
ASP.NET: An Integrated Approach © 2014 Rick Miller — All Rights Reserved 145

8 Creating and Managing Databases with Scripts

Learning Objectives
• Understand the rationale for using scripts to iteratively evolve a database design
• Use SQL Server Management Studio to convert a database into scripts
• Use SQL scripts to automatically drop and create a database
• Use SQL scripts to automatically create database tables and other database objects
• Execute a suite of SQL scripts via a DOS batch file
• Organize database scripts to ease configuration management

Chapter 8

Creating and Managing Databases with Scripts

Introduction Creating and Managing Databases with Scripts

146 © 2014 Rick Miller — All Rights Reserved ASP.NET: An Integrated Approach

Introduction

In this chapter I’m going to show you how to take the EmployeeTraining database designed in Chapter 7 and
convert it into a set of scripts to facilitate iterative database development. Along the way I’ll show you how to orga-
nize your database scripts to ease configuration management as well as how to execute a suite of SQL database
scripts using a DOS batch file.

To complete the activities shown in this chapter you’ll need to have created a database using SQL Server Man-
agement Studio. You’ll also need a good text editor like Notepad++.

You should by now have set up a projects folder according to the instructions given in Chapter 3 and be using
Subversion to commit project artifacts to the repository.

I know this may sound theatrical, but what you are about to learn in this chapter may very well be a life-changing
developer skill.

Process Overview

The process I’m going to demonstrate to you in this chapter in a nutshell includes the following steps:
Step 1: Create release folder and a logs folder in Projects\EmployeeTrainingProject\trunk\database folder.
Step 2: Use SQL Server Management Studio to generate database scripts for a selected database.
Step 3: Segregate the scripts into logically related sections and save as individual SQL script files. You’ll have

one script to drop the database, another script to create the database, and still another script to create the
tables, etc.

Step 4: Organize the database scripts according to release. Group related database scripts in their respective
release folders.

Step 5: Create additional scripts to automatically insert test data into the database for development and testing.
Step 6: Create a DOS batch file to execute the scripts automatically. Name these batch files according to release.

As the database design evolves over the life of the project you’ll create a chain of these batch files so that
you need only execute the latest release batch file, which will call the previous release batch file, and so
on.

Step 7: Run a release script each time you want to recreate the database. This is done frequently during applica-
tion development and testing.

Once you have your scripts created, organized, and working, dropping and completely recreating the database
takes only a matter of seconds. You can return to SQL Server Management Studio any time to modify the database
and incorporate the changes into your script files. Alternatively, once you gain proficiency in writing database scripts,
you can edit the scripts directly to modify the database design.

Generating Database Scripts

In this section I will step through the process I described in the previous section. As I said in the introduction, I’m
assuming you have created a projects folder that contains a local working copy of a Subversion project. The name of
the project I’m working on is EmployeeTrainingProject.

Step 1: Create Release and Logs Folders

The first step is to get organized. In the Projects\EmployeeTrainingProjects\trunk\database folder create two
folders, one named “logs” and another named “Release_1.0_DB_Scripts”. The logs folder will be used to hold the
output of the SQL database scripts while the Release_1.0_DB_Scripts folder will be used to hold all the scripts
related to release 1.0 of the database. When you create your new folders your database folder will look like figure 8-1.

Creating and Managing Databases with Scripts Generating Database Scripts

ASP.NET: An Integrated Approach © 2014 Rick Miller — All Rights Reserved 147

Referring to figure 8-1 — The question mark on each folder means they have not yet been added to the reposi-
tory. You can wait until you’ve created all the scripts and tested them to ensure they work properly before committing
them to the repository.

Step 2: Generate Scripts

You’ll actually generate several scripts in this step. First, you’ll script the database so that it can be dropped and
created. Next, you’ll script the objects within the database. These include tables, views, users, triggers, etc. At this
point the EmployeeTraining database has only a few tables, their foreign key relationships, and one user so there
aren’t too many objects to script.

Script The Database

Launch SQL Server Management Studio and right-click on the EmployeeTraining database and from the pop-up
menu select Script Database as -> DROP And CREATE To -> Clipboard as is shown in figure 8-2.

Referring to figure 8-2 — Select Clipboard and when the pop-up menu goes away open Notepad++ and paste
the contents of the clipboard into a new file called DropAndCreateDatabase.sql. The contents of DropAndCreateDa-
tabase.sql should look similar to example 8.1.

Figure 8-1: Contents of database Folder After Creating New Folders

Figure 8-2: Script the Database to the Clipboard

Generating Database Scripts Creating and Managing Databases with Scripts

148 © 2014 Rick Miller — All Rights Reserved ASP.NET: An Integrated Approach

8.1 DropAndCreateDatabase.sql
1 USE [master]
2 GO
3
4 /****** Object: Database [EmployeeTraining] Script Date: 09/23/2012 10:34:43 ******/
5 IF EXISTS (SELECT name FROM sys.databases WHERE name = N'EmployeeTraining')
6 DROP DATABASE [EmployeeTraining]
7 GO
8
9 USE [master]
10 GO
11
12 /****** Object: Database [EmployeeTraining] Script Date: 09/23/2012 10:34:43 ******/
13 CREATE DATABASE [EmployeeTraining] ON PRIMARY
14 (NAME = N'EmployeeTraining', FILENAME = N'C:\Program Files\Microsoft SQL
Server\MSSQL10_50.MSSQLSERVER\MSSQL\DATA\EmployeeTraining.mdf' , SIZE = 2048KB , MAXSIZE = UNLIMITED, FILEGROWTH
= 1024KB)
15 LOG ON
16 (NAME = N'EmployeeTraining_log', FILENAME = N'C:\Program Files\Microsoft SQL
Server\MSSQL10_50.MSSQLSERVER\MSSQL\DATA\EmployeeTraining_log.ldf' , SIZE = 1024KB , MAXSIZE = 2048GB ,
FILEGROWTH = 10%)
17 GO
18
19 ALTER DATABASE [EmployeeTraining] SET COMPATIBILITY_LEVEL = 100
20 GO
21
22 IF (1 = FULLTEXTSERVICEPROPERTY('IsFullTextInstalled'))
23 begin
24 EXEC [EmployeeTraining].[dbo].[sp_fulltext_database] @action = 'enable'
25 end
26 GO
27
28 ALTER DATABASE [EmployeeTraining] SET ANSI_NULL_DEFAULT OFF
29 GO
30
31 ALTER DATABASE [EmployeeTraining] SET ANSI_NULLS OFF
32 GO
33
34 ALTER DATABASE [EmployeeTraining] SET ANSI_PADDING OFF
35 GO
36
37 ALTER DATABASE [EmployeeTraining] SET ANSI_WARNINGS OFF
38 GO
39
40 ALTER DATABASE [EmployeeTraining] SET ARITHABORT OFF
41 GO
42
43 ALTER DATABASE [EmployeeTraining] SET AUTO_CLOSE OFF
44 GO
45
46 ALTER DATABASE [EmployeeTraining] SET AUTO_CREATE_STATISTICS ON
47 GO
48
49 ALTER DATABASE [EmployeeTraining] SET AUTO_SHRINK OFF
50 GO
51
52 ALTER DATABASE [EmployeeTraining] SET AUTO_UPDATE_STATISTICS ON
53 GO
54
55 ALTER DATABASE [EmployeeTraining] SET CURSOR_CLOSE_ON_COMMIT OFF
56 GO
57
58 ALTER DATABASE [EmployeeTraining] SET CURSOR_DEFAULT GLOBAL
59 GO
60
61 ALTER DATABASE [EmployeeTraining] SET CONCAT_NULL_YIELDS_NULL OFF
62 GO
63
64 ALTER DATABASE [EmployeeTraining] SET NUMERIC_ROUNDABORT OFF
65 GO
66
67 ALTER DATABASE [EmployeeTraining] SET QUOTED_IDENTIFIER OFF
68 GO
69
70 ALTER DATABASE [EmployeeTraining] SET RECURSIVE_TRIGGERS OFF
71 GO
72
73 ALTER DATABASE [EmployeeTraining] SET DISABLE_BROKER
74 GO
75

Creating and Managing Databases with Scripts Generating Database Scripts

ASP.NET: An Integrated Approach © 2014 Rick Miller — All Rights Reserved 149

76 ALTER DATABASE [EmployeeTraining] SET AUTO_UPDATE_STATISTICS_ASYNC OFF
77 GO
78
79 ALTER DATABASE [EmployeeTraining] SET DATE_CORRELATION_OPTIMIZATION OFF
80 GO
81
82 ALTER DATABASE [EmployeeTraining] SET TRUSTWORTHY OFF
83 GO
84
85 ALTER DATABASE [EmployeeTraining] SET ALLOW_SNAPSHOT_ISOLATION OFF
86 GO
87
88 ALTER DATABASE [EmployeeTraining] SET PARAMETERIZATION SIMPLE
89 GO
90
91 ALTER DATABASE [EmployeeTraining] SET READ_COMMITTED_SNAPSHOT OFF
92 GO
93
94 ALTER DATABASE [EmployeeTraining] SET HONOR_BROKER_PRIORITY OFF
95 GO
96
97 ALTER DATABASE [EmployeeTraining] SET READ_WRITE
98 GO
99
100 ALTER DATABASE [EmployeeTraining] SET RECOVERY FULL
101 GO
102
103 ALTER DATABASE [EmployeeTraining] SET MULTI_USER
104 GO
105
106 ALTER DATABASE [EmployeeTraining] SET PAGE_VERIFY CHECKSUM
107 GO
108
109 ALTER DATABASE [EmployeeTraining] SET DB_CHAINING OFF
110 GO

Referring to example 8.1 — Note that I’ve let lines 14 and 16 wrap around to the next line. Also note that on line
1 the USE [master] command specifies that this script must be run at the master database level.

In Step 3 I will segregate this script into two distinct scripts: one named DropDatabase.sql and the other named
CreateDatabase.sql, but for now, we’ll leave this script alone and proceed to scripting the remaining database objects.

Script The User

In SQL Server Management Studio expand the EmployeeTraining -> Security -> Users folder, right-click the
EmployeeTraining user, and from the pop-up menu select Script user as -> Create To -> Clipboard as is shown in
figure 8-3.

Referring to figure 8-3 — You only need to script the user as Create because when you drop the database you
will drop all objects within the database, including the user. Thus, you only need a script to create the user. The result-
ing script is listed in example 8.2.

Figure 8-3: Script the User to the Clipboard

Generating Database Scripts Creating and Managing Databases with Scripts

150 © 2014 Rick Miller — All Rights Reserved ASP.NET: An Integrated Approach

8.2 CreateUser.sql
1 USE [EmployeeTraining]
2 GO
3
4 /****** Object: User [EmployeeTrainingUser] Script Date: 10/13/2012 08:30:07 ******/
5 GO
6
7 CREATE USER [EmployeeTrainingUser] FOR LOGIN [EmployeeTraining] WITH DEFAULT_SCHEMA=[dbo]
8 GO

Referring to example 8.2 — Note that on line 1 the USE [EmployeeTraining] command specifies that this
script must be run at the EmployeeTraining database level.

Script The Login

In SQL Server Management Studio expand the outermost Security folder and the Logins subfolder. Right-click
the EmployeeTraining login and select Script Login as -> DROP And CREATE To -> Clipboard as is shown in
figure 8-4.

Referring to figure 8-4 — The reason you want to Drop and Create the Login is because it exists outside the
EmployeeTraining database and will not be dropped when the database is dropped, thus the need to drop the login
before creating it. Example 8.3 gives the resulting script.

8.3 DropAndCreateLogin.sql
1 /****** Object: Login [EmployeeTraining] Script Date: 10/13/2012 08:52:28 ******/
2 IF EXISTS (SELECT * FROM sys.server_principals WHERE name = N'EmployeeTraining')
3 DROP LOGIN [EmployeeTraining]
4 GO
5
6 /* For security reasons the login is created disabled and with a random password. */
7 /****** Object: Login [EmployeeTraining] Script Date: 10/13/2012 08:52:28 ******/
8 CREATE LOGIN [EmployeeTraining] WITH PASSWORD=N'ë?ÈÎ??ýik]??r? 4~-¤??§Â·}¥FÇ ?',
DEFAULT_DATABASE=[EmployeeTraining], DEFAULT_LANGUAGE=[us_english], CHECK_EXPIRATION=OFF, CHECK_POLICY=OFF
9 GO
10
11 EXEC sys.sp_addsrvrolemember @loginame = N'EmployeeTraining', @rolename = N'dbcreator'
12 GO
13
14 ALTER LOGIN [EmployeeTraining] DISABLE
15 GO

Referring to example 8.3 — I’ve let line 8 wrap around due to its length. Also note that when you generate this
script the login password will show up as unreadable characters as you can see above. Also, line 14 disables the login.
You’ll need to edit this script to give it a usable password and remove the ALTER LOGIN statement on line 14. The
edited script is given in example 8.4.

8.4 DropAndCreateLogin.sql (edited)
1 /****** Object: Login [EmployeeTraining] Script Date: 10/13/2012 08:52:28 ******/
2 IF EXISTS (SELECT * FROM sys.server_principals WHERE name = N'EmployeeTraining')
3 DROP LOGIN [EmployeeTraining]
4 GO
5
6 /* For security reasons the login is created disabled and with a random password. */
7 /****** Object: Login [EmployeeTraining] Script Date: 10/13/2012 08:52:28 ******/

Figure 8-4: Scripting The Login

Creating and Managing Databases with Scripts Generating Database Scripts

ASP.NET: An Integrated Approach © 2014 Rick Miller — All Rights Reserved 151

8 CREATE LOGIN [EmployeeTraining] WITH PASSWORD=N'password', DEFAULT_DATABASE=[EmployeeTraining],
DEFAULT_LANGUAGE=[us_english], CHECK_EXPIRATION=OFF, CHECK_POLICY=OFF
9 GO
10
11 EXEC sys.sp_addsrvrolemember @loginame = N'EmployeeTraining', @rolename = N'dbcreator'
12 GO

Script The Tables

It’s now time to script the remaining database objects. At this point the EmployeeTraining database contains only
three tables and their foreign key relationships. To script these, right-click the EmployeeTraining database and select
Tasks -> Generate Scripts... as is shown in figure 8-5.

Referring to figure 8-5 — Selecting Tasks -> Generate Scripts... will open the Generate and Publish Scripts
wizard as is shown in figure 8-6.

Select Generate Scripts...

Figure 8-5: Select Tasks -> Generate Scripts...

Figure 8-6: Generate and Publish Scripts Wizard Introduction Page

Generating Database Scripts Creating and Managing Databases with Scripts

152 © 2014 Rick Miller — All Rights Reserved ASP.NET: An Integrated Approach

Referring to figure 8-6 — Click the Next > button to proceed to the Choose Objects page as is shown in figure 8-
7.

Referring to figure 8-7 — Click the Tables checkbox and click the Next > button to proceed to the Set Scripting
Options page shown in figure 8-8.

Referring to figure 8-8 — Under Output Type click the Save Scripts to a specific location radio button. Next,
click the Save to Clipboard radio button. To set advanced scripting options click the Advanced button. This brings
up the Advanced Scripting Options dialog as shown in figure 8-9.

Figure 8-7: Choose Objects Page

Figure 8-8: Set Scripting Options Page

Click the Advanced button to
set advanced scripting options

Creating and Managing Databases with Scripts Generating Database Scripts

ASP.NET: An Integrated Approach © 2014 Rick Miller — All Rights Reserved 153

Referring to figure 8-9 — I’ve set “Include if NOT EXISTS” to True and “Script DROP and CREATE” to Script
CREATE. When you’ve finished setting these options click the OK button to dismiss the dialog. Click the Next >
button on the Set Scripting Options page to proceed to the Summary page as is shown in figure 8-10.

Referring to figure 8-10 — Review your selections on the Summary page by expanding each section. When
you’re ready to generate the scripts click the Next > button. This will bring you to the Save or Publish Scripts page
and as each phase of script generation completes a green circle with a white check mark will appear next to each
listed action as is shown in figure 8-11.

Figure 8-9: Advanced Scripting Options Page

Figure 8-10: Summary Page

Generating Database Scripts Creating and Managing Databases with Scripts

154 © 2014 Rick Miller — All Rights Reserved ASP.NET: An Integrated Approach

Referring to figure 8-11 — When script generation completes click the Finish button. Your scripts will now be in
the clipboard and ready to be pasted into a Notepad++ file. Example 8.5 gives the resulting script. I’ve saved it in a
file named CreateTables.sql.

8.5 CreateTables.sql
1 USE [EmployeeTraining]
2 GO
3 /****** Object: Table [dbo].[tbl_Employee] Script Date: 10/13/2012 09:55:02 ******/
4 SET ANSI_NULLS ON
5 GO
6 SET QUOTED_IDENTIFIER ON
7 GO
8 SET ANSI_PADDING ON
9 GO
10 IF NOT EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N'[dbo].[tbl_Employee]') AND type
in (N'U'))
11 BEGIN
12 CREATE TABLE [dbo].[tbl_Employee](
13 [EmployeeID] [int] IDENTITY(1,1) NOT NULL,
14 [FirstName] [varchar](50) NOT NULL,
15 [MiddleName] [varchar](50) NOT NULL,
16 [LastName] [varchar](50) NOT NULL,
17 [Birthday] [datetime] NOT NULL,
18 [Picture] [varbinary](max) NULL,
19 [HireDate] [datetime] NOT NULL,
20 CONSTRAINT [PK_tbl_Employee] PRIMARY KEY CLUSTERED
21 (
22 [EmployeeID] ASC
23)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON,
ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
24) ON [PRIMARY]
25 END
26 GO
27 SET ANSI_PADDING OFF
28 GO
29 /****** Object: Table [dbo].[tbl_Course_LU] Script Date: 10/13/2012 09:55:02 ******/
30 SET ANSI_NULLS ON
31 GO
32 SET QUOTED_IDENTIFIER ON
33 GO
34 SET ANSI_PADDING ON
35 GO
36 IF NOT EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N'[dbo].[tbl_Course_LU]') AND type
in (N'U'))
37 BEGIN
38 CREATE TABLE [dbo].[tbl_Course_LU](

Figure 8-11: Save or Publish Scripts Page

Creating and Managing Databases with Scripts Generating Database Scripts

ASP.NET: An Integrated Approach © 2014 Rick Miller — All Rights Reserved 155

39 [CourseID] [int] IDENTITY(1,1) NOT NULL,
40 [Code] [varchar](6) NOT NULL,
41 [Title] [varchar](200) NOT NULL,
42 [Description] [varchar](1000) NOT NULL,
43 CONSTRAINT [PK_tbl_Course_LU] PRIMARY KEY CLUSTERED
44 (
45 [CourseID] ASC
46)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON,
ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
47) ON [PRIMARY]
48 END
49 GO
50 SET ANSI_PADDING OFF
51 GO
52 /****** Object: Table [dbo].[tbl_EmployeeCourse_XREF] Script Date: 10/13/2012 09:55:02 ******/
53 SET ANSI_NULLS ON
54 GO
55 SET QUOTED_IDENTIFIER ON
56 GO
57 IF NOT EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N'[dbo].[tbl_EmployeeCourse_XREF]')
AND type in (N'U'))
58 BEGIN
59 CREATE TABLE [dbo].[tbl_EmployeeCourse_XREF](
60 [FK_EmployeeID] [int] NOT NULL,
61 [FK_CourseID] [int] NOT NULL,
62 [DateCompleted] [datetime] NOT NULL,
63 [Grade] [float] NOT NULL
64) ON [PRIMARY]
65 END
66 GO
67 /****** Object: ForeignKey [FK_tbl_EmployeeCourse_XREF_tbl_Course_LU] Script Date: 10/13/2012
09:55:02 ******/
68 IF NOT EXISTS (SELECT * FROM sys.foreign_keys WHERE object_id =
OBJECT_ID(N'[dbo].[FK_tbl_EmployeeCourse_XREF_tbl_Course_LU]') AND parent_object_id =
OBJECT_ID(N'[dbo].[tbl_EmployeeCourse_XREF]'))
69 ALTER TABLE [dbo].[tbl_EmployeeCourse_XREF] WITH CHECK ADD CONSTRAINT
[FK_tbl_EmployeeCourse_XREF_tbl_Course_LU] FOREIGN KEY([FK_CourseID])
70 REFERENCES [dbo].[tbl_Course_LU] ([CourseID])
71 ON UPDATE CASCADE
72 ON DELETE CASCADE
73 GO
74 IF EXISTS (SELECT * FROM sys.foreign_keys WHERE object_id =
OBJECT_ID(N'[dbo].[FK_tbl_EmployeeCourse_XREF_tbl_Course_LU]') AND parent_object_id =
OBJECT_ID(N'[dbo].[tbl_EmployeeCourse_XREF]'))
75 ALTER TABLE [dbo].[tbl_EmployeeCourse_XREF] CHECK CONSTRAINT [FK_tbl_EmployeeCourse_XREF_tbl_Course_LU]
76 GO
77 /****** Object: ForeignKey [FK_tbl_EmployeeCourse_XREF_tbl_Employee] Script Date: 10/13/2012
09:55:02 ******/
78 IF NOT EXISTS (SELECT * FROM sys.foreign_keys WHERE object_id =
OBJECT_ID(N'[dbo].[FK_tbl_EmployeeCourse_XREF_tbl_Employee]') AND parent_object_id =
OBJECT_ID(N'[dbo].[tbl_EmployeeCourse_XREF]'))
79 ALTER TABLE [dbo].[tbl_EmployeeCourse_XREF] WITH CHECK ADD CONSTRAINT
[FK_tbl_EmployeeCourse_XREF_tbl_Employee] FOREIGN KEY([FK_EmployeeID])
80 REFERENCES [dbo].[tbl_Employee] ([EmployeeID])
81 ON UPDATE CASCADE
82 ON DELETE CASCADE
83 GO
84 IF EXISTS (SELECT * FROM sys.foreign_keys WHERE object_id =
OBJECT_ID(N'[dbo].[FK_tbl_EmployeeCourse_XREF_tbl_Employee]') AND parent_object_id =
OBJECT_ID(N'[dbo].[tbl_EmployeeCourse_XREF]'))
85 ALTER TABLE [dbo].[tbl_EmployeeCourse_XREF] CHECK CONSTRAINT [FK_tbl_EmployeeCourse_XREF_tbl_Employee]
86 GO

Referring to example 8.5 — I’ve let the long lines wrap around to the next line. Note that line 1 contains the USE
[EmployeeTraining] command specifying that this script must be run at the EmployeeTraining database level.

Step 3: Segregate Scripts Into Related Sections
At this point, I consider the scripts generated in Step 2 above to be raw scripts. They need to be further segre-

gated to clarify their purpose and to ensure they will execute properly. For example, I will segregate the scripts such
that they can be called according to their function, beginning with the DropDatabase.sql script. A rough outline of the
order I want to call my scripts goes something like this:

DropDatabase.sql
DropLogin.sql
CreateDatabase.sql

Generating Database Scripts Creating and Managing Databases with Scripts

156 © 2014 Rick Miller — All Rights Reserved ASP.NET: An Integrated Approach

CreateLogin.sql
CreateUser.sql
CreateTables.sql

So your job in Step 3 is to edit the scripts and create new scripts as necessary to achieve this ordering. Note that
the User has a dependency on the Login so the CreateLogin.sql script must execute before the CreateUser.sql script.

I will start by creating separate scripts that Drop and Create the database respectively. These will be named, nat-
urally enough, DropDatabase.sql and CreateDatabase.sql and are listed in examples 8.6 and 8.7.

8.6 DropDatabase.sql
1 USE [master]
2 GO
3
4 /****** Object: Database [EmployeeTraining] Script Date: 09/23/2012 10:34:43 ******/
5 IF EXISTS (SELECT name FROM sys.databases WHERE name = N'EmployeeTraining')
6 DROP DATABASE [EmployeeTraining]
7 GO

8.7 CreateDatabase.sql
1 USE [master]
2 GO
3
4 /****** Object: Database [EmployeeTraining] Script Date: 09/23/2012 10:34:43 ******/
5 CREATE DATABASE [EmployeeTraining] ON PRIMARY
6 (NAME = N'EmployeeTraining', FILENAME = N'C:\database\mssql\EmployeeTraining\EmployeeTraining.mdf' ,
SIZE = 2048KB , MAXSIZE = UNLIMITED, FILEGROWTH = 1024KB)
7 LOG ON
8 (NAME = N'EmployeeTraining_log', FILENAME =
N'C:\database\mssql\EmployeeTraining\EmployeeTraining_log.ldf' , SIZE = 1024KB , MAXSIZE = 2048GB , FILEGROWTH =
10%)
9 GO
10
11 ALTER DATABASE [EmployeeTraining] SET COMPATIBILITY_LEVEL = 100
12 GO
13
14 IF (1 = FULLTEXTSERVICEPROPERTY('IsFullTextInstalled'))
15 begin
16 EXEC [EmployeeTraining].[dbo].[sp_fulltext_database] @action = 'enable'
17 end
18 GO
19
20 ALTER DATABASE [EmployeeTraining] SET ANSI_NULL_DEFAULT OFF
21 GO
22
23 ALTER DATABASE [EmployeeTraining] SET ANSI_NULLS OFF
24 GO
25
26 ALTER DATABASE [EmployeeTraining] SET ANSI_PADDING OFF
27 GO
28
29 ALTER DATABASE [EmployeeTraining] SET ANSI_WARNINGS OFF
30 GO
31
32 ALTER DATABASE [EmployeeTraining] SET ARITHABORT OFF
33 GO
34
35 ALTER DATABASE [EmployeeTraining] SET AUTO_CLOSE OFF
36 GO
37
38 ALTER DATABASE [EmployeeTraining] SET AUTO_CREATE_STATISTICS ON
39 GO
40
41 ALTER DATABASE [EmployeeTraining] SET AUTO_SHRINK OFF
42 GO
43
44 ALTER DATABASE [EmployeeTraining] SET AUTO_UPDATE_STATISTICS ON
45 GO
46
47 ALTER DATABASE [EmployeeTraining] SET CURSOR_CLOSE_ON_COMMIT OFF
48 GO
49
50 ALTER DATABASE [EmployeeTraining] SET CURSOR_DEFAULT GLOBAL
51 GO
52
53 ALTER DATABASE [EmployeeTraining] SET CONCAT_NULL_YIELDS_NULL OFF
54 GO
55
56 ALTER DATABASE [EmployeeTraining] SET NUMERIC_ROUNDABORT OFF
57 GO
58

Creating and Managing Databases with Scripts Generating Database Scripts

ASP.NET: An Integrated Approach © 2014 Rick Miller — All Rights Reserved 157

59 ALTER DATABASE [EmployeeTraining] SET QUOTED_IDENTIFIER OFF
60 GO
61
62 ALTER DATABASE [EmployeeTraining] SET RECURSIVE_TRIGGERS OFF
63 GO
64
65 ALTER DATABASE [EmployeeTraining] SET DISABLE_BROKER
66 GO
67
68 ALTER DATABASE [EmployeeTraining] SET AUTO_UPDATE_STATISTICS_ASYNC OFF
69 GO
70
71 ALTER DATABASE [EmployeeTraining] SET DATE_CORRELATION_OPTIMIZATION OFF
72 GO
73
74 ALTER DATABASE [EmployeeTraining] SET TRUSTWORTHY OFF
75 GO
76
77 ALTER DATABASE [EmployeeTraining] SET ALLOW_SNAPSHOT_ISOLATION OFF
78 GO
79
80 ALTER DATABASE [EmployeeTraining] SET PARAMETERIZATION SIMPLE
81 GO
82
83 ALTER DATABASE [EmployeeTraining] SET READ_COMMITTED_SNAPSHOT OFF
84 GO
85
86 ALTER DATABASE [EmployeeTraining] SET HONOR_BROKER_PRIORITY OFF
87 GO
88
89 ALTER DATABASE [EmployeeTraining] SET READ_WRITE
90 GO
91
92 ALTER DATABASE [EmployeeTraining] SET RECOVERY FULL
93 GO
94
95 ALTER DATABASE [EmployeeTraining] SET MULTI_USER
96 GO
97
98 ALTER DATABASE [EmployeeTraining] SET PAGE_VERIFY CHECKSUM
99 GO
100
101 ALTER DATABASE [EmployeeTraining] SET DB_CHAINING OFF
102 GO

Referring to example 8.7 — Note that on lines 6 and 8 I’ve edited the path to the database and log files. I’m
going to create a separate folder on my C: drive named database. In that folder I am creating a subfolder named
mssql, and in that folder I’m creating a subfolder named EmployeeTraining. That is where I will create the Employ-
eeTraining.mdf and EmployeeTraining_log.ldf files.

The next set of scripts to create is the DropLogin.sql and CreateLogin.sql scripts, which are listed in examples
8.8 and 8.9 respectively.

8.8 DropLogin.sql
1 /****** Object: Login [EmployeeTraining] Script Date: 10/13/2012 08:52:28 ******/
2 IF EXISTS (SELECT * FROM sys.server_principals WHERE name = N'EmployeeTraining')
3 DROP LOGIN [EmployeeTraining]
4 GO

8.9 CreateLogin.sql
1 /****** Object: Login [EmployeeTraining] Script Date: 10/13/2012 08:52:28 ******/
2 CREATE LOGIN [EmployeeTraining] WITH PASSWORD=N'password', DEFAULT_DATABASE=[EmployeeTraining],
DEFAULT_LANGUAGE=[us_english], CHECK_EXPIRATION=OFF, CHECK_POLICY=OFF
3 GO
4
5 EXEC sys.sp_addsrvrolemember @loginame = N'EmployeeTraining', @rolename = N'dbcreator'
6 GO

The next script will be the CreateUser.sql script, which is given in example 8.10.
8.10 CreateUser.sql

1 USE [EmployeeTraining]
2 GO
3
4 /****** Object: User [EmployeeTrainingUser] Script Date: 10/13/2012 08:30:07 ******/
5 GO
6
7 CREATE USER [EmployeeTrainingUser] FOR LOGIN [EmployeeTraining] WITH DEFAULT_SCHEMA=[dbo]
8 GO

Finally, the CreateTables.sql script is given in example 8.11.

Generating Database Scripts Creating and Managing Databases with Scripts

158 © 2014 Rick Miller — All Rights Reserved ASP.NET: An Integrated Approach

8.11 CreateTables.sql
1 USE [EmployeeTraining]
2 GO
3 /****** Object: Table [dbo].[tbl_Employee] Script Date: 10/13/2012 09:55:02 ******/
4 SET ANSI_NULLS ON
5 GO
6 SET QUOTED_IDENTIFIER ON
7 GO
8 SET ANSI_PADDING ON
9 GO
10 IF NOT EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N'[dbo].[tbl_Employee]') AND type
in (N'U'))
11 BEGIN
12 CREATE TABLE [dbo].[tbl_Employee](
13 [EmployeeID] [int] IDENTITY(1,1) NOT NULL,
14 [FirstName] [varchar](50) NOT NULL,
15 [MiddleName] [varchar](50) NOT NULL,
16 [LastName] [varchar](50) NOT NULL,
17 [Birthday] [datetime] NOT NULL,
18 [Picture] [varbinary](max) NULL,
19 [HireDate] [datetime] NOT NULL,
20 CONSTRAINT [PK_tbl_Employee] PRIMARY KEY CLUSTERED
21 (
22 [EmployeeID] ASC
23)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON,
ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
24) ON [PRIMARY]
25 END
26 GO
27 SET ANSI_PADDING OFF
28 GO
29 /****** Object: Table [dbo].[tbl_Course_LU] Script Date: 10/13/2012 09:55:02 ******/
30 SET ANSI_NULLS ON
31 GO
32 SET QUOTED_IDENTIFIER ON
33 GO
34 SET ANSI_PADDING ON
35 GO
36 IF NOT EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N'[dbo].[tbl_Course_LU]') AND type
in (N'U'))
37 BEGIN
38 CREATE TABLE [dbo].[tbl_Course_LU](
39 [CourseID] [int] IDENTITY(1,1) NOT NULL,
40 [Code] [varchar](6) NOT NULL,
41 [Title] [varchar](200) NOT NULL,
42 [Description] [varchar](1000) NOT NULL,
43 CONSTRAINT [PK_tbl_Course_LU] PRIMARY KEY CLUSTERED
44 (
45 [CourseID] ASC
46)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON,
ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
47) ON [PRIMARY]
48 END
49 GO
50 SET ANSI_PADDING OFF
51 GO
52 /****** Object: Table [dbo].[tbl_EmployeeCourse_XREF] Script Date: 10/13/2012 09:55:02 ******/
53 SET ANSI_NULLS ON
54 GO
55 SET QUOTED_IDENTIFIER ON
56 GO
57 IF NOT EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N'[dbo].[tbl_EmployeeCourse_XREF]')
AND type in (N'U'))
58 BEGIN
59 CREATE TABLE [dbo].[tbl_EmployeeCourse_XREF](
60 [FK_EmployeeID] [int] NOT NULL,
61 [FK_CourseID] [int] NOT NULL,
62 [DateCompleted] [datetime] NOT NULL,
63 [Grade] [float] NOT NULL
64) ON [PRIMARY]
65 END
66 GO
67 /****** Object: ForeignKey [FK_tbl_EmployeeCourse_XREF_tbl_Course_LU] Script Date: 10/13/2012
09:55:02 ******/
68 IF NOT EXISTS (SELECT * FROM sys.foreign_keys WHERE object_id =
OBJECT_ID(N'[dbo].[FK_tbl_EmployeeCourse_XREF_tbl_Course_LU]') AND parent_object_id =
OBJECT_ID(N'[dbo].[tbl_EmployeeCourse_XREF]'))
69 ALTER TABLE [dbo].[tbl_EmployeeCourse_XREF] WITH CHECK ADD CONSTRAINT
[FK_tbl_EmployeeCourse_XREF_tbl_Course_LU] FOREIGN KEY([FK_CourseID])
70 REFERENCES [dbo].[tbl_Course_LU] ([CourseID])

Creating and Managing Databases with Scripts Generating Database Scripts

ASP.NET: An Integrated Approach © 2014 Rick Miller — All Rights Reserved 159

71 ON UPDATE CASCADE
72 ON DELETE CASCADE
73 GO
74 IF EXISTS (SELECT * FROM sys.foreign_keys WHERE object_id =
OBJECT_ID(N'[dbo].[FK_tbl_EmployeeCourse_XREF_tbl_Course_LU]') AND parent_object_id =
OBJECT_ID(N'[dbo].[tbl_EmployeeCourse_XREF]'))
75 ALTER TABLE [dbo].[tbl_EmployeeCourse_XREF] CHECK CONSTRAINT [FK_tbl_EmployeeCourse_XREF_tbl_Course_LU]
76 GO
77 /****** Object: ForeignKey [FK_tbl_EmployeeCourse_XREF_tbl_Employee] Script Date: 10/13/2012
09:55:02 ******/
78 IF NOT EXISTS (SELECT * FROM sys.foreign_keys WHERE object_id =
OBJECT_ID(N'[dbo].[FK_tbl_EmployeeCourse_XREF_tbl_Employee]') AND parent_object_id =
OBJECT_ID(N'[dbo].[tbl_EmployeeCourse_XREF]'))
79 ALTER TABLE [dbo].[tbl_EmployeeCourse_XREF] WITH CHECK ADD CONSTRAINT
[FK_tbl_EmployeeCourse_XREF_tbl_Employee] FOREIGN KEY([FK_EmployeeID])
80 REFERENCES [dbo].[tbl_Employee] ([EmployeeID])
81 ON UPDATE CASCADE
82 ON DELETE CASCADE
83 GO
84 IF EXISTS (SELECT * FROM sys.foreign_keys WHERE object_id =
OBJECT_ID(N'[dbo].[FK_tbl_EmployeeCourse_XREF_tbl_Employee]') AND parent_object_id =
OBJECT_ID(N'[dbo].[tbl_EmployeeCourse_XREF]'))
85 ALTER TABLE [dbo].[tbl_EmployeeCourse_XREF] CHECK CONSTRAINT [FK_tbl_EmployeeCourse_XREF_tbl_Employee]
86 GO

Referring to example 8.11 — This script is the same as the raw script since no editing or segregation was neces-
sary.

Step 4: Organize Scripts According To Release
In this step, you need to gather up the scripts you created in Step 3 above and put them in the release folder you

created in Step 1. The release folder should have been created in the EmployeeTrainingProject\trunk\database folder
as is shown in figure 8.12.

Step 5: Create Test Data Generation Scripts
What good is a database without data? You can create a script that automatically inserts data into tables to sup-

port testing. I will create such a script and name it InsertTestData.sql, which is given in example 8.12.
8.12 InsertTestData.sql

1 USE [EmployeeTraining]
2 GO
3 /* Insert test data into tbl_Employee */
4 INSERT INTO dbo.tbl_Employee (FirstName, MiddleName, LastName, Birthday, HireDate)
5 VALUES ('Rick', 'Warren', 'Miller', '1/1/1970 12:00:00 AM', '12/1/1998 12:00:00 AM');
6 INSERT INTO dbo.tbl_Employee (FirstName, MiddleName, LastName, Birthday, HireDate)
7 VALUES ('Coralie', 'Sylvia', 'Miller', '1/1/1975 12:00:00 AM', '08/21/2001 12:00:00 AM');
8 INSERT INTO dbo.tbl_Employee (FirstName, MiddleName, LastName, Birthday, HireDate)
9 VALUES ('Steve', 'Jacob', 'Hester', '09/12/1986 12:00:00 AM', '07/07/2003 12:00:00 AM');
10 INSERT INTO dbo.tbl_Employee (FirstName, MiddleName, LastName, Birthday, HireDate)
11 VALUES ('Nancy', 'Jo', 'Coats', '1/1/1961 12:00:00 AM', '12/1/1998 12:00:00 AM');
12 INSERT INTO dbo.tbl_Employee (FirstName, MiddleName, LastName, Birthday, HireDate)
13 VALUES ('William', 'Brent', 'Darby', '11/12/1969 12:00:00 AM', '04/04/1986 12:00:00 AM');
14

Figure 8-12: Scripts Placed in Release 1.0 DB Scripts Folder

Generating Database Scripts Creating and Managing Databases with Scripts

160 © 2014 Rick Miller — All Rights Reserved ASP.NET: An Integrated Approach

15 /* Insert test data into tbl_tbl_Course_LU */
16 INSERT INTO dbo.tbl_Course_LU (Code, Title, Description)
17 VALUES ('IST101', 'Introduction to Programming', 'Description test here...');
18 INSERT INTO dbo.tbl_Course_LU (Code, Title, Description)
19 VALUES ('IST102', 'Intermediate Programming', 'Description test here...');
20 INSERT INTO dbo.tbl_Course_LU (Code, Title, Description)
21 VALUES ('PMP101', 'Introduction to Program Management', 'Description test here...');
22 INSERT INTO dbo.tbl_Course_LU (Code, Title, Description)
23 VALUES ('PMP102', 'Intermediate Program Management', 'Description test here...');
24 INSERT INTO dbo.tbl_Course_LU (Code, Title, Description)
25 VALUES ('PMP103', 'Earned Value Management', 'Description test here...');
26
27 /* Insert test data into tbl_EmployeeCourse_XREF */
28 INSERT INTO dbo.tbl_EmployeeCourse_XREF (FK_EmployeeID, FK_CourseID, DateCompleted, Grade)
29 VALUES (1, 1, '1/1/2012 12:00:00 AM', '4.0');
30 INSERT INTO dbo.tbl_EmployeeCourse_XREF (FK_EmployeeID, FK_CourseID, DateCompleted, Grade)
31 VALUES (1, 2, '1/1/2012 12:00:00 AM', '4.0');
32 INSERT INTO dbo.tbl_EmployeeCourse_XREF (FK_EmployeeID, FK_CourseID, DateCompleted, Grade)
33 VALUES (2, 3, '1/1/2012 12:00:00 AM', '4.0');
34 INSERT INTO dbo.tbl_EmployeeCourse_XREF (FK_EmployeeID, FK_CourseID, DateCompleted, Grade)
35 VALUES (2, 4, '1/1/2012 12:00:00 AM', '4.0');
36 INSERT INTO dbo.tbl_EmployeeCourse_XREF (FK_EmployeeID, FK_CourseID, DateCompleted, Grade)
37 VALUES (3, 1, '1/1/2012 12:00:00 AM', '4.0');

Referring to example 8.12 — Note that before you can insert data into the tbl_EmployeeCourse_XREF table you
must have data in both the tbl_Employee and tbl_Course_LU tables. Also, you can safely omit data from fields where
null values are acceptable. In the tbl_Employee table I have not inserted a picture because that field allows null val-
ues.

Step 6: Create DOS Batch File To Execute Scripts Automatically
The next thing to do is to create a DOS batch file that will execute all the SQL scripts automatically. I’ll create

two batch files: the first batch file will be named Set_Environment.bat and will be used to setup the logs directory
environment variable and to create the logs and database directory structures. The second batch file will be used to
execute the database scripts. Examples 8.13 and 8.14 lists the Set_Environment.bat and CreateRelease_1.0_Data-
base.bat files respectively.

8.13 Set_Environment.bat
1 rem set DB_LOGS environment variable for use in batch files
2 set DB_LOGS=logs
3 rem create logs directory
4 if not exist %DB_LOGS% mkdir %DB_LOGS%
5
6 rem create database directories for deployment
7 if not exist c:\database mkdir c:\database
8 if not exist c:\database\mssql mkdir c:\database\mssql
9 if not exist c:\database\mssql\EmployeeTraining mkdir c:\database\mssql\EmployeeTraining

Referring to example 8.13 — Note that the DB_LOGS variable will be used in subsequent batch files to provide
a path to the logs directory. Also, the path to the database directory should match that in the CreateDatabase.sql script.

8.14 CreateRelease_1.0_Database.bat
1 @echo off
2
3 echo.
4
5 echo Setting up environment parameters...
6 call Set_Environment.bat
7
8 echo Dropping EmployeeTraining Database...
9 sqlcmd -i "Release_1.0_DB_Scripts\DropDatabase.sql" -b -o %DB_LOGS%\DropDatabaseOutput.txt
10 echo Dropping EmployeeTraining Login...
11 sqlcmd -i "Release_1.0_DB_Scripts\DropLogin.sql" -b -o %DB_LOGS%\DropLoginOutput.txt
12 echo Creating EmployeeTraining Database...
13 sqlcmd -i "Release_1.0_DB_Scripts\CreateDatabase.sql" -b -o %DB_LOGS%\CreateDatabaseOutput.txt
14 echo Creating EmployeeTraining Login...
15 sqlcmd -i "Release_1.0_DB_Scripts\CreateLogin.sql" -b -o %DB_LOGS%\CreateLoginOutput.txt
16 echo Creating EmployeeTraining User
17 sqlcmd -i "Release_1.0_DB_Scripts\CreateUser.sql" -b -o %DB_LOGS%\CreateUserOutput.txt
18 echo Creating EmployeeTraining Database Tables...
19 sqlcmd -i "Release_1.0_DB_Scripts\CreateTables.sql" -b -o %DB_LOGS%\CreateTablesOutput.txt
20 echo Inserting test data...
21 sqlcmd -i "Release_1.0_DB_Scripts\InsertTestData.sql" -b -o %DB_LOGS%\InsertTestDataOutput.txt

Referring to examples 8.13 and 8.14 — These two batch files are placed in the trunk\database directory. Your
trunk\database directory should now look similar to figure 8.13.

Creating and Managing Databases with Scripts Commit Tested Scripts To Subversion

ASP.NET: An Integrated Approach © 2014 Rick Miller — All Rights Reserved 161

Step 7: Run Release Script

All that’s left now is to test the scripts. You can double-click the CreateRelease_1.0_Database.bat file or open a
command console window and execute it by typing its name. As the script executes you should see the comments
echoed to the console as is shown in figure 8.14.

Referring to figure 8-14 — When the script finishes executing you can check the contents of each log file located
in the logs folder. The output to each log file should be minimal. If an sql file contained a USE statement on line one
then you’ll see a line in the log file that says something like: “Changed database context to ‘master’” or “Changed
database context to ‘EmployeeTraining’”. Otherwise, if there’s an error, you will see more output indicating on what
line of the script the error occurred.

If all goes well your database will be dropped and recreated in a matter of seconds. You can verify everything is
as it should be by opening SQL Server Management Studio and inspecting the database. Note that if you open the
Database Diagrams folder you’ll have to create a new diagram and add the existing tables to it as is shown in figure
8.15.

Referring to figure 8-15 — Simply select all the tables you wish to add to the diagram and click the Add button.
Click the Close button to dismiss the Add Table dialog and inspect the database diagram for completeness.

Commit Tested Scripts To Subversion

Once you’ve tested the scripts and verified that everything works like it should, add everything but the logs
folder to the subversion repository. If you look at the contents of the trunk\database folder, you’ll notice that Tortoise
has placed a purple circle with a white question mark next to each artifact that has not yet been placed in the reposi-
tory. To add your new database scripts, first select the Release_1.0_DB_Scripts folder and the two batch files and
right-click and select TortoiseSVN -> Add as is shown in figure 8.16.

Figure 8-13: Contents of trunk\database Folder

Figure 8-14: Results of Executing CreateRelease_1.0_Database.bat File

Commit Tested Scripts To Subversion Creating and Managing Databases with Scripts

162 © 2014 Rick Miller — All Rights Reserved ASP.NET: An Integrated Approach

Referring to figure 8-16 — Select TortoiseSVN -> Add to bring up the Tortoise Add dialog as is shown in figure
8.17.

Figure 8-15: Adding Tables to a Database Diagram

Figure 8-16: Right-Click Selected Artifacts and Select TortoiseSVN -> Add

Figure 8-17: Tortoise Add Dialog

Creating and Managing Databases with Scripts Where To Go From Here

ASP.NET: An Integrated Approach © 2014 Rick Miller — All Rights Reserved 163

Referring to figure 8-17 — Inspect the Add dialog to ensure you’re adding the right scripts and not the log files.
When you’re ready click the OK button. If everything goes well the Add dialog will look similar to figure 8-18.

Referring to figure 8-18 — When the add completes successfully, click the OK button. The artifacts you just
added will now be adorned with a blue plus sign. Next, you need to commit the scripts you just added to the reposi-
tory. To do this, select the artifacts you wish to commit then right-click and select SVN Commit... from the pop-up
menu as is shown in figure 8-19. This will bring up the Commit dialog as is shown in figure 8-20.

Referring to figure 8-20 — Add a comment in the Message box and when ready click the OK button. The results
of the commit operation will look similar to figure 8-21. Click the OK button to close the Commit dialog. Committed
artifacts will now be adorned with a green circle containing a white check mark.

Where To Go From Here

The design of the EmployeeTraining database will most certainly evolve during the course of this book as new
requirements are discovered. The same holds true for real-world projects. Database scripts such as the ones created in
this chapter allow developers to better manage the database design and evolution process.

Figure 8-18: Add Completed Successfully - Now It’s Time to Commit

Figure 8-19: Committing Scripts to Repository

Summary Creating and Managing Databases with Scripts

164 © 2014 Rick Miller — All Rights Reserved ASP.NET: An Integrated Approach

When the time comes to evolve the database I will show you how to incorporate those changes into a new set of
release scripts. I’ll show you how to call one release batch file from another on a technique I call batch file chaining.
It sounds complicated but when you see an example you’ll slap your forehead and say “Ah ha!”

Summary

The iterative evolution of a database design can be better managed with scripts. Database scripts let you drop and
recreate the database in a matter of seconds. Database scripts can also be committed to a Subversion repository and
kept under configuration management.

When converting a database to scripts follow the seven-step procedure outlined in this chapter:

Step 1: Create a release folder and a logs folder in your Subversion project’s \trunk\database folder.

Step 2: Use SQL Server Management Studio to generate database scripts for a selected database. This step has
multiple sub-steps.

Figure 8-20: TortoiseSVN Commit Dialog - Add Comments Each Time You Commit

Figure 8-21: Commit Results

Creating and Managing Databases with Scripts References

ASP.NET: An Integrated Approach © 2014 Rick Miller — All Rights Reserved 165

Step 3: Segregate the scripts into logically related sections and save as individual SQL script files. You’ll have
one script to drop the database, another script to create the database, and still another script to create the
tables, etc.

Step 4: Organize the database scripts according to release. Group related database scripts in their respective
release folders.

Step 5: Create additional scripts to automatically insert test data into the database for development and testing.
Step 6: Create a DOS batch file to execute the scripts automatically. Name these batch files according to release.

As the database design evolves over the life of the project you’ll create a chain of these batch files so that
you need only execute the latest release batch file, which will call the previous release batch file, and so
on.

Step 7: Run a release script each time you want to recreate the database. This is done frequently during develop-
ment and testing.

When you drop and recreate the database with your scripts you’ll need to recreate any database diagrams you had
created before dropping the database. All you need to do is create a new diagram, add the required tables from a list
of tables in the database, and arrange them for clarity.

Once you have created your first set of scripts you’ll only need to add scripts here and there that modify the data-
base design.

References

John Paul Mueller, Windows Command Line Administration Instant Reference, Sybex, 2010, ISBN:
9780470650462.

Microsoft sqlcmd Utility online reference: http://msdn.microsoft.com/en-us/library/ms162773.aspx

Microsoft SQL Server Management Studio online reference:
http://msdn.microsoft.com/en-us/library/ms162773.aspx

Notes Creating and Managing Databases with Scripts

166 © 2014 Rick Miller — All Rights Reserved ASP.NET: An Integrated Approach

Notes

	8 Creating and Managing Databases with Scripts
	Introduction
	Process Overview
	Generating Database Scripts
	Step 1: Create Release and Logs Folders
	Step 2: Generate Scripts
	Script The Database
	Script The User
	Script The Login
	Script The Tables

	Step 3: Segregate Scripts Into Related Sections
	Step 4: Organize Scripts According To Release
	Step 5: Create Test Data Generation Scripts
	Step 6: Create DOS Batch File To Execute Scripts Automatically
	Step 7: Run Release Script

	Commit Tested Scripts To Subversion
	Where To Go From Here
	Summary
	References
	Notes

