further:

int i_hex = 0x_0001_0FFF; // C# 7.2
int i_bin = 0b_0000_0000_0000_0001_0000_1111_1111_1111; //C# 7.2

Notice now there’s a digit separator immediately following the literal prefix, which distinctly separates
the prefix from the literal value.

Example 6.20 offers a short program demonstrating the use of hexadecimal and binary literals and
digit separators as discussed above.

6.20
1 /**
2 Requires C# 7.2
3 ***/
4
5 using System;
6
7 public class LiteralReadability {
8
9 public static void Main() {
10
11 int i_hex = 0x00010FFF;
12 int i_bin = 0b00000000000000010000111111111111;
13
14 Console.WriteLine(i_hex);
15 Console.WriteLine(i_bin);
16
17 i_hex = 0x0001_0FFF;
18 i_bin = 0b0000_0000_0000_0001_0000_1111_1111_1111;
19
20 Console.WriteLine(i_hex);

Chapter 6: Foundations Summary

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 177

21 Console.WriteLine(i_bin);
22
23 i_hex = 0x_0001_0FFF;
24 i_bin = 0b_0000_0000_0000_0001_0000_1111_1111_1111;
25 }
26 }

Referring to example 6.20 — If you compile this program from the command line, you’ll need to have
the Rosslyn compiler installed and use the -langversion compiler switch and specify the latest ver-
sion like so:

csc -langversion:latest LiteralReadability.cs

Figure 6-23 shows the results of running this program.

Quick Review

Use the literal prefix ‘0x’ to specify hexadecimal literals, and beginning with C# 7 use the prefix ‘0b’
to specify binary literals. C# 7 introduced digit separators, which are used in hexadecimal and binary liter-
als to improve readability.

Summary

A simple C# application is a class that contains a Main() method. The purpose of the Main() method is
to provide an entry point for program execution. There are four authorized versions of the Main() method;
each version has a different method signature.

A class that contains a Main() method can be compiled into an executable assembly. A class with no
Main() method can be compiled into a module. Modules can be added to assemblies. Modules created in
CLI-compliant languages other than C# can be compiled with C# modules to form executable assemblies.

Identifiers are sequences of characters that represent names of objects in a program. Identifiers are
used to name classes, structures, methods, variables, constants, properties, fields, enums, etc. Identifiers
can start with either an uppercase or lowercase letter or an underscore ‘_’ character followed by any num-
ber of letters, digits, and underscores.

Reserved keywords are identifiers that have special meaning within the C# language. You cannot rein-
troduce a reserved keyword as a name for an object within your program. You can, however, prefix the ‘@’
symbol to a reserved keyword to formulate a valid identifier, however, I discourage doing this as it renders
code hard to read, understand, and maintain.

C# has three kinds of types: value types, reference types, and pointer types. Value type variables con-
tain the actual data as defined by the type. Reference type variables contain a reference to an object in
memory. Pointer types are used when writing unmanaged code.

Two or more reference type variables can reference the same object in memory. The C# predefined
types map to structures within the System namespace. System.Object is the base type for all types.

Figure 6-23: Results of Running Example 6.20

Skill-Building Exercises Chapter 6: Foundations

178 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Statements are the fundamental building blocks of C# programs. A statement can be thought of as the
smallest standalone element of a program. Programs are built using sequences of statements. C# offers
eighteen different types of statements.

The term operator precedence refers to the order in which the C# compiler evaluates the operators
appearing in an expression statement. The term associativity refers to the direction in which the C# com-
piler performs a series of operations.

Use the literal prefix ‘0x’ to specify hexadecimal literals, and beginning with C# 7 use the prefix ‘0b’
to specify binary literals. C# 7 introduced digit separators, which are used in hexadecimal and binary liter-
als to improve readability.

Skill-Building Exercises

1. API Drill: Visit the Microsoft Developer Network (MSDN) www.msdn.com and research the C# pre-
defined type structures located in the System namespace. Use table 6-2 as a guide. Take note of the
methods and fields each structure makes available for use. Track down and study any interfaces these
structures may implement.

2. Practice Makes Perfect: Compile and run each of the example programs listed in this chapter.

3. Type Ranges: Write a program that displays to the console a list of the predefined numeric types and
shows their minimum and maximum values. Hint: Pay attention to what you discovered in Skill-Build-
ing Exercise #1!

Suggested Projects

1. Average Five Numbers: Write a program that computes the average of five floating point numbers and
writes the answer to the console.

2. Compute The Area: Write a program that computes the area of a rectangle or square given the input
height and width.

3. Find The Greatest Value: Write a program that compares the values of two integer variables and
returns the larger of the two. Use the ternary conditional operator to perform the comparison.

4. Compute Time To Travel: Write a program that computes the time required to travel a given distance
in miles at a certain speed in miles/hour. The equation required is:

5. Compute Average Speed: Write a program that computes the speed required to travel a certain distance
in a given amount of time. The equation required is:

6. Compute Fuel Efficiency: Write a program that takes miles traveled since last fill-up and gallons of gas

t d s=

s d t=

Chapter 6: Foundations Self-Test Questions

C# For Artists © 2018 Rick Miller and Pulp Free Press — All Rights Reserved 179

required to fill your car’s tank. Calculate how many miles/gallon your car is getting between fill ups.
Write the results to the console.

7. Division By Shifting: Write a program that divides an integer by 2 using the right shift operator.
Explain why shifting a number to the right performs a division. What happens when you shift a number
to the left? Hint: Think in terms of binary digits.

Self-Test Questions

1. What two kinds of types does C# support?

2. How many predefined types does C# support.

3. Describe in your own words how two reference type variables might end up referencing the same object.

4. What’s the difference between a value type and a reference type?

5. What character is used to terminate a statement?

6. What’s the purpose of the new operator.

7. How many different forms of the Main() method does C# support?

8. What’s the purpose of a Main() method?

9. What’s the purpose of the using directive.

10. Can a reserved keyword be used as an identifier? Explain your answer.

References

C# 6.0 Draft Language Specification https://docs.microsoft.com/en-us/dotnet/csharp/language-refer-
ence/language-specification/

ECMA-335 Common Language Infrastructure (CLI), 6th Edition, June 2012 http://www.ecma-interna-
tional.org/publications/standards/Ecma-335.htm

ECMA-334 C# Language Specification, 5th Edition, December 2017 http://www.ecma-interna-
tional.org/publications/standards/Ecma-334.htm

Microsoft Developer Network (MSDN) http://www.msdn.com

Microsoft Docs https://docs.microsoft.com/en-us

Notes Chapter 6: Foundations

180 © 2018 Rick Miller and Pulp Free Press — All Rights Reserved C# For Artists

Notes

